On New Modulo 8 Cylindric Partition Identities

Ali Kemal Uncu (aku21@bath.ac.uk)

Specialty Seminar in Partition Theory, q-Series and Related Topics

The speaker is partially supported by the EPSRC grant EP/T015713/1 and partially by the FWF grant P-34501N.

Two Amazing Mathematicians

Basics Cylindric Partitions

Future Work

Sylvie Corteel

Jehanne Dousse

Cylindric partitions and some new A₂ Rogers-Ramanujan identities Accepted in Proc. Amer. Math. Soc. 2021 https://doi.org/10.1090/proc/15570

Partitions

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

A partition π is a finite sequence of non-increasing positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_{\#(\pi)})$.

For a given partition $\pi = (\lambda_1, \lambda_2, \dots, \lambda_{\#(\pi)})$ the sum $\lambda_1 + \lambda_2 + \dots + \lambda_{\#(\pi)}$ is the size of the partition π and it is denoted by $|\pi|$.

<u>Ex:</u>

- $\pi = (5, 1, 1)$ is a partition of $|\pi| = 7$.
- $\pi = \emptyset$ is the unique partition of 0.

Generating Functions

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

For a sequence $\{a_n\}_{n=0}^{\infty}$, the series

$$\sum_{n\geq 0}a_nq^n$$

is called a *generating function*.

Let \mathcal{D} be the set of all partitions into non-repeating parts.

$$\sum_{\pi\in\mathcal{D}}q^{|\pi|}=1+q+q^2+2q^3+2q^4+3q^5+4q^6+5q^7+6q^8+8q^9\dots$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan

Identities Plane Partitions

Cylindric Partitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$(-q;q)_\infty = (1+q^1)(1+q^2)(1+q^3)\dots$$

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$egin{aligned} (-q;q)_\infty &= (1+q^1)(1+q^2)(1+q^3)\dots \ &= 1+q^1+q^2+(q^{1+2}+q^3)+\dots \end{aligned}$$

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$egin{aligned} (-q;q)_\infty &= (1+q^1)(1+q^2)(1+q^3)\dots \ &= 1+q^1+q^2+(q^{1+2}+q^3)+\dots \ &= \sum_{\pi\in\mathcal{D}}q^{|\pi|}, \end{aligned}$$

where \mathcal{D} is the set of all partitions into non-repeating parts.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$egin{aligned} (-q;q)_\infty &= (1+q^1)(1+q^2)(1+q^3)\dots \ &= 1+q^1+q^2+(q^{1+2}+q^3)+\dots \ &= \sum_{\pi\in\mathcal{D}}q^{|\pi|}, \end{aligned}$$

where \mathcal{D} is the set of all partitions into non-repeating parts. Similarly,

$$rac{1}{(q;q)_\infty} = \sum_{\pi \in \mathcal{U}} q^{|\pi|},$$

where $\ensuremath{\mathcal{U}}$ is the set of partitions.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

$$(a;q)_L := \prod_{i=0}^{L-1} (1 - aq^i), \text{ and } (a;q)_\infty := \lim_{L \to \infty} (a;q)_L.$$

 $(a_1, a_2, \dots, a_k;q)_L := (a_1;q)_L (a_2;q)_L \dots (a_k;q)_L.$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

$$(a;q)_L := \prod_{i=0}^{L-1} (1 - aq^i), \text{ and } (a;q)_\infty := \lim_{L \to \infty} (a;q)_L,$$

 $(a_1, a_2, \dots, a_k;q)_L := (a_1;q)_L (a_2;q)_L \dots (a_k;q)_L.$

We define the *q*-binomial coefficients as

$$\begin{bmatrix} m+n\\m \end{bmatrix}_q := \left\{ \begin{array}{ll} \frac{(q;q)_{m+n}}{(q;q)_m(q;q)_n}, & \text{for } m,n \ge 0, \\ 0, & \text{otherwise,} \end{array} \right.$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

$$(a;q)_L := \prod_{i=0}^{L-1} (1 - aq^i), \text{ and } (a;q)_\infty := \lim_{L \to \infty} (a;q)_L,$$

 $(a_1, a_2, \dots, a_k;q)_L := (a_1;q)_L (a_2;q)_L \dots (a_k;q)_L.$

We define the *q*-binomial coefficients as

$$\begin{bmatrix} m+n\\m \end{bmatrix}_q := \left\{ \begin{array}{ll} \frac{(q;q)_{m+n}}{(q;q)_m(q;q)_n}, & \text{for } m,n \ge 0, \\ 0, & \text{otherwise,} \end{array} \right.$$

This q-binomial coefficient is the generating function for partitions in an $m \times n$ -box.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Theorem (Rogers-Ramanujan Identities)

the number of partitions of n into $\pm m \mod 5$ parts.

