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Partitions

A partition π is a finite sequence of non-increasing positive integers
(λ1, λ2, . . . , λ#(π)).

For a given partition π = (λ1, λ2, . . . , λ#(π)) the sum λ1 + λ2 + · · ·+ λ#(π) is the
size of the partition π and it is denoted by |π|.

Ex:

π = (5, 1, 1) is a partition of |π| = 7.

π = ∅ is the unique partition of 0.
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Generating Functions

For a sequence {an}∞n=0, the series ∑
n≥0

anq
n

is called a generating function.

Let D be the set of all partitions into non-repeating parts.∑
π∈D

q|π| = 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + 6q8 + 8q9 . . . .

∅ (2, 1), (3) (3, 2, 1), (5, 1), (4, 2), (6)
(1) (3, 1), (4) (4, 2, 1), (6, 1), (5, 2), (4, 3), (7)
(2) (4, 1), (3, 2), (5) . . .
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q-Pochhammer Symbol

(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

(−q; q)∞ = (1 + q1)(1 + q2)(1 + q3) . . .

= 1 + q1 + q2 + (q1+2 + q3) + . . .

=
∑
π∈D

q|π|,

where D is the set of all partitions into non-repeating parts. Similarly,

1

(q; q)∞
=
∑
π∈U

q|π|,

where U is the set of partitions.
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q-Binomial Coefficients

(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

(a1, a2, . . . , ak ; q)L := (a1; q)L(a2; q)L . . . (ak ; q)L.

We define the q-binomial coefficients as[
m + n

m

]
q

:=

{
(q;q)m+n

(q;q)m(q;q)n
, for m, n ≥ 0,

0, otherwise,

This q-binomial coefficient is the generating function for partitions in an m× n-box.
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Partition Identities

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2 and n ∈ Z≥0, the number of partitions of n with gaps between parts
≥ 2, all ≥ m
=
the number of partitions of n into ±m mod 5 parts.

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2, we have

∑
n≥0

qn
2+(m−1)n

(q; q)n
=

1

(qm, q5−m; q5)∞
.

G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University

Press, Cambridge, 1998. Reprint of the 1976 original.
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Partition Identities

Theorem (The First Rogers–Ramanujan Identity)

For any n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 2
=
the number of partitions of n into ±1 mod 5 parts.

Example: n = 10

(10) (9, 1)
(9, 1) (6, 4)
(8, 2) (6, 1, 1, 1, 1)
(7, 3) (4, 4, 1, 1)
(6, 4) (4, 1, 1, 1, 1, 1, 1)
(6, 3, 1) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 7 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Partitions

Generating Functions

Rogers–Ramanujan
Identities

Plane Partitions

Cylindric
Partitions

Future Work

Partition Identities

Theorem (The First Rogers–Ramanujan Identity)

For any n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 2
=
the number of partitions of n into ±1 mod 5 parts.

Example: n = 10

(10) (9, 1)
(9, 1) (6, 4)
(8, 2) (6, 1, 1, 1, 1)
(7, 3) (4, 4, 1, 1)
(6, 4) (4, 1, 1, 1, 1, 1, 1)
(6, 3, 1) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 7 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Partitions

Generating Functions

Rogers–Ramanujan
Identities

Plane Partitions

Cylindric
Partitions

Future Work

Plane Partitions

A vector of partitions π = (π1, π2, . . . ) (each πi = (λi ,1, λi ,2, . . . , λi ,#(πi )) is called
a plane partition if for all i and j , we have

λi ,j ≥ λi+1,j . and λi ,j ≥ λi ,j+1,

Example: π = ( (4, 3, 3, 2, 1, 1), (3, 3, 2, 2, 1), (3, 1, 1, 1), (2) )

4 3 3 2 1 1
3 3 2 2 1
3 1 1 1
2
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Cylindric Partitions

Introduced by Gessel and Krattenthaler, cylindric partitions go as follows:

A vector of k partitions π = (π1, π2, . . . , πk) for a profile c = (c1, c2, . . . , ck)
(ci ∈ Z≥0) is called a cylindric partition if for every i ∈ {1, 2, . . . , k − 1}

λi ,j ≥ λi+1,j+ci+1
. and λk,j ≥ λ1,j+c1 ,

where λi ,j is the j-th element of the i-th partition πi .

I. Gessel and C. Krattenthaler, Cylindric partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2,

429-479.
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An Example

π = ( (3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1) ) is a cylindric partition of profile (2, 1, 2)
with largest part size 4 and total size 27.

3 2 2 1
4 3 3 1 1

4 1 1 1

3 2 2 1

Also there is a one-to-one correspondence between cylindric partitions of profile
(2, 1, 2) and (2, 2, 1), where π is matched with
π∗ = ( (4, 1, 1, 1), (3, 2, 2, 1), (4, 3, 3, 1, 1) ).
A self-note: Don’t forget to talk about removing a largest part.
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with largest part size 4 and total size 27.

