On unimodality of Kronecker coefficients

Alimzhan Amanov
(joint work with Damir Yeliussizov) arXiv:2312.17054

January 19, 2024

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

Proof of LP for $k=2$

Content

Preliminaries
Main result
Highest weight vectors
Lefschetz properties
Implications
Proof of LP for $k=2$

Partitions

- Let d be odd.
- $\lambda \vdash m$ is a partition of m, i.e. $\lambda_{1} \geq \lambda_{2} \geq \ldots$ and $\sum \lambda_{i}=m$
- $a \times b=(b, \ldots, b) \vdash a b$ is a rectangular partition.
- λ^{\prime} is conjugate partition (transposed diagram).
- $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(d)}\right)$ is a d-tuple of partitions with $\lambda^{(i)} \vdash m$. for function f we write $f(\lambda)=\left(f\left(\lambda^{(1)}\right), \ldots, f\left(\lambda^{(d)}\right)\right)$, for instance $\boldsymbol{\lambda}^{\prime}=\left(\left(\lambda^{(1)}\right)^{\prime}, \ldots,\left(\lambda^{(d)}\right)^{\prime}\right)$.

Kronecker coefficients

- by $[\lambda]$ we denote irreducible S_{m}-representation indexed with λ, a.k.a. Specht module.
- Define d-dimensional Kronecker coefficient $g(\lambda)$ as

$$
g(\lambda)=\text { mult. of }[1 \times m] \text { in }\left[\lambda^{(1)}\right] \otimes \ldots \otimes\left[\lambda^{(d)}\right] .
$$

Kronecker coefficients

- by $\left[\lambda\right.$] we denote irreducible S_{m}-representation indexed with λ, a.k.a. Specht module.
- Define d-dimensional Kronecker coefficient $g(\lambda)$ as

$$
g(\lambda)=\text { mult. of }[1 \times m] \text { in }\left[\lambda^{(1)}\right] \otimes \ldots \otimes\left[\lambda^{(d)}\right] .
$$

For odd d it is equivalent to

$$
g(\lambda)=\text { mult. of }[m \times 1] \text { in }\left[\left(\lambda^{(1)}\right)^{\prime}\right] \otimes \ldots \otimes\left[\left(\lambda^{(d)}\right)^{\prime}\right] .
$$

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

$$
\text { Proof of LP for } k=2
$$

Conjectures

Let $g_{d}(n, k)=g(n \times k, \ldots, n \times k)(d$ times $)$.

Conjectures

Let $g_{d}(n, k)=g(n \times k, \ldots, n \times k)(d$ times $)$.
In our previous work, we conjectured the following:
Conjecture
Let d be odd and k even. Then the sequence $\left\{g_{d}(n, k)\right\}_{n=0, \ldots, k^{d-1}}$ is unimodal.

Conjectures

Let $g_{d}(n, k)=g(n \times k, \ldots, n \times k)(d$ times $)$.
In our previous work, we conjectured the following:
Conjecture
Let d be odd and k even. Then the sequence $\left\{g_{d}(n, k)\right\}_{n=0, \ldots, k^{d-1}}$ is unimodal.
We known that

- $g_{d}(n, k)=0$ for $n \notin\left[0, k^{d-1}\right]$,

Conjectures

Let $g_{d}(n, k)=g(n \times k, \ldots, n \times k)(d$ times $)$.
In our previous work, we conjectured the following:
Conjecture
Let d be odd and k even. Then the sequence $\left\{g_{d}(n, k)\right\}_{n=0, \ldots, k^{d-1}}$ is unimodal.
We known that

- $g_{d}(n, k)=0$ for $n \notin\left[0, k^{d-1}\right]$,
- $g_{d}(n, k)=g_{d}\left(k^{d-1}-n, k\right)$, i.e. sequence is symmetric,

Conjectures

Let $g_{d}(n, k)=g(n \times k, \ldots, n \times k)(d$ times $)$.
In our previous work, we conjectured the following:
Conjecture
Let d be odd and k even. Then the sequence $\left\{g_{d}(n, k)\right\}_{n=0, \ldots, k^{d-1}}$ is unimodal.
We known that

- $g_{d}(n, k)=0$ for $n \notin\left[0, k^{d-1}\right]$,
- $g_{d}(n, k)=g_{d}\left(k^{d-1}-n, k\right)$, i.e. sequence is symmetric,
- $g_{d}(0, k)=g\left(k^{d-1}, k\right)=1$.