For m=1,2 and $n\in\mathbb{Z}_{\geq0},$ the number of partitions of n with gaps between parts $\geq2,$ all $\geq m$

Rogers–Ramanujan Identities Plane Partitions

=

Basics

Partitions Generating Functions

Cylindric Partitions

Theorem (Rogers-Ramanujan Identities)

For m = 1, 2 and $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 2 , all $\geq m$

Plane Partitions Cylindric Partitions

Rogers–Ramanujan Identities

=

Basics

Partitions Generating Functions

Future Work

the number of partitions of n into $\pm m$ mod 5 parts.

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2, we have

$$\sum_{n\geq 0} \frac{q^{n^2+(m-1)n}}{(q;q)_n} = \frac{1}{(q^m,q^{5-m};q^5)_\infty}$$

G. E. Andrews, *The Theory of Partitions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions Future Work

Theorem (The First Rogers-Ramanujan Identity)

For any $n\in\mathbb{Z}_{\geq0},$ the number of partitions of n with gaps between parts ≥2

the number of partitions of n into $\pm 1 \mod 5$ parts.

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

Theorem (The First Rogers-Ramanujan Identity)

For any $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 2 =

the number of partitions of n into $\pm 1 \mod 5$ parts.

Example: n = 10

$$\begin{array}{c|cccc} (10) & (9,1) \\ (9,1) & (6,4) \\ (8,2) & (6,1,1,1,1) \\ (7,3) & (4,4,1,1) \\ (6,4) & (4,1,1,1,1,1,1) \\ (6,3,1) & (1,1,1,1,1,1,1,1,1,1) \end{array}$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

Example:
$$\pi = ((4, 3, 3, 2, 1, 1), (3, 3, 2, 2, 1), (3, 1, 1, 1), (2))$$

4 3 3 2 1 1

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

Example:
$$\pi = ((4, 3, 3, 2, 1, 1), (3, 3, 2, 2, 1), (3, 1, 1, 1), (2))$$

$$4 \quad 3 \quad 3 \quad 2 \quad 1 \quad 1$$

$$3 \quad 3 \quad 2 \quad 2 \quad 1$$

Basics Partitions Generating Functions Rogers-Ramanujan Identities Plane Partitions

Cylindric Partitions

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

 $\lambda_{i,j} \geq \lambda_{i+1,j}$. and $\lambda_{i,j} \geq \lambda_{i,j+1}$,

Example: $\pi = ((4, 3, 3, 2, 1, 1), (3, 3, 2, 2, 1), (3, 1, 1, 1), (2))$ $4 \quad 3 \quad 3 \quad 2 \quad 1 \quad 1$ $3 \quad 3 \quad 2 \quad 2 \quad 1$ $3 \quad 1 \quad 1 \quad 1$ 2

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again

The New Mod 8 Identities

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

$$\lambda_{i,j} \geq \lambda_{i+1,j}$$
. and $\lambda_{i,j} \geq \lambda_{i,j+1}$,

Generating function for the plane partitions is

$$\prod_{i\geq 1}rac{1}{(q^i;q)_\infty}$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

A vector of partitions $\pi = (\pi_1, \pi_2, ...)$ (each $\pi_i = (\lambda_{i,1}, \lambda_{i,2}, ..., \lambda_{i,\#(\pi_i)})$ is called a *plane partition* if for all *i* and *j*, we have

$$\lambda_{i,j} \geq \lambda_{i+1,j}$$
. and $\lambda_{i,j} \geq \lambda_{i,j+1}$,

Generating function for the plane partitions is

$$\prod_{i\geq 1}rac{1}{(q^i;q)_\infty}$$

Compare it with the generating function for ordinary partitions

$$\frac{1}{(q;q)_{\infty}}$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Cylindric Partitions

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

Introduced by Gessel and Krattenthaler, cylindric partitions go as follows:

A vector of k partitions $\pi = (\pi_1, \pi_2, ..., \pi_k)$ for a profile $c = (c_1, c_2, ..., c_k)$ $(c_i \in \mathbb{Z}_{\geq 0})$ is called a *cylindric partition* if for every $i \in \{1, 2, ..., k-1\}$

 $\lambda_{i,j} \geq \lambda_{i+1,j+c_{i+1}}$. and $\lambda_{k,j} \geq \lambda_{1,j+c_1}$,

where $\lambda_{i,j}$ is the *j*-th element of the *i*-th partition π_i .