3 2 2 1
4 3 3 1 1

4 1 1 1

3 2 2 1

Also there is a one-to-one correspondence between cylindric partitions of profile
(2, 1, 2) and (2, 2, 1), where π is matched with
π∗ = ( (4, 1, 1, 1), (3, 2, 2, 1), (4, 3, 3, 1, 1) ).
A self-note: Don’t forget to talk about removing a largest part.
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Cylindric Partitions
Borodin’s Theorem

Let Pc be the set of all cylindric partitions with profile c . Let the generating
function

Fc(y , q) :=
∑
π∈Pc

ymax(π)q|π|.

Theorem (Borodin, 2007)

For a given profile c = (c1, . . . , ck)

Fc(1, q) =
1

(qt ; qt)∞

m∏
i,j=1

ci∏
m=1

1

(qm+di+1,j+j−i , qt−(m+dj,i−1)+i−j ; qt)∞
,

where di ,j := ci + ci+1 + . . . cj , and 0 if j > i , and t = k + d1,k .

A. Borodin, Periodic Schur process and cylindric partitions, Duke Math. J. 140 (2007), no. 3,

391-468.
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Cylindric Partitions

Let
Gc(y , q) := (yq; q)∞Fc(y , q).

Theorem (Corteel-Welsh, 2019)

For a given profile c = (c1, . . . , ck)

Gc(y , q) =
∑
J⊂I

(−1)|J|−1(yq; q)|J|−1Gc(J)(yq
|J|, q),

where this J is the affect of removing the largest part.

S. Corteel and T. Welsh The A2 Rogers–Ramanujan identities revisited, published in Annals of

Combinatorics in honor of the 80th birthday of George Andrews

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 13 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Cylindric
Partitions

Borodin’s Theorem

Corteel and Welsh’s
Lemma

Rogers–Ramanujan
Again

The New Mod 8
Identities

Future Work

Cylindric Partitions

Let
Gc(y , q) := (yq; q)∞Fc(y , q).

Theorem (Corteel-Welsh, 2019)

For a given profile c = (c1, . . . , ck)

Gc(y , q) =
∑
J⊂I

(−1)|J|−1(yq; q)|J|−1Gc(J)(yq
|J|, q),

where this J is the affect of removing the largest part.

S. Corteel and T. Welsh The A2 Rogers–Ramanujan identities revisited, published in Annals of

Combinatorics in honor of the 80th birthday of George Andrews

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 13 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Cylindric
Partitions

Borodin’s Theorem

Corteel and Welsh’s
Lemma

Rogers–Ramanujan
Again

The New Mod 8
Identities

Future Work

Rogers-Ramanujan Again

Let’s look at the cylindric partitions with the profile (3, 0) and its adjacency.

G(3,0)(y , q) = G(2,1)(yq, q),

G(2,1)(y , q) = G(3,0)(yq, q) + G(2,1)(yq, q)− (1− yq)G(2,1)(yq
2, q).

Let
Gc(y , q) :=

∑
n≥0

gc(n)yn,

where gc(0) = 1 and gc(< 0) ≡ 0. Then,

g(3,0)(n) = qng(2,1)(n),

(1− qn + q2n)g(2,1)(n) = qng(3,0)(n) + q2n−1g(2,1)(n − 1).
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Rogers-Ramanujan Again

g(3,0)(n) =
q2n

(1− qn)
g(3,0)(n − 1), and g(2,1)(n) =

q2n−1

(1− qn)
g(2,1)(n − 1)

and the initial conditions gc(0) = 1 and gc(< 0) ≡ 0 is enough to find the formulas
for the generating functions:

G(3,0)(y , q) =
∑
n≥0

qn
2+nyn

(q; q)n
and G(2,1)(y , q) =

∑
n≥0

qn
2
yn

(q; q)n
.

Setting y = 1 and using Borodin’s theorem yields the analytic version of the
Rogers–Ramanujan identities: For m = 1, 2 we have∑

n≥0

qn
2+(m−1)n

(q; q)n
=

1

(qm, q5−m; q5)∞
.
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The (5,0,0) profile and the related system

The (5, 0, 0) system has these essentially unique cylindric partition profiles:

(5, 0, 0), (4, 1, 0), (4, 0, 1), (3, 2, 0), (3, 0, 2), (3, 1, 1), (2, 2, 1).

The related product generating functions:

G(5,0,0)(1, q) =
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

G(4,1,0)(1, q) = G(4,0,1)(1, q) =
1

(q, q2, q3, q4, q4, q5, q6, q7; q8)∞
,

G(3,2,0)(1, q) = G(3,0,2)(1, q) =
1

(q, q2, q2, q3, q5, q6, q6, q7; q8)∞
,

G(3,1,1)(1, q) =
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
,

G(2,2,1)(1, q) =
1

(q, q, q2, q4, q4, q6, q7, q7; q8)∞
.
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One extra symmetry

We were able to show that for 3 element profiles we have

G(c1,c2,c3)(1, q) = G(c2,c1,c3)(1, q),

(q; q)∞F(c1,c2,c3)(1, q) = (q; q)∞F(c2,c1,c3)(1, q).

