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o A partition ) of the integer nis a representation of n as an
unordered sum of positive integers

MA+do+-+ A =n.
o Each summand ), is called a part of the partition .

o Often a canonical ordering of parts is imposed:

A 2022 A
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6 5+1 4+2 4+1+1 3+3 3+2+1

3+1+1+1 2+2+2 2+2+1+1 2+1+1+1+1

1T+1+1+1+1+1
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ition identity (1743)

The number of partitions of ninto odd parts equals the number
of partitions of n into distinct parts.
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ition identity—Example

o Of the eleven partitions of 6, four of them have only odd
parts:

5+1 3+3 3+1+1+1 1T+1+1+1+1+1
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tion identity—Example

o Of the eleven partitions of 6, four of them have only odd
parts:

5+1 3+3 3+1+1+1 1T+1+1+1+1+1

o and four of them have distinct parts:

6 5+1 442 3+2+1.
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Notation for Partitions

Any partition A1 + Ao + A\3 +--- + A\, may be written in the form

f1-1+f2-2+f3-3+f4'4+...,
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otation for Partitions

Any partition A1 + Ao + A\3 +--- + A\, may be written in the form
f1-1+f2-2+f3-3+f4'4+...,

or more briefly, as
(f1 ) f27 f37 f47 v )7

where f; represents the number of appearances of the positive
integer i in the partition.
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Notation for Partitions

For example, the partition

6+6+6+6+4+4+3+2+2+2+2+1+1
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Notation for Partitions

For example, the partition

6+6+6+6+4+4+3+2+2+2+2+1+1
=2-1+4-2+1-3+2-4+0-5+4-6+0-7+0-8+0-9+...
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otation for Partitions

For example, the partition

6+6+6+6+4+4+3+2+2+2+2+1+1
=2-1+4.-2+1-3+2-4+0-5+4-6+0-7+0-8+0-9+...

may be represented by the frequency sequence

(2,4,1,2,0,4,0,0,0,0,0,0,...).

Andrew Sills



Thus each sequence {f;}7°,, where each f; is a nonnegative
integer and only finitely many of the f; are nonzero, represents
a partition of the integer 3.7°, i f;.
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Glaisher’s proof of Euler’s identity
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proof of Euler’s identity

o Let Ay + Ao+ + A, be a partition \ of some positive integer
ninto r odd parts.
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o Let Ay + Ao+ + A, be a partition \ of some positive integer
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o Rewrite X in the form
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o Replace each f; with its binary expansion
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proof of Euler’s identity

So,

fi-1+6-3+fK-5+F-7+-
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yroof of Euler’s identity

So,

fir1+f-3+f-5+f{-7+-
= (+aig-8+aip-4+a;1-2+ayp-1)-1
+(+az3-8+azp-4+azi-2+azp-1)-3
+(+asz-8+asp-4+asi1-2+asp-1)-5
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yroof of Euler’s identity

So,

fi-1+f-3+f-5+f{-7+-
(---+a1,3-8+a172~4+a1,1-2+a170-1)-1

+(---+a3,3-8+3372-4+a3’1-2+a370-1)-3
+(---+as,3-8+a5,2-4+a5’1-2+a570-1)-5

aio+ 28171 + 33370 +4a, 2+ 58570 + 683,1 + 737’0 +...
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artition identity

Replace “binary expansion” with “base m expansion” and we
obtain the theorem:
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artition identity

Replace “binary expansion” with “base m expansion” and we

obtain the theorem:
The number of partitions of ninto nonmultiples of m equals the

number of partitions of n where no part appears more than
m—1 times.
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A partition ideal C is a set of partitions such that for each A € C,
if one or more parts is removed from )\, the resulting partition is
also in C.
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ogers-Ramanujan Identity

o Let Ry(n) denote the number of partitions of n into parts
congruent to +1 (mod 5).
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dgers-Ramanujan ldentity

o Let Ry(n) denote the number of partitions of n into parts
congruent to +1 (mod 5).

o Let Ro(n) denote the number of partitions Ay + -+ A\, of n
such that \; — \j.1 > 2.

@ Then Ry(n) = Ro(n) for all n.
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ogers-Ramanujan Identity

o The partitions enumerated by R;(n) are those for which
fi =0 whenever i # +1 (mod 5).
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dgers-Ramanujan ldentity

o The partitions enumerated by R;(n) are those for which
fi =0 whenever j # +1 (mod 5). (order 1)

@ The partitions enumerated by R.(n) are those for which
fi+fiq < 1.
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dgers-Ramanujan ldentity

o The partitions enumerated by R;(n) are those for which
fi =0 whenever j # +1 (mod 5). (order 1)

@ The partitions enumerated by R.(n) are those for which
fi+ fi,q < 1. (order 2)
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unding Sequence

Let the sequence (df,dS,df,...) be defined by

d’= sup f,
(f)e0
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nding Sequence

Let the sequence (df,dS,df,...) be defined by

df = sup f;
{hyeC

each d; is a nonnegative integer or +oo.
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2orem Revisited

o Let O denote the set of all partitions with only odd parts.
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o Let O denote the set of all partitions with only odd parts.