I. Gessel and C. Krattenthaler, *Cylindric partitions*, Trans. Amer. Math. Soc. **349** (1997), no. 2, 429-479.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's

Rogers–Ramanujan Again

The New Mod 8 Identities

Future Work

$\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma

Rogers-Ramanujan Again

The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan

Rogers-Ramanuj Again The New Mod 8

Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

 $3\quad 2\quad 2\quad 1$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again

The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again

The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again

The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Also there is a one-to-one correspondence between cylindric partitions of profile (2, 1, 2) and (2, 2, 1), where π is matched with $\pi^* = ((4, 1, 1, 1), (3, 2, 2, 1), (4, 3, 3, 1, 1)).$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

 $\pi = ((3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 1, 1, 1))$ is a cylindric partition of profile (2, 1, 2) with largest part size 4 and total size 27.

Also there is a one-to-one correspondence between cylindric partitions of profile (2, 1, 2) and (2, 2, 1), where π is matched with $\pi^* = ((4, 1, 1, 1), (3, 2, 2, 1), (4, 3, 3, 1, 1))$. A self-note: Don't forget to talk about removing a largest part.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities Future Work

Cylindric Partitions Borodin's Theorem

Let P_c be the set of all cylindric partitions with profile c. Let the generating function

$$\mathcal{F}_c(y,q) := \sum_{\pi \in \mathcal{P}_c} y^{\max(\pi)} q^{|\pi|}.$$

Cylindric Partitions Borodin's Theorem

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

Let P_c be the set of all cylindric partitions with profile c. Let the generating function

$$F_c(y,q) := \sum_{\pi \in P_c} y^{\max(\pi)} q^{|\pi|}.$$

Theorem (Borodin, 2007)

For a given profile $c = (c_1, \ldots, c_k)$

$${ extsf{F}_{c}(1,q)=rac{1}{(q^{t};q^{t})_{\infty}}\prod_{i,j=1}^{m}\prod_{m=1}^{c_{i}}rac{1}{(q^{m+d_{i+1,j}+j-i},q^{t-(m+d_{j,i-1})+i-j};q^{t})_{\infty}}}$$

where $d_{i,j} := c_i + c_{i+1} + \ldots c_j$, and 0 if j > i, and $t = k + d_{1,k}$.

A. Borodin, *Periodic Schur process and cylindric partitions*, Duke Math. J. **140** (2007), no. 3, 391-468.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Let

Cylindric Partitions

Basics

Cylindric Partitions

Borodin's Theorem

Corteel and Welsh's Lemma

Rogers–Ramanujan Again The New Mod 8

The New Mod Identities

$$G_c(y,q) := (yq;q)_{\infty} F_c(y,q).$$

Let

Cylindric Partitions

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

$G_c(y,q) := (yq;q)_\infty F_c(y,q).$

Theorem (Corteel-Welsh, 2019)

For a given profile $c = (c_1, \ldots, c_k)$

$$G_c(y,q) = \sum_{J \subset I} (-1)^{|J|-1} (yq;q)_{|J|-1} G_{c(J)}(yq^{|J|},q),$$

where this J is the affect of removing the largest part.

S. Corteel and T. Welsh *The A*₂ *Rogers–Ramanujan identities revisited*, published in Annals of Combinatorics in honor of the 80th birthday of George Andrews

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem

Corteel and Welsh's Lemma

Rogers–Ramanujan Again

The New Mod 8 Identities

Future Work

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$\begin{split} & G_{(3,0)}(y,q) = G_{(2,1)}(yq,q), \\ & G_{(2,1)}(y,q) = G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{split}$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma

Rogers–Ramanujan Again

The New Mod 8 Identities

Basics Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanuian Again

Rogers-Ramanujan Again

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$\begin{split} & G_{(3,0)}(y,q) = G_{(2,1)}(yq,q), \\ & G_{(2,1)}(y,q) = G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{split}$$

 $G_c(y,q) := \sum_{n>0} g_c(n) y^n$

Let

The New Mod 8 **Future Work**

Identities

Basics Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again

Rogers-Ramanujan Again

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$\begin{split} & G_{(3,0)}(y,q) = G_{(2,1)}(yq,q), \\ & G_{(2,1)}(y,q) = G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{split}$$

Let

The New Mod 8 **Future Work**

Identities

$$G_c(y,q) := \sum_{n \ge 0} g_c(n) y^n,$$

where $g_c(0) = 1$ and $g_c(< 0) \equiv 0$.

