

Andrews' partition ideals of order 1 and generalized Glaisher bijections

Andrew Sills

Georgia Southern University

January 15, 2026, online Partitions and q -series seminar

Part of what follows is joint work with
James Sellers and Gary Mullen

Electronic Journal of Combinatorics 11(1) (2004) #R43

The real purpose of this talk

The real purpose of this talk

PARTITION IDEALS

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.
- Andrews, “Partition identities”, *Adv. Math.* 9 (1972) 10–51.

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.
- Andrews, “Partition identities”, *Adv. Math.* 9 (1972) 10–51.

Recent literature referencing partition ideals:

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.
- Andrews, “Partition identities”, *Adv. Math.* 9 (1972) 10–51.

Recent literature referencing partition ideals:

- Shane Chern

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.
- Andrews, “Partition identities”, *Adv. Math.* 9 (1972) 10–51.

Recent literature referencing partition ideals:

- Shane Chern
- Motoki Takigiku and Shunsuke Tsuchioka

PARTITION IDEALS

- Andrews, *The Theory of Partitions*, chapter 8.
- Andrews, “Partition identities”, *Adv. Math.* 9 (1972) 10–51.

Recent literature referencing partition ideals:

- Shane Chern
- Motoki Takigiku and Shunsuke Tsuchioka

PARTITION definition

- A *partition* λ of the integer n is a representation of n as an unordered sum of positive integers

$$\lambda_1 + \lambda_2 + \cdots + \lambda_r = n.$$

PARTITION definition

- A *partition* λ of the integer n is a representation of n as an unordered sum of positive integers

$$\lambda_1 + \lambda_2 + \cdots + \lambda_r = n.$$

- Each summand λ_i is called a *part* of the partition λ .

PARTITION definition

- A *partition* λ of the integer n is a representation of n as an unordered sum of positive integers

$$\lambda_1 + \lambda_2 + \cdots + \lambda_r = n.$$

- Each summand λ_i is called a *part* of the partition λ .
- Often a canonical ordering of parts is imposed:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r.$$

The Partitions of 6

6

5 + 1

4 + 2

4 + 1 + 1

3 + 3

3 + 2 + 1

3 + 1 + 1 + 1

2 + 2 + 2

2 + 2 + 1 + 1

2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1

Euler's partition identity (1743)

Euler's partition identity (1743)

The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Euler's partition identity—Example

- Of the eleven partitions of 6, four of them have only odd parts:

$$5 + 1$$

$$3 + 3$$

$$3 + 1 + 1 + 1$$

$$1 + 1 + 1 + 1 + 1 + 1$$

Euler's partition identity—Example

- Of the eleven partitions of 6, four of them have only odd parts:

$$5 + 1 \quad 3 + 3 \quad 3 + 1 + 1 + 1 \quad 1 + 1 + 1 + 1 + 1 + 1$$

- and four of them have distinct parts:

$$6 \quad 5 + 1 \quad 4 + 2 \quad 3 + 2 + 1.$$

Frequency Notation for Partitions

Any partition $\lambda_1 + \lambda_2 + \lambda_3 + \cdots + \lambda_r$ may be written in the form

$$f_1 \cdot 1 + f_2 \cdot 2 + f_3 \cdot 3 + f_4 \cdot 4 + \dots,$$

Frequency Notation for Partitions

Any partition $\lambda_1 + \lambda_2 + \lambda_3 + \cdots + \lambda_r$ may be written in the form

$$f_1 \cdot 1 + f_2 \cdot 2 + f_3 \cdot 3 + f_4 \cdot 4 + \dots,$$

or more briefly, as

$$(f_1, f_2, f_3, f_4, \dots),$$

where f_i represents the number of appearances of the positive integer i in the partition.