Qo
{djo}]o:1 = (007 07 o0, 07 o0, 07 s )

o Let D denote the set of all partitions with distinct parts.

Qo
{dPyzy=(1,1,1,1,1,1,.00).
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Partition ldeals

o Let p(C, n) denote the number of partitions of an integer n
in the partition ideal C.
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Qartition ldeals

o Let p(C, n) denote the number of partitions of an integer n
in the partition ideal C.

o We say that two partition ideals C; and C, are equivalent,
and write Cy ~ Co, if p(Cy, n) = p(Cy, n) for all integers n.
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tition Identity
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set Associated with a Partition Ideal of Order

o Define the multiset associated with C, M(C), as follows:

M(C) = {j(df +1)|j e Z, and d° < oo}.
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set Associated with a Partition Ideal of Order

o Define the multiset associated with C, M(C), as follows:

M(C) = {j(df +1)|j e Z, and d° < oo}.

o Andrews proved C; ~ G if and only if M(Cy) = M(C»).
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iSet Associated with a Partition Ideal of Order

M(O) = M(D) = {2,4,6,8,10,12,... }.
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chur’s theorem (easy part)

o Let S; denote the set of partitions into parts = +1 (mod 6);
{d%}72 = (00,0,0,0,00,0,0,0,0,0,00,0,...).
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hur’s theorem (easy part)

o Let S; denote the set of partitions into parts = +1 (mod 6);
{d%1}7% = (0,0,0,0,00,0,00,0,0,0,00,0,...).

o Let S, denote the set of partitions into distinct nonmultiples
of 3; {d*}, = (1,1,0,1,1,0,...)
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o Let S; denote the set of partitions into parts = +1 (mod 6);
{d%1}7% = (0,0,0,0,00,0,00,0,0,0,00,0,...).

o Let S, denote the set of partitions into distinct nonmultiples
of 3; {d*}, = (1,1,0,1,1,0,...)

o Let S; denote the set of partitions into odd parts where no
part appears more than twice;
{d%}*=(2,0,2,0,2,0,...). (Alladi)
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hur’s theorem (easy part)

o Let S; denote the set of partitions into parts = +1 (mod 6);
{d%1}7% = (0,0,0,0,00,0,00,0,0,0,00,0,...).

o Let S, denote the set of partitions into distinct nonmultiples
of 3; {d*}, = (1,1,0,1,1,0,...)

o Let S; denote the set of partitions into odd parts where no
part appears more than twice;
{d%}*=(2,0,2,0,2,0,...). (Alladi)

Then Sy ~ S, ~ S3 because

M(S;) = M(S;) = M(S3) = {2,4,6,8,10,...}U{3,9,15,21,...}.
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ing” of M(C)

_ nk
jeM(C) 1-q

with mult.

rip(c,n)q”( I <1d>)(f{1 )

Andrew Sills



ing” of M(C)

,i”(c’”)qn( I1 (14))(ﬁ11qk)-

jeM(C) k=1
with mult.
1+ p(C,nq"= H "
n=1 -t (=g )
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ng” of M(C)

. N AT
5 p.ma’-| I1 (1-d) (g1_qk).

jeM(C)
with mult.
[eS) 0o 1
1+ p(C.mMQ" =[] m—7i
,; H1 (1-g")

Notice a; = 1 - m;, where m; = m;(C) = the number of times i
appears in M(C).
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f Infinity

MacMahon defined a partition of infinity to be a formal
expression of the form

(g1-1)1+(92-1)-91+(93-1)-(9192) +(9a—1) - (g19293) + . ..

where
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MacMahon defined a partition of infinity to be a formal
expression of the form
(91-1)-1+(92-1)-91+(93-1)(9192) + (92 —1) - (919293) +. ..

where
o eachg;>2
or for some fixed k,

9 01,02,93;-..,0k-1> 15
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MacMahon defined a partition of infinity to be a formal
expression of the form

(g1-1)1+(92-1)-91+(93-1)-(9192) +(9a—1) - (g19293) + . ..

where
o eachg;>2
or for some fixed k,

9 01,02,93;-..,0k-1> 15
9 gk = o0, and
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MacMahon defined a partition of infinity to be a formal
expression of the form

(91-1)-1+(92-1)-91+(93-1)(9192) + (92 —1) - (919293) +. ..
where

o eachg;>2
or for some fixed k,

9 01,092,935 9k-1>1,

@ gk = o0, and

O Gkt =Gk+2 =Gk == 1.
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Note that a partition of infinity may be thought of as a minimal
bounding sequence for a partition ideal of order one with

dr=g1-1
d91292_1
dg192:g3_1

dg1 0205 =94~ 1

and

di=0ifi¢{1,91,9192,919293, .. }.
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f Infinity

If g; = mfor all i, we have a minimal bounding sequence for the
partition ideal of the “base m expansion.”
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If gi = mfor all i, we have a minimal bounding sequence for the
partition ideal of the “base m expansion”

