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Preliminary Background on partitions

A partition is a non-increasing finite sequence π = (λ1, λ2, . . . , λk) of positive integers
λ1 ≥ λ2 ≥ . . . ≥ λk (≥ 1) where λi’s are called the parts of π. The size of π, denoted
by |π|, is defined as

|π| =
k∑

i=1

λi.

We say that π is a partition of n if |π| = n. For example, the seven partitions of 5 are
5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.

We may also write a partition π in terms of its frequency of parts as

π = (1f1 , 2f2 , 3f3 , . . . , kfk ),

where fi(≥ 0) is the frequency of the part ‘i’. For example, the seven partitions of 5

are (51), (11, 41), (21, 31), (12, 31), (11, 22), (13, 21), and (15). Let P denote the set of

all partitions.
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t-residue diagrams of partitions

The Young diagram of π is a way of representing π graphically wherein the parts of π
are depicted as rows of cells. Given the Young diagram of π, we label a cell in the ith
row and jth column by the least non-negative integer ≡ j − i (mod t). The resulting
diagram is called a t-residue diagram of π.

0 1 2 0 1 2 0 1 2 0

2 0 1 2 0 1 2

1 2 0 1

0 1 2

Figure 1: 3-residue diagram of the partition π = (10, 7, 4, 3)
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r-vector and n-vector associated to a partition

r-vector

For every partition π and positive integer t, we define

r⃗ = r⃗(π, t) = (r0(π, t), r1(π, t), . . . , rt−1(π, t))

where, for 0 ≤ i ≤ t− 1,
ri(π, t) = ri

is the number of cells labelled i in the t-residue diagram of π.

n-vector

For every partition π and positive integer t, we define

n⃗ = n⃗(π, t) = (n0, n1, . . . , nt−1),

where, for 0 ≤ i ≤ t− 2,
ni = ri − ri+1

and
nt−1 = rt−1 − r0.

5 / 34



r-vector and n-vector associated to a partition

r-vector

For every partition π and positive integer t, we define

r⃗ = r⃗(π, t) = (r0(π, t), r1(π, t), . . . , rt−1(π, t))

where, for 0 ≤ i ≤ t− 1,
ri(π, t) = ri

is the number of cells labelled i in the t-residue diagram of π.

n-vector

For every partition π and positive integer t, we define

n⃗ = n⃗(π, t) = (n0, n1, . . . , nt−1),

where, for 0 ≤ i ≤ t− 2,
ni = ri − ri+1

and
nt−1 = rt−1 − r0.

5 / 34



Extended t-residue diagrams of partitions

We can also label cells in the infinite 0th column and the infinite 0th row in the same
fashion and call the resulting diagram the extended t-residue diagram of π.

...
. . . 0

0

0

0

1

1

1

1

2 0 1 2 0 1 2 0 1 2 . . .

2 0 1 2 0 1 2 0

2 0 1 22

2

2

2

1

1

1

0

02

1
...

Figure 2: Extended 3-residue diagram of π = (10, 7, 4, 3)
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Two partition statistics : GBG-rank & BG-rank

GBG-rank of a partition (Berkovich-Garvan, Adv. in Appl. Math., 2008)

For any partition π, the GBG-rank of π mod t, denoted by GBG(t)(π), is defined as

GBG(t)(π) :=

t−1∑
j=0

rj(π, t)ω
j
t ,

where ωt := e
2πι
t is a tth root of unity and ι =

√
−1.

For example, in Figure 1, for the partition π = (10, 7, 4, 3), GBG(3)(π) = r0 + r1ω3 +
r2ω2

3 = 8 + 8ω3 + 8ω2
3 = 0.

BG-rank of a partition (Berkovich-Garvan, Trans. Amer. Math. Soc., 2006)

The special case t = 2 is called the BG-rank of a partition π defined as

GBG(2)(π) = BG(π) := r0(π)− r1(π) = i− j,

where i is the number of odd-indexed odd parts and j is the number of even-indexed
odd parts.
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Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional
q-Pochammer symbol as

(a)L = (a; q)L :=

L−1∏
k=0

(1− aqk);

(a)∞ = (a; q)∞ := lim
L→∞

(a)L for |q| < 1.