Frequency Notation for Partitions

For example, the partition

$$6 + 6 + 6 + 6 + 4 + 4 + 3 + 2 + 2 + 2 + 2 + 1 + 1$$

Frequency Notation for Partitions

For example, the partition

$$\begin{aligned} & 6 + 6 + 6 + 6 + 4 + 4 + 3 + 2 + 2 + 2 + 1 + 1 \\ = & 2 \cdot 1 + 4 \cdot 2 + 1 \cdot 3 + 2 \cdot 4 + 0 \cdot 5 + 4 \cdot 6 + 0 \cdot 7 + 0 \cdot 8 + 0 \cdot 9 + \dots \end{aligned}$$

Frequency Notation for Partitions

For example, the partition

$$\begin{aligned} & 6 + 6 + 6 + 6 + 4 + 4 + 3 + 2 + 2 + 2 + 2 + 1 + 1 \\ = & 2 \cdot 1 + 4 \cdot 2 + 1 \cdot 3 + 2 \cdot 4 + 0 \cdot 5 + 4 \cdot 6 + 0 \cdot 7 + 0 \cdot 8 + 0 \cdot 9 + \dots \end{aligned}$$

may be represented by the frequency sequence

$$(2, 4, 1, 2, 0, 4, 0, 0, 0, 0, 0, 0, \dots).$$

Thus each sequence $\{f_i\}_{i=1}^{\infty}$, where each f_i is a nonnegative integer and only finitely many of the f_i are nonzero, represents a partition of the integer $\sum_{i=1}^{\infty} i f_i$.

Glaisher's proof of Euler's identity

Glaisher's proof of Euler's identity

- Let $\lambda_1 + \lambda_2 + \cdots + \lambda_r$ be a partition λ of some positive integer n into r odd parts.

Glaisher's proof of Euler's identity

- Let $\lambda_1 + \lambda_2 + \dots + \lambda_r$ be a partition λ of some positive integer n into r odd parts.
- Rewrite λ in the form

$$f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + \dots.$$

Glaisher's proof of Euler's identity

- Let $\lambda_1 + \lambda_2 + \dots + \lambda_r$ be a partition λ of some positive integer n into r odd parts.
- Rewrite λ in the form

$$f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + \dots.$$

- Replace each f_i with its binary expansion

$$\dots + a_{i3} \cdot 8 + a_{i2} \cdot 4 + a_{i1} \cdot 2 + a_{i0} \cdot 1.$$

Glaisher's proof of Euler's identity

- Let $\lambda_1 + \lambda_2 + \dots + \lambda_r$ be a partition λ of some positive integer n into r odd parts.
- Rewrite λ in the form

$$f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + \dots.$$

- Replace each f_i with its binary expansion

$$\dots + a_{i3} \cdot 8 + a_{i2} \cdot 4 + a_{i1} \cdot 2 + a_{i0} \cdot 1.$$

Glaisher's proof of Euler's identity

So,

$$f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + f_7 \cdot 7 + \dots$$

Glaisher's proof of Euler's identity

So,

$$\begin{aligned} & f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + f_7 \cdot 7 + \dots \\ = & (\dots + a_{1,3} \cdot 8 + a_{1,2} \cdot 4 + a_{1,1} \cdot 2 + a_{1,0} \cdot 1) \cdot 1 \\ & + (\dots + a_{3,3} \cdot 8 + a_{3,2} \cdot 4 + a_{3,1} \cdot 2 + a_{3,0} \cdot 1) \cdot 3 \\ & + (\dots + a_{5,3} \cdot 8 + a_{5,2} \cdot 4 + a_{5,1} \cdot 2 + a_{5,0} \cdot 1) \cdot 5 \\ & \vdots \end{aligned}$$

Glaisher's proof of Euler's identity

So,

$$\begin{aligned} & f_1 \cdot 1 + f_3 \cdot 3 + f_5 \cdot 5 + f_7 \cdot 7 + \dots \\ = & (\dots + a_{1,3} \cdot 8 + a_{1,2} \cdot 4 + a_{1,1} \cdot 2 + a_{1,0} \cdot 1) \cdot 1 \\ & + (\dots + a_{3,3} \cdot 8 + a_{3,2} \cdot 4 + a_{3,1} \cdot 2 + a_{3,0} \cdot 1) \cdot 3 \\ & + (\dots + a_{5,3} \cdot 8 + a_{5,2} \cdot 4 + a_{5,1} \cdot 2 + a_{5,0} \cdot 1) \cdot 5 \\ & \vdots \\ = & a_{1,0} + 2a_{1,1} + 3a_{3,0} + 4a_{1,2} + 5a_{5,0} + 6a_{3,1} + 7a_{7,0} + \dots \end{aligned}$$

