A BIJECTIVE PROOF OF AN IDENTITY OF BERKOVICH AND UNCU

Aritram Dhar

(Joint work with Avi Mukhopadhyay)

Online Seminar in Partition Theory, *q*-Series and Related Topics (MTU)

March 13, 2025

UF FLORIDA

Aritram Dhar (UF)

Bijective proof of Berkovich-Uncu's identity

March 13, 2025

Aritram Dhar (UF)	Ari	tram	Dhar	(UF)
-------------------	-----	------	------	------

Bijective proof of Berkovich-Uncu's identity

March 13, 2025

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

A partition π of a positive integer n is a non-increasing finite sequence of non-negative integers $\lambda_1 \geq \lambda_2 \geq$ $\ldots \geq \lambda_k$ such that

$$n = \lambda_1 + \lambda_2 + \ldots + \lambda_k.$$

The integers $\lambda_1, \lambda_2, \ldots, \lambda_k$ are called the *parts* of the partition π . We call p(n) to be the number of partitions of n.

For example, p(5) = 7 where the seven partitions of 5 are 5, (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1).

We denote the number of parts of π by $\#(\pi)$ and the largest part of π by $l(\pi)$. λ_{2i-1} (resp. λ_{2i}) are called odd-indexed (resp. even-indexed) parts of π .

We call a partition into distinct parts a *strict* partition and denote it by π_d . Let \mathcal{D} be the set of all strict partitions and \mathcal{T} be the set of all triangular numbers, i.e., $\mathcal{T} := \left\{ \frac{n(n+1)}{2} : n \in \mathbb{Z} \right\}$.

Representation of strict partitions

Figure: Young's diagram and shifted Young's diagram representing the strict partition $\pi_d = (7, 5, 2, 1)$

BG-rank of a partition (Berkovich-Garvan, 2006)

For any partition π , the BG-rank, denoted by $BG(\pi)$, is defined as

 $BG(\pi) := i - j$

where *i* is the number of odd-indexed odd parts and *j* is the number of even-indexed odd parts of π .

For example, for the partition $\pi = (7, 5, 2, 1)$, $BG(\pi) = i - j = 1 - 2 = -1$.

Notations and Conventions

For non-negative integers L, m, and n, we define the conventional q-Pochhammer symbol as

$$(a)_{L} = (a;q)_{L} := \prod_{k=0}^{L-1} (1 - aq^{k});$$

$$(a)_{\infty} = (a;q)_{\infty} := \lim_{L \to \infty} (a)_{L} \text{ where } |q| < 1.$$

For $m, n \in \mathbb{Z}$, we define the *q*-binomial (Gaussian) coefficient as

$$\begin{bmatrix} n \\ m \end{bmatrix}_q := \begin{cases} \frac{(q)_n}{(q)_m(q)_{n-m}} & \text{for } 0 \le m \le n \\ 0 & \text{otherwise.} \end{cases}$$

For $m, n \in \mathbb{Z}^+ \cup \{0\}, \begin{bmatrix} m+n \\ m \end{bmatrix}_{\alpha}$ is the generating function for partitions π having $\#(\pi) \le m$ and $l(\pi) \le n$ and vice-versa.

For any sequence of integers $\Delta = \{d_1, \ldots, d_l\}$, we denote $l(\Delta) = l$, $|\Delta| = \sum_{i=1}^l d_i$, and

 $|\Delta|_{\text{alt}} = \sum_{i=1}^{l} (-1)^i d_i.$

Aritram Dhar (UF)

Bijective proof of Berkovich-Uncu's identity

March 13, 2025

Motivation

For any non-negative integer N and any integer k, let $B_N(k, q)$ denote the generating function of the number of strict partitions π_d having $l(\pi_d) \leq N$ and BG $(\pi_d) = k$.

Theorem (Berkovich-Uncu, 2016)

For $\nu \in \{0,1\}$,

$$B_{2N+\nu}(k,q) = q^{2k^2-k} \begin{bmatrix} 2N+\nu\\ N+k \end{bmatrix}_{q^2}.$$
 (1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

For any non-negative integer N and any integer k, let $B_N(k, q)$ denote the generating function of the number of strict partitions π_d having $l(\pi_d) \leq N$ and BG $(\pi_d) = k$.