For m,n ∈ Z, we define the q-binomial (Gaussian) coefficient as

[
n
m

]
q

:=

{ (q)n

(q)m(q)n−m
for 0 ≤ m ≤ n,

0 otherwise.

For m,n ≥ 0,
1

(q)m
is the generating function for partitions into at most m parts and[

m+ n
m

]
q

is the generating function for partitions into at most m parts each of size at

most n, or vice versa.

8 / 34



Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional
q-Pochammer symbol as

(a)L = (a; q)L :=

L−1∏
k=0

(1− aqk);

(a)∞ = (a; q)∞ := lim
L→∞

(a)L for |q| < 1.

For m,n ∈ Z, we define the q-binomial (Gaussian) coefficient as

[
n
m

]
q

:=

{ (q)n

(q)m(q)n−m
for 0 ≤ m ≤ n,

0 otherwise.

For m,n ≥ 0,
1

(q)m
is the generating function for partitions into at most m parts and[

m+ n
m

]
q

is the generating function for partitions into at most m parts each of size at

most n, or vice versa.

8 / 34



Notations and Conventions

For variables a, q and non-negative integers L, m, and n, we define the conventional
q-Pochammer symbol as

(a)L = (a; q)L :=

L−1∏
k=0

(1− aqk);

(a)∞ = (a; q)∞ := lim
L→∞

(a)L for |q| < 1.

For m,n ∈ Z, we define the q-binomial (Gaussian) coefficient as

[
n
m

]
q

:=

{ (q)n

(q)m(q)n−m
for 0 ≤ m ≤ n,

0 otherwise.

For m,n ≥ 0,
1

(q)m
is the generating function for partitions into at most m parts and[

m+ n
m

]
q

is the generating function for partitions into at most m parts each of size at

most n, or vice versa.

8 / 34



Motivation

For any non-negative integer N and any integer k, let BN (k, q) denote the generating
function for the number of partitions into parts less than or equal to N with BG-rank
equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For ν ∈ {0, 1},

B2N+ν(k, q) =
q2k

2−k

(q2; q2)N+ν−k(q2; q2)N+k
.

For any non-negative integer N and any integer k, let B̃N (k, q) denote the generating
function of the number of distinct part partitions into parts less than or equal to N with
BG-rank equal to k. Then,

Theorem (Berkovich-Uncu, J. Number Theory, 2016)

For ν ∈ {0, 1},

B̃2N+ν(k, q) = q2k
2−k

[
2N + ν
N + k

]
q2

.
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Rim cell, Rim hook & t-cores

Rim cell

If some cell of π shares a vertex or edge with the rim of the Young diagram of π, we
call this cell a rim cell of π.

Rim hook

A connected collection of rim cells of π is called a rim hook if (Young diagram of
π)\(rim hook) represents a legitimate partition.

Example
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t-core

A partition, denoted by πt-core, is called a t-core if its Young diagram has no rim hooks
of length t.

Example

All staircase partitions (of triangular numbers) are 2-cores, for instance,
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Regions

A region r in the extended t-residue diagram of π is the set of all cells (i, j) satisfying
t(r − 1) ≤ j − i < tr. A cell of π is called exposed if it is at the end of a row in the
extended t-residue diagram of π and not exposed otherwise.

...
. . . 0

0

0

0

1

1

1

1

2 0 1 2 0 1 2 0 1 2 . . .

2 0 1 2 0 1 2 0

2 0 1 22

2

2

2

1

1

1

0

02

1
...

0

1

2

3

4

−1

Figure 3: Extended 3-residue diagram of π = (10, 7, 4, 3) with regions
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Binary Words

One can construct t infinite binary words W0,W1, . . . ,Wt−1 of two letters N,E as
follows: The rth letter of Wi is E if there is an exposed cell labelled i in the region r,
otherwise the rth letter of Wi is N .