Glaisher's partition identity

Replace “binary expansion” with “base m expansion” and we obtain the theorem:

Glaisher's partition identity

Replace “binary expansion” with “base m expansion” and we obtain the theorem:

The number of partitions of n into nonmultiples of m equals the number of partitions of n where no part appears more than $m - 1$ times.

Partition Ideals

Informal Definition

A partition ideal C is a set of partitions such that for each $\lambda \in C$, if one or more parts is removed from λ , the resulting partition is also in C .

The First Rogers-Ramanujan Identity

- Let $R_1(n)$ denote the number of partitions of n into parts congruent to ± 1 $(\bmod 5)$.

The First Rogers-Ramanujan Identity

- Let $R_1(n)$ denote the number of partitions of n into parts congruent to ± 1 $(\bmod 5)$.
- Let $R_2(n)$ denote the number of partitions $\lambda_1 + \cdots + \lambda_r$ of n such that $\lambda_i - \lambda_{i+1} \geq 2$.

The First Rogers-Ramanujan Identity

- Let $R_1(n)$ denote the number of partitions of n into parts congruent to ± 1 $(\bmod 5)$.
- Let $R_2(n)$ denote the number of partitions $\lambda_1 + \cdots + \lambda_r$ of n such that $\lambda_i - \lambda_{i+1} \geq 2$.
- Then $R_1(n) = R_2(n)$ for all n .

The First Rogers-Ramanujan Identity

- The partitions enumerated by $R_1(n)$ are those for which $f_i = 0$ whenever $i \not\equiv \pm 1 \pmod{5}$.

The First Rogers-Ramanujan Identity

- The partitions enumerated by $R_1(n)$ are those for which $f_i = 0$ whenever $i \not\equiv \pm 1 \pmod{5}$. **(order 1)**

The First Rogers-Ramanujan Identity

- The partitions enumerated by $R_1(n)$ are those for which $f_i = 0$ whenever $i \not\equiv \pm 1 \pmod{5}$. (**order 1**)
- The partitions enumerated by $R_2(n)$ are those for which $f_i + f_{i+1} \leq 1$.

The First Rogers-Ramanujan Identity

- The partitions enumerated by $R_1(n)$ are those for which $f_i = 0$ whenever $i \not\equiv \pm 1 \pmod{5}$. **(order 1)**
- The partitions enumerated by $R_2(n)$ are those for which $f_i + f_{i+1} \leq 1$. **(order 2)**

Minimal Bounding Sequence

Let the sequence $(d_1^C, d_2^C, d_3^C, \dots)$ be defined by

$$d_j^C = \sup_{\{f_i\}_{i=1}^{\infty} \in C} f_j,$$

Minimal Bounding Sequence

Let the sequence $(d_1^C, d_2^C, d_3^C, \dots)$ be defined by

$$d_j^C = \sup_{\{f_i\}_{i=1}^{\infty} \in C} f_j,$$

each d_i is a nonnegative integer or $+\infty$.

Euler's Theorem Revisited

- Let \mathcal{O} denote the set of all partitions with only odd parts.

Euler's Theorem Revisited

- Let \mathcal{O} denote the set of all partitions with only odd parts.
- $\{d_j^{\mathcal{O}}\}_{j=1}^{\infty} = (\infty, 0, \infty, 0, \infty, 0, \dots)$

Euler's Theorem Revisited

- Let \mathcal{O} denote the set of all partitions with only odd parts.
- $\{d_j^{\mathcal{O}}\}_{j=1}^{\infty} = (\infty, 0, \infty, 0, \infty, 0, \dots)$
- Let \mathcal{D} denote the set of all partitions with distinct parts.

