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Page 27 of Ramanujan’s Lost Notebook

For a ∈ C\{0}, and b ∈ C,

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
+

∞∑
m=0

a−2m−1qm
2+m

(bq)m

∞∑
n=0

anbnq(n+1)2/4

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/4 − (1− b)

∞∑
n=1

anqn
2/4

n−1∑
`=0

b`

(q)`
. (1)

(Andrews, Partitions: Yesterday and Today)
Let a = b = 1, replace q by q4, multiply both sides of the resulting
identity by (−q2; q2)∞, and use Rogers’ identities

G(q) = (−q2; q2)∞
∞∑
n=0

qn
2

(q4; q4)n
, H(q) = (−q2; q2)∞

∞∑
n=0

qn
2+2n

(q4; q4)n
,

where G(q) :=
∞∑
n=0

qn
2

(q)n
and H(q) :=

∞∑
n=0

qn
2+n

(q)n
.
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Why is the identity interesting?

This leads to the modular relation

G(q)G(q4) + qH(q)H(q4) =
ϕ(q)

(q2; q2)∞
= (−q; q2)2∞, (2)

where ϕ(q) :=
∑∞

n=−∞ q
n2

is the Jacobi theta function.

Regarding (2), Andrews says (in his prefatorial introduction to the
Lost Notebook):

This sort of identity has always appeared to me to lie totally within
the realm of modular functions and to be completely resistant to
q-series generalization. One of the greatest shocks I got from the
Lost Notebook was the following assertion...
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Another special case of the generalized modular relation

Letting a = b = −1 in (1), replacing q by q4, multiplying the
resulting two sides by (−q2; q2)∞, and then using Rogers’
identities yields

G(q)f0(q
4)− qH(q)f1(q

4) (3)

= (−q2; q4)∞
∞∑

n=−∞
(−1)nqn

2
+ 2(−q2; q2)∞

∑
n,`≥0

(−1)nq(n+`+1)2

(q4; q4)`
,

where f0(q) :=
∞∑
n=0

qn
2

(−q; q)n
and f1(q) :=

∞∑
n=0

qn
2+n

(−q; q)n
are two fifth

order mock theta functions of Ramanujan.

Andrews1 says, ‘Nothing like (3) appears in any of the literature
on mock theta functions.

1G.E. Andrews, Partitions: Yesterday and Today, New Zealand Math. Soc.,
Wellington, 1979.
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Ramanujan’s generalized modular relation

Recall that for a ∈ C\{0}, and b ∈ C,

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
+

∞∑
m=0

a−2m−1qm
2+m

(bq)m

∞∑
n=0

anbnq(n+1)2/4

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/4 − (1− b)

∞∑
n=1

anqn
2/4

n−1∑
`=0

b`

(q)`
.

Andrews proved this identity by showing that the coefficients of
aN ,−∞ < N <∞, on both sides are identical.

However, this requires knowing the identity in advance.

One of the goals of our work2 was to see if a natural proof of (1)
could be obtained.

2A. Dixit and G. Kumar, The Rogers-Ramanujan dissection of a theta function,
submitted for publication.
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A question on page 26 of the Lost Notebook

Ramanujan wrote

∞∑
n=0

anqn
2/(2s)

(q)n

∞∑
n=0

a−nsqn
2s/2

(q)n
as q → 1?? (4)

When s = 2, the above product is the special case b = 1 of

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
.

Andrews and Berndt remark, ‘Ramanujan provides no indication
either why this is of interest for arbitrary s or what the
asymptotics should be.’
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Second goal

Among other things, we answer Ramanujan’s question:

Theorem (D. - Kumar (2024))

Let a > 0 and s ∈ N. Let z1 denote the real positive root of
az1/s + z − 1 = 0. As q → 1−,

∞∑
n=0

anqn
2/(2s)

(q)n

∞∑
n=0

a−nsqn
2s/2

(q)n
∼

√
s

1 + (s− 1)z1
exp

(
−1

log(q)

(
π2

6
+
s

2
log2(a)

))
.

