On partitions with bounded largest part and fixed integral GBG-rank modulo primes

Aritram Dhar

(Joint work with Alexander Berkovich)
(preprint available at https://arxiv.org/abs/2312.15117)

$\left.\mathbf{U F}\right|_{\text {FLORIDA }} ^{\text {UNVERIT }}$

Online Seminar in Partition Theory, q-Series and Related Topics (MTU)
April 18, 2024

Thanks to...

Prof. Alexander Berkovich

Preliminary Background on partitions

A partition is a non-increasing finite sequence $\pi=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ (≥ 1) where λ_{i} 's are called the parts of π. The size of π, denoted by $|\pi|$, is defined as

$$
|\pi|=\sum_{i=1}^{k} \lambda_{i} .
$$

We say that π is a partition of n if $|\pi|=n$. For example, the seven partitions of 5 are $5,4+1,3+2,3+1+1,2+2+1,2+1+1+1$, and $1+1+1+1+1$.

We may also write a partition π in terms of its frequency of parts as
where $f_{i}(\geq 0)$ is the frequency of the part ' i '. For example, the seven partitions of 5 are $\left(5^{1}\right),\left(1^{1}, 4^{1}\right),\left(2^{1}, 3^{1}\right),\left(1^{2}, 3^{1}\right),\left(1^{1}, 2^{2}\right),\left(1^{3}, 2^{1}\right)$, and $\left(1^{5}\right)$. Let \mathcal{P} denote the set of
all partitions.

Preliminary Background on partitions

A partition is a non-increasing finite sequence $\pi=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ (≥ 1) where λ_{i} 's are called the parts of π. The size of π, denoted by $|\pi|$, is defined as

$$
|\pi|=\sum_{i=1}^{k} \lambda_{i}
$$

We say that π is a partition of n if $|\pi|=n$. For example, the seven partitions of 5 are $5,4+1,3+2,3+1+1,2+2+1,2+1+1+1$, and $1+1+1+1+1$.

We may also write a partition π in terms of its frequency of parts as
where $f_{i}(\geq 0)$ is the frequency of the part ' i '. For example, the seven partitions of 5 are $\left(5^{1}\right),\left(1^{1}, 4^{1}\right),\left(2^{1}, 3^{1}\right),\left(1^{2}, 3^{1}\right),\left(1^{1}, 2^{2}\right),\left(1^{3}, 2^{1}\right)$, and $\left(1^{5}\right)$. Let \mathcal{P} denote the set of
all partitions.

Preliminary Background on partitions

A partition is a non-increasing finite sequence $\pi=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ of positive integers $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ (≥ 1) where λ_{i} 's are called the parts of π. The size of π, denoted by $|\pi|$, is defined as

$$
|\pi|=\sum_{i=1}^{k} \lambda_{i}
$$

We say that π is a partition of n if $|\pi|=n$. For example, the seven partitions of 5 are $5,4+1,3+2,3+1+1,2+2+1,2+1+1+1$, and $1+1+1+1+1$.

We may also write a partition π in terms of its frequency of parts as

$$
\pi=\left(1^{f_{1}}, 2^{f_{2}}, 3^{f_{3}}, \ldots, k^{f_{k}}\right)
$$

where $f_{i}(\geq 0)$ is the frequency of the part ' i '. For example, the seven partitions of 5 are $\left(5^{1}\right),\left(1^{1}, 4^{1}\right),\left(2^{1}, 3^{1}\right),\left(1^{2}, 3^{1}\right),\left(1^{1}, 2^{2}\right),\left(1^{3}, 2^{1}\right)$, and $\left(1^{5}\right)$. Let \mathcal{P} denote the set of all partitions.

t-residue diagrams of partitions

The Young diagram of π is a way of representing π graphically wherein the parts of π are depicted as rows of cells. Given the Young diagram of π, we label a cell in the i th row and j th column by the least non-negative integer $\equiv j-i(\bmod t)$. The resulting diagram is called a t-residue diagram of π.

Figure 1: 3-residue diagram of the partition $\pi=(10,7,4,3)$

t-residue diagrams of partitions

The Young diagram of π is a way of representing π graphically wherein the parts of π are depicted as rows of cells. Given the Young diagram of π, we label a cell in the i th row and j th column by the least non-negative integer $\equiv j-i(\bmod t)$. The resulting diagram is called a t-residue diagram of π.

0	1	2	0	1		2	0	1	2	0	
2	0	1	2	0		1	2				
1	2	0	1								
0	1	2									

Figure 1: 3 -residue diagram of the partition $\pi=(10,7,4,3)$

r-vector and n-vector associated to a partition

r-vector

For every partition π and positive integer t, we define

$$
\vec{r}=\vec{r}(\pi, t)=\left(r_{0}(\pi, t), r_{1}(\pi, t), \ldots, r_{t-1}(\pi, t)\right)
$$

where, for $0 \leq i \leq t-1$,

$$
r_{i}(\pi, t)=r_{i}
$$

is the number of cells labelled i in the t-residue diagram of π.

n-vector

For every partition π and positive integer t, we define
where, for $0 \leq i \leq t-2$,

and

r-vector and n-vector associated to a partition

r-vector

For every partition π and positive integer t, we define

$$
\vec{r}=\vec{r}(\pi, t)=\left(r_{0}(\pi, t), r_{1}(\pi, t), \ldots, r_{t-1}(\pi, t)\right)
$$

where, for $0 \leq i \leq t-1$,

$$
r_{i}(\pi, t)=r_{i}
$$

is the number of cells labelled i in the t-residue diagram of π.

n-vector

For every partition π and positive integer t, we define

$$
\vec{n}=\vec{n}(\pi, t)=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

where, for $0 \leq i \leq t-2$,

$$
n_{i}=r_{i}-r_{i+1}
$$

and

$$
n_{t-1}=r_{t-1}-r_{0}
$$

Extended t-residue diagrams of partitions

We can also label cells in the infinite 0th column and the infinite 0th row in the same fashion and call the resulting diagram the extended t-residue diagram of π.

Extended t-residue diagrams of partitions

We can also label cells in the infinite 0th column and the infinite 0th row in the same fashion and call the resulting diagram the extended t-residue diagram of π.

Figure 2: Extended 3-residue diagram of $\pi=(10,7,4,3)$

Two partition statistics : GBG-rank \& BG-rank

GBG-rank of a partition (Berkovich-Garvan, Adv. in Appl. Math., 2008)
For any partition π, the GBG-rank of $\pi \bmod t$, denoted by $\operatorname{GBG}^{(t)}(\pi)$, is defined as

$$
\operatorname{GBG}^{(t)}(\pi):=\sum_{j=0}^{t-1} r_{j}(\pi, t) \omega_{t}^{j},
$$

where $\omega_{t}:=e^{\frac{2 \pi \iota}{t}}$ is a t th root of unity and $\iota=\sqrt{-1}$.

PG-rank of a partition (Berkovich-Garvan. Trans. Amer. Math. Soc., 2006)
The special case $t=2$ is called the BG-rank of a partition π defined as
where i is the number of odd-indexed odd parts and j is the number of even-indexed odd parts

Two partition statistics : GBG-rank \& BG-rank

GBG-rank of a partition (Berkovich-Garvan, Adv. in Appl. Math., 2008)
For any partition π, the GBG-rank of $\pi \bmod t$, denoted by $\operatorname{GBG}^{(t)}(\pi)$, is defined as

$$
\operatorname{GBG}^{(t)}(\pi):=\sum_{j=0}^{t-1} r_{j}(\pi, t) \omega_{t}^{j},
$$

where $\omega_{t}:=e^{\frac{2 \pi \iota}{t}}$ is a t th root of unity and $\iota=\sqrt{-1}$.
For example, in Figure 1, for the partition $\pi=(10,7,4,3), \operatorname{GBG}^{(3)}(\pi)=r_{0}+r_{1} \omega_{3}+$ $r_{2} \omega_{3}^{2}=8+8 \omega_{3}+8 \omega_{3}^{2}=0$.