For example, the three bi-infinite words W0,W1,W2 for the partition (10, 7, 4, 3) in
Figure 1 are as follows:

Region : · · · · · · −3 −2 −1 0 1 2 3 4 5 · · · · · ·
W0 : · · · · · · E E E N N N N E N · · · · · ·
W1 : · · · · · · E E E N E N N N N · · · · · ·
W2 : · · · · · · E E N E N E N N N · · · · · ·
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Littlewood decomposition: t-cores & t-quotients

Let Pt-core denote the set of all t-cores. There is a well-known bijection

ϕ1 : P −→ Pt-core × P × P × P × · · · × P︸ ︷︷ ︸
t times

due to D. E. Littlewood (1951)

ϕ1(π) = (πt-core, (π̂0, π̂1, . . . , π̂t−1))

such that

|π| = |πt-core|+ t

t−1∑
i=0

|π̂i|.

The vector partition (π̂0, π̂1, . . . , π̂t−1) is called the t-quotient of π and is denoted by
πt-quotient.

Theorem (Garvan-Kim-Stanton, Invent. Math., 1990)

|πt-core| =
t

2
n⃗ · n⃗+ b⃗t · n⃗,

where b⃗t := (0, 1, 2, . . . , t− 1) and n⃗ = n⃗(π, t).
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Definition

For 0 ≤ i ≤ t− 1, define χi(π, t) to be the largest region in the extended t-residue
diagram of π where the cell labeled i is exposed.

Lemma (Berkovich-Garvan, Adv. in Appl. Math., 2008)

χi(π, t) = vi + ni,

where vi is the number of parts in the ith component of the t-quotient of π and ni is
the ith component of n⃗(π, t).

For example, for the partition π = (10, 7, 4, 3) in Figure 1, from its three bi-infinite

words W0, W1, and W2, we have χ0(π, 3) = 4, χ1(π, 3) = 1, and χ2(π, 3) = 2. Note

that n⃗(π, 3) = (0, 0, 0). Therefore, from Lemma, it follows that the 1st component

of π3-quotient has 4 parts, the 2nd component of π3-quotient has 1 part, and the 3rd

component of π3-quotient has 2 parts.
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Main Results - Part I

Let GN,t(k, q) denote the generating function for the number of partitions into parts
less than or equal to N with GBG-rank mod t equal to k, i.e.,

GN,t(k, q) :=
∑
π∈P

GBG(t)(π)=k
l(π)≤N

q|π|.

Theorem 1 (Berkovich-D, 2024)

For any prime t, a non-negative integer N , and any integer k, we have

GtN+ν,t(k, q) =
qtk

2−(t−1)k

t−1∏
i=0

(q̃; q̃)
N+⌈ ν−i

t
⌉−kδi,0+kδi,t−1

,

where q̃ := qt and ν ∈ {0, 1, 2, . . . , t− 1}.
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Let G̃N,t(k, q) denote the generating function for the number of partitions into parts
repeating no more than t− 1 times and less than or equal to N with GBG-rank mod t
equal to k, i.e.,

G̃N,t(k, q) :=
∑

π=(1f1 ,2f2 ,...,NfN )∈P
fi≤t−1,1≤i≤N

GBG(t)(π)=k

q|π|.

Theorem 2 (Berkovich-D, 2024)

For any prime t, a non-negative integer N , and any integer k, we have

G̃tN+ν,t(k, q) =
qtk

2−(t−1)k(q̃; q̃)tN+ν

t−1∏
i=0

(q̃; q̃)
N+⌈ ν−i

t
⌉−kδi,0+kδi,t−1

,

where q̃ := qt and ν ∈ {0, 1, 2, . . . , t− 1}.
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Proof of Theorem 1

Let π = (λ1, λ2, λ3, . . .) ∈ P be a partition with λ1 ≤ tN + ν where 0 ≤ ν ≤ t − 1
and consider the Littlewood decomposition of π

ϕ1(π) = (πt-core, πt-quotient)

where
πt-quotient = (π̂0, π̂1, . . . , π̂t−1).