Euler's Theorem Revisited

- Let \mathcal{O} denote the set of all partitions with only odd parts.

$$\{d_j^{\mathcal{O}}\}_{j=1}^{\infty} = (\infty, 0, \infty, 0, \infty, 0, \dots)$$

- Let \mathcal{D} denote the set of all partitions with distinct parts.

$$\{d_j^{\mathcal{D}}\}_{j=1}^{\infty} = (1, 1, 1, 1, 1, 1, \dots).$$

Equivalent Partition Ideals

- Let $p(C, n)$ denote the number of partitions of an integer n in the partition ideal C .

Equivalent Partition Ideals

- Let $p(C, n)$ denote the number of partitions of an integer n in the partition ideal C .
- We say that two partition ideals C_1 and C_2 are equivalent, and write $C_1 \sim C_2$, if $p(C_1, n) = p(C_2, n)$ for all integers n .

Euler's Partition Identity

$$\mathcal{O} \sim \mathcal{D}.$$

The Multiset Associated with a Partition Ideal of Order 1

- Define the multiset associated with C , $M(C)$, as follows:

$$M(C) := \{j(d_j^C + 1) \mid j \in \mathbb{Z}_+ \text{ and } d_j^C < \infty\}.$$

The Multiset Associated with a Partition Ideal of Order 1

- Define the multiset associated with C , $M(C)$, as follows:

$$M(C) := \{j(d_j^C + 1) \mid j \in \mathbb{Z}_+ \text{ and } d_j^C < \infty\}.$$

- Andrews proved $C_1 \sim C_2$ if and only if $M(C_1) = M(C_2)$.

The Multiset Associated with a Partition Ideal of Order 1

$$M(\mathcal{O}) = M(\mathcal{D}) = \{2, 4, 6, 8, 10, 12, \dots\}.$$

Example: Schur's theorem (easy part)

- Let S_1 denote the set of partitions into parts $\equiv \pm 1 \pmod{6}$;
 $\{d^{S_1}\}_{j=1}^{\infty} = (\infty, 0, 0, 0, \infty, 0, \infty, 0, 0, 0, \infty, 0, \dots)$.

Example: Schur's theorem (easy part)

- Let S_1 denote the set of partitions into parts $\equiv \pm 1 \pmod{6}$;
 $\{d_j^{S_1}\}_{j=1}^{\infty} = (\infty, 0, 0, 0, \infty, 0, \infty, 0, 0, 0, \infty, 0, \dots)$.
- Let S_2 denote the set of partitions into distinct nonmultiples of 3;
 $\{d_j^{S_2}\}_{j=1}^{\infty} = (1, 1, 0, 1, 1, 0, \dots)$

Example: Schur's theorem (easy part)

- Let S_1 denote the set of partitions into parts $\equiv \pm 1 \pmod{6}$;
 $\{d_j^{S_1}\}_{j=1}^{\infty} = (\infty, 0, 0, 0, \infty, 0, \infty, 0, 0, 0, \infty, 0, \dots)$.
- Let S_2 denote the set of partitions into distinct nonmultiples of 3;
 $\{d_j^{S_2}\}_{j=1}^{\infty} = (1, 1, 0, 1, 1, 0, \dots)$
- Let S_3 denote the set of partitions into odd parts where no part appears more than twice;
 $\{d_j^{S_3}\}_{j=1}^{\infty} = (2, 0, 2, 0, 2, 0, \dots)$. (Alladi)

Example: Schur's theorem (easy part)

- Let S_1 denote the set of partitions into parts $\equiv \pm 1 \pmod{6}$;
 $\{d_j^{S_1}\}_{j=1}^{\infty} = (\infty, 0, 0, 0, \infty, 0, \infty, 0, 0, 0, \infty, 0, \dots)$.
- Let S_2 denote the set of partitions into distinct nonmultiples of 3;
 $\{d_j^{S_2}\}_{j=1}^{\infty} = (1, 1, 0, 1, 1, 0, \dots)$
- Let S_3 denote the set of partitions into odd parts where no part appears more than twice;
 $\{d_j^{S_3}\}_{j=1}^{\infty} = (2, 0, 2, 0, 2, 0, \dots)$. (Alladi)