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 18 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Cylindric
Partitions

Borodin’s Theorem

Corteel and Welsh’s
Lemma

Rogers–Ramanujan
Again

The New Mod 8
Identities

Future Work

One extra symmetry

We were able to show that for 3 element profiles we have

F(c1,c2,c3)(1, q) = F(c2,c1,c3)(1, q).

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 18 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Cylindric
Partitions

Borodin’s Theorem

Corteel and Welsh’s
Lemma

Rogers–Ramanujan
Again

The New Mod 8
Identities

Future Work

The (5,0,0) profile and the related system

The (5, 0, 0) system has these essentially unique cylindric partition profiles:

(5, 0, 0), (4, 1, 0), (4, 0, 1), (3, 2, 0), (3, 0, 2), (3, 1, 1), (2, 2, 1).

The related product generating functions:

G(5,0,0)(1, q) =
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

G(4,1,0)(1, q) = G(4,0,1)(1, q) =
1

(q, q2, q3, q4, q4, q5, q6, q7; q8)∞
,

G(3,2,0)(1, q) = G(3,0,2)(1, q) =
1

(q, q2, q2, q3, q5, q6, q6, q7; q8)∞
,

G(3,1,1)(1, q) =
1

(q, q, q3, q3, q5, q5, q7, q7; q8)∞
,

G(2,2,1)(1, q) =
1

(q, q, q2, q4, q4, q6, q7, q7; q8)∞
.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences - 19 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Cylindric
Partitions

Borodin’s Theorem

Corteel and Welsh’s
Lemma

Rogers–Ramanujan
Again

The New Mod 8
Identities

Future Work

The (5,0,0) profile and the related system

G(5,0,0)(y , q) = G(4,1,0)(yq, q),

G(4,1,0)(y , q) = G(4,0,1)(yq, q) + G(3,2,0)(yq, q)− (1− yq)G(3,1,1)(yq
2, q),

G(4,0,1)(y , q) = G(5,0,0)(yq, q) + G(3,1,1)(yq, q)− (1− yq)G(4,1,0)(yq
2, q),

G(3,2,0)(y , q) = G(3,1,1)(yq, q) + G(3,0,2)(yq, q)− (1− yq)G(2,2,1)(yq
2, q),

G(3,1,1)(y , q) = G(4,1,0)(yq, q) + G(3,0,2)(yq, q) + G(2,2,1)(yq, q)

− (1− yq)
(
G(4,0,1)(yq

2, q) + G(3,2,0)(yq
2, q) + G(2,2,1)(yq

2, q)
)

+ (1− yq)(1− yq2)G(3,1,1)(yq
3, q),

G(3,0,2)(y , q) = G(4,0,1)(yq, q) + G(2,2,1)(yq, q)− (1− yq)G(3,1,1)(yq
2, q),

G(2,2,1)(y , q) = G(3,2,0)(yq, q) + G(3,1,1)(yq, q) + G(2,2,1)(yq, q)

− (1− yq)
(
G(3,1,1)(yq

2, q) + G(3,0,2)(yq
2, q) + G(2,2,1)(yq

2, q)
)

+ (1− yq)(1− yq2)G(2,2,1)(yq
3, q).
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The (5,0,0) profile and the related system

This is clearly where we should stop doing work by hand.
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The (5,0,0) profile and the related system

G(5,0,0)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n1+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(4,1,0)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(4,0,1)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n1+n3−n1n2+n2n4

(
1 + yqn1+n2+n4+1

)
(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

G(3,0,2)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n1−n1n2+n2n4

(
1 + yqn1+n3+1 + yq2n1+n2+n3+n4+2

)
(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(3,2,0)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n1−n1n2+n2n4

(
qn3 + yqn1+1 + yq2n1+n3+2 + yq3n1+n2+n3+n4+3

)
(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(3,1,1)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24+n3−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

,

G(2,2,1)(y, q) =
∑

n1,n2,n3,n4≥0

yn1 qn
2
1+n22+n23+n24−n1n2+n2n4

(q; q)n1

[
n1

n2

]
q

[
n1

n4

]
q

[
n2

n3

]
q

.
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The (5,0,0) profile and the related system

Theorem (Corteel-Dousse-U)

G(5,0,0)(1, q) =
∑

n1,n2,n3,n4≥0

qn21+n22+n23+n24+n1+n2+n3+n4−n1n2+n2n4

(q; q)n1

[
n1
n2

]
q

[
n1
n4

]
q

[
n2
n3

]
q

=
1

(q2, q3, q3, q4, q4, q5, q5, q6; q8)∞
,

where [
m + n

m

]
q

:=

{
(q;q)m+n

(q;q)m(q;q)n
, for m, n ≥ 0,

0, otherwise.

S. Corteel, J. Dousse, and A.K.U. Cylindric partitions and some new A2 Rogers-Ramanujan

identities, Accepted in Proc. Amer. Math. Soc. 2021, https://doi.org/10.1090/proc/15570
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Wait! There is more:

We can also look at symmetric cylindric partitions and their properties.

This is exactly what we are doing with Walter Bridges now.

Advertisement: Don’t miss next week’s talk. He will be giving an account on
what we found so far.
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Thank you for your time
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