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Preliminaries



Partitions

Let d be odd.

A mis a partition of m, i.e. A1 > X2 >...and Y A\j=m
ax b= (b,...,b)F abis a rectangular partition.

M is conjugate partition (transposed diagram).

A= (D X)) s a d-tuple of partitions with A() - m.
for function f we write f(A) = (F(AM), ..., F(A(D)), for
instance X' = (AMY ..., (ADY).
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Kronecker coefficients

» by [A] we denote irreducible S,,-representation indexed with A,
a.k.a. Specht module.

» Define d-dimensional Kronecker coefficient g(\) as

g(A) = mult. of [L x m] in AP @ ...\



Kronecker coefficients

» by [A] we denote irreducible S,,-representation indexed with A,
a.k.a. Specht module.

» Define d-dimensional Kronecker coefficient g(\) as
g(A) = mult. of [L x m] in AP @ ...\
For odd d it is equivalent to

g(A) = mult. of [mx 1] in [AP)] @ ... @ [(AD)].
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Conjectures

Let gg(n, k) = g(n x k,...,n x k) (d times).
In our previous work, we conjectured the following:
Conjecture

Let d be odd and k even. Then the sequence {g4(n, k)},—o . ki1
is unimodal.

We known that
> gq(n, k) =0 for n &[0, k971,
> gq(n, k) = ga(k9=1 — n, k), i.e. sequence is symmetric,
> g4(0,k) = g(k9 1, k) = 1.
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Generalized conjecture

Let us generalize this conjecture. Let ¢, be the partition with
new part k inserted. For example:

s

| 9+,

We write ¢} 1= gbZ’l(gbkA) and qﬁ;l is the removal of one part k:

‘ ¢4_1 (;54_1 is undefined

—_—




Generalized conjecture

Conjecture

Let d be odd, k even and A be d-tuple of partitions of m with
parts < k. Denote a = max;{(A\());} and b = min; {(A\(D), }.
Then the sequence {g(¢}A)}p——p.. kd-1_, IS unimodal.

For example,

[H )[ ][ V

ie. g(A) < g(dad) < g(@2N) < ... < g(dlA) > ... > (¢ 3N).




Generalized conjecture

Conjecture

Let d be odd, k even and A be d-tuple of partitions of m with
parts < k. Denote a = max;{(A\());} and b = min; {(A\(D), }.
Then the sequence {g(¢}A)}p——p.. kd-1_, IS unimodal.

ie. g(N) <g(0u)) < g(¢3N) < .. <g(f°N) > .. > a6 N,
Theorem (A.-Yeliussizov,23)

Conjecture is true for k = 2.

a

For example,

Note, that this Conjecture splits d-tuples of partitions in rectangle
k9=1 x k into disjoint sequences.



Examples

Table: The table of g3(n, k) = g(n x k,n x k,nx k) for 1 < k <6,

1< n<8.

K\n |1 2 3 4 5 6 7 8

1 [T 0 0 0 0 0 0 0

2 |1 1 1 1 o 0 0 0

3 1 0 1 1 1 1 0 1

4 1 1 2 5 6 13 14 18

5 1 0 1 4 21 158 1456 9854

6 1 1 3 16 216 9309 438744 17957625

Table: The table of gs(n, k) for 1 < k <5,1<n<6.

K\n | 1 2 3 4 5 6
1 |1 0 0 0 0 0
2 |1 5 1 35 52 112
3 |1 1 38 44430 5042330 781763535
4 |1 36 44522 381857353 5219755745322 87252488565829772
5 | 1 15 6008140 5220537438711  10916817688177999825  36929519748583464067841925



Examples

Few examples of sequences {g(¢7A)}:

— (symmetric and unimodal) X = (42,222,321), k = 4, for n € [0, 13]:
1,15,128,728,2684, 6395, 9884, 9884, 6395, 2684, 728,128, 15,1

— (only unimodal) A = (3,21,21), k = 4, for n € [0, 14]:
1,4,18, 88,342, 956, 1848, 2441, 2183, 1326, 552, 159, 34, 6, 1

— (only unimodal) A = (32,221,41), k =4 and n € [0, 13]:
1,8,54,281,1027,2531,4179,4584,3331,1613,521,114,18,2

— (odd k) A =(32,221,311), k =3 and for n € [0, 6]:
1,4,7,7,5,3,1
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Tensor space

We realize Kronecker coefficients via highest weight vectors.
> (CK)®d = Ck®...® Ck - base tensor space.

» The group GL(k)*9 (over C) acts of V = (CK)®d
multi-linearly:

(Gl,...,Gd)~V1®...Vd:lel®...®GdVd

where G; € GL(k) and v; € Ck.
> this induces the diagonal action on ®™(CK)®9, i.e.

G T1R..Tm=G6CM1Q...0 GT,,.

for G € GL(k)*9.
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Highest weight vectors

T(k) C U(k) C GL(k) be subgroups of diagonal and unitriangular
matrices.

Let v € ®™(CK)®9.
— Vector v is the weight vector (w.r.t. G) of weight X if for
T=(T,....T) e T(n): T-v=(WP... ()W,

where t() = t}i) is the j-th diagonal entry of T(). Here A() are
not necessarily partitions.

— Vector v is the highest weight vector (w.r.t. G) of weight X if for
UeUK)*:U-v=v

the highest weight vectors are indexed with d-tuple of partitions A
of m.



Kronecker coefficients

Schur-Weyl duality states the decomposition with respect to the
action of the group GL(n) X Sp,:

é)ck = P nNevH.
AFm,e(A)<n
From this we obtain
g(A) =dim HWVSL(n)dSymm((C”)(@d
g(A) = dim HWV I Ajm (k)

where Sym™V 2 C[V],, and AtV = A™ V are symmetric and
alternating subspaces of @™ V.
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For instance reactangular partitions:
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Wedge space

m

g(A) =dimHWV,, \(C*)®?