Generalized conjecture

Let us generalize this conjecture. Let $\phi_{k} \lambda$ be the partition with new part k inserted. For example:

We write $\phi_{k}^{n}:=\phi_{k}^{n-1}\left(\phi_{k} \lambda\right)$

Generalized conjecture

Let us generalize this conjecture. Let $\phi_{k} \lambda$ be the partition with new part k inserted. For example:

We write $\phi_{k}^{n}:=\phi_{k}^{n-1}\left(\phi_{k} \lambda\right)$ and ϕ_{k}^{-1} is the removal of one part k :

Generalized conjecture

Conjecture

Let d be odd, k even and $\boldsymbol{\lambda}$ be d-tuple of partitions of m with parts $\leq k$. Denote $a=\max _{i}\left\{\left(\lambda^{(i)}\right)_{1}^{\prime}\right\}$ and $b=\min _{i}\left\{\left(\lambda^{(i)}\right)_{k}^{\prime}\right\}$. Then the sequence $\left\{g\left(\phi_{k}^{n} \lambda\right)\right\}_{n=-b, \ldots, k^{d-1}-a}$ is unimodal.
For example,

Generalized conjecture

Conjecture

Let d be odd, k even and $\boldsymbol{\lambda}$ be d-tuple of partitions of m with parts $\leq k$. Denote $a=\max _{i}\left\{\left(\lambda^{(i)}\right)_{1}^{\prime}\right\}$ and $b=\min _{i}\left\{\left(\lambda^{(i)}\right)_{k}^{\prime}\right\}$. Then the sequence $\left\{g\left(\phi_{k}^{n} \lambda\right)\right\}_{n=-b, \ldots, k^{d-1}-a}$ is unimodal.
For example,

i.e. $g(\lambda) \leq g\left(\phi_{4} \lambda\right) \leq g\left(\phi_{4}^{2} \lambda\right) \leq \ldots \leq g\left(\phi_{4}^{n_{0}} \lambda\right) \geq \ldots \geq g\left(\phi_{4}^{4^{d-1}-3} \lambda\right)$.

Theorem (A.-Yeliussizov, 23)
Conjecture is true for $k=2$.
Note, that this Conjecture splits d-tuples of partitions in rectangle $k^{d-1} \times k$ into disjoint sequences.

Examples

Table: The table of $g_{3}(n, k)=g(n \times k, n \times k, n \times k)$ for $1 \leq k \leq 6$, $1 \leq n \leq 8$.

$k \backslash n$	1	2	3	4	5	6	7	8
1	1	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0
3	1	0	1	1	1	1	0	1
4	1	1	2	5	6	13	14	18
5	1	0	1	4	21	158	1456	9854
6	1	1	3	16	216	9309	438744	17957625

Table: The table of $g_{5}(n, k)$ for $1 \leq k \leq 5,1 \leq n \leq 6$.

$k \backslash n$	1	2	3	4	5	6
1	1	0	0	0	0	0
2	1	5	11	35	52	112
3	1	1	385	44430	5942330	781763535
4	1	36	44522	381857353	5219755745322	87252488565829772
5	1	15	6008140	5220537438711	10916817688177999825	36929519748583464067841925

Examples

Few examples of sequences $\left\{g\left(\phi_{k}^{n} \lambda\right)\right\}$:

- (symmetric and unimodal) $\boldsymbol{\lambda}=(42,222,321), k=4$, for $n \in[0,13]$: $1,15,128,728,2684,6395,9884,9884,6395,2684,728,128,15,1$
- (only unimodal) $\boldsymbol{\lambda}=(3,21,21), k=4$, for $n \in[0,14]$:

$$
1,4,18,88,342,956,1848,2441,2183,1326,552,159,34,6,1
$$

- (only unimodal) $\boldsymbol{\lambda}=(32,221,41), k=4$ and $n \in[0,13]$:

$$
1,8,54,281,1027,2531,4179,4584,3331,1613,521,114,18,2
$$

- (odd k) $\boldsymbol{\lambda}=(32,221,311), k=3$ and for $n \in[0,6]$:
$1,4,7,7,5,3,1$

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

$$
\text { Proof of LP for } k=2
$$

Tensor space

We realize Kronecker coefficients via highest weight vectors.

Tensor space

We realize Kronecker coefficients via highest weight vectors.

- $\left(\mathbb{C}^{k}\right)^{\otimes d}=\mathbb{C}^{k} \otimes \ldots \otimes \mathbb{C}^{k}$ - base tensor space.

Tensor space

We realize Kronecker coefficients via highest weight vectors.

- $\left(\mathbb{C}^{k}\right)^{\otimes d}=\mathbb{C}^{k} \otimes \ldots \otimes \mathbb{C}^{k}$ - base tensor space.
- The group GL $(k)^{\times d}$ (over \mathbb{C}) acts of $V=\left(\mathbb{C}^{k}\right)^{\otimes d}$ multi-linearly:

$$
\left(G_{1}, \ldots, G_{d}\right) \cdot v_{1} \otimes \ldots v_{d}=G_{1} v_{1} \otimes \ldots \otimes G_{d} v_{d}
$$

where $G_{i} \in \mathrm{GL}(k)$ and $v_{i} \in \mathbb{C}^{k}$.

Tensor space

We realize Kronecker coefficients via highest weight vectors.

- $\left(\mathbb{C}^{k}\right)^{\otimes d}=\mathbb{C}^{k} \otimes \ldots \otimes \mathbb{C}^{k}$ - base tensor space.
- The group GL $(k)^{\times d}$ (over \mathbb{C}) acts of $V=\left(\mathbb{C}^{k}\right)^{\otimes d}$ multi-linearly:

$$
\left(G_{1}, \ldots, G_{d}\right) \cdot v_{1} \otimes \ldots v_{d}=G_{1} v_{1} \otimes \ldots \otimes G_{d} v_{d}
$$

where $G_{i} \in \mathrm{GL}(k)$ and $v_{i} \in \mathbb{C}^{k}$.

- this induces the diagonal action on $\bigotimes^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}$, i.e.

$$
G \cdot T_{1} \otimes \ldots \otimes T_{m}=G T_{1} \otimes \ldots \otimes G T_{m}
$$

for $G \in \operatorname{GL}(k)^{\times d}$.

Highest weight vectors

$T(k) \subset U(k) \subset G L(k)$ be subgroups of diagonal and unitriangular matrices.

Let $v \in \bigotimes^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}$.

Highest weight vectors

$T(k) \subset U(k) \subset G L(k)$ be subgroups of diagonal and unitriangular matrices.

Let $v \in \bigotimes^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}$.

- Vector v is the weight vector (w.r.t. G) of weight $\boldsymbol{\lambda}$ if for

$$
T=\left(T^{1}, \ldots, T^{d}\right) \in T(n)^{\times d}: T \cdot v=\left(t^{(1)}\right)^{\lambda^{(1)}} \cdots\left(t^{(d)}\right)^{\lambda^{(d)}} v
$$

where $t^{(i)}=t_{j}^{(i)}$ is the j-th diagonal entry of $T^{(i)}$. Here $\lambda^{(i)}$ are not necessarily partitions.