Oct 14. 2021 University of Bath & Austrian Academy of Sciences

Basics Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanuian Again

Rogers-Ramanujan Again

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$egin{aligned} G_{(3,0)}(y,q) &= G_{(2,1)}(yq,q), \ G_{(2,1)}(y,q) &= G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{aligned}$$

Let

The New Mod 8 **Future Work**

Identities

$$G_c(y,q) := \sum_{n\geq 0} g_c(n) y^n,$$

where $g_c(0) = 1$ and $g_c(< 0) \equiv 0$. Then,

$$egin{aligned} g_{(3,0)}(n) &= q^n g_{(2,1)}(n), \ (1-q^n+q^{2n})g_{(2,1)}(n) &= q^n g_{(3,0)}(n) + q^{2n-1}g_{(2,1)}(n-1). \end{aligned}$$

Oct 14. 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again

The New Mod 8 Identities

Future Work

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$egin{aligned} G_{(3,0)}(y,q) &= G_{(2,1)}(yq,q), \ G_{(2,1)}(y,q) &= G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{aligned}$$

$$G_c(y,q) := \sum_{n\geq 0} g_c(n) y^n$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Let

Future Work

Let's look at the cylindric partitions with the profile (3,0) and its adjacency.

$$egin{aligned} G_{(3,0)}(y,q) &= G_{(2,1)}(yq,q), \ G_{(2,1)}(y,q) &= G_{(3,0)}(yq,q) + G_{(2,1)}(yq,q) - (1-yq)G_{(2,1)}(yq^2,q). \end{aligned}$$

$$G_c(y,q) := \sum_{n\geq 0} g_c(n) y^n,$$

where $g_c(0) = 1$ and $g_c(< 0) \equiv 0$. Then,

$$g_{(3,0)}(n) = rac{q^{2n}}{(1-q^n)}g_{(3,0)}(n-1), ext{ and } g_{(2,1)}(n) = rac{q^{2n-1}}{(1-q^n)}g_{(2,1)}(n-1)$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8

Identities

Future Work

$$g_{(3,0)}(n) = rac{q^{2n}}{(1-q^n)}g_{(3,0)}(n-1), ext{ and } g_{(2,1)}(n) = rac{q^{2n-1}}{(1-q^n)}g_{(2,1)}(n-1)$$

and the initial conditions $g_c(0) = 1$ and $g_c(< 0) \equiv 0$ is enough to find the formulas for the generating functions:

$$G_{(3,0)}(y,q) = \sum_{n \ge 0} \frac{q^{n^2+n}y^n}{(q;q)_n} \text{ and } G_{(2,1)}(y,q) = \sum_{n \ge 0} \frac{q^{n^2}y^n}{(q;q)_n}.$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities

Future Work

$$g_{(3,0)}(n) = rac{q^{2n}}{(1-q^n)}g_{(3,0)}(n-1), ext{and} \ g_{(2,1)}(n) = rac{q^{2n-1}}{(1-q^n)}g_{(2,1)}(n-1)$$

and the initial conditions $g_c(0) = 1$ and $g_c(< 0) \equiv 0$ is enough to find the formulas for the generating functions:

$$G_{(3,0)}(y,q) = \sum_{n\geq 0} \frac{q^{n^2+n}y^n}{(q;q)_n} \text{ and } G_{(2,1)}(y,q) = \sum_{n\geq 0} \frac{q^{n^2}y^n}{(q;q)_n}.$$

Setting y = 1 and using Borodin's theorem yields the analytic version of the Rogers-Ramanujan identities: For m = 1, 2 we have

$$\sum_{n\geq 0}\frac{q^{n^2+(m-1)n}}{(q;q)_n}=\frac{1}{(q^m,q^{5-m};q^5)_\infty}.$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8 Identities Future Work

The (5,0,0) profile and the related system

The (5,0,0) system has these essentially unique cylindric partition profiles:

(5,0,0), (4,1,0), (4,0,1), (3,2,0), (3,0,2), (3,1,1), (2,2,1).