Then $S_1 \sim S_2 \sim S_3$ because

$$M(S_1) = M(S_2) = M(S_3) = \{2, 4, 6, 8, 10, \dots\} \cup \{3, 9, 15, 21, \dots\}.$$

The “meaning” of $M(C)$

$$\sum_{n=0}^{\infty} p(C, n) q^n = \left(\prod_{\substack{j \in M(C) \\ \text{with mult.}}} (1 - q^j) \right) \left(\prod_{k=1}^{\infty} \frac{1}{1 - q^k} \right).$$

The “meaning” of $M(C)$

$$\sum_{n=0}^{\infty} p(C, n) q^n = \left(\prod_{\substack{j \in M(C) \\ \text{with mult.}}} (1 - q^j) \right) \left(\prod_{k=1}^{\infty} \frac{1}{1 - q^k} \right).$$

$$1 + \sum_{n=1}^{\infty} p(C, n) q^n = \prod_{i=1}^{\infty} \frac{1}{(1 - q^i)^{a_i}};$$

The “meaning” of $M(C)$

$$\sum_{n=0}^{\infty} p(C, n) q^n = \left(\prod_{\substack{j \in M(C) \\ \text{with mult.}}} (1 - q^j) \right) \left(\prod_{k=1}^{\infty} \frac{1}{1 - q^k} \right).$$

$$1 + \sum_{n=1}^{\infty} p(C, n) q^n = \prod_{i=1}^{\infty} \frac{1}{(1 - q^i)^{a_i}};$$

Notice $a_i = 1 - m_i$, where $m_i = m_i(C) =$ the number of times i appears in $M(C)$.

Partitions of Infinity

MacMahon defined a *partition of infinity* to be a formal expression of the form

$$(g_1 - 1) \cdot 1 + (g_2 - 1) \cdot g_1 + (g_3 - 1) \cdot (g_1 g_2) + (g_4 - 1) \cdot (g_1 g_2 g_3) + \dots$$

where

Partitions of Infinity

MacMahon defined a *partition of infinity* to be a formal expression of the form

$$(g_1 - 1) \cdot 1 + (g_2 - 1) \cdot g_1 + (g_3 - 1) \cdot (g_1 g_2) + (g_4 - 1) \cdot (g_1 g_2 g_3) + \dots$$

where

- each $g_i \geq 2$

Partitions of Infinity

MacMahon defined a *partition of infinity* to be a formal expression of the form

$$(g_1 - 1) \cdot 1 + (g_2 - 1) \cdot g_1 + (g_3 - 1) \cdot (g_1 g_2) + (g_4 - 1) \cdot (g_1 g_2 g_3) + \dots$$

where

- each $g_i \geq 2$

or for some fixed k ,

- $g_1, g_2, g_3, \dots, g_{k-1} > 1$,

Partitions of Infinity

MacMahon defined a *partition of infinity* to be a formal expression of the form

$$(g_1 - 1) \cdot 1 + (g_2 - 1) \cdot g_1 + (g_3 - 1) \cdot (g_1 g_2) + (g_4 - 1) \cdot (g_1 g_2 g_3) + \dots$$

where

- each $g_i \geq 2$

or for some fixed k ,

- $g_1, g_2, g_3, \dots, g_{k-1} > 1$,
- $g_k = \infty$, and

Partitions of Infinity

MacMahon defined a *partition of infinity* to be a formal expression of the form

$$(g_1 - 1) \cdot 1 + (g_2 - 1) \cdot g_1 + (g_3 - 1) \cdot (g_1 g_2) + (g_4 - 1) \cdot (g_1 g_2 g_3) + \dots$$

where

- each $g_i \geq 2$

or for some fixed k ,

- $g_1, g_2, g_3, \dots, g_{k-1} > 1$,
- $g_k = \infty$, and
- $g_{k+1} = g_{k+2} = g_{k+3} = \dots = 1$.