Now, let t be any prime and GBG(t)(π) = k be an integer. Then GBG(t)(π) = k
is an integer if and only if r0(π) = k + r and ri(π) = r for any r ∈ Z+ ∪ {0} and
1 ≤ i ≤ t− 1. Therefore,

n⃗(π, t) = (k, 0, 0, . . . , 0, 0,−k),

where n0(π) = k, nt−1(π) = −k, and ni(π) = 0 for 1 ≤ i ≤ t− 2. Thus, we have

|πt-core| =
t

2
· 2k2 + (t− 1) · (−k)

= tk2 − (t− 1)k.
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Figure 4: Generic extended t-residue diagram of a partition
π = (λ1, λ2, λ3, . . .) ∈ P with λ1 = tN + ν where 0 ≤ ν ≤ t− 1 (the
regions are labeled in red).
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◀ Case I: ν > 0

The cell labeled i may be exposed in the region marked N + 1 for 0 ≤ i ≤ ν − 1 and is not exposed in
the region marked N + 1 for ν ≤ i ≤ t − 1. Thus, it follows that

N + 1 ≥ χi(π, t) , 0 ≤ i ≤ ν − 1,

and
N ≥ χi(π, t) , ν ≤ i ≤ t − 1.

Lemma then implies that
N + 1 ≥ vi + kδi,0 , 0 ≤ i ≤ ν − 1,

and
N ≥ vi − kδi,t−1 , ν ≤ i ≤ t − 1.

◀ Case II: ν = 0

The cell labeled i is not exposed in the region marked N + 1 for 0 ≤ i ≤ t − 1. Thus, it follows that

N ≥ χi(π, t) , 0 ≤ i ≤ t − 1.

Lemma then implies that

N ≥ vi + kδi,0 − kδi,t−1 , 0 ≤ i ≤ t − 1.

Thus, we have

vi ≤ N +
⌈ ν − i

t

⌉
− kδi,0 + kδi,t−1 , 0 ≤ i ≤ t − 1.
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Proof of Theorem 2

Let
π = (1tq1+f1 , 2tq2+f2 , 3tq3+f3 . . . , NtqN+fN ),

where 0 ≤ fj ≤ t− 1 and qj ≥ 0 for 1 ≤ j ≤ N .

Observe that π is in one-one correspondence with the pair of partitions (π1, π2) where

π1 = (1tq1 , 2tq2 , 3tq3 , . . . , NtqN )

and
π2 = (1f1 , 2f2 , 3f3 , . . . , NfN ).

Now, note that ∑
π1

q|π1| =
1

(qt; qt)N
,

and so, ∑
π

q|π| =
∑
π1

q|π1| ·
∑
π2

q|π2|

=
1

(qt; qt)N

∑
π2

q|π2|,
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Hence, ∑
π2

q|π2| = (qt; qt)N
∑
π

q|π|,

where π2 is a partition whose parts repeat no more than t− 1 times.

Also, observe that GBG(t)(π) = GBG(t)(π2) = k since removal of parts which repeat

t times in succession keeps the GBG-rank mod t value of π invariant. Therefore, using

the above observation and replacing N by tN+ν for 0 ≤ ν ≤ t−1 along with Theorem

1 gives us the desired generating function.
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Self-conjugate partitions

Definition

The conjugate of a partition π, denoted by π′, is associated to the Young diagram
obtained by reflecting the diagram for π across the main diagonal. We say that π is
self-conjugate if π = π′. Let SCP denote the set of all self-conjugate partitions.

Generating function

(−q; q2)L is the generating function for partitions into district odd parts having largest
part at most 2L− 1. Since self-conjugate partitions are in bijection with distinct odd
part partitions, (−q; q2)L is also the generating function for self-conjugate partitions
with number of parts at most L.
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Littlewood decomposition on self-conjugate partitions

Under conjugation,
n⃗(π) = (n0, n1, . . . , nt−2, nt−1)

becomes
⃗̃n = n⃗(π′) = (−nt−1,−nt−2, . . . ,−n1,−n0).