Highest weight vectors

$T(k) \subset U(k) \subset G L(k)$ be subgroups of diagonal and unitriangular matrices.

$$
\text { Let } v \in \bigotimes^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}
$$

- Vector v is the weight vector (w.r.t. G) of weight $\boldsymbol{\lambda}$ if for

$$
T=\left(T^{1}, \ldots, T^{d}\right) \in T(n)^{\times d}: T \cdot v=\left(t^{(1)}\right)^{\lambda^{(1)}} \cdots\left(t^{(d)}\right)^{\lambda^{(d)}} v
$$

where $t^{(i)}=t_{j}^{(i)}$ is the j-th diagonal entry of $T^{(i)}$. Here $\lambda^{(i)}$ are not necessarily partitions.

- Vector v is the highest weight vector (w.r.t. G) of weight $\boldsymbol{\lambda}$ if for

$$
U \in U(k)^{\times d}: U \cdot v=v
$$

the highest weight vectors are indexed with d-tuple of partitions $\boldsymbol{\lambda}$ of m.

Kronecker coefficients

Schur-Weyl duality states the decomposition with respect to the action of the group $\mathrm{GL}(n) \times S_{m}$:

$$
\bigotimes^{m} \mathbb{C}^{k}=\bigoplus_{\lambda \vdash m, \ell(\lambda) \leq n}[\lambda] \otimes V(\lambda)
$$

From this we obtain

$$
\begin{aligned}
& g(\lambda)=\operatorname{dim} \operatorname{HWV}_{\lambda}^{\mathrm{GL}(n)^{d}} \operatorname{Sym}^{m}\left(\mathbb{C}^{n}\right)^{\otimes d} \\
& g(\boldsymbol{\lambda})=\operatorname{dim} \operatorname{HWV}_{\lambda^{\prime}}^{\mathrm{GL}(k)^{d}} \operatorname{Alt}^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}
\end{aligned}
$$

where $\operatorname{Sym}^{m} V \cong \mathbb{C}[V]_{m}$ and Alt $^{m} V=\bigwedge^{m} V$ are symmetric and alternating subspaces of $\bigotimes^{m} V$.

Wedge space

$$
g(\lambda)=\operatorname{dim} \operatorname{HWV}_{\lambda^{\prime}} \bigwedge^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}
$$

For instance reactangular partitions:

$$
\begin{array}{lllll}
\mathrm{HWV}_{\emptyset^{d}} \bigwedge^{0} V & \cdots & \operatorname{HWV}_{(k \times n)^{d}} \bigwedge^{n k} V & \cdots & \operatorname{HWV}_{\left(k \times k^{d-1}\right)^{d}} \bigwedge^{k^{d}} V \\
\operatorname{dim}=g_{d}(0, k) & \cdots & \operatorname{dim}=g_{d}(n, k) & \cdots & \operatorname{dim}=g_{d}\left(k^{d-1}, k\right)
\end{array}
$$

Wedge space

$$
g(\lambda)=\operatorname{dim} \operatorname{HWV}_{\lambda^{\prime}} \bigwedge^{m}\left(\mathbb{C}^{k}\right)^{\otimes d}
$$

For instance reactangular partitions:

$$
\begin{array}{lllll}
\operatorname{HWV}_{\emptyset_{d}} \bigwedge^{0} V & \cdots & \operatorname{HWV}_{(k \times n)^{d}} \bigwedge^{n k} V & \cdots & \operatorname{HWV}_{\left(k \times k^{d-1}\right)^{d}} \bigwedge^{k^{d}} V \\
\operatorname{dim}=g_{d}(0, k) & \cdots & \operatorname{dim}=g_{d}(n, k) & \cdots & \operatorname{dim}=g_{d}\left(k^{d-1}, k\right)
\end{array}
$$

or more generally for d-tuple $\boldsymbol{\lambda} \vdash m$

$$
\begin{array}{ccccc}
\operatorname{HWV}_{(\lambda)^{\prime}} \Lambda^{m} V & \cdots & \operatorname{HWV}_{\left(\phi_{k}^{n}\right)^{\prime}} \Lambda^{m+n k} V & \cdots & \operatorname{HWV}_{\left(\phi_{k}^{k d-1-a} \lambda\right)^{\prime}} \Lambda^{m+k^{d}-a k} V \\
\operatorname{dim}=g(\lambda) & \cdots & \operatorname{dim}=g\left(\phi_{k}^{n} \lambda\right) & \cdots & \operatorname{dim}=g\left(\phi_{k}^{k^{d-1}-a} \lambda\right)
\end{array}
$$