[^0]
Two partition statistics : GBG-rank \& BG-rank

GBG-rank of a partition (Berkovich-Garvan, Adv. in Appl. Math., 2008)

For any partition π, the GBG-rank of $\pi \bmod t$, denoted by $\operatorname{GBG}^{(t)}(\pi)$, is defined as

$$
\operatorname{GBG}^{(t)}(\pi):=\sum_{j=0}^{t-1} r_{j}(\pi, t) \omega_{t}^{j},
$$

where $\omega_{t}:=e^{\frac{2 \pi \iota}{t}}$ is a t th root of unity and $\iota=\sqrt{-1}$.
For example, in Figure 1, for the partition $\pi=(10,7,4,3), \operatorname{GBG}^{(3)}(\pi)=r_{0}+r_{1} \omega_{3}+$ $r_{2} \omega_{3}^{2}=8+8 \omega_{3}+8 \omega_{3}^{2}=0$.

BG-rank of a partition (Berkovich-Garvan, Trans. Amer. Math. Soc., 2006)
The special case $t=2$ is called the BG-rank of a partition π defined as

$$
\operatorname{GBG}^{(2)}(\pi)=\mathrm{BG}(\pi):=r_{0}(\pi)-r_{1}(\pi)=i-j,
$$

where i is the number of odd-indexed odd parts and j is the number of even-indexed odd parts.

Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional q-Pochammer symbol as

$$
\begin{aligned}
& (a)_{L}=(a ; q)_{L}:=\prod_{k=0}^{L-1}\left(1-a q^{k}\right) ; \\
& (a)_{\infty}=(a ; q)_{\infty}:=\lim _{L \rightarrow \infty}(a)_{L} \text { for }|q|<1 \text {. }
\end{aligned}
$$

For $m, n \geq 0, \frac{1}{(q)_{m}}$ is the generating function for partitions into at most m parts and $\lceil m+n\rceil$ is the generating function for partitions into at most m parts each of size at most n, or vice versa.

Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional q-Pochammer symbol as

$$
\begin{aligned}
& (a)_{L}=(a ; q)_{L}:=\prod_{k=0}^{L-1}\left(1-a q^{k}\right) ; \\
& (a)_{\infty}=(a ; q)_{\infty}:=\lim _{L \rightarrow \infty}(a)_{L} \text { for }|q|<1 .
\end{aligned}
$$

For $m, n \in \mathbb{Z}$, we define the q-binomial (Gaussian) coefficient as

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}:= \begin{cases}\frac{(q)_{n}}{(q)_{m}(q)_{n-m}} & \text { for } 0 \leq m \leq n \\
0 & \text { otherwise }\end{cases}
$$

For $m, n \geq 0, \frac{1}{(q)_{m}}$ is the generating function for partitions into at most m parts and $\lceil m+n\rceil$ is the generating function for partitions into at most m parts each of size at most n, or vice versa.

Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional q-Pochammer symbol as

$$
\begin{aligned}
&(a)_{L}=(a ; q)_{L} \\
&:=\prod_{k=0}^{L-1}\left(1-a q^{k}\right) \\
&(a)_{\infty}=(a ; q)_{\infty}
\end{aligned}:=\lim _{L \rightarrow \infty}(a)_{L} \text { for }|q|<1 .
$$

For $m, n \in \mathbb{Z}$, we define the q-binomial (Gaussian) coefficient as

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}:= \begin{cases}\frac{(q)_{n}}{(q)_{m}(q)_{n-m}} & \text { for } 0 \leq m \leq n \\
0 & \text { otherwise }\end{cases}
$$

For $m, n \geq 0, \frac{1}{(q)_{m}}$ is the generating function for partitions into at most m parts and $\left[\begin{array}{c}m+n \\ m\end{array}\right]_{q}$ is the generating function for partitions into at most m parts each of size at most n, or vice versa.

Motivation

For any non-negative integer N and any integer k, let $B_{N}(k, q)$ denote the generating function for the number of partitions into parts less than or equal to N with BG-rank equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For $\nu \in\{0,1\}$,

$$
B_{2 N+\nu}(k, q)=\frac{q^{2 k^{2}-k}}{\left(q^{2} ; q^{2}\right)_{N+\nu-k}\left(q^{2} ; q^{2}\right)_{N+k}} .
$$

For any non-negative integer N and any integer k, let $\tilde{B}_{N}(k, q)$ denote the generating function of the number of distinct part partitions into parts less than or equal to N with BG-rank equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For $v \in\{0,1\}$

Motivation

For any non-negative integer N and any integer k, let $B_{N}(k, q)$ denote the generating function for the number of partitions into parts less than or equal to N with BG-rank equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For $\nu \in\{0,1\}$,

$$
B_{2 N+\nu}(k, q)=\frac{q^{2 k^{2}-k}}{\left(q^{2} ; q^{2}\right)_{N+\nu-k}\left(q^{2} ; q^{2}\right)_{N+k}} .
$$

For any non-negative integer N and any integer k, let $\tilde{B}_{N}(k, q)$ denote the generating function of the number of distinct part partitions into parts less than or equal to N with BG-rank equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For $\nu \in\{0,1\}$,

$$
\tilde{B}_{2 N+\nu}(k, q)=q^{2 k^{2}-k}\left[\begin{array}{c}
2 N+\nu \\
N+k
\end{array}\right]_{q^{2}} .
$$

Rim cell, Rim hook \& t-cores

Rim cell

If some cell of π shares a vertex or edge with the rim of the Young diagram of π, we call this cell a rim cell of π.

Rim hook

A connected collection of rim cells of π is called a rim hook if (Young diagram of $\pi) \backslash($ rim hook $)$ represents a legitimate partition

Example

Rim cell, Rim hook \& t-cores

Rim cell

If some cell of π shares a vertex or edge with the rim of the Young diagram of π, we call this cell a rim cell of π.

Rim hook

A connected collection of rim cells of π is called a rim hook if (Young diagram of $\pi) \backslash($ rim hook) represents a legitimate partition.

Example

Rim cell, Rim hook \& t-cores

Rim cell

If some cell of π shares a vertex or edge with the rim of the Young diagram of π, we call this cell a rim cell of π.

Rim hook

A connected collection of rim cells of π is called a rim hook if (Young diagram of $\pi) \backslash($ rim hook) represents a legitimate partition.

Example

t-core
A partition, denoted by $\pi_{t-c o r e}$, is called a t-core if its Young diagram has no rim hooks of length t.

Example

All staircase partitions (of triangular numbers) are 2-cores, for instance,

t-core

A partition, denoted by π_{t}-core, is called a t-core if its Young diagram has no rim hooks of length t.

Example

All staircase partitions (of triangular numbers) are 2-cores, for instance,

Regions

A region r in the extended t-residue diagram of π is the set of all cells (i, j) satisfying $t(r-1) \leq j-i<t r$. A cell of π is called exposed if it is at the end of a row in the extended t-residue diagram of π and not exposed otherwise.