For instance reactangular partitions:

HWVg A’V o HWV (e AV o HWV e 1ye AV

dim = gg(0,k) -+ dim=gg(n k) - dim=gy(k? k)

or more generally for d-tuple A+ m

HWV()‘), /\”" vV ... HWV((/”;)\)' /\m+nk Vo HWV(¢Zd71_3A), /\m+kdiak v

Kd—1

dim =g(A) - dim = g(¢fA) - dim = g A)



Cayley form

For A = (1 x k)9 (1-rows), there is a unique highest weight vector
Wd k= W

of weight X' (1-columns) defined as

k
w = Z Sgn(ﬂ'g...ﬂd)/\e;@eﬂ.z(,’)®...®eﬂ.d(;),
71'27...,7Td65k i=1

k
w € HWV (4 q)0 [\ (CH)®7.

that we call Cayley form. It is also SL(k)%-invariant. It is
essentially a Cayley's first hyperderminant.
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Lefschetz properties

Define the map
L: /\((Ck)®d — /\(Ck)®d, L:vi=vAw
Define the following Lefschetz property.
(LPy k) For some ng € [—b, k91 — a] the map
L:HWV(goay [\ V — HWV iy, [\ V

is injective for each n € [—b, ng) and is surjective for each
n € [no, k971 — a).



Lefschetz operator action

For instance, for rectangular d-tuple of partitions:

HWV AV Lo b HWY e AV S HWY ey AV

dim = g4(0, k) dim = gy(n, k) dim = gg(k%71, k)

or more generally for d-tuple A+ m

HWV(,\), /\m 14 AL_) AL_> HWV(@QA)’ /\m+nk v AL_) AL_) HWV(C‘)kdflfa}\), /\m+kdfak %
Pk

d—1

dim = g(A) e dim = g(¢pA) . dim = g(¢; A)



Rectangular complementarity
Let A C k91 x k. We say X is k-complementary if for some n
each \ € X satisfy
PN = (k971 = Apac1, . kT = N) = kT k= A

For instance, k =4, d =3

For A\ = | = 3N = (4%,)) = (41%) — X

Lemma
For k-complementary A we have g(\) = g(k9=1 x k — X).



Hard Lefschetz property

For k-complementary A we also define the following statement.
(HLP) ) For each n € [—b, (k%1 —a+ b)/2] the map

kd—1

—a—2n.
L a—2an . HWV(¢2)\)/ /\ V — HWV((z)id—l,Zm/k,%)‘)/ /\ %4

is an isomorphism.

The underlying sequence of Kronecker coefficients is already
symmetric.



More general LP

Why highest weight vectors? Let's simplify!
(LPx) For each n € [0,k — k] the map

n+k

n
L - /\(Ck)®d N /\((Ck)®d
has full rank.



More general LP

Why highest weight vectors? Let's simplify!
(LPx) For each n € [0,k — k] the map

n+k

L:/H\(Ck)@)d N /\((Ck)®d

has full rank.
Turns out, LPy  is false for k > 2 for any d. But LPg is true.
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Implication 1

Lefschetz properties has two important implications.

Proposition (A.-Yeliussizov,23)
Let d > 3 be odd and k be even. Then

LPy , = the sequence {g(qSZ)\)},,E[,bkd_La] is unimodal.



Implication 2

Definition
Latin hypercube L is the map L : [k]? — [k971] so that each slice
contains a permutation of length k=1 (slice = set of points with

one fixed coordinate). For instance,

Figure: Latin cube for d =3 and k =3

The sign sgn(L) of a Latin hypercube L is the product of signs over
all slice permutations.
For d = 2 we get Latin squares.



Implication 2

The d-dimensional Alon-Tarsi number is
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L

where sum runs over all d-dimensional Latin hypercubes of length k. For
d = 2, Alon-Tarsi conjecture states that ATz(k) # 0 for even k.
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Implication 2

The d-dimensional Alon-Tarsi number is
AT4(k) = 3 sen(L)
L

where sum runs over all d-dimensional Latin hypercubes of length k. For
d = 2, Alon-Tarsi conjecture states that ATz(k) # 0 for even k.

Proposition (A.-Yeliussizov,23)
Let d > 3 be odd and k be even. Then

HLP, , = AT4(k) #0.

Proof.
LK (1) = Wk = £AT4(k)vol # 0. O
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Proof of LPg45: step 1

The proof is quite classical. The key is present w in a suitable way.

Lemma

For k = 2 and odd d the Cayley vector w = wq > and its dual w*
can be written as follows:

w:E & A e, w*:E & Aej.
ielt ielt

where It C [2]9 is the set of elements with odd sum of coordinates
and fori € [2]9 we write g = €;, ® ... ® e,



Proof of LPg5: step 2

Define operators raising, lowering and counting operators
X, Y,H: ANV — AV by

X:vewAv, Yivew Av,

and H that reduces to multiplication by scalar (¢ —29-1) on A\* V.

Lemma
Operators X, Y, H satisfy

[X,Y]=H, [H Y]=-2Y, [HX]=2X. (1)

In other words, \ V is sl(2) representation with triplet (X, Y, H).



Proof of LPg5: step 3

Lemma
If v € HWV A\ V then also X(v), Y(v), H(v) € HWV A V.

Hence HWV A V is also sl(2) representation.
For A C (2971 x 2)*9 we pick

Un :=HWV iy A(CH®, U= & U,

n€l0,29-1—3]

with dim U, = g(¢3A).

Theorem
The space U is s1(2) representation.



Proof of LPg4,: remark

For k > 2 the commutation relations no longer hold.



Thank you for your attention!
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