Cayley form

For $\boldsymbol{\lambda}=(1 \times k)^{d}$ (1-rows), there is a unique highest weight vector

$$
\omega_{d, k}:=\omega
$$

of weight λ^{\prime} (1-columns) defined as

$$
\begin{aligned}
& \omega:=\sum_{\pi_{2}, \ldots, \pi_{d} \in S_{k}} \operatorname{sgn}\left(\pi_{2} \ldots \pi_{d}\right) \bigwedge_{i=1}^{k} e_{i} \otimes e_{\pi_{2}(i)} \otimes \ldots \otimes e_{\pi_{d}(i)}, \\
& \omega \in \operatorname{HWV}_{(k \times 1)^{d}} \bigwedge^{k}\left(\mathbb{C}^{k}\right)^{\otimes d} .
\end{aligned}
$$

that we call Cayley form. It is also $\operatorname{SL}(k)^{d}$-invariant. It is essentially a Cayley's first hyperderminant.

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

$$
\text { Proof of LP for } k=2
$$

Lefschetz properties

Define the map

$$
L: \bigwedge\left(\mathbb{C}^{k}\right)^{\otimes d} \rightarrow \bigwedge\left(\mathbb{C}^{k}\right)^{\otimes d}, \quad L: v \mapsto v \wedge \omega
$$

Lefschetz properties

Define the map

$$
L: \bigwedge\left(\mathbb{C}^{k}\right)^{\otimes d} \rightarrow \bigwedge\left(\mathbb{C}^{k}\right)^{\otimes d}, \quad L: v \mapsto v \wedge \omega
$$

Define the following Lefschetz property.
$\left(\mathrm{LP}_{\lambda, k}\right)$ For some $n_{0} \in\left[-b, k^{d-1}-a\right]$ the map

$$
L: \operatorname{HWV}_{\left(\phi_{k}^{n} \lambda\right)^{\prime}} \bigwedge V \longrightarrow \operatorname{HWV}_{\left(\phi_{k}^{n+1} \lambda\right)^{\prime}} \bigwedge V
$$

is injective for each $n \in\left[-b, n_{0}\right)$ and is surjective for each $n \in\left[n_{0}, k^{d-1}-a\right)$.

Lefschetz operator action

For instance, for rectangular d-tuple of partitions:

$$
\begin{array}{ccccc}
\operatorname{HWV}_{\emptyset_{d}} \bigwedge^{0} V & \xrightarrow{L} \cdots \xrightarrow{L} & \operatorname{HWV}_{(k \times n)^{d}} \bigwedge^{n k} V & \xrightarrow{L} \cdots \xrightarrow{L} & \operatorname{HWV}_{\left(k \times k^{d-1}\right)^{d}} \Lambda^{k^{d}} V \\
\operatorname{dim}=g_{d}(0, k) & \cdots & \operatorname{dim}=g_{d}(n, k) & \cdots & \operatorname{dim}=g_{d}\left(k^{d-1}, k\right)
\end{array}
$$

or more generally for d-tuple $\boldsymbol{\lambda} \vdash m$

$$
\begin{array}{ccccc}
\operatorname{HWV}_{(\lambda)^{\prime}} \Lambda^{m} V & \xrightarrow{L} \cdots \xrightarrow{L} & \operatorname{HWV}_{\left(\phi_{k}^{n} \lambda\right)^{\prime}} \Lambda^{m+n k} V & \xrightarrow{L} \cdots \xrightarrow{L} & \operatorname{HWV}_{\left(\phi_{k}^{k-1-a} \lambda\right)^{\prime}} \Lambda^{m+k^{d}-a k} V \\
\operatorname{dim}=g(\lambda) & \cdots & \operatorname{dim}=g\left(\phi_{k}^{n} \lambda\right) & \ldots & \operatorname{dim}=g\left(\phi_{k}^{k^{d-1}-a} \lambda\right)
\end{array}
$$