Figure 3: Extended 3-residue diagram of $\pi=(10,7,4,3)$ with regions

Regions

A region r in the extended t-residue diagram of π is the set of all cells (i, j) satisfying $t(r-1) \leq j-i<t r$. A cell of π is called exposed if it is at the end of a row in the extended t-residue diagram of π and not exposed otherwise.

Figure 3: Extended 3-residue diagram of $\pi=(10,7,4,3)$ with regions

Binary Words

One can construct t infinite binary words $W_{0}, W_{1}, \ldots, W_{t-1}$ of two letters N, E as follows: The r th letter of W_{i} is E if there is an exposed cell labelled i in the region r, otherwise the r th letter of W_{i} is N.

For example, the three bi-infinite words W_{0}, W_{1}, W_{2} for the partition (10, $7,4,3$) in Figure 1 are as follows:

Region
W_{0}
W_{1}
W_{2}

Binary Words

One can construct t infinite binary words $W_{0}, W_{1}, \ldots, W_{t-1}$ of two letters N, E as follows: The r th letter of W_{i} is E if there is an exposed cell labelled i in the region r, otherwise the r th letter of W_{i} is N.

For example, the three bi-infinite words W_{0}, W_{1}, W_{2} for the partition (10, 7, 4, 3) in Figure 1 are as follows:

Region: $\cdots \cdots \cdot$	-3	-2	-1	0	1	2	3	4	5	$\cdots \cdots$
$W_{0}: \cdots \cdots$	E	E	E	N	N	N	N	E	N	$\cdots \cdots$
$W_{1}: \cdots \cdots$	E	E	E	N	E	N	N	N	N	$\cdots \cdots$
$W_{2}: \cdots \cdots$	E	E	N	E	N	E	N	N	N	$\cdots \cdots$.

Littlewood decomposition: t-cores \& t-quotients

Let $\mathcal{P}_{t \text {-core }}$ denote the set of all t-cores. There is a well-known bijection

$$
\phi_{1}: \mathcal{P} \longrightarrow \mathcal{P}_{t \text {-core }} \times \underbrace{\mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \cdots \times \mathcal{P}}_{t \text { times }}
$$

due to D. E. Littlewood (1951)

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }},\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)\right)
$$

such that

$$
|\pi|=\left|\pi_{t-\text { core }}\right|+t \sum_{i=0}^{t-1}\left|\hat{\pi}_{i}\right| .
$$

The vector partition ($\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}$) is called the t-quotient of π and is denoted by $\pi_{t \text {-quotient }}$.

Theorem (Garvan-Kim-Stanton, invent. Wath., 1990

Littlewood decomposition: t-cores \& t-quotients

Let $\mathcal{P}_{t \text {-core }}$ denote the set of all t-cores. There is a well-known bijection

$$
\phi_{1}: \mathcal{P} \longrightarrow \mathcal{P}_{t \text {-core }} \times \underbrace{\mathcal{P} \times \mathcal{P} \times \mathcal{P} \times \cdots \times \mathcal{P}}_{t \text { times }}
$$

due to D. E. Littlewood (1951)

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }},\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)\right)
$$

such that

$$
|\pi|=\left|\pi_{t-\text { core }}\right|+t \sum_{i=0}^{t-1}\left|\hat{\pi}_{i}\right| .
$$

The vector partition ($\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}$) is called the t-quotient of π and is denoted by $\pi_{t \text {-quotient }}$.

Theorem (Garvan-Kim-Stanton, Invent. Math., 1990)

$$
\left|\pi_{t-\text { core }}\right|=\frac{t}{2} \vec{n} \cdot \vec{n}+\vec{b}_{t} \cdot \vec{n},
$$

where $\vec{b}_{t}:=(0,1,2, \ldots, t-1)$ and $\vec{n}=\vec{n}(\pi, t)$.

Definition

For $0 \leq i \leq t-1$, define $\chi_{i}(\pi, t)$ to be the largest region in the extended t-residue diagram of π where the cell labeled i is exposed.

```
Lemma (Berkovich-Garvan, Adv. in Appl. Math., 2008)
```

where v_{i} is the number of parts in the i th component of the t-quotient of π and n_{i} is
the i th component of $\vec{n}(\pi, t)$.

For example, for the partition $\pi=(10,7,4,3)$ in Figure 1, from its three bi-infinite
 that $\vec{n}(\pi, 3)=(0,0,0)$. Therefore, from Lemma, it follows that the 1st component of $\pi_{3 \text {-quotient }}$ has 4 parts, the 2 nd component of $\pi_{3 \text {-quotient }}$ has 1 part, and the 3rd component of $\pi_{3 \text {-quotient }}$ has 2 parts.

Definition

For $0 \leq i \leq t-1$, define $\chi_{i}(\pi, t)$ to be the largest region in the extended t-residue diagram of π where the cell labeled i is exposed.

Lemma (Berkovich-Garvan, Adv. in Appl. Math., 2008)

$$
\chi_{i}(\pi, t)=v_{i}+n_{i},
$$

where v_{i} is the number of parts in the i th component of the t-quotient of π and n_{i} is the i th component of $\vec{n}(\pi, t)$.

> For example, for the partition $\pi=(10,7,4,3)$ in Figure 1, from its three bi-infinite words W_{0}, W_{1}, and W_{2}, we have $\chi_{0}(\pi, 3)=4, \chi_{1}(\pi, 3)=1$, and $\chi_{2}(\pi, 3)=2$. Note that $\vec{n}(\pi, 3)=(0,0,0)$. Therefore, from Lemma, it follows that the 1st component of $\pi_{3 \text {-quotient }}$ has 4 parts, the 2 nd component of $\pi_{3 \text {-quotient }}$ has 1 part, and the 3rd component of $\pi_{3 \text {-quotient }}$ has 2 parts.

Definition

For $0 \leq i \leq t-1$, define $\chi_{i}(\pi, t)$ to be the largest region in the extended t-residue diagram of π where the cell labeled i is exposed.

Lemma (Berkovich-Garvan, Adv. in Appl. Math., 2008)

$$
\chi_{i}(\pi, t)=v_{i}+n_{i},
$$

where v_{i} is the number of parts in the i th component of the t-quotient of π and n_{i} is the i th component of $\vec{n}(\pi, t)$.

For example, for the partition $\pi=(10,7,4,3)$ in Figure 1, from its three bi-infinite words W_{0}, W_{1}, and W_{2}, we have $\chi_{0}(\pi, 3)=4, \chi_{1}(\pi, 3)=1$, and $\chi_{2}(\pi, 3)=2$. Note that $\vec{n}(\pi, 3)=(0,0,0)$. Therefore, from Lemma, it follows that the 1st component of $\pi_{3 \text {-quotient }}$ has 4 parts, the 2 nd component of $\pi_{3 \text {-quotient }}$ has 1 part, and the 3 rd component of $\pi_{3 \text {-quotient }}$ has 2 parts.