Let π ∈ SCP. Then,
ϕ1(π) = (πt-core, πt-quotient)

where
πt-core = π′

t-core

and
πt-quotient = (π̂0, π̂1, π̂2, . . . , π̂t−1)

with
π̂i = π̂′

t−1−i , 0 ≤ i ≤ t− 1.

Note that for t odd,
π̂ t−1

2
= π̂′

t−1
2

.

24 / 34



Littlewood decomposition on self-conjugate partitions

Under conjugation,
n⃗(π) = (n0, n1, . . . , nt−2, nt−1)

becomes
⃗̃n = n⃗(π′) = (−nt−1,−nt−2, . . . ,−n1,−n0).

Let π ∈ SCP. Then,
ϕ1(π) = (πt-core, πt-quotient)

where
πt-core = π′

t-core

and
πt-quotient = (π̂0, π̂1, π̂2, . . . , π̂t−1)

with
π̂i = π̂′

t−1−i , 0 ≤ i ≤ t− 1.

Note that for t odd,
π̂ t−1

2
= π̂′

t−1
2

.

24 / 34



Littlewood decomposition on self-conjugate partitions

Under conjugation,
n⃗(π) = (n0, n1, . . . , nt−2, nt−1)

becomes
⃗̃n = n⃗(π′) = (−nt−1,−nt−2, . . . ,−n1,−n0).

Let π ∈ SCP. Then,
ϕ1(π) = (πt-core, πt-quotient)

where
πt-core = π′

t-core

and
πt-quotient = (π̂0, π̂1, π̂2, . . . , π̂t−1)

with
π̂i = π̂′

t−1−i , 0 ≤ i ≤ t− 1.

Note that for t odd,
π̂ t−1

2
= π̂′

t−1
2

.

24 / 34



Main Results - Part II

Let GSCN,t(k, q) denote the generating function for the number of self-conjugate par-
titions into parts less than or equal to N with GBG-rank mod t equal to k, i.e.,

GSCN,t(k, q) :=
∑

π∈SCP
GBG(t)(π)=k

l(π)≤N

q|π|.

Theorem 3 (Berkovich-D, 2024)

For any non-negative integer N and any integer k, we have

GSC2N+ν,2(k, q) = q2k
2−k

[
2N + ν
N + k

]
q4

,

where ν ∈ {0, 1}.
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Theorem 4 (Berkovich-D, 2024)

For any odd prime t, a non-negative integer N , and any integer k, we have

GSCtN+ν,t(k, q) = qtk
2−(t−1)k(−qt; q2t)

N+
⌈ ν− t−1

2
t

⌉ [2N + ⌈ ν
t
⌉

N + k

]
q2t

×

t−3
2∏

i=1

[
2N + ⌈ ν−i

t
⌉+ ⌊ ν+i

t
⌋

N + ⌊ ν+i
t

⌋

]
q2t

,

where ν ∈ {0, 1, 2, . . . , t− 1}.
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Proof of Theorem 3

Let π ∈ SCP be a self-conjugate partition having l(π) ≤ 2N + 1 and consider the
Littlewood decomposition of π

ϕ1(π) = (π2-core, π2-quotient)

where
π2-quotient = (π̂0, π̂1)

and
π̂1 = π̂′

0.

Now, let BG(π) = k ∈ Z. BG(π) = k if and only if r0(π) = k + r and r1(π) = r for
any r ∈ Z+ ∪ {0} which implies that n⃗(π) = (k,−k). Thus, we have

|π2-core| =
2

2
· 2k2 + (1) · (−k)

= 2k2 − k.
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Now, observe that the cell labeled 0 may be exposed in the region marked N + 1 and
the cell labeled 1 is not exposed in the region marked N + 1. Again, from Lemma, the
following equations hold:

N + 1 ≥ k + v0,

which implies that
v0 ≤ N + 1− k,

and
N ≥ −k + v1,

which implies that
v1 ≤ N + k.