Rectangular complementarity

Let $\boldsymbol{\lambda} \subseteq k^{d-1} \times k$. We say $\boldsymbol{\lambda}$ is k-complementary if for some n each $\lambda \in \boldsymbol{\lambda}$ satisfy

$$
\phi_{k}^{n} \lambda=\left(k^{d-1}-\lambda_{k^{d-1}}, \ldots, k^{d-1}-\lambda_{1}\right)=k^{d-1} \times k-\lambda .
$$

For instance, $k=4, d=3$

Lemma
For k-complementary $\boldsymbol{\lambda}$ we have $g(\boldsymbol{\lambda})=g\left(k^{d-1} \times k-\lambda\right)$.

Hard Lefschetz property

For k-complementary $\boldsymbol{\lambda}$ we also define the following statement.
$\left(\mathrm{HLP}_{\lambda, k}\right)$ For each $n \in\left[-b,\left(k^{d-1}-a+b\right) / 2\right]$ the map

$$
L^{k^{d-1}-a-2 n}: \operatorname{HWV}_{\left(\phi_{k}^{n} \lambda\right)^{\prime}} \bigwedge V \longrightarrow \operatorname{HWV}_{\left(\phi_{k}^{k^{d-1}-2 m / k-2 n} \lambda\right)^{\prime}} \bigwedge V
$$

is an isomorphism.
The underlying sequence of Kronecker coefficients is already symmetric.

More general LP

Why highest weight vectors? Let's simplify!
$\left(\mathrm{LP}_{d, k}\right)$ For each $n \in\left[0, k^{d}-k\right]$ the map

$$
L: \bigwedge^{n}\left(\mathbb{C}^{k}\right)^{\otimes d} \longrightarrow \bigwedge^{n+k}\left(\mathbb{C}^{k}\right)^{\otimes d}
$$

has full rank.

More general LP

Why highest weight vectors? Let's simplify!
$\left(\mathrm{LP}_{d, k}\right)$ For each $n \in\left[0, k^{d}-k\right]$ the map

$$
L: \bigwedge^{n}\left(\mathbb{C}^{k}\right)^{\otimes d} \longrightarrow \bigwedge^{n+k}\left(\mathbb{C}^{k}\right)^{\otimes d}
$$

has full rank.
Turns out, $\mathrm{LP}_{d, k}$ is false for $k>2$ for any d. But $\mathrm{LP}_{d, 2}$ is true.

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

$$
\text { Proof of LP for } k=2
$$

Implication 1

Lefschetz properties has two important implications.
Proposition (A.-Yeliussizov,23)
Let $d \geq 3$ be odd and k be even. Then
$\mathrm{LP}_{\boldsymbol{\lambda}, k} \Longrightarrow$ the sequence $\left\{g\left(\phi_{k}^{n} \lambda\right)\right\}_{n \in\left[-b, k^{d-1}-a\right]}$ is unimodal.

Implication 2

Definition

Latin hypercube L is the map $L:[k]^{d} \rightarrow\left[k^{d-1}\right]$ so that each slice contains a permutation of length k^{d-1} (slice $=$ set of points with one fixed coordinate). For instance,

Figure: Latin cube for $d=3$ and $k=3$
The sign $\operatorname{sgn}(L)$ of a Latin hypercube L is the product of signs over all slice permutations.
For $d=2$ we get Latin squares.