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

The
$$(5,0,0)$$
 system has these essentially unique cylindric partition profiles:
 $(5,0,0), (4,1,0), (4,0,1), (3,2,0), (3,0,2), (3,1,1), (2,2,1).$

The related product generating functions:

$$egin{aligned} G_{(5,0,0)}(1,q) &= rac{1}{(q^2,q^3,q^3,q^4,q^4,q^5,q^5,q^6;q^8)_\infty} \ G_{(4,1,0)}(1,q) &= G_{(4,0,1)}(1,q) &= rac{1}{(q,q^2,q^3,q^4,q^4,q^5,q^6,q^7;q^8)_\infty}, \ G_{(3,2,0)}(1,q) &= G_{(3,0,2)}(1,q) &= rac{1}{(q,q^2,q^2,q^3,q^5,q^6,q^6,q^7;q^8)_\infty}, \ G_{(3,1,1)}(1,q) &= rac{1}{(q,q,q^3,q^3,q^3,q^5,q^5,q^7,q^7;q^8)_\infty}, \ G_{(2,2,1)}(1,q) &= rac{1}{(q,q,q^2,q^4,q^4,q^6,q^7,q^7;q^8)_\infty}. \end{aligned}$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

One extra symmetry

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

We were able to show that for 3 element profiles we have

$$egin{aligned} & \mathcal{G}_{(c_1,c_2,c_3)}(1,q) = \mathcal{G}_{(c_2,c_1,c_3)}(1,q), \ & (q;q)_\infty \mathcal{F}_{(c_1,c_2,c_3)}(1,q) = (q;q)_\infty \mathcal{F}_{(c_2,c_1,c_3)}(1,q). \end{aligned}$$

One extra symmetry

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

We were able to show that for 3 element profiles we have

$$F_{(c_1,c_2,c_3)}(1,q)=F_{(c_2,c_1,c_3)}(1,q).$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

The
$$(5,0,0)$$
 system has these essentially unique cylindric partition profiles:
 $(5,0,0), (4,1,0), (4,0,1), (3,2,0), (3,0,2), (3,1,1), (2,2,1).$

The related product generating functions:

$$egin{aligned} G_{(5,0,0)}(1,q) &= rac{1}{(q^2,q^3,q^3,q^4,q^4,q^5,q^5,q^6;q^8)_\infty} \ G_{(4,1,0)}(1,q) &= G_{(4,0,1)}(1,q) &= rac{1}{(q,q^2,q^3,q^4,q^4,q^5,q^6,q^7;q^8)_\infty}, \ G_{(3,2,0)}(1,q) &= G_{(3,0,2)}(1,q) &= rac{1}{(q,q^2,q^2,q^3,q^5,q^6,q^6,q^7;q^8)_\infty}, \ G_{(3,1,1)}(1,q) &= rac{1}{(q,q,q^3,q^3,q^3,q^5,q^5,q^7,q^7;q^8)_\infty}, \ G_{(2,2,1)}(1,q) &= rac{1}{(q,q,q^2,q^4,q^4,q^6,q^7,q^7;q^8)_\infty}. \end{aligned}$$

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

$$\begin{split} G_{(5,0,0)}(y,q) &= G_{(4,1,0)}(yq,q), \\ G_{(4,1,0)}(y,q) &= G_{(4,0,1)}(yq,q) + G_{(3,2,0)}(yq,q) - (1-yq)G_{(3,1,1)}(yq^2,q), \\ G_{(4,0,1)}(y,q) &= G_{(5,0,0)}(yq,q) + G_{(3,1,1)}(yq,q) - (1-yq)G_{(4,1,0)}(yq^2,q), \\ G_{(3,2,0)}(y,q) &= G_{(3,1,1)}(yq,q) + G_{(3,0,2)}(yq,q) - (1-yq)G_{(2,2,1)}(yq^2,q), \\ G_{(3,1,1)}(y,q) &= G_{(4,1,0)}(yq,q) + G_{(3,0,2)}(yq,q) + G_{(2,2,1)}(yq,q) \\ &\quad - (1-yq)(G_{(4,0,1)}(yq^2,q) + G_{(3,2,0)}(yq^2,q) + G_{(2,2,1)}(yq^2,q)) \\ &\quad + (1-yq)(1-yq^2)G_{(3,1,1)}(yq^3,q), \\ G_{(3,0,2)}(y,q) &= G_{(4,0,1)}(yq,q) + G_{(2,2,1)}(yq,q) - (1-yq)G_{(3,1,1)}(yq^2,q), \\ G_{(2,2,1)}(y,q) &= G_{(3,2,0)}(yq,q) + G_{(3,1,1)}(yq^2,q) + G_{(2,2,1)}(yq^2,q) \\ &\quad - (1-yq)(G_{(3,1,1)}(yq^2,q) + G_{(3,0,2)}(yq^2,q) + G_{(2,2,1)}(yq^2,q)) \\ &\quad + (1-yq)(1-yq^2)G_{(2,2,1)}(yq^3,q). \end{split}$$

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers-Ramanujan Again The New Mod 8

Identities Future Work This is clearly where we should stop doing work by hand.