Partitions of Infinity

Note that a partition of infinity may be thought of as a minimal bounding sequence for a partition ideal of order one with

$$d_1 = g_1 - 1$$

$$d_{g_1} = g_2 - 1$$

$$d_{g_1 g_2} = g_3 - 1$$

$$d_{g_1 g_2 g_3} = g_4 - 1$$

⋮

and

$$d_i = 0 \text{ if } i \notin \{1, g_1, g_1 g_2, g_1 g_2 g_3, \dots\}.$$

Partitions of Infinity

If $g_i = m$ for all i , we have a minimal bounding sequence for the partition ideal of the “base m expansion.”

Partitions of Infinity

If $g_i = m$ for all i , we have a minimal bounding sequence for the partition ideal of the “base m expansion”

Partitions of Infinity

If $g_i = m$ for all i , we have a minimal bounding sequence for the partition ideal of the “base m expansion”

... in the sense that the base m expansions of positive integers are in bijection with partitions into $1, m, m^2, m^3, \dots$ where no part appears more than $m - 1$ times.

- Given any partition ideal of order 1 C for which each term in the minimal bounding sequence is 0 or ∞ ,

- Given any partition ideal of order 1 C for which each term in the minimal bounding sequence is 0 or ∞ ,
- and any equivalent partition ideal of order 1 C' ,

- Given any partition ideal of order 1 C for which each term in the minimal bounding sequence is 0 or ∞ ,
- and any equivalent partition ideal of order 1 C' ,
- there exists a collection of partitions of infinity which gives rise to a “Glaisher-type bijection” from C to C' .

- Given any partition ideal of order 1 C for which each term in the minimal bounding sequence is 0 or ∞ ,
- and any equivalent partition ideal of order 1 C' ,
- there exists a collection of partitions of infinity which gives rise to a “Glaisher-type bijection” from C to C' .
- Further, there is an explicit algorithm for finding the required partitions of infinity.

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.
- Let C' denote the set of partitions where the parts
 - 1, 9, and 10 may appear at most once,

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.
- Let C' denote the set of partitions where the parts
 - 1, 9, and 10 may appear at most once,
 - 3 and 4 may appear at most

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.
- Let C' denote the set of partitions where the parts
 - 1, 9, and 10 may appear at most once,
 - 3 and 4 may appear at most twice,
 - 2 may appear at most four times,

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.
- Let C' denote the set of partitions where the parts
 - 1, 9, and 10 may appear at most once,
 - 3 and 4 may appear at most twice,
 - 2 may appear at most four times,
 - and all other positive integers may appear without restriction.

An Inelegant Partition Identity

- Let C denote the set of partitions into parts not equal to 2, 9, 10, 12, 18 or 20.
- Let C' denote the set of partitions where the parts
 - 1, 9, and 10 may appear at most once,
 - 3 and 4 may appear at most twice,
 - 2 may appear at most four times,
 - and all other positive integers may appear without restriction.
- $C \sim C'$.

An Inelegant Partition Identity

$$d_j^C = \begin{cases} 0 & \text{if } j \in \{2, 9, 10, 12, 18, 20\} \\ \infty & \text{otherwise.} \end{cases}$$

$$\{d_j^{C'}\}_{j=1}^{\infty} = (1, 4, 2, 2, \infty, \infty, \infty, \infty, 1, 1, \infty, \infty, \infty, \infty, \dots).$$

An Inelegant Partition Identity

$$d_j^C = \begin{cases} 0 & \text{if } j \in \{2, 9, 10, 12, 18, 20\} \\ \infty & \text{otherwise.} \end{cases}$$

$$\{d_j^{C'}\}_{j=1}^{\infty} = (1, 4, 2, 2, \infty, \infty, \infty, \infty, 1, 1, \infty, \infty, \infty, \infty, \dots).$$

- Any partition of n in C can be written in the form

$$\begin{aligned} n = & f_1 \cdot 1 + \sum_{i=3}^8 f_i \cdot i + f_{11} \cdot 11 + \sum_{i=13}^{17} f_i \cdot i \\ & + f_{19} \cdot 19 + \sum_{i=21}^{\infty} f_i \cdot i, \end{aligned}$$

where each f_i is a nonnegative integer.