...in the sense that the base m expansions of positive integers
are in in bijection with partitions into 1, m, m?>, m®, ... where no
part appears more than m -1 times.
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@ Given any partition ideal of order 1 C for which each term
in the minimal bounding sequence is 0 or oo,
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@ Given any partition ideal of order 1 C for which each term
in the minimal bounding sequence is 0 or oo,

o and any equivalent partition ideal of order 1 C’,
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@ Given any partition ideal of order 1 C for which each term
in the minimal bounding sequence is 0 or oo,

o and any equivalent partition ideal of order 1 C’,

o there exists a collection of partitions of infinity which gives
rise to a “Glaisher-type bijection” from C to C’.
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@ Given any partition ideal of order 1 C for which each term
in the minimal bounding sequence is 0 or oo,

o and any equivalent partition ideal of order 1 C’,

o there exists a collection of partitions of infinity which gives
rise to a “Glaisher-type bijection” from C to C’.

o Further, there is an explicit algorithm for finding the
required partitions of infinity.

Andrew Sills



t Partition ldentity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12, 18 or 20.
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t Partition ldentity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12, 18 or 20.

o Let C’ denote the set of partitions where the parts
o 1,9, and 10 may appear at most once,

Andrew Sills



t Partition ldentity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12, 18 or 20.
o Let C’ denote the set of partitions where the parts

o 1,9, and 10 may appear at most once,
o 3 and 4 may appear at most
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t Partition ldentity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12, 18 or 20.
o Let C’ denote the set of partitions where the parts

o 1,9, and 10 may appear at most once,
o 3 and 4 may appear at most twice,
o 2 may appear at most four times,
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Partition Identity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12,18 or 20.

o Let C’ denote the set of partitions where the parts

1, 9, and 10 may appear at most once,

o 3 and 4 may appear at most twice,

o 2 may appear at most four times,

o and all other positive integers may appear without
restriction.

©
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Partition Identity

o Let C denote the set of partitions into parts not equal to 2,
9,10, 12,18 or 20.

o Let C’ denote the set of partitions where the parts

1, 9, and 10 may appear at most once,

o 3 and 4 may appear at most twice,

o 2 may appear at most four times,

o and all other positive integers may appear without
restriction.

o C~C.

©
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nt Partition Identity

gc o[ 0 ifje{2,9,10,12,18,20}
/ oo oOtherwise.

{de'};; — (174’2’2700,00,0070071’1700,00,00,00,...).
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t Partition ldentity

gc o[ 0 ifje{2,9,10,12,18,20}
/ oo oOtherwise.

{de’}j?; :(174’2’2700,0070070071,1,00,00,00,00,...).

@ Any partition of nin C can be written in the form
8 17

n="f-1 +Zﬁ"f+f11 11+ Z fi-i
i=3 i=13

+f19'19+ Z f,l,
i=21

where each f; is a nonnegative integer.
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t Partition ldentity

o Expand f; by the partition of infinity defined by g1 1 = 2,
912=5,013=2,014=00,g1x=1if k>4,

Andrew Sills



t Partition ldentity

o Expand f; by the partition of infinity defined by g1 1 = 2,
912=5,013=2,g14=0,01,=1ifk>4.

o Expand f; by the partition of infinity defined by g3 1 = 3,
J32=2,033=20,03,=1Iif k>3.
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Partition Identity

o Expand f; by the partition of infinity defined by g1 1 = 2,
912=5,013=2,014=00,g1x=1if k>4,

o Expand f; by the partition of infinity defined by g3 1 = 3,
g372 = 2, g3’3 = 00, g3,k =1if k> 3.

o Expand f; by the partition of infinity defined by g4 1 = 3,
Jap=00,04k=1Iik>2.
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(a10(1) +ar1(2) +a12(2-5) +a;3(2-5-2))1
+ (ap0(1) +a21(3) + @2(3-2))3
+ (as0(1) +a41(3))4
+ (as0(1))5
+ (as,0(1))6
+ (az0(1))7
+ (ag0(1))8
+ (311,0(1))11

where 0< @k < gjk+1 —1 =g g9
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Apply the distributive property to obtain

n = ajo(1)+ar1(2) +ar2(10) + a1 4(20)
+a20(3) +a21(9) +a2(18)
+a40(4) +as41(12)
+ as50(5)
+ ap,0(6)

where, in particular,
ap0<1, a1<4, a12<2, ap<2,

a1 < 1, g0 < 2.
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ems

Given a multiset M, find all partition ideals C of order 1 that
have M as their associated multiset.
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ems

Partition ideals C of order greater than 1 also have an
associated multiset M(C), but they can’t be found directly since
they don’t have a minimal bounding sequence {d;}. Can we
find another way to calculate M(C)?
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Partition ideals C of order greater than 1 also have an
associated multiset M(C), but they can’t be found directly since
they don’t have a minimal bounding sequence {d;}. Can we
find another way to calculate M(C)?

Possible Hint: Recall that for

ot 1

1+oopC,nq”: —
2Pena =G

we have recursive and direct formulas to write p(C, n) and g; in
terms of each other.
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ems

For partition ideals C of order 2 and higher, there is no minimal
bounding sequence, but is there an analogous mathematical
object that can be used to link it with the M(C)?
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THANK YOU!

Andrew Sills