Theorem (Berkovich-Uncu, 2016)

For $\nu \in \{0,1\}$,

$$B_{2N+\nu}(k,q) = q^{2k^2-k} \begin{bmatrix} 2N+\nu\\N+k \end{bmatrix}_{q^2}.$$
(1)

Corollary

Letting $N \to \infty$ in (1), we have

$$B(k,q) = \frac{q^{2k^2 - k}}{(q^2;q^2)_{\infty}}$$
(2)

where B(k,q) denotes the generating function of the number of strict partitions π_d having BG(π_d) = k.

		나 가지 다가 가 눈가 가 눈가 듣는 눈	*) 4 (*
Aritram Dhar (UF)	Bijective proof of Berkovich-Uncu's identity	March 13, 2025	7/29

State of the art and the main theorem

- In 2010, Vandervelde provided a bijective proof of (2) for *k* = 0 considering diagonal lengths of Young's diagrams of strict partitions.
- Building upon Vandervelde's bijection, in 2020, Fu and Tang provided a bijective proof of (2) for all integers *k* using certain unimodal sequences whose alternating sum equals zero.

• Fu and Tang ask for a bijective proof of (1).

Together with the partition theoretic interpretation of q-binomial coefficients, (1) can be stated as the following partition identity:

State of the art and the main theorem

- In 2010, Vandervelde provided a bijective proof of (2) for *k* = 0 considering diagonal lengths of Young's diagrams of strict partitions.
- Building upon Vandervelde's bijection, in 2020, Fu and Tang provided a bijective proof of (2) for all integers *k* using certain unimodal sequences whose alternating sum equals zero.
- Fu and Tang ask for a bijective proof of (1).

Together with the partition theoretic interpretation of q-binomial coefficients, (1) can be stated as the following partition identity:

Theorem (D-Mukhopadhyay, 2023)

Let $\nu \in \{0, 1\}$, *N* be a non-negative integer, and *k* be any integer. Then, for any positive integer *n*, the number of strict partitions π_d of *n* having BG(π_d) = *k* and $l(\pi_d) \leq 2N + \nu$ is the same as the number of partitions π of $\frac{n-2k^2+k}{2}$ where $l(\pi) \leq N + \nu - k$, $\#(\pi) \leq N + k$ if $k \leq 0$ and $l(\pi) \leq N + k$, $\#(\pi) \leq N + \nu - k$ if k > 0.

イロト 不得 とくき とくき とうき

(a, b)-sequences

(a, b)-sequences (Fu-Tang, 2020)

For any non-negative integer a and any integer $1 \le b \le l$, we call a sequence of l positive integers $\{d_1, \ldots, d_l\}$ an (a, b)-sequence of length l if

- $d_i = a + i$ for $1 \le i \le b$,
- d_i forms a non-increasing sequence of positive integers for $i \ge b$, and

•
$$\sum_{i=1}^{l} (-1)^i d_i = 0.$$

(a, b)-sequences

(a, b)-sequences (Fu-Tang, 2020)

For any non-negative integer a and any integer $1 \le b \le l$, we call a sequence of l positive integers $\{d_1, \ldots, d_l\}$ an (a, b)-sequence of length l if

- $d_i = a + i$ for $1 \le i \le b$,
- d_i forms a non-increasing sequence of positive integers for $i \ge b$, and

•
$$\sum_{i=1}^{l} (-1)^i d_i = 0.$$

Example

{5, 6, 7, 8, 3, 3, 2, 2, 2, 1, 1} is a (4, 4)-sequence of length 11.

(a, b)-sequences

(a, b)-sequences (Fu-Tang, 2020)

For any non-negative integer a and any integer $1 \le b \le l$, we call a sequence of l positive integers $\{d_1, \ldots, d_l\}$ an (a, b)-sequence of length l if

- $d_i = a + i$ for $1 \le i \le b$,
- d_i forms a non-increasing sequence of positive integers for $i \ge b$, and

•
$$\sum_{i=1}^{l} (-1)^{i} d_{i} = 0.$$

Example

 $\{5, 6, 7, 8, 3, 3, 2, 2, 2, 1, 1\}$ is a (4, 4)-sequence of length 11.

We denote the collection of all such sequences by $S_{a,b}$ and define $S := (\bigcup_{a \ge 0} S_{a,b}) \cup \{\varepsilon\}$ where ε is the empty sequence. If $\Delta \in S_{a,b}$, we denote $a(\Delta) = a$ and $b(\Delta) = b$.

For any strict partition $\pi_d = (\lambda_1, \lambda_2, ..., \lambda_r)$, consider the shifted Young diagram of π_d and construct the sequence of column lengths (read from left to right) of its shifted Young diagram. These column lengths then form a unimodal sequence $c(\pi_d) = \{c_1, c_2, ..., c_{\lambda_1}\}$.

Proof of the main theorem : the beginnings

For any strict partition $\pi_d = (\lambda_1, \lambda_2, \dots, \lambda_r)$, consider the shifted Young diagram of π_d and construct the sequence of column lengths (read from left to right) of its shifted Young diagram. These column lengths then form a unimodal sequence $c(\pi_d) = \{c_1, c_2, \dots, c_{\lambda_1}\}$.

Proposition (Fu-Tang, 2020)

There exists a unique integer $0 \le m \le r$ such that $\sum_{i=1}^{m} (-1)^i c_i = \sum_{i=1}^{\lambda_1} (-1)^i c_i$, i.e., $|\Delta|_{\text{alt}} = 0$ where $\Delta := \{c_{m+1}, c_{m+2}, \dots, c_{\lambda_1}\}.$

Fu and Tang's map ι

Lemma (Fu-Tang, 2020)

There is an injection $\iota : \mathcal{D} \to \mathcal{T} \times S$. Suppose $\iota(\pi_d) = (t, \Delta)$, then $|\pi_d| = t + |\Delta|$. Moreover, $(t, \Delta) \in \iota(\mathcal{D})$ if and only if

 $(\Delta) = m, \text{ or }$

2 $a(\Delta) \le m - 1$ and $b(\Delta) = 1$, or

where $t = 1 + 2 + ... + m = \binom{m+1}{2}$ for some $m \ge 0$.

Fu and Tang's map ι

Lemma (Fu-Tang, 2020)

There is an injection $\iota : \mathcal{D} \to \mathcal{T} \times S$. Suppose $\iota(\pi_d) = (t, \Delta)$, then $|\pi_d| = t + |\Delta|$. Moreover, $(t, \Delta) \in \iota(\mathcal{D})$ if and only if

 $(\Delta) = m, \text{ or }$

2
$$a(\Delta) \leq m-1$$
 and $b(\Delta) = 1$, or

where $t = 1 + 2 + ... + m = \binom{m+1}{2}$ for some $m \ge 0$.

To see that ι is an injection, simply note that for any $(t, \Delta) \in \mathcal{T} \times S$ that satisfies either (1) (the case m < r) or (2) (the case $m = r < \lambda_1$) or (3) (the case $m = r = \lambda_1$ for which π_d is the staircase partition $(m, m - 1, \ldots, 2, 1)$), we can uniquely recover its preimage by appending columns of length 1, 2, ..., *m* to the left of the columns of length given by the elements of Δ and obtaining a valid shifted Young diagram.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Example

Aritram	Dhar	(UF)
---------	------	------

Example

Example

Example

Aritram	Dhar	(UF)
---------	------	------

Example

Fu and Tang's map ϕ_a

In 1993, Chu defined the *d*-Durfee rectangle for the Young's diagram of a partition to be an $i \times (i + d)$ rectangle (having *i* rows and i + d columns) which is obtained by choosing the largest possible *i* such that the $i \times (i + d)$ rectangle is contained in the Young's diagram for a fixed integer *d*.

Fu and Tang's map ϕ_a

In 1993, Chu defined the *d*-Durfee rectangle for the Young's diagram of a partition to be an $i \times (i + d)$ rectangle (having *i* rows and i + d columns) which is obtained by choosing the largest possible *i* such that the $i \times (i + d)$ rectangle is contained in the Young's diagram for a fixed integer *d*.

For integers $a \ge 0$ and $b \ge 1$, consider the map $\phi_a : S_{a,b} \to \mathcal{P}_{a,b}$ where $\mathcal{P}_{a,b}$ is the set of all integer partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ whose *a*-Durfee rectangle has size $\lceil \frac{b}{2} \rceil \times (\lceil \frac{b}{2} \rceil + a)$ and $\lambda_{\frac{b}{2}} > a + b/2$ if *b* is even or $\lambda_{\frac{b+1}{2}} = a + (b+1)/2$ if *b* is odd.

Fu and Tang's map ϕ_a

In 1993, Chu defined the *d*-Durfee rectangle for the Young's diagram of a partition to be an $i \times (i + d)$ rectangle (having *i* rows and i + d columns) which is obtained by choosing the largest possible *i* such that the $i \times (i + d)$ rectangle is contained in the Young's diagram for a fixed integer *d*.

For integers $a \ge 0$ and $b \ge 1$, consider the map $\phi_a : S_{a,b} \to \mathcal{P}_{a,b}$ where $\mathcal{P}_{a,b}$ is the set of all integer partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ whose *a*-Durfee rectangle has size $\lceil \frac{b}{2} \rceil \times (\lceil \frac{b}{2} \rceil + a)$ and $\lambda_{\frac{b}{2}} > a + b/2$ if *b* is even or $\lambda_{\frac{b+1}{2}} = a + (b+1)/2$ if *b* is odd.

Figure: Block diagram configuration for $\phi_a(S_{a,b})$ with labeled blocks

In the block diagram configuration, we call the *i*th labeled block B_i . B_i has size $1 \times \left(a + \frac{i+1}{2}\right)$ (resp. $\frac{i}{2} \times 1$) if *i* is odd (resp. even). We denote the area of B_i , i.e., the number of cells, by n_i . So, $n_1 = a+1$, $n_2 = 1$, $n_3 = a+2$, $n_4 = 2$, and so on. For any sequence $\Delta = \{d_1, d_2, \ldots, d_l\} \in S_{a,b}$, we obtain $\phi_a(\Delta)$ by

performing the following operations:

- Fill up B_1 in the block diagram with $d_1 = a + 1$ cells which is equivalent to labeling the a + 1 cells in B_1 with '1'.
- Use d_i cells first to *double cover* the already existing cells in B_{i-1} for $2 \le i \le l$ and then use the remaining cells to fill B_i . This is equivalent to using d_i cells to re-label the already existing n_{i-1} cells in B_{i-1} by '2' first for $2 \le i \le l$ and then labeling the remaining $d_i n_{i-1}$ cells by '1' to fill B_i .
- Filling of B_i 's (labeling by '1' and re-labeling by '2') are done from left to right if *i* is odd and from top to bottom if *i* is even.
- After having used up all the d_i's where 1 ≤ i ≤ l, the *doubly covered* cells (cells which are labeled by '2') form the Young diagram of a partition (say) λ = φ_a(Δ).

イロト 不得 とくき とくき とうき

In the block diagram configuration, we call the *i*th labeled block B_i . B_i has size $1 \times \left(a + \frac{i+1}{2}\right)$ (resp. $\frac{i}{2} \times 1$) if *i* is odd (resp. even). We denote the area of B_i , i.e., the number of cells, by n_i . So, $n_1 = a+1$, $n_2 = 1$, $n_3 = a+2$, $n_4 = 2$, and so on. For any sequence $\Delta = \{d_1, d_2, \ldots, d_l\} \in S_{a,b}$, we obtain $\phi_a(\Delta)$ by

performing the following operations:

- Fill up B_1 in the block diagram with $d_1 = a + 1$ cells which is equivalent to labeling the a + 1 cells in B_1 with '1'.
- Use d_i cells first to *double cover* the already existing cells in B_{i-1} for $2 \le i \le l$ and then use the remaining cells to fill B_i . This is equivalent to using d_i cells to re-label the already existing n_{i-1} cells in B_{i-1} by '2' first for $2 \le i \le l$ and then labeling the remaining $d_i n_{i-1}$ cells by '1' to fill B_i .
- Filling of B_i 's (labeling by '1' and re-labeling by '2') are done from left to right if *i* is odd and from top to bottom if *i* is even.
- After having used up all the d_i's where 1 ≤ i ≤ l, the *doubly covered* cells (cells which are labeled by '2') form the Young diagram of a partition (say) λ = φ_a(Δ).

The notion of double covering of the cells in the block diagram configuration is equivalent to coloring the cells by yellow and then re-coloring the cells by green so that in the end, all the cells are colored in green. This is exactly the reason why the base in the *q*-binomial coefficient in (1) is q^2 instead of just *q* as we are counting the cells twice.

Aritram	Dhar	(UF)
---------	------	------

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

А

ritram Dhar (UF)	Bijective proof of Berkovich-Uncu's identity	March 13, 2025	

15/29

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

イロト 不得 とくほ とくほ とう

3

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

- < ∃ >

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

< ∃⇒

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

All *singly covered* (equivalent to being labeled by '1' or counted once) cells are colored yellow and all *doubly covered* (equivalent to being labeled by '2' or counted twice) cells are colored green. All the cells labeled \mathcal{B}_i form a sub-region of the *i*th block B_i and b_i is the number of doubly covered cells (colored green) labeled \mathcal{B}_i for $i \in \{1, 2, 3, 4, 5\}$. Here, $b_1 = 3$, $b_2 = 1$, $b_3 = 3$, $b_4 = 0$, and $b_5 = 2$ form the partition $\lambda = (4, 3, 2)$.

Example

Suppose $\Delta = \{3, 4, 4, 3, 2, 2\} \in S_{2,2}$. We get $\lambda = \phi_2(\Delta) = (4, 3, 2) \in \mathcal{P}_{2,2}$ and $|\lambda| = |\Delta|/2 = 9$.

All *singly covered* (equivalent to being labeled by '1' or counted once) cells are colored yellow and all *doubly covered* (equivalent to being labeled by '2' or counted twice) cells are colored green. All the cells labeled \mathcal{B}_i form a sub-region of the *i*th block B_i and b_i is the number of doubly covered cells (colored green) labeled \mathcal{B}_i for $i \in \{1, 2, 3, 4, 5\}$. Here, $b_1 = 3$, $b_2 = 1$, $b_3 = 3$, $b_4 = 0$, and $b_5 = 2$ form the partition $\lambda = (4, 3, 2)$.

Theorem (Fu-Tang, 2020)

For a fixed $a \ge 0$ and any $b \ge 1$, ϕ_a is a bijection from $S_{a,b}$ to $\mathcal{P}_{a,b}$, such that $|\Delta| = 2|\phi_a(\Delta)|$, for any $\Delta \in S_{a,b}$.

So now?

So, starting from $\pi_d = (8, 7, 4, 2)$, we obtain (t, π) where t = 3 is the triangular part and π is the *doubly covered* partition (4, 3, 2). Observe that $|\pi_d| = 21 = 3 + 2 \cdot 9 = t + 2|\pi|$.

Two important lemmas

Lemma 1

For the $\Delta \in S_{a,b}$ obtained from the shifted Young diagram of π_d ,

$$a = a(\Delta) = \begin{cases} -2k & \text{if } k \le 0, \\ 2k - 1 & \text{if } k > 0. \end{cases}$$

イロト イポト イヨト イヨト

Two important lemmas

Lemma 1

For the $\Delta \in S_{a,b}$ obtained from the shifted Young diagram of π_d ,

$$a = a(\Delta) = \begin{cases} -2k & \text{if } k \le 0, \\ 2k - 1 & \text{if } k > 0. \end{cases}$$

Proof. For π_d having BG-rank k, we have $k = -|\{1, 2, ..., a\}|_{alt} = 1 - 2 + 3 - ... + (-1)^{a+1}a$. Now, we consider two cases concerning the parity of a:

• Case I: *a* is even Let a = 2t for some $t \ge 0$. Then,

$$k = 1 - 2 + 3 - \dots - 2t$$

= $(1 + 3 + \dots + (2t - 1)) - 2(1 + 2 + \dots + t)$
= $t^2 - 2 \cdot \frac{t(t + 1)}{2}$
= $t^2 - t^2 - t$
= $-t$
= $-\frac{a}{2}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 March 13, 2025

• Case II: *a* is odd Let a = 2t - 1 for some $t \ge 1$. Then,

$$k = 1 - 2 + 3 - \dots + (2t - 1)$$

= $(1 + 3 + \dots + (2t - 1)) - 2(1 + 2 + \dots + (t - 1))$
= $t^2 - 2 \cdot \frac{t(t - 1)}{2}$
= $t^2 - t^2 + t$
= t
= t
= $\frac{a + 1}{2}$.

Hence, a = -2k if $k \le 0$ and a = 2k - 1 if k > 0.

2

• Case II: *a* is odd Let a = 2t - 1 for some $t \ge 1$. Then,

$$k = 1 - 2 + 3 - \dots + (2t - 1)$$

= $(1 + 3 + \dots + (2t - 1)) - 2(1 + 2 + \dots + (t - 1))$
= $t^2 - 2 \cdot \frac{t(t - 1)}{2}$
= $t^2 - t^2 + t$
= t
= $\frac{a + 1}{2}$.

Hence, a = -2k if $k \le 0$ and a = 2k - 1 if k > 0.

Lemma 2

The index of the last block present in the block diagram representation of the Young diagram of π is at most $l(\pi_d) - a - 1$.

Proof. In the shifted Young diagram of π_d , the length of the unimodal sequence whose alternating sum is zero is equal to $l(\pi_d) - a$. So, the number of blocks that can be *doubly covered* by the elements of this sequence is at most $l(\pi_d) - a - 1$.

▲ □ ▷ ▲ @ ▷ ▲ ≧ ▷ ▲ ≧ ▷ March 13, 2025

Is the process reversible?

March 13, 2025

イロト イポト イヨト イヨト

э

Is the process reversible?

We are given the triangular part t = 6 and the (*doubly covered*) partition $\pi = (5, 5, 3, 1)$. So, the solutions to $2k^2 - k = 6$ are k = 2 and $k = -\frac{3}{2}$. Since $k \in \mathbb{Z}$, k = 2. Now, $a = 2 \cdot 2 - 1 = 3$ since k = 2 > 0 which implies $b_1 = a + 1 = 4$, $b_2 = 1$, $b_3 = 5$, $b_4 = 0$, $b_5 = 3$, $b_6 = 0$, and $b_7 = 1$. Now, we obtain $d_1 = b_1 = 4$, $d_2 = b_1 + b_2 = 5$, $d_3 = b_2 + b_3 = 6$, $d_4 = b_3 + b_4 = 5$, $d_5 = b_4 + b_5 = 3$, $d_6 = b_5 + b_6 = 3$, $d_7 = b_6 + b_7 = 1$, and $d_8 = b_7 + b_8 = 1$ since $b_8 = 0$. Thus, we obtain the sequence $\{4, 5, 6, 5, 3, 3, 1, 1\}$ which we write column-wise and if we append columns of length $\{1, 2, 3\}$ to the left of the column of length 4, we retrieve back the shifted Young diagram of the partition $\pi_d = (11, 8, 7, 4, 3, 1)$.

イロト 不得 とくき とくき とうき

How to obtain the bounds?

We now obtain bounds on the largest part and the number of parts of π . We consider two cases according to the sign of the BG-rank k of π_d . In both the cases, we also show that the we can retrieve back the bound on the largest part of π_d .

Case I: $k \leq 0$

If $k \leq 0$, then from Lemma 1, we have a = -2k.

If I is the index of the last present block in the block diagram representation of the Young diagram of π , using Lemma 2, we have

$$\begin{split} &I \leq l(\pi_d) - a - 1 \\ &\leq 2N + \nu - a - 1 \\ &= 2N + \nu + 2k - 1 \\ &= 2(N + k) + \nu - 1 \\ &= \begin{cases} &2(N + k) - 1 \text{ if } \nu = 0, \\ &2(N + k) \text{ if } \nu = 1. \end{cases} \end{split}$$

Therefore, $\#(\pi) \leq N + k$.

If E is the number of even-indexed blocks present in the block diagram representation of the Young diagram of π , then

$$E \le \sum_{\substack{i=2\\2|i}}^{l(\pi_d)-a-1} 1.$$

Aritram Dhar (UF)

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷
 March 13, 2025

Again from the block diagram representation of the Young diagram of π , we have

$$\begin{split} l(\pi) &= a+1+E\\ &\leq a+1+\sum_{\substack{i=2\\2|i}}^{l(\pi_d)-a-1} 1\\ &\leq a+1+\sum_{\substack{i=2\\2|i}}^{2N+\nu-a-1} 1\\ &= -2k+1+\sum_{\substack{i=2\\2|i}}^{2N+\nu+2k-1} 1\\ &= -2k+1+\sum_{\substack{i=2\\2|i}}^{2N+2k-1} 1\\ &= \begin{cases} -2k+1+\sum_{\substack{i=2\\2|i}}^{2N+2k-1} 1\\ -2k+1+\sum_{\substack{i=2\\2|i}}^{2l} 1\\ &= 1\\ &= \begin{cases} -2k+1+N+k-1 & \text{if } \nu = 0,\\ -2k+1+N+k & \text{if } \nu = 1,\\ &= \begin{cases} N-k & \text{if } \nu = 0,\\ N-k+1 & \text{if } \nu = 1. \end{cases} \end{split}$$

Hence, $l(\pi) \leq N + \nu - k$.

Aritram Dhar (UF)

Bijective proof of Berkovich-Uncu's identity

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 March 13, 2025

For the reverse direction, since $k \le 0$, we know that a = -2k and we also know that $l(\pi) \le N + \nu - k$ and $\#(\pi) \le N + k$. Clearly, $l(\pi_d) = a + l(\Delta) = -2k + l(\Delta) = -2k + l + 1$ where *l* is the index of the last present block in the block diagram representation of the Young diagram of π . Now, we consider two sub-cases regarding the parity of *l*:

Sub-Case IA: I is odd

Since $\#(\pi) \leq N + k$,

$$I \le 2(N+k) - 1 = 2N + 2k - 1 \le 2N + \nu + 2k - 1$$
(3)

where (3) follows from the fact that $\nu \in \{0, 1\}$.

Therefore, from (3), it follows that $l(\pi_d) = -2k + I + 1 \le 2N + \nu$.

Sub-Case IB: I is even

Since $l(\pi) \leq N + \nu - k$,

$$I \leq 2((N + \nu - k) - (a + 1))$$

= 2N + 2\nu - 2k - 2a - 2
= 2N + 2\nu + 2k - 2
= 2N + \nu + 2k - 1 + \nu - 1
\le 2N + \nu + 2k - 1 + \nu - 1 + 1 - \nu \quad (4)
= 2N + \nu + 2k - 1 \quad (5)

where (4) follows from the fact that $1 - \nu \in \{0, 1\}$.

Therefore, from (5), it follows that $l(\pi_d) = -2k + I + 1 \le 2N + \nu$.

Aritram Dhar (UF)	Bijective proof of Berkovich-Uncu's identity	March 13, 2025	22/29
	· · ·		

Case II: k > 0

٠

If k > 0, then from Lemma 1, we have a = 2k - 1, i.e, a is odd.

Let I be the index of the last present block in the block diagram representation of the Young diagram of π . From Lemma 2, we know that

$$\begin{split} &I \leq l(\pi_d) - a - 1 \\ &\leq 2N + \nu - a - 1 \\ &= 2N + \nu - 2k \\ &= 2(N + \nu - k) - \nu \\ &= \begin{cases} & 2(N + \nu - k) & \text{if } \nu = 0, \\ & 2(N + \nu - k) - 1 & \text{if } \nu = 1 \end{cases} \end{split}$$

Therefore, $\#(\pi) \leq N + \nu - k$.

If E is the number of even-indexed blocks present in the block diagram representation of the Young diagram of π ,

$$E \le \sum_{\substack{i=2\\2|i}}^{l(\pi_d)-a-1} 1.$$

Again, from the block diagram representation of the Young diagram of π , we have

$$\begin{split} l(\pi) &= a+1+E\\ &\leq a+1+\sum_{\substack{i=2\\2|i}}^{l(\pi_d)-a-1} 1\\ &\leq a+1+\sum_{\substack{i=2\\2|i}}^{2N+\nu-a-1} 1\\ &= 2k+\sum_{\substack{i=2\\2|i}}^{2N+\nu-2k} 1\\ &= \begin{cases} 2k+\sum_{\substack{i=2\\2|i}}^{2N-2k+1} & \text{if } \nu=0,\\ 2k+\sum_{\substack{i=2\\2|i}}^{2N-2k+1} & \text{if } \nu=1\\ 2k+\sum_{\substack{i=2\\2|i}}^{2N-2k+1} & \text{if } \nu=1 \end{cases} \end{split}$$

Hence, $l(\pi) \leq N + k$.

Aritram Dhar (UF)

Bijective proof of Berkovich-Uncu's identity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
 March 13, 2025

For the reverse direction, since k > 0, we know that a = 2k - 1, $l(\pi) \le N + k$, and $\#(\pi) \le N + \nu - k$. Clearly, $l(\pi_d) = 2k - 1 + l(\Delta) = 2k - 1 + l + 1 = 2k + l$ where *l* is the index of the last present block in the block diagram representation of the Young diagram of π . Now, we consider two sub-cases regarding the parity of *l*:

Sub-Case IIA: I is odd

Since $\#(\pi) \leq N + \nu - k$,

$$I \leq 2(N + \nu - k) - 1$$

= 2N + 2\nu - 2k - 1
= 2N + \nu - 2k + \nu - 1
\le 2N + \nu - 2k + \nu - 1 + 1 - \nu \quad (6)
= 2N + \nu - 2k \quad (7)

where (6) follows from the fact that $1 - \nu \in \{0, 1\}$.

Therefore, from (7), it follows that $l(\pi_d) = 2k + I \le 2N + \nu$.

Sub-Case IIB: I is even

Since $l(\pi) \leq N + k$,

$$I \le 2((N+k) - (a+1))$$

= 2N - 2k
= 2N + \nu - 2k - \nu
\le 2N + \nu - 2k - \nu + \nu
(8)
= 2N + \nu - 2k (9)

where (8) follows from the fact that $\nu \in \{0, 1\}$.

Therefore, from (9), it follows that $l(\pi_d) = 2k + I \le 2N + \nu$.

Aritram Dhar (UF)	Bijective proof of Berkovich-Uncu's identity	March 13, 2025	25/29
	Jacob I and a second second second		

Concluding remarks and a future question

- In their study of the Ariki-Koike algebras and Kleshchev multipartitions, Li, Seo, Stanton and Yee
 proved (1) using the 2-abacus of staircase 2-cores of strict partitions having bounded largest part.
- Berkovich and Dhar recently proved (1) using Littlewood decomposition of strict partitions with bounded largest part into 2-cores and 2-quotients.
- If $\tilde{B}_N(k,q)$ denotes the generating function for the number of partitions into parts less than or equal to N with BG-rank equal to k, then in 2016, Berkovich and Uncu showed that

$$\tilde{B}_{2N+\nu}(k,q) = \frac{q^{2k^2-k}}{(q^2;q^2)_{N+k}(q^2;q^2)_{N+\nu-k}}.$$
(10)

Find a bijective proof of (10) without resorting to 2-cores and 2-quotients.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

References-I

- G. E. Andrews, *Generalizations of the Durfee square*, J. Lond. Math. Soc. **3** (2) (1971) 563–570.
- G. E. Andrews, *The Theory of Partitions*, Cambridge University Press, 1998.
- A. Berkovich and A. Dhar, *On partitions with bounded largest part and fixed integral GBG-rank modulo primes*, Ann. Comb., (in press).
- A. Berkovich and F. Garvan, *On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations*, Trans. Amer. Math. Soc. **358 (2)** (2006) 703–726.
- A. Berkovich and F. Garvan, *The BG-rank of a partition and its appications*, Adv. in Appl. Math. **40 (3)** (2008) 377–400.
- A. Berkovich and A. K. Uncu, *On partitions with fixed number of even-indexed and odd-indexed odd parts*, J. Number Theory **167** (2016) 7–30.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C. E. Boulet, A four-parameter partition identity, Ramanujan J. 12 (3) (2006) 315–320.

- W. Chu, *Durfee rectangles and the Jacobi triple product identity*, Acta Math. Sin. New Ser. **9** (1) (1993) 24–26.
- S. Fu and D. Tang, *On certain unimodal sequences and strict partitions*, Discrete Math. **343 (2)** (2020) 111650.
- **R**. Li, S. Seo, D. Stanton, and A. J. Yee, *The Ariki-Koike algebra and q-Appell functions*, submitted.

S. Vandervelde, Balanced partitions, Ramanujan J. 23 (1) (2010) 297–306.

- 4 同 6 4 日 6 4 日 6

Thank You!

(This work is based on arXiv:2309.07785 [math.CO] which was recently accepted in Séminaire Lotharingien de Combinatoire)