An Inelegant Partition Identity

- Expand f_1 by the partition of infinity defined by $g_{1,1} = 2$, $g_{1,2} = 5$, $g_{1,3} = 2$, $g_{1,4} = \infty$, $g_{1,k} = 1$ if $k > 4$.

An Inelegant Partition Identity

- Expand f_1 by the partition of infinity defined by $g_{1,1} = 2$, $g_{1,2} = 5$, $g_{1,3} = 2$, $g_{1,4} = \infty$, $g_{1,k} = 1$ if $k > 4$.
- Expand f_3 by the partition of infinity defined by $g_{3,1} = 3$, $g_{3,2} = 2$, $g_{3,3} = \infty$, $g_{3,k} = 1$ if $k > 3$.

An Inelegant Partition Identity

- Expand f_1 by the partition of infinity defined by $g_{1,1} = 2$, $g_{1,2} = 5$, $g_{1,3} = 2$, $g_{1,4} = \infty$, $g_{1,k} = 1$ if $k > 4$.
- Expand f_3 by the partition of infinity defined by $g_{3,1} = 3$, $g_{3,2} = 2$, $g_{3,3} = \infty$, $g_{3,k} = 1$ if $k > 3$.
- Expand f_4 by the partition of infinity defined by $g_{4,1} = 3$, $g_{4,2} = \infty$, $g_{4,k} = 1$ if $k > 2$.

$$\begin{aligned}
n = & (a_{1,0}(1) + a_{1,1}(2) + a_{1,2}(2 \cdot 5) + a_{1,3}(2 \cdot 5 \cdot 2))1 \\
& + (a_{2,0}(1) + a_{2,1}(3) + a_{2,2}(3 \cdot 2))3 \\
& + (a_{4,0}(1) + a_{4,1}(3))4 \\
& + (a_{5,0}(1))5 \\
& + (a_{6,0}(1))6 \\
& + (a_{7,0}(1))7 \\
& + (a_{8,0}(1))8 \\
& + (a_{11,0}(1))11 \\
& \vdots
\end{aligned}$$

where $0 \leq a_{j,k} \leq g_{j,k+1} - 1 = d_{g_{j,1}g_{j,2}\dots g_{j,k}}$.

Apply the distributive property to obtain

$$\begin{aligned}n &= a_{1,0}(1) + a_{1,1}(2) + a_{1,2}(10) + a_{1,4}(20) \\&\quad + a_{2,0}(3) + a_{2,1}(9) + a_{2,2}(18) \\&\quad + a_{4,0}(4) + a_{4,1}(12) \\&\quad + a_{5,0}(5) \\&\quad + a_{6,0}(6) \\&\vdots\end{aligned}$$

where, in particular,

$$a_{1,0} \leq 1, \quad a_{1,1} \leq 4, \quad a_{1,2} \leq 2, \quad a_{2,0} \leq 2,$$

$$a_{2,1} \leq 1, \quad a_{4,0} \leq 2.$$

Open problems

Given a multiset M , find all partition ideals C of order 1 that have M as their associated multiset.

Open problems

Partition ideals C of order greater than 1 also have an associated multiset $M(C)$, but they can't be found directly since they don't have a minimal bounding sequence $\{d_j\}$. Can we find another way to calculate $M(C)$?

Open problems

Partition ideals C of order greater than 1 also have an associated multiset $M(C)$, but they can't be found directly since they don't have a minimal bounding sequence $\{d_j\}$. Can we find another way to calculate $M(C)$?

Possible Hint: Recall that for

$$1 + \sum_{n=1}^{\infty} p(C, n)q^n = \prod_{i=1}^{\infty} \frac{1}{(1 - q^i)^{a_i}},$$

we have recursive and direct formulas to write $p(C, n)$ and a_i in terms of each other.

Open problems

For partition ideals C of order 2 and higher, there is no minimal bounding sequence, but is there an analogous mathematical object that can be used to link it with the $M(C)$?

THANK YOU!