Implication 2

The d-dimensional Alon-Tarsi number is

$$
\operatorname{AT}_{d}(k)=\sum_{L} \operatorname{sgn}(L)
$$

where sum runs over all d-dimensional Latin hypercubes of length k. For $d=2$, Alon-Tarsi conjecture states that $\mathrm{AT}_{2}(k) \neq 0$ for even k.
Proposition (A.-Yeliussizov,23)
Let $d \geq 3$ be odd and k be even. Then

$$
\operatorname{HLP}_{\varnothing, k} \Longrightarrow \mathrm{AT}_{d}(k) \neq 0
$$

Implication 2

The d-dimensional Alon-Tarsi number is

$$
\operatorname{AT}_{d}(k)=\sum_{L} \operatorname{sgn}(L)
$$

where sum runs over all d-dimensional Latin hypercubes of length k. For $d=2$, Alon-Tarsi conjecture states that $\mathrm{AT}_{2}(k) \neq 0$ for even k.
Proposition (A.-Yeliussizov, 23)
Let $d \geq 3$ be odd and k be even. Then

$$
\operatorname{HLP}_{\varnothing, k} \Longrightarrow \mathrm{AT}_{d}(k) \neq 0
$$

Proof.
$L^{k^{d-1}}(1)=\omega^{k^{d-1}}= \pm \mathrm{AT}_{d}(k) \mathrm{vol} \neq 0$.

Content

Preliminaries

Main result

Highest weight vectors

Lefschetz properties

Implications

Proof of LP for $k=2$

Proof of $\mathrm{LP}_{d, 2}$: step 1

The proof is quite classical. The key is present ω in a suitable way. Lemma
For $k=2$ and odd d the Cayley vector $\omega=\omega_{d, 2}$ and its dual ω^{*} can be written as follows:

$$
\omega=\sum_{\mathbf{i} \in I^{+}} e_{\mathbf{i}} \wedge e_{\overline{\mathbf{i}}}, \quad \omega^{*}=\sum_{\mathbf{i} \in I^{+}} e_{\mathbf{i}}^{*} \wedge e_{\overline{\mathbf{i}}}^{*}
$$

where $I^{+} \subseteq[2]^{d}$ is the set of elements with odd sum of coordinates and for $\mathbf{i} \in[2]^{d}$ we write $e_{\mathbf{i}}=e_{i_{1}} \otimes \ldots \otimes e_{i_{d}}$.

Proof of $\mathrm{LP}_{d, 2}:$ step 2

Define operators raising, lowering and counting operators $X, Y, H: \Lambda V \rightarrow \bigwedge V$ by

$$
X: v \mapsto \omega \wedge v, \quad Y: v \mapsto \omega^{*} \wedge v
$$

and H that reduces to multiplication by scalar $\left(\ell-2^{d-1}\right)$ on $\bigwedge^{\ell} V$.
Lemma
Operators X, Y, H satisfy

$$
\begin{equation*}
[X, Y]=H, \quad[H, Y]=-2 Y, \quad[H, X]=2 X \tag{1}
\end{equation*}
$$

In other words, ΛV is $\mathfrak{s l}(2)$ representation with triplet (X, Y, H).

Proof of $\mathrm{LP}_{d, 2}$: step 3

Lemma
If $v \in \operatorname{HWV} \wedge V$ then also $X(v), Y(v), H(v) \in \operatorname{HWV} \wedge V$.

Hence $\mathrm{HWV} \bigwedge V$ is also $\mathfrak{s l}(2)$ representation.
For $\lambda \subseteq\left(2^{d-1} \times 2\right)^{\times d}$ we pick

$$
U_{n}:=\operatorname{HWV}_{\left(\phi_{2}^{n} \lambda\right)^{\prime}} \bigwedge\left(\mathbb{C}^{2}\right)^{\otimes d}, \quad U:=\bigoplus_{n \in\left[0,2^{d-1}-a\right]} U_{n}
$$

with $\operatorname{dim} U_{n}=g\left(\phi_{2}^{n} \lambda\right)$.
Theorem
The space U is $\mathfrak{s l}(2)$ representation.

Proof of $\mathrm{LP}_{d, 2}$: remark

For $k>2$ the commutation relations no longer hold.

Thank you for your attention!