Hence, l(π̂0) ≤ N + k and #(π̂0) ≤ N + 1 − k. Now, consider the pair of partitions
(π̂0, π̂1) from π2-quotient and observe that π̂0 = π̂′

1. Therefore, this pair contributes to
the generating function as

q2(|π̂0|+|π̂1|) = q4|π̂0|.

Thus, we get the term [
2N + ν
N + k

]
q4

in the required generating function. Analogously, one can prove the required generating

function for ν = 0.
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Proof of Theorem 4

Here, again for any π ∈ SCP, we have n⃗(π) = (k, 0, 0, . . . , 0, 0,−k) and |πt-core| =
t
2
· 2k2 + (t − 1) · (−k) = tk2 − (t − 1)k. Consider the pair of partitions (π̂0, π̂t−1)

from πt-quotient and observe that π̂0 = π̂′
t−1. Therefore, this pair contributes to the

generating function as

qt(|π̂0|+|π̂t−1|) = q2t|π̂0|.

Now, we have #(π̂0) ≤ N − k + ⌈ ν
t
⌉ and #(π̂t−1) ≤ N + k which is the same as

l(π̂0) ≤ N + k. So, we get the term[
2N + ⌈ ν

t
⌉

N + k

]
q2t

in the required generating function. Next, for 1 ≤ i ≤ (t−3)/2, we consider the pair of
partitions (π̂i, π̂t−1−i) from πt-quotient and observe that π̂i = π̂′

t−1−i. Therefore, this
pair contributes to the generating function as

qt(|π̂i|+|π̂t−1−i|) = q2t|π̂i|.
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Now, for 1 ≤ i ≤ (t − 3)/2, we have #(π̂i) ≤ N + ⌈ ν−i
t

⌉ and #(π̂t−1−i) ≤ N +

⌈ ν−(t−1−i)
t

⌉ = N + ⌊ ν+i
t

⌋ which is the same as l(π̂i) ≤ N + ⌊ ν+i
t

⌋. So, taking
product over all values of i, we get the term

t−3
2∏

i=1

[
2N + ⌈ ν−i

t
⌉+ ⌊ ν+i

t
⌋

N + ⌊ ν+i
t

⌋

]
q2t

in the required generating function. Finally, observe that π̂ t−1
2

= π̂′
t−1
2

and similarly,

we have #(π̂ t−1
2

) ≤ N +
⌈ ν− t−1

2
t

⌉
. Thus, we get the term

(−qt; q2t)
N+

⌈ ν− t−1
2

t

⌉
in the required generating function.
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Now, for 1 ≤ i ≤ (t − 3)/2, we have #(π̂i) ≤ N + ⌈ ν−i
t
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What about complex GBG-rank mod t values?

Theorem 5 (Berkovich-D, 2024)

For any odd prime t, a non-negative integer N , and any integer k, we have

GtN+ν,t(kω
j
t , q) =

qtk
2+k

t−1∏
i=0

(q̃; q̃)
N+kδi,j−1−kδi,j+⌈ ν−i

t
⌉

,

where 1 ≤ j ≤ t− 1, q̃ := qt, and ν ∈ {0, 1, 2, . . . , t− 1}.

(Here ri(π) = r+ kδi,j which implies ni(π) = −kδi,j−1 + kδi,j for any r ∈ Z+ ∪ {0},
0 ≤ i ≤ t− 1, and 1 ≤ j ≤ t− 1.)
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Possible future work

◀ It would be interesting to investigate whether results analogous to Theorem 1,
Theorem 4, and Theorem 5 exist for t being a composite integer ≥ 4.

◀ Dhar and Mukhopadhyay (2023) provided a direct combinatorial proof of
Theorem 2 for t = 2 (Berkovich and Uncu’s 2016 identity for distinct part
partitions) based on Fu & Tang’s 2020 combinatorial proof for the limiting case
N → ∞ where they used certain unimodal sequences whose alternating sum
equals zero. In the same spirit, it would be natural to ask whether a direct
combinatorial proof of Theorem 2 for any odd prime t exists or not.
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