Main Results - Part I

Let $G_{N, t}(k, q)$ denote the generating function for the number of partitions into parts less than or equal to N with GBG-rank $\bmod t$ equal to k, i.e.,

$$
G_{N, t}(k, q):=\sum_{\substack{\pi \in \mathcal{P} \\ \operatorname{GBG}^{(t)}(\pi)=k \\ l(\pi) \leq N}} q^{|\pi|} .
$$

Theorem 1 (Berkovich-D, 2024)

For any prime t, a non-negative integer N, and any integer k, we have

Main Results - Part I

Let $G_{N, t}(k, q)$ denote the generating function for the number of partitions into parts less than or equal to N with GBG-rank $\bmod t$ equal to k, i.e.,

$$
G_{N, t}(k, q):=\sum_{\substack{\pi \in \mathcal{P} \\ \mathrm{GBG}^{(t)}(\pi)=k \\ l(\pi) \leq N}} q^{|\pi|} .
$$

Theorem 1 (Berkovich-D, 2024)

For any prime t, a non-negative integer N, and any integer k, we have

$$
G_{t N+\nu, t}(k, q)=\frac{q^{t k^{2}-(t-1) k}}{\prod_{i=0}^{t-1}(\tilde{q} ; \tilde{q})_{N+\left\lceil\frac{\nu-i}{t}\right\rceil-k \delta_{i, 0}+k \delta_{i, t-1}}}
$$

where $\tilde{q}:=q^{t}$ and $\nu \in\{0,1,2, \ldots, t-1\}$.

Let $\tilde{G}_{N, t}(k, q)$ denote the generating function for the number of partitions into parts repeating no more than $t-1$ times and less than or equal to N with GBG-rank mod t equal to k, i.e.,

$$
\tilde{G}_{N, t}(k, q):=\sum_{\substack{\pi=\left(1^{f_{1}, 2^{\left.f_{2}, \ldots, N^{f_{N}}\right) \in \mathcal{P}}}\right.}} q^{|\pi|} .
$$

Theorem 2 (Berkovich-D, 2024)
For any prime t, a non-negative integer N, and any integer k, we have

Let $\tilde{G}_{N, t}(k, q)$ denote the generating function for the number of partitions into parts repeating no more than $t-1$ times and less than or equal to N with GBG-rank mod t equal to k, i.e.,

$$
\tilde{G}_{N, t}(k, q):=\sum_{\substack{\pi=\left(1^{f_{1}, 2^{\left.f_{2}, \ldots, N^{f_{N}}\right) \in \mathcal{P}}}\right.}} q^{|\pi|} .
$$

Theorem 2 (Berkovich-D, 2024)

For any prime t, a non-negative integer N, and any integer k, we have

$$
\tilde{G}_{t N+\nu, t}(k, q)=\frac{q^{t k^{2}-(t-1) k}(\tilde{q} ; \tilde{q})_{t N+\nu}}{\prod_{i=0}^{t-1}(\tilde{q} ; \tilde{q})_{N+\left\lceil\frac{\nu-i}{t}\right\rceil-k \delta_{i, 0}+k \delta_{i, t-1}},}
$$

where $\tilde{q}:=q^{t}$ and $\nu \in\{0,1,2, \ldots, t-1\}$.

Proof of Theorem 1

Let $\pi=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \in \mathcal{P}$ be a partition with $\lambda_{1} \leq t N+\nu$ where $0 \leq \nu \leq t-1$ and consider the Littlewood decomposition of π

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)
$$

where

$$
\pi_{t \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)
$$

$\vec{n}(\pi, t)=(k, 0,0, \ldots, 0,0,-k)$,
where $n_{0}(\pi)=k, n_{t-1}(\pi)=-k$, and $n_{i}(\pi)=0$ for $1 \leq i \leq t-2$. Thus, we have

Proof of Theorem 1

Let $\pi=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \in \mathcal{P}$ be a partition with $\lambda_{1} \leq t N+\nu$ where $0 \leq \nu \leq t-1$ and consider the Littlewood decomposition of π

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)
$$

where

$$
\pi_{t \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)
$$

Now, let t be any prime and $\operatorname{GBG}^{(t)}(\pi)=k$ be an integer. Then $\operatorname{GBG}^{(t)}(\pi)=k$ is an integer if and only if $r_{0}(\pi)=k+r$ and $r_{i}(\pi)=r$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$ and $1 \leq i \leq t-1$. Therefore,

$$
\vec{n}(\pi, t)=(k, 0,0, \ldots, 0,0,-k),
$$

where $n_{0}(\pi)=k, n_{t-1}(\pi)=-k$, and $n_{i}(\pi)=0$ for $1 \leq i \leq t-2$. Thus, we have

Proof of Theorem 1

Let $\pi=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \in \mathcal{P}$ be a partition with $\lambda_{1} \leq t N+\nu$ where $0 \leq \nu \leq t-1$ and consider the Littlewood decomposition of π

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)
$$

where

$$
\pi_{t \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)
$$

Now, let t be any prime and $\operatorname{GBG}^{(t)}(\pi)=k$ be an integer. Then $\operatorname{GBG}^{(t)}(\pi)=k$ is an integer if and only if $r_{0}(\pi)=k+r$ and $r_{i}(\pi)=r$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$ and $1 \leq i \leq t-1$. Therefore,

$$
\vec{n}(\pi, t)=(k, 0,0, \ldots, 0,0,-k),
$$

where $n_{0}(\pi)=k, n_{t-1}(\pi)=-k$, and $n_{i}(\pi)=0$ for $1 \leq i \leq t-2$. Thus, we have

$$
\begin{aligned}
\left|\pi_{t-\text { core }}\right| & =\frac{t}{2} \cdot 2 k^{2}+(t-1) \cdot(-k) \\
& =t k^{2}-(t-1) k
\end{aligned}
$$

Figure 4: Generic extended t-residue diagram of a partition $\pi=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \in \mathcal{P}$ with $\lambda_{1}=t N+\nu$ where $0 \leq \nu \leq t-1$ (the regions are labeled in red).

4 Case I: $\nu>0$
The cell labeled i may be exposed in the region marked $N+1$ for $0 \leq i \leq \nu-1$ and is not exposed in the region marked $N+1$ for $\nu \leq i \leq t-1$. Thus, it follows that

$$
N+1 \geq \chi_{i}(\pi, t), \quad 0 \leq i \leq \nu-1
$$

and

$$
N \geq \chi_{i}(\pi, t), \quad \nu \leq i \leq t-1
$$

Lemma then implies that

$$
N+1 \geq v_{i}+k \delta_{i, 0}, \quad 0 \leq i \leq \nu-1
$$

and

$$
N \geq v_{i}-k \delta_{i, t-1}, \quad \nu \leq i \leq t-1
$$

Lemma then implies that

$$
N \geq v_{i}+k \delta_{i, 0}-k \delta_{i, t-1}, \quad 0 \leq i \leq t-1
$$

4 Case I: $\nu>0$
The cell labeled i may be exposed in the region marked $N+1$ for $0 \leq i \leq \nu-1$ and is not exposed in the region marked $N+1$ for $\nu \leq i \leq t-1$. Thus, it follows that

$$
N+1 \geq \chi_{i}(\pi, t), \quad 0 \leq i \leq \nu-1
$$

and

$$
N \geq \chi_{i}(\pi, t), \quad \nu \leq i \leq t-1
$$

Lemma then implies that

$$
N+1 \geq v_{i}+k \delta_{i, 0}, \quad 0 \leq i \leq \nu-1
$$

and

$$
N \geq v_{i}-k \delta_{i, t-1}, \quad \nu \leq i \leq t-1
$$

4 Case II: $\nu=0$
The cell labeled i is not exposed in the region marked $N+1$ for $0 \leq i \leq t-1$. Thus, it follows that

$$
N \geq \chi_{i}(\pi, t), \quad 0 \leq i \leq t-1
$$

Lemma then implies that

$$
N \geq v_{i}+k \delta_{i, 0}-k \delta_{i, t-1}, \quad 0 \leq i \leq t-1
$$

Thus, we have

4 Case I: $\nu>0$
The cell labeled i may be exposed in the region marked $N+1$ for $0 \leq i \leq \nu-1$ and is not exposed in the region marked $N+1$ for $\nu \leq i \leq t-1$. Thus, it follows that

$$
N+1 \geq \chi_{i}(\pi, t), \quad 0 \leq i \leq \nu-1
$$

and

$$
N \geq \chi_{i}(\pi, t), \quad \nu \leq i \leq t-1
$$

Lemma then implies that

$$
N+1 \geq v_{i}+k \delta_{i, 0}, \quad 0 \leq i \leq \nu-1,
$$

and

$$
N \geq v_{i}-k \delta_{i, t-1}, \quad \nu \leq i \leq t-1
$$

4 Case II: $\nu=0$
The cell labeled i is not exposed in the region marked $N+1$ for $0 \leq i \leq t-1$. Thus, it follows that

$$
N \geq \chi_{i}(\pi, t), \quad 0 \leq i \leq t-1
$$

Lemma then implies that

$$
N \geq v_{i}+k \delta_{i, 0}-k \delta_{i, t-1}, \quad 0 \leq i \leq t-1
$$

Thus, we have

$$
v_{i} \leq N+\left\lceil\frac{\nu-i}{t}\right\rceil-k \delta_{i, 0}+k \delta_{i, t-1}, \quad 0 \leq i \leq t-1
$$

Proof of Theorem 2

Let

$$
\pi=\left(1^{t q_{1}+f_{1}}, 2^{t q_{2}+f_{2}}, 3^{t q_{3}+f_{3}} \ldots, N^{t q_{N}+f_{N}}\right)
$$

where $0 \leq f_{j} \leq t-1$ and $q_{j} \geq 0$ for $1 \leq j \leq N$.
Observe that π is in one-one correspondence with the pair of partitions $\left(\pi_{1}, \pi_{2}\right)$ where $\pi_{1}=\left(1^{t q_{1}}, 2^{t q_{2}}, 3^{t q_{3}}, \ldots, N^{t q_{N}}\right)$
and

Now, note that

and so,

Proof of Theorem 2

Let

$$
\pi=\left(1^{t q_{1}+f_{1}}, 2^{t q_{2}+f_{2}}, 3^{t q_{3}+f_{3}} \ldots, N^{t q_{N}+f_{N}}\right)
$$

where $0 \leq f_{j} \leq t-1$ and $q_{j} \geq 0$ for $1 \leq j \leq N$.
Observe that π is in one-one correspondence with the pair of partitions $\left(\pi_{1}, \pi_{2}\right)$ where

$$
\pi_{1}=\left(1^{t q_{1}}, 2^{t q_{2}}, 3^{t q_{3}}, \ldots, N^{t q_{N}}\right)
$$

and

$$
\pi_{2}=\left(1^{f_{1}}, 2^{f_{2}}, 3^{f_{3}}, \ldots, N^{f_{N}}\right)
$$

Now, note that

and so,

Proof of Theorem 2

Let

$$
\pi=\left(1^{t q_{1}+f_{1}}, 2^{t q_{2}+f_{2}}, 3^{t q_{3}+f_{3}} \ldots, N^{t q_{N}+f_{N}}\right)
$$

where $0 \leq f_{j} \leq t-1$ and $q_{j} \geq 0$ for $1 \leq j \leq N$.
Observe that π is in one-one correspondence with the pair of partitions (π_{1}, π_{2}) where

$$
\pi_{1}=\left(1^{t q_{1}}, 2^{t q_{2}}, 3^{t q_{3}}, \ldots, N^{t q_{N}}\right)
$$

and

$$
\pi_{2}=\left(1^{f_{1}}, 2^{f_{2}}, 3^{f_{3}}, \ldots, N^{f_{N}}\right)
$$

Now, note that

$$
\sum_{\pi_{1}} q^{\left|\pi_{1}\right|}=\frac{1}{\left(q^{t} ; q^{t}\right)_{N}}
$$

and so,

$$
\begin{aligned}
\sum_{\pi} q^{|\pi|} & =\sum_{\pi_{1}} q^{\left|\pi_{1}\right|} \cdot \sum_{\pi_{2}} q^{\left|\pi_{2}\right|} \\
& =\frac{1}{\left(q^{t} ; q^{t}\right)_{N}} \sum_{\pi_{2}} q^{\left|\pi_{2}\right|}
\end{aligned}
$$

Hence,

$$
\sum_{\pi_{2}} q^{\left|\pi_{2}\right|}=\left(q^{t} ; q^{t}\right)_{N} \sum_{\pi} q^{|\pi|}
$$

where π_{2} is a partition whose parts repeat no more than $t-1$ times.
Also, observe that $\mathrm{GBG}^{(t)}(\pi)=\mathrm{GBG}^{(t)}\left(\pi_{2}\right)=k$ since removal of parts which repeat t times in succession keeps the GBG-rank mod t value of π invariant. Therefore, using the above observation and replacing N by $t N+\nu$ for $0 \leq \nu \leq t-1$ along with Theorem 1 gives us the desired generating function.

Hence,

$$
\sum_{\pi_{2}} q^{\left|\pi_{2}\right|}=\left(q^{t} ; q^{t}\right)_{N} \sum_{\pi} q^{|\pi|}
$$

where π_{2} is a partition whose parts repeat no more than $t-1$ times.
Also, observe that $\mathrm{GBG}^{(t)}(\pi)=\mathrm{GBG}^{(t)}\left(\pi_{2}\right)=k$ since removal of parts which repeat t times in succession keeps the GBG-rank mod t value of π invariant. Therefore, using the above observation and replacing N by $t N+\nu$ for $0 \leq \nu \leq t-1$ along with Theorem 1 gives us the desired generating function.

Self-conjugate partitions

Definition

The conjugate of a partition π, denoted by π^{\prime}, is associated to the Young diagram obtained by reflecting the diagram for π across the main diagonal. We say that π is self-conjugate if $\pi=\pi^{\prime}$. Let $\mathcal{S C P}$ denote the set of all self-conjugate partitions.

Generating function

Self-conjugate partitions

Definition

The conjugate of a partition π, denoted by π^{\prime}, is associated to the Young diagram obtained by reflecting the diagram for π across the main diagonal. We say that π is self-conjugate if $\pi=\pi^{\prime}$. Let $\mathcal{S C P}$ denote the set of all self-conjugate partitions.

Generating function

$\left(-q ; q^{2}\right)_{L}$ is the generating function for partitions into district odd parts having largest part at most $2 L-1$. Since self-conjugate partitions are in bijection with distinct odd part partitions, $\left(-q ; q^{2}\right)_{L}$ is also the generating function for self-conjugate partitions with number of parts at most L.

Littlewood decomposition on self-conjugate partitions

Under conjugation,

$$
\vec{n}(\pi)=\left(n_{0}, n_{1}, \ldots, n_{t-2}, n_{t-1}\right)
$$

becomes

$$
\overrightarrow{\tilde{n}}=\vec{n}\left(\pi^{\prime}\right)=\left(-n_{t-1},-n_{t-2}, \ldots,-n_{1},-n_{0}\right)
$$

Let $\pi \in \mathcal{S C P}$. Then,
$\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)$

where

and
$\pi_{t \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \hat{\pi}_{2}, \ldots, \hat{\pi}_{t-1}\right)$

with

Note that for t odd,

Littlewood decomposition on self-conjugate partitions

Under conjugation,

$$
\vec{n}(\pi)=\left(n_{0}, n_{1}, \ldots, n_{t-2}, n_{t-1}\right)
$$

becomes

$$
\overrightarrow{\tilde{n}}=\vec{n}\left(\pi^{\prime}\right)=\left(-n_{t-1},-n_{t-2}, \ldots,-n_{1},-n_{0}\right)
$$

Let $\pi \in \mathcal{S C P}$. Then,

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)
$$

where

$$
\pi_{t \text {-core }}=\pi_{t \text {-core }}^{\prime}
$$

and

$$
\pi_{t-\text { quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \hat{\pi}_{2}, \ldots, \hat{\pi}_{t-1}\right)
$$

with

$$
\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime} \quad, 0 \leq i \leq t-1
$$

Note that for t odd,

Littlewood decomposition on self-conjugate partitions

Under conjugation,

$$
\vec{n}(\pi)=\left(n_{0}, n_{1}, \ldots, n_{t-2}, n_{t-1}\right)
$$

becomes

$$
\overrightarrow{\tilde{n}}=\vec{n}\left(\pi^{\prime}\right)=\left(-n_{t-1},-n_{t-2}, \ldots,-n_{1},-n_{0}\right)
$$

Let $\pi \in \mathcal{S C P}$. Then,

$$
\phi_{1}(\pi)=\left(\pi_{t \text {-core }}, \pi_{t \text {-quotient }}\right)
$$

where

$$
\pi_{t \text {-core }}=\pi_{t \text {-core }}^{\prime}
$$

and

$$
\pi_{t-\text { quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \hat{\pi}_{2}, \ldots, \hat{\pi}_{t-1}\right)
$$

with

$$
\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime} \quad, 0 \leq i \leq t-1
$$

Note that for t odd,

$$
\hat{\pi}_{\frac{t-1}{2}}=\hat{\pi}_{\frac{t-1}{2}}^{\prime}
$$

Main Results - Part II

Let $G S C_{N, t}(k, q)$ denote the generating function for the number of self-conjugate partitions into parts less than or equal to N with GBG-rank $\bmod t$ equal to k, i.e.,

$$
G S C_{N, t}(k, q):=\sum_{\substack{\pi \in \mathcal{S C \mathcal { P }} \\ \operatorname{GBG}(t)(\pi)=k \\ l(\pi) \leq N}} q^{|\pi|} .
$$

Theorem 3 (Berkovich-D, 2024)

For any non-negative integer N and any integer k, we have

Main Results - Part II

Let $G S C_{N, t}(k, q)$ denote the generating function for the number of self-conjugate partitions into parts less than or equal to N with GBG-rank $\bmod t$ equal to k, i.e.,

$$
G S C_{N, t}(k, q):=\sum_{\substack{\pi \in \mathcal{S C P} \\ \operatorname{GBG}(t)(\pi)=k \\ l(\pi) \leq N}} q^{|\pi|} .
$$

Theorem 3 (Berkovich-D, 2024)

For any non-negative integer N and any integer k, we have

$$
G S C_{2 N+\nu, 2}(k, q)=q^{2 k^{2}-k}\left[\begin{array}{c}
2 N+\nu \\
N+k
\end{array}\right]_{q^{4}}
$$

where $\nu \in\{0,1\}$.

Theorem 4 (Berkovich-D, 2024)

For any odd prime t, a non-negative integer N, and any integer k, we have

$$
\begin{aligned}
& G S C_{t N+\nu, t}(k, q)=q^{t k^{2}-(t-1) k}\left(-q^{t} ; q^{2 t}\right)^{N+\left\lceil\frac{\nu-\frac{t-1}{2}}{t}\right\rceil}\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu}{t}\right\rceil \\
N+k
\end{array}\right]_{q^{2 t}} \\
& \times \prod_{i=1}^{\frac{t-3}{2}}\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu-i}{t}\right\rceil+\left\lfloor\frac{\nu+i}{t}\right\rfloor \\
N+\left\lfloor\frac{\nu+i}{t}\right\rfloor
\end{array}\right]_{q^{2 t}},
\end{aligned}
$$

where $\nu \in\{0,1,2, \ldots, t-1\}$.

Proof of Theorem 3

Let $\pi \in \mathcal{S C P}$ be a self-conjugate partition having $l(\pi) \leq 2 N+1$ and consider the Littlewood decomposition of π

$$
\phi_{1}(\pi)=\left(\pi_{2 \text {-core }}, \pi_{2 \text {-quotient }}\right)
$$

where

$$
\pi_{2 \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}\right)
$$

and

$$
\hat{\pi}_{1}=\hat{\pi}_{0}^{\prime}
$$

Now, let $\mathrm{BG}(\pi)=k \in \mathbb{Z} . \mathrm{BG}(\pi)=k$ if and only if $r_{0}(\pi)=k+r$ and $r_{1}(\pi)=r$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$ which implies that $\vec{n}(\pi)=(k,-k)$. Thus, we have

Proof of Theorem 3

Let $\pi \in \mathcal{S C P}$ be a self-conjugate partition having $l(\pi) \leq 2 N+1$ and consider the Littlewood decomposition of π

$$
\phi_{1}(\pi)=\left(\pi_{2 \text {-core }}, \pi_{2 \text {-quotient }}\right)
$$

where

$$
\pi_{2 \text {-quotient }}=\left(\hat{\pi}_{0}, \hat{\pi}_{1}\right)
$$

and

$$
\hat{\pi}_{1}=\hat{\pi}_{0}^{\prime}
$$

Now, let $\mathrm{BG}(\pi)=k \in \mathbb{Z} . \mathrm{BG}(\pi)=k$ if and only if $r_{0}(\pi)=k+r$ and $r_{1}(\pi)=r$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$ which implies that $\vec{n}(\pi)=(k,-k)$. Thus, we have

$$
\begin{aligned}
\left|\pi_{2 \text {-core }}\right| & =\frac{2}{2} \cdot 2 k^{2}+(1) \cdot(-k) \\
& =2 k^{2}-k
\end{aligned}
$$

Now, observe that the cell labeled 0 may be exposed in the region marked $N+1$ and the cell labeled 1 is not exposed in the region marked $N+1$. Again, from Lemma, the following equations hold:

$$
N+1 \geq k+v_{0}
$$

which implies that

$$
v_{0} \leq N+1-k,
$$

and

$$
N \geq-k+v_{1}
$$

which implies that

$$
v_{1} \leq N+k
$$

Hence, $l\left(\hat{\pi}_{0}\right) \leq N+k$ and $\#\left(\hat{\pi}_{0}\right) \leq N+1-k$. Now, consider the pair of partitions ($\hat{\pi}_{0}, \hat{\pi}_{1}$) from $\pi_{2 \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{1}^{\prime}$. Therefore, this pair contributes to the generating function as

Thus, we get the term

in the required generating function. Analogously, one can prove the required generating function for $\nu=0$.

Now, observe that the cell labeled 0 may be exposed in the region marked $N+1$ and the cell labeled 1 is not exposed in the region marked $N+1$. Again, from Lemma, the following equations hold:

$$
N+1 \geq k+v_{0}
$$

which implies that

$$
v_{0} \leq N+1-k,
$$

and

$$
N \geq-k+v_{1}
$$

which implies that

$$
v_{1} \leq N+k
$$

Hence, $l\left(\hat{\pi}_{0}\right) \leq N+k$ and $\#\left(\hat{\pi}_{0}\right) \leq N+1-k$. Now, consider the pair of partitions $\left(\hat{\pi}_{0}, \hat{\pi}_{1}\right)$ from $\pi_{2 \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{1}^{\prime}$. Therefore, this pair contributes to the generating function as

Thus, we get the term

Now, observe that the cell labeled 0 may be exposed in the region marked $N+1$ and the cell labeled 1 is not exposed in the region marked $N+1$. Again, from Lemma, the following equations hold:

$$
N+1 \geq k+v_{0}
$$

which implies that

$$
v_{0} \leq N+1-k,
$$

and

$$
N \geq-k+v_{1}
$$

which implies that

$$
v_{1} \leq N+k
$$

Hence, $l\left(\hat{\pi}_{0}\right) \leq N+k$ and $\#\left(\hat{\pi}_{0}\right) \leq N+1-k$. Now, consider the pair of partitions ($\hat{\pi}_{0}, \hat{\pi}_{1}$) from $\pi_{2 \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{1}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{2\left(\left|\hat{\pi}_{0}\right|+\left|\hat{\pi}_{1}\right|\right)}=q^{4\left|\hat{\pi}_{0}\right|}
$$

Thus, we get the term

Now, observe that the cell labeled 0 may be exposed in the region marked $N+1$ and the cell labeled 1 is not exposed in the region marked $N+1$. Again, from Lemma, the following equations hold:

$$
N+1 \geq k+v_{0}
$$

which implies that

$$
v_{0} \leq N+1-k,
$$

and

$$
N \geq-k+v_{1}
$$

which implies that

$$
v_{1} \leq N+k
$$

Hence, $l\left(\hat{\pi}_{0}\right) \leq N+k$ and $\#\left(\hat{\pi}_{0}\right) \leq N+1-k$. Now, consider the pair of partitions ($\hat{\pi}_{0}, \hat{\pi}_{1}$) from $\pi_{2 \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{1}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{2\left(\left|\hat{\pi}_{0}\right|+\left|\hat{\pi}_{1}\right|\right)}=q^{4\left|\hat{\pi}_{0}\right|}
$$

Thus, we get the term

$$
\left[\begin{array}{c}
2 N+\nu \\
N+k
\end{array}\right]_{q^{4}}
$$

in the required generating function. Analogously, one can prove the required generating function for $\nu=0$.

Proof of Theorem 4

Here, again for any $\pi \in \mathcal{S C P}$, we have $\vec{n}(\pi)=(k, 0,0, \ldots, 0,0,-k)$ and $\left|\pi_{t \text {-core }}\right|=$ $\frac{t}{2} \cdot 2 k^{2}+(t-1) \cdot(-k)=t k^{2}-(t-1) k$. Consider the pair of partitions $\left(\hat{\pi}_{0}, \hat{\pi}_{t-1}\right)$ Therefore, this pair contributes to the generating function as

Now, we have $\#\left(\hat{\pi}_{0}\right) \leq N-k+\left\lceil\frac{\nu}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1}\right) \leq N+k$ which is the same as $l\left(\hat{\pi}_{0}\right) \leq N+k$. So, we get the term

in the required generating function. Next, for $1 \leq i \leq(t-3) / 2$, we consider the pair of partitions ($\hat{\pi}_{i}, \hat{\pi}_{t-1-i}$) from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime}$. Therefore, this pair contributes to the generating function as

Proof of Theorem 4

Here, again for any $\pi \in \mathcal{S C P}$, we have $\vec{n}(\pi)=(k, 0,0, \ldots, 0,0,-k)$ and $\left|\pi_{t-\text { core }}\right|=$ $\frac{t}{2} \cdot 2 k^{2}+(t-1) \cdot(-k)=t k^{2}-(t-1) k$. Consider the pair of partitions $\left(\hat{\pi}_{0}, \hat{\pi}_{t-1}\right)$ from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{t-1}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{t\left(\left|\hat{\pi}_{0}\right|+\left|\hat{\pi}_{t-1}\right|\right)}=q^{2 t\left|\hat{\pi}_{0}\right|} .
$$

Now, we have $\#\left(\hat{\pi}_{0}\right) \leq N-k+\left\lceil\frac{\nu}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1}\right) \leq N+k$ which is the same as $l\left(\hat{\pi}_{0}\right) \leq N+k$. So, we get the term

in the required generating function. Next, for $1 \leq i \leq(t-3) / 2$, we consider the pair of partitions ($\hat{\pi}_{i}, \hat{\pi}_{t-1-i}$) from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime}$. Therefore, this pair contributes to the generating function as

Proof of Theorem 4

Here, again for any $\pi \in \mathcal{S C P}$, we have $\vec{n}(\pi)=(k, 0,0, \ldots, 0,0,-k)$ and $\left|\pi_{t \text {-core }}\right|=$ $\frac{t}{2} \cdot 2 k^{2}+(t-1) \cdot(-k)=t k^{2}-(t-1) k$. Consider the pair of partitions $\left(\hat{\pi}_{0}, \hat{\pi}_{t-1}\right)$ from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{t-1}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{t\left(\left|\hat{\pi}_{0}\right|+\left|\hat{\pi}_{t-1}\right|\right)}=q^{2 t\left|\hat{\pi}_{0}\right|} .
$$

Now, we have $\#\left(\hat{\pi}_{0}\right) \leq N-k+\left\lceil\frac{\nu}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1}\right) \leq N+k$ which is the same as $l\left(\hat{\pi}_{0}\right) \leq N+k$. So, we get the term

$$
\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu}{t}\right\rceil \\
N+k
\end{array}\right]_{q^{2 t}}
$$

in the required generating function.

$$
\text { Next, for } 1 \leq i \leq(t-3) / 2 \text {, we consider the pair of }
$$ partitions $\left(\hat{\pi}_{i}, \hat{\pi}_{t-1-i}\right)$ from $\pi_{t-q u o t i e n t ~}$ and observe that $\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime}$. Therefore, this pair contributes to the generating function as

Proof of Theorem 4

Here, again for any $\pi \in \mathcal{S C P}$, we have $\vec{n}(\pi)=(k, 0,0, \ldots, 0,0,-k)$ and $\left|\pi_{t \text {-core }}\right|=$ $\frac{t}{2} \cdot 2 k^{2}+(t-1) \cdot(-k)=t k^{2}-(t-1) k$. Consider the pair of partitions $\left(\hat{\pi}_{0}, \hat{\pi}_{t-1}\right)$ from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{0}=\hat{\pi}_{t-1}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{t\left(\left|\hat{\pi}_{0}\right|+\left|\hat{\pi}_{t-1}\right|\right)}=q^{2 t\left|\hat{\pi}_{0}\right|} .
$$

Now, we have $\#\left(\hat{\pi}_{0}\right) \leq N-k+\left\lceil\frac{\nu}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1}\right) \leq N+k$ which is the same as $l\left(\hat{\pi}_{0}\right) \leq N+k$. So, we get the term

$$
\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu}{t}\right\rceil \\
N+k
\end{array}\right]_{q^{2 t}}
$$

in the required generating function. Next, for $1 \leq i \leq(t-3) / 2$, we consider the pair of partitions ($\hat{\pi}_{i}, \hat{\pi}_{t-1-i}$) from $\pi_{t \text {-quotient }}$ and observe that $\hat{\pi}_{i}=\hat{\pi}_{t-1-i}^{\prime}$. Therefore, this pair contributes to the generating function as

$$
q^{t\left(\left|\hat{\pi}_{i}\right|+\left|\hat{\pi}_{t-1-i}\right|\right)}=q^{2 t\left|\hat{\pi}_{i}\right|} .
$$

Now, for $1 \leq i \leq(t-3) / 2$, we have $\#\left(\hat{\pi}_{i}\right) \leq N+\left\lceil\frac{\nu-i}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1-i}\right) \leq N+$ $\left\lceil\frac{\nu-(t-1-i)}{t}\right\rceil=N+\left\lfloor\frac{\nu+i}{t}\right\rfloor$ which is the same as $l\left(\hat{\pi}_{i}\right) \leq N+\left\lfloor\frac{\nu+i}{t}\right\rfloor$. So, taking product over all values of i, we get the term

$$
\prod_{i=1}^{\frac{t-3}{2}}\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu-i}{t}\right\rceil+\left\lfloor\frac{\nu+i}{t}\right\rfloor \\
N+\left\lfloor\frac{\nu+i}{t}\right\rfloor
\end{array}\right]_{q^{2 t}}
$$

in the required generating function.
Finally, observe that $\hat{\pi}_{\frac{t-1}{2}}=\hat{\pi}_{\frac{t-1}{2}}^{\prime}$ and similarly, we have $\#\left(\hat{\pi}_{\frac{t-1}{2}}\right) \leq N+\left\lceil\frac{\nu-\frac{t-1}{2}}{t}\right\rceil$. Thus, we get the term
in the required generating function.

Now, for $1 \leq i \leq(t-3) / 2$, we have $\#\left(\hat{\pi}_{i}\right) \leq N+\left\lceil\frac{\nu-i}{t}\right\rceil$ and $\#\left(\hat{\pi}_{t-1-i}\right) \leq N+$ $\left\lceil\frac{\nu-(t-1-i)}{t}\right\rceil=N+\left\lfloor\frac{\nu+i}{t}\right\rfloor$ which is the same as $l\left(\hat{\pi}_{i}\right) \leq N+\left\lfloor\frac{\nu+i}{t}\right\rfloor$. So, taking product over all values of i, we get the term

$$
\prod_{i=1}^{\frac{t-3}{2}}\left[\begin{array}{c}
2 N+\left\lceil\frac{\nu-i}{t}\right\rceil+\left\lfloor\frac{\nu+i}{t}\right\rfloor \\
N+\left\lfloor\frac{\nu+i}{t}\right\rfloor
\end{array}\right]_{q^{2 t}}
$$

in the required generating function. Finally, observe that $\hat{\pi}_{\frac{t-1}{2}}=\hat{\pi}_{\frac{t-1}{2}}^{\prime}$ and similarly, we have $\#\left(\hat{\pi}_{\frac{t-1}{2}}\right) \leq N+\left\lceil\frac{\nu-\frac{t-1}{2}}{t}\right\rceil$. Thus, we get the term

$$
\left(-q^{t} ; q^{2 t}\right)_{N+\left\lceil\frac{\nu-\frac{t-1}{2}}{t}\right\rceil}
$$

in the required generating function.

What about complex GBG-rank mod t values?

Theorem 5 (Berkovich-D, 2024)

For any odd prime t, a non-negative integer N, and any integer k, we have

$$
G_{t N+\nu, t}\left(k \omega_{t}^{j}, q\right)=\frac{q^{t k^{2}+k}}{\prod_{i=0}^{t-1}(\tilde{q} ; \tilde{q})_{N+k \delta_{i, j-1}-k \delta_{i, j}+\left\lceil\frac{\nu-i}{t}\right\rceil}},
$$

where $1 \leq j \leq t-1, \tilde{q}:=q^{t}$, and $\nu \in\{0,1,2, \ldots, t-1\}$.
(Here $r_{i}(\pi)=r+k \delta_{i, j}$ which implies $n_{i}(\pi)=-k \delta_{i, j-1}+k \delta_{i, j}$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$ $0 \leq i \leq t-1$, and $1 \leq j \leq t-1$.)

What about complex GBG-rank mod t values?

Theorem 5 (Berkovich-D, 2024)

For any odd prime t, a non-negative integer N, and any integer k, we have

$$
G_{t N+\nu, t}\left(k \omega_{t}^{j}, q\right)=\frac{q^{t k^{2}+k}}{\prod_{i=0}^{t-1}(\tilde{q} ; \tilde{q})_{N+k \delta_{i, j-1}-k \delta_{i, j}+\left\lceil\frac{\nu-i}{t}\right\rceil}},
$$

where $1 \leq j \leq t-1, \tilde{q}:=q^{t}$, and $\nu \in\{0,1,2, \ldots, t-1\}$.
(Here $r_{i}(\pi)=r+k \delta_{i, j}$ which implies $n_{i}(\pi)=-k \delta_{i, j-1}+k \delta_{i, j}$ for any $r \in \mathbb{Z}^{+} \cup\{0\}$, $0 \leq i \leq t-1$, and $1 \leq j \leq t-1$.)

Possible future work

4 It would be interesting to investigate whether results analogous to Theorem 1, Theorem 4, and Theorem 5 exist for t being a composite integer ≥ 4.

4 Dhar and Mukhopadhyay (2023) provided a direct combinatorial proof of Theorem 2 for $t=2$ (Berkovich and Uncu's 2016 identity for distinct part partitions) based on Fu \& Tang's 2020 combinatorial proof for the limiting case $N \rightarrow \infty$ where they used certain unimodal sequences whose alternating sum equals zero. In the same spirit, it would be natural to ask whether a direct combinatorial proof of Theorem 2 for any odd prime t exists or not.

Possible future work

4 It would be interesting to investigate whether results analogous to Theorem 1, Theorem 4, and Theorem 5 exist for t being a composite integer ≥ 4.

4 Dhar and Mukhopadhyay (2023) provided a direct combinatorial proof of Theorem 2 for $t=2$ (Berkovich and Uncu's 2016 identity for distinct part partitions) based on Fu \& Tang's 2020 combinatorial proof for the limiting case $N \rightarrow \infty$ where they used certain unimodal sequences whose alternating sum equals zero. In the same spirit, it would be natural to ask whether a direct combinatorial proof of Theorem 2 for any odd prime t exists or not.

References

G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998.
A. Berkovich and F. G. Garvan, The BG-rank of a partition and its appications, Adv. in Appl. Math. 40 (3) (2008) 377-400.
A. Berkovich and F. G. Garvan, The GBG-rank and t-cores I. Counting and 4-cores, J. Comb. Number Theory 1 (3) (2009) 49-64.
A. Berkovich and A. K. Uncu, On partitions with fixed number of even-indexed and odd-indexed odd parts, J. Number Theory 167 (2016) 7-30.
A. Berkovich and H. Yesilyurt, New identities for 7-cores with prescribed BG-rank, Discrete Math. 38 (2008) 5246-5259.
A. Dhar and A. Mukhopadhyay, Combinatorial Proof of an Identity of Berkovich and Uncu, preprint, arXiv:2309.07785.
F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990) 1-17.
G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, Vol. 16, Reading, MA, 1981.
D. E. Littlewood, Modular representations of symmetric groups, Proc. Roy. Soc. London Ser. A. 209 (1951) 333-353.

Thank you for your attention!

[^0]: BG-rank of a partition (Berkovich-Garvan, Trans. Amer. Math. Soc., 2006)
 The special case $t=2$ is called the BG-rank of a partition π defined as
 where i is the number of odd-indexed odd parts and j is the number of even-indexed odd parts.