Basics Cylindric Partitions Borodin's Theorem Corteel and Welsh's Lemma Again The New Mod 8 Identities Future Work

The (5,0,0) profile and the related system

$$\begin{split} G_{(5,0,0)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 + n_2 + n_3 + n_4 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(4,1,0)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 + n_3 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(4,0,1)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 + n_3 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left(1 + yq^{n_1 + n_2 + n_4 + 1}\right) \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,0,2)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left(1 + yq^{n_1 + n_3 + 1} + yq^{2n_1 + n_2 + n_3 + n_4 + 2}\right) \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,2,0)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left(q^{n_3} + yq^{n_1 + 1} + yq^{2n_1 + n_3 + n_4 + 2}\right) \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,2,0)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left(q^{n_3} + yq^{n_1 + 1} + yq^{2n_1 + n_2 + n_3 + n_4 + 3}\right) \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,1,1)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_3 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left[n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_4 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,1,1)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_3 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left[n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_3 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,1,1)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_3 - n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left[n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_2 \\ n_3 \end{bmatrix}_q, \\ G_{(3,2,1)}(y,q) &= \sum_{n_1,n_2,n_3,n_4 \ge 0} \frac{y^{n_1}q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1n_2 + n_2n_4}}{(q;q)_{n_1}} \left[n_1 \\ n_2 \end{bmatrix}_q \begin{bmatrix} n_1 \\ n_3 \end{bmatrix}_q \begin{bmatrix} n$$

Oct 14, 2021

University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Borodin's Theorem Corteel and Welsh's Lemma Rogers–Ramanujan Again The New Mod 8 Identities

Future Work

Theorem (Corteel-Dousse-U)

$$egin{aligned} \mathcal{G}_{(5,0,0)}(1,q) &= \sum_{n_1,n_2,n_3,n_4 \geq 0} rac{q^{n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_1 + n_2 + n_3 + n_4 - n_1 n_2 + n_2 n_4}}{(q;q)_{n_1}} egin{bmatrix} n_1 \ n_2 \end{bmatrix}_q egin{bmatrix} n_1 \ n_2 \end{bmatrix}_q egin{bmatrix} n_2 \ n_3 \end{bmatrix}_q \ &= rac{1}{(q^2,q^3,q^3,q^4,q^4,q^5,q^5,q^6;q^8)_\infty}, \ &egin{bmatrix} egin{bmatrix} m + n \ m \end{bmatrix}_q &:= egin{bmatrix} rac{(q;q)_{m+n}}{(q;q)_m(q;q)_n}, & ext{for } m,n \geq 0, \ 0, & ext{otherwise.} \end{aligned}$$

S. Corteel, J. Dousse, and A.K.U. *Cylindric partitions and some new A*₂ *Rogers-Ramanujan identities*, Accepted in Proc. Amer. Math. Soc. 2021, https://doi.org/10.1090/proc/15570

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

where

Future Work

Oct 14, 2021

Wait! There is more:

Basics

Cylindric Partitions

Future Work

We can also look at symmetric cylindric partitions and their properties.

Wait! There is more:

Basics Cylindric Partitions

Future Work

We can also look at symmetric cylindric partitions and their properties.

This is exactly what we are doing with Walter Bridges now.

Wait! There is more:

Basics Cylindric Partitions

Future Work

We can also look at symmetric cylindric partitions and their properties.

This is exactly what we are doing with Walter Bridges now.

Advertisement: Don't miss next week's talk. He will be giving an account on what we found so far.

Oct 14, 2021 University of Bath & Austrian Academy of Sciences

Basics

Cylindric Partitions

Future Work

Thank you for your time

On New Modulo 8 Cylindric Partition Identities

Ali Kemal Uncu (aku21@bath.ac.uk)

Specialty Seminar in Partition Theory, q-Series and Related Topics

The speaker is partially supported by the EPSRC grant EP/T015713/1 and partially by the FWF grant P-34501N.