But the very fact that Ramanujan considers

∞∑
n=0

anqn
2/(2s)

(q)n

∞∑
n=0

a−nsqn
2s/2

(q)n

also raises an important question - is there a generalization of (1)
which reduces to it when s = 2?
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Main theorem

Theorem (D. - Kumar (2024))

Let s ∈ N. For a ∈ C, a 6= 0, and b ∈ C,

s−1∑
k=0

{ ∞∑
m=0

a−sm−kq(sm+k)2/(2s)

(bq)m

∞∑
n=0

anbnqn(n+2js−2k)/(2s)

(q)n

}

=
1

(bq)∞

∞∑
n=−∞

anqn
2/(2s) − (1− b)

∞∑
n=1

anqn
2/(2s)

n−1∑
`=0

b`

(q)`
, (5)

where

j =

{
0, if k = 0,
1, otherwise.
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Comparison with other formulas for theta functions

There are several formulas in the literature which express a
product of theta function with a q-series or another theta function
as a finite sum of theta functions or their products or powers.

For example, Schröter’s formula, Ramanujan’s circular summation
of theta functions.

The series in our result are generalized Rogers-Ramanujan
functions of the form

∞∑
n=0

anq(cn
2+dn)/s

(bq)n
,

where a, b ∈ C, c, d ∈ R, and s ∈ N.
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Representations for partial theta functions

Theorem (D. - Kumar (2024))

For s ∈ N,

s−1∑
k=0

{ ∞∑
m=0

a−sm−kq(sm+k)2/(2s)

(bq)m

∞∑
n=sm+k+1

anbnqn(n+2js−2k)/(2s)

(q)n

}

=
1

(bq)∞

∞∑
n=1

anqn
2/(2s) − (1− b)

∞∑
n=1

anqn
2/(2s)

n−1∑
`=0

b`

(q)`
.

Atul Dixit (IIT Gandhinagar) The Rogers-Ramanujan dissection January 30, 2025 10 / 40



Representations for partial theta functions

Theorem (D. - Kumar (2024))
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k=0
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m=0

a−sm−kq(sm+k)2/(2s)

(bq)m

sm+k∑
n=0

anbnqn(n+2js−2k)/(2s)

(q)n

}

=
1

(bq)∞

0∑
n=−∞

anqn
2/(2s).
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The Rogers-Ramanujan dissection of a theta function

s−1∑
k=0

{ ∞∑
m=0

a−sm−kq(sm+k)2/(2s)

(bq)m

∞∑
n=0

anbnqn(n+2js−2k)/(2s)

(q)n

}

=
1

(bq)∞

∞∑
n=−∞

anqn
2/(2s) − (1− b)

∞∑
n=1

anqn
2/(2s)

n−1∑
`=0

b`

(q)`
,

where j = 0 if k = 0, and 1 otherwise.

The special case b = 1 of this identity is what we call the
Rogers-Ramanujan dissection of the theta function
∞∑

n=−∞
anqn

2/(2s).

Clearly, Ramanujan’s result is the special case s = 2 of the above.
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A generalization of the Jacobi triple product identity

Letting s = 1 in the main result leads to

Corollary

For a ∈ C, a 6= 0, and b ∈ C,

∞∑
m=0

a−mqm
2/2

(bq)m

∞∑
n=0

anbnqn
2/2

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/2 − (1− b)

∞∑
n=1

anqn
2/2

n−1∑
`=0

b`

(q)`
.

Letting b = 1 and replacing q by q2 leads to the Jacobi triple
product identity.
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The special case s = 3

Corollary

For a ∈ C\{0} and b ∈ C,

∞∑
m=0

a−3mq3m
2/2

(bq)m

∞∑
n=0

anbnqn
2/6

(q)n

+ q1/6
∞∑

m=0

a−3m−1q3m
2/2+m

(bq)m

∞∑
n=0

anbnqn(n+4)/6

(q)n

+ q2/3
∞∑

m=0

a−3m−2q3m
2/2+2m

(bq)m

∞∑
n=0

anbnqn(n+2)/6

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/6 − (1− b)

∞∑
n=1

anqn
2/6

n−1∑
`=0

b`

(q)`
. (6)

If we let a = b = 1, do we get an analogue of

G(q)G(q4) + qH(q)H(q4) =
ϕ(q)

(q2; q2)∞
= (−q; q2)2∞? (7)
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Unlikelihood of such relations for s > 2

The key ingredients to get (7) from (1) were Rogers’ identities

G(q) = (−q2; q2)∞
∞∑
n=0

qn
2

(q4; q4)n
, H(q) = (−q2; q2)∞

∞∑
n=0

qn
2+2n

(q4; q4)n
.

It is unlikely that analogues of these identities exist for s > 2.

Bressoud’s has not only generalized Rogers’ first identity to have

∞∑
n=0

qn
2
an

(q)n
= (−aq2; q2)∞

∞∑
n=0

qn
2
an

(q2; q2)n(−aq2; q2)n

but has, in turn, also generalized this identity for any s ∈ N so that

∞∑
m=0

qm+
sm(m−1)

2 am

(q)m
= (−aqs; qs)∞

∑
n1,··· ,ns−1≥0

aNq
sN(N−1)

2 +n1+2n2+···+(s−1)ns−1

(qs; qs)n1
· · · (qs; qs)ns−1

(−aqs; qs)N
,

(8)

where N = n1 + n2 + · · ·+ ns−1.
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Some more special cases of the main result

Corollary

Let ϕ(q) :=
∑∞

n=−∞ q
n2

. Then,

∞∑
m=0

(−1)mqm
2

(−bq2; q2)m
=

ϕ(−q)
(−bq)∞

+ (1 + b)

∞∑
m=1

(−1)m−1qm
2

(−bq; q2)m
.

In particular,

φ(q) + 2ψ(q) = (−q; q2)3∞(q2; q2)∞,

where, φ(q) and ψ(q) are two of Ramanujan’s third order mock theta
functions defined by

φ(q) :=

∞∑
m=0

qm
2

(−q2; q2)m
and ψ(q) :=

∞∑
m=1

qm
2

(q; q2)m
.
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Annihilation of the theta function

Let a = −1 in (1) and replace q by q1/(2s) in
∞∑

n=−∞
(−1)nqn

2−n = 0.

This annihilates the theta function and we get

s−1∑
k=0

{ ∞∑
m=0

(−1)sm−kq(sm+k)(sm+k+1)/(2s)

(bq)m

∞∑
n=0

(−b)nq(n(n+2js−2k)−n)/(2s)

(q)n

}

= −(1− b)
∞∑

n=1

(−1)nqn(n−1)/(2s)
n−1∑
`=0

b`

(q)`
. (9)

Now let s = 2, b = −1 and replace q by q2 in (9) so as to obtain
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A q-series of Ramanujan

Corollary

∞∑
m=0

qm(2m+1)

(−q2; q2)m

∞∑
n=0

qn(n−1)/2

(q2; q2)n
−
∞∑

m=0

q2m
2+3m+1

(−q2; q2)m

∞∑
n=0

qn(n+1)/2

(q2; q2)n

= −2

∞∑
n=1

(−1)nqn(n−1)/2
n−1∑
`=0

(−1)`

(q2; q2)`
. (10)

Andrews3 studied the function
∑∞

n=0 q
n(n+1)

2 /(q2; q2)n in
conjunction with four identities from the Lost Notebook out of
which two are quite difficult to prove.

Two of the series are special cases of the series∑∞
n=0 z

nqn
2/2/(q2; q2)n which is a q-analogue of Airy function and

which arises as a hypergeometric solution of a q-Painlevé equation.

3G. E. Andrews, Ramanujan’s “Lost” Notebook IV. Stacks and alternating parity
in partitions, Adv. Math. 53 (1984), 55–74.
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A congruence implied by the above result

Corollary

∞∑
m=0

qm(2m+1)

(−q2; q2)m

{
1 +

∞∑
n=1

qn(n−1)/2

(q2; q2)n
− 1

(−q;−q)∞

∞∑
m=0

q2m
2+3m+1

(−q2; q2)m

}
≡ 0(mod 2).

(11)

While the coefficients of the sum over n form the sequence
A179080 in OEIS, those of the other two (over m) are not even
included there.

All three sums seem to not have been studied before, but they,
indeed, deserve a serious study.

Atul Dixit (IIT Gandhinagar) The Rogers-Ramanujan dissection January 30, 2025 19 / 40



A congruence implied by the above result

Corollary

∞∑
m=0

qm(2m+1)

(−q2; q2)m

{
1 +

∞∑
n=1

qn(n−1)/2

(q2; q2)n
− 1

(−q;−q)∞

∞∑
m=0

q2m
2+3m+1

(−q2; q2)m

}
≡ 0(mod 2).

(11)

While the coefficients of the sum over n form the sequence
A179080 in OEIS, those of the other two (over m) are not even
included there.

All three sums seem to not have been studied before, but they,
indeed, deserve a serious study.

Atul Dixit (IIT Gandhinagar) The Rogers-Ramanujan dissection January 30, 2025 19 / 40



A congruence implied by the above result

Corollary

∞∑
m=0

qm(2m+1)

(−q2; q2)m

{
1 +

∞∑
n=1

qn(n−1)/2

(q2; q2)n
− 1

(−q;−q)∞

∞∑
m=0

q2m
2+3m+1

(−q2; q2)m

}
≡ 0(mod 2).

(11)

While the coefficients of the sum over n form the sequence
A179080 in OEIS, those of the other two (over m) are not even
included there.

All three sums seem to not have been studied before, but they,
indeed, deserve a serious study.

Atul Dixit (IIT Gandhinagar) The Rogers-Ramanujan dissection January 30, 2025 19 / 40



Further annihilation

We have

Corollary

s−1∑
k=0

{ ∞∑
m=0

(−1)sm−kq(sm+k)(sm+k+1)/(2s)

(q)m

∞∑
n=0

(−1)nqn(n+2js−2k−1)/(2s)

(q)n

}
= 0.

(12)

Letting s = 1, we obtain the trivial identity
∞∑
m=0

(−1)mqm(m+1)/2

(q)m

∞∑
n=0

(−1)nqn(n−1)/2

(q)n
= 0,

Letting s = 2 in (12) and then replacing q by q2, we obtain
∞∑

m=0

qm(2m+1)

(q2; q2)m

∞∑
n=0

(−1)nqn(n−1)/2

(q2; q2)n
=

∞∑
m=0

q(m+1)(2m+1)

(q2; q2)m

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n
.
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Further new results

It also follows easily by applying McIntosh’s identity twice (here
µ ∈ N):

∞∑
n=0

q(2n+µ)(2n+µ+1)/2

(q2; q2)n
= (−q)∞

∞∑
n=0

(−1)nqn(n+1)/2−µn

(q2; q2)n
.

The special cases for s > 2 are, to the best of our knowledge, new. For
example, when s = 3,

∞∑
m=0

(−1)mqm(3m+1)/2

(q)m

∞∑
n=0

(−1)nqn(n−1)/6

(q)n

−
∞∑

m=0

(−1)mq(3m+1)(3m+2)/6

(q)m

∞∑
n=0

(−1)nqn(n+3)/6

(q)n

+

∞∑
m=0

(−1)mq(m+1)(3m+2)/2

(q)m

∞∑
n=0

(−1)nqn(n+1)/6

(q)n
= 0.
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Ingredients in the proof of the main identity

Theorem (D. - Kumar (2024))

Let s ∈ N. For any complex numbers a, b and q such that |q| < 1,

∞∑
n=0

anbnqn
2

(aq)n(bq)n
=

s−1∑
k=0

∞∑
n=0

asn+kbn+jq(sn+k)(n+j)

(aq)n(bq)sn+k
= 1 + b

∞∑
n=1

anqn

(bq)n
.

This gives, in particular,

s−1∑
k=0

∞∑
m=0

bsm+kq(sm+k+n)(m+j)

(bq)m(qn+1)sm+k
= 1 +

∞∑
m=1

bmqm+n

(qn+1)m
,

s−1∑
k=0

∞∑
n=0

bsn+kq(sn+k)(m+n+j)

(bqm+1)n(q)sn+k
=

1

(bqm+1)∞
,

both of which are required in our proofs.
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,

s−1∑
k=0

∞∑
n=0

bsn+kq(sn+k)(m+n+j)

(bqm+1)n(q)sn+k
=

1

(bqm+1)∞
,

both of which are required in our proofs.
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Another identity of Ramanujan

On page 26 of the Lost Notebook, we find

∞∑
n=−∞

anqn
2/4

∞∑
n=0

(−a)nqn
2/4

(q)n
−

∞∑
n=−∞

(−a)nqn
2/4

∞∑
n=0

anqn
2/4

(q)n

= 2q1/4(q)∞

∞∑
m=0

a−2m−1qm
2+m

(bq)m
. (13)

It was proved by Andrews in Partitions: Yesterday and Today.

He also showed that Watson’s identities4

G(−q)ϕ(q)−G(q)ϕ(−q) = 2qH(q4)ψ(q2),

H(−q)ϕ(q) +H(q)ϕ(−q) = 2G(q4)ψ(q2),

where ψ(q) = (q2; q2)∞/(q; q
2)∞, follow as special cases of (13).

4G. N. Watson, The mock theta functions (2), Proc. London Math. Soc. 42
(1937), 274–304.
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An identity from the list of forty

Ramanujan’s list of forty identities5 involving G(q) and H(q) is
famous.

One of them is

G(q)H(−q) +G(−q)H(q) = 2(−q2; q2)2∞. (14)

It follows easily from (13) and (15).

5B. C. Berndt, G. Choi, Y.-S. Choi, H. Hahn, B. P. Yeap, A. J. Yee, H. Yesilyurt
and J. Yee, Ramanujan’s forty identities for the Rogers-Ramanujan functions
Mem. Amer. Math. Soc. 188 (2007), no. 880, 96 pp.
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Asymptotic analysis

Recall the generalized modular relation:

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
+

∞∑
m=0

a−2m−1qm
2+m

(bq)m

∞∑
n=0

anbnq(n+1)2/4

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/4 − (1− b)

∞∑
n=1

anqn
2/4

n−1∑
`=0

b`

(q)`
. (15)

How in the world could someone conceive such a relation?

Ramanujan was a master of asymptotic analysis, and we believe he
may have first got an idea about the existence of (15) through
such an analysis.
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Asymptotic analysis

Before Ramanujan obtained his own proofs of the
Rogers-Ramanujan identities

G(q) =
1

(q; q5)∞(q4; q5)∞
, H(q) =

1

(q2; q5)∞(q3; q5)∞
,

his belief in them stemmed from several pieces of evidence he
found for their existence.

For example, one of them was that both sides of the first identity

are asymptotically equal to exp
(

π2

15(1−q)

)
as q → 1−.
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A general result on asymptotics

In his notebooks as well as on page 359 of the Lost Notebook,
Ramanujan obtained an asymptotic formula for the series∑∞

n=0 a
nqbn

2+cn/(q)n.

Theorem (Ramanujan)

Let a, b, c, and q be real numbers such that a > 0, b > 0 and |q| < 1. Let
z denote the positive root of az2b + z − 1 = 0. Then as q → 1−,

∞∑
n=0

anqbn
2+cn

(q)n
∼ zc√

z + 2b(1− z)
exp

(
− 1

log(q)

(
Li2(az

2b) + b log2(z)
))

,

where the Li2(z) is the dilogarithm function defined for |z| < 1, by
Li2(z) :=

∑∞
n=1 z

n/n2, and for any z ∈ C by
Li2(z) := −

∫ z
0 log(1− u)/u du.
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Asymptotic formula for product of two such series

Theorem

Let a > 0 and s ∈ N. Let z1 denote the real positive root of
az1/s + z − 1 = 0. As q → 1−,

∞∑
n=0

anq
n2

2s

(q)n

∞∑
n=0

a−nsq
n2s
2

(q)n
∼

√
s

1 + (s− 1)z1
exp

(
− 1

log(q)

(
π2

6
+
s

2
log2(a)

))
,

(16)

Observe that the asymptotic formula does not involve a dilogarithm,
and, instead, only elementary functions.
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Proof of the asymptotic formula

Letting b = 1/(2s) and c = 0 in the above theorem, we see that

∞∑
n=0

anqn
2/(2s)

(q)n
∼ 1√

z1 + (1− z1)/s
exp

(
− 1

log(q)

(
Li2(az

1/s
1 ) +

1

2s
log2(z1)

))
,

(17)

where z1 is the positive root of az1/s + z − 1 = 0, and,
z1 + (1− z1)/s > 0.

Similarly, letting b = s/2 and c = 0 in the theorem, and replacing a by
a−s, we have

∞∑
n=0

a−nsqn
2s/2

(q)n
∼ 1√

z2 + s(1− z2)
exp

(
− 1

log(q)

(
Li2(a−szs2) +

s

2
log2(z2)

))
,

(18)

where z2 is the positive root of

a−szs + z − 1 = 0, (19)

and z2 + s(1− z2) > 0. Thus, z1 = a−szs2 and z1 + z2 = 1.
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Proof of the asymptotic formula

∞∑
n=0

anqn
2/(2s)

(q)n

∞∑
n=0

a−nsqn
2s/2

(q)n
∼ 1√

(z1 + (1− z1)/s)(z2 + s(1− z2))

× exp
(
−1

log(q)

(
Li2(az

1/s
1 ) + Li2(a

−szs2) + 1
2s log2(z1) + s

2 log2(z2)
))
.

Using the functional equation

Li2(z) + Li2(1− z) =
π2

6
− log(z) log(1− z),

and the facts z1 = a−szs2 and z1 + z2 = 1, we obtain

Li2(az
1/s
1 ) + Li2(a

−szs2) +
1

2s
log2(z1) +

s

2
log2(z2)

=
π2

6
+
s

2
log2(a).

Finally routine simplification leads us to the required asymptotic:

(z1 + (1− z1)/s)(z2 + s(1− z2)) = (1 + (s− 1)z1)
2/s.
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Guessing the theta function in Ramanujan’s formula
from the above asymptotic

Letting s = 2 in the above Theorem we see that as q → 1−,

∞∑
n=0

anqn
2/4

(q)n

∞∑
m=0

a−2mqm
2

(q)m
∼ 2

√
2

4 + a2 − a
√

4 + a2
exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
.

Similarly, it can be seen that

∞∑
m=0

a−2m−1qm
2+m

(q)m

∞∑
n=0

anq(n+1)2/4

(q)n
∼
√

2q1/4
(2 + a2 − a

√
4 + a2)

(4 + a2 − a
√

4 + a2)

× exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
.
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Guessing the theta function in Ramanujan’s formula
from the above asymptotic

Thus, as q → 1−,
∞∑

m=0

a−2mqm
2

(q)m

∞∑
n=0

anqn
2/4

(q)n
+

∞∑
m=0

a−2m−1qm
2+m

(q)m

∞∑
n=0

anq(n+1)2/4

(q)n

∼
√

2

(
2 + q1/4(2 + a2 − a

√
4 + a2)

)
(4 + a2 − a

√
4 + a2)

exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
∼
√

2 exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
. (20)

Now, as q → 1−,

1

(q; q)∞
∼
√
− log(q)

2π
exp

(
− π2

6 log(q)

)
,

whereas
∞∑

n=−∞
anqn

2/4 ∼ 2

√
π

− log(q)
exp

(
− log2(a)

log(q)

)
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Guessing the theta function in Ramanujan’s formula
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(q)m

∞∑
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anqn
2/4

(q)n
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∞∑
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a−2m−1qm
2+m

(q)m
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anq(n+1)2/4
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√
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√
4 + a2)

exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
∼
√

2 exp

{
− 1

log(q)

(
π2

6
+ log2(a)

)}
. (20)

Now, as q → 1−,

1

(q; q)∞
∼
√
− log(q)

2π
exp

(
− π2

6 log(q)

)
,

whereas
∞∑

n=−∞
anqn

2/4 ∼ 2

√
π

− log(q)
exp

(
− log2(a)

log(q)

)
Atul Dixit (IIT Gandhinagar) The Rogers-Ramanujan dissection January 30, 2025 32 / 40



The identity

This may have led Ramanujan to

∞∑
m=0

a−2mqm
2

(q)m

∞∑
n=0

anqn
2/4

(q)n
+

∞∑
m=0

a−2m−1qm
2+m

(q)m

∞∑
n=0

anq(n+1)2/4

(q)n

=
1

(q; q)∞

∞∑
n=−∞

anqn
2/4.

But he goes further and obtains

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
+
∞∑
m=0

a−2m−1qm
2+m

(bq)m

∞∑
n=0

anbnq(n+1)2/4

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/4 − (1− b)

∞∑
n=1

anqn
2/4

n−1∑
`=0

b`

(q)`
.
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Concluding remarks

After finding two algebraic relations between G(q) and H(q),
Ramanujan6 wrote ‘Each of these formulae is the simplest of a
large class.

It is often believed that the ‘large class’ in Ramanujan’s remark is
the set of forty identities for G(q) and H(q).

In light of the fact that (1) and (13) lead to some of these
identities as corollaries, could it be that Ramanujan is referring to
such generalized modular relations when he says ‘large class’?

6S. Ramanujan, Algebraic relations between certain infinite products,
Proc. London Math. Soc. (2) (1920), p. xviii.
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Concluding remarks

Our main result shows that a theta function can be dissected as a
sum of s number of products of generalized Rogers-Ramanujan
functions, where s is any natural number.

Its special case s = 2 corresponds to Ramanujan’s result whose
special cases are two modular relations for G(q) and H(q) (when
a = b = 1), or a result connecting the fifth order mock theta
functions with G(q) and H(q) (when a = b = −1.

The case s = 1 gives the Jacobi triple product identity (when
a = b = 1), and a relation between the third order mock theta
functions φ(q) and ψ(q) (when a = b = −1).

Thus, in a sense, both the cases s = 1, 2 correspond to results
which dwell in the theory of modular forms or mock modular
forms.
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Guessing Rogers’ first identity

However, for s > 2, the identities seem to transcend the
modular/mock modular worlds. We explain this now.

An asymptotic analysis of the series occurring in Rogers’ identity
G(q) = (−q2; q2)∞

∑∞
n=0 q

n2
/(q4; q4)n, yields, as q → 1−,

∑∞
m=0

qm
2

(q)m∑∞
n=0

qn2

(q4;q4)n

∼ 1√
2
exp

{
− 1

log(q)

(
Li2(1− u) + log2(u)−Li2(u)

4
−log2(1− u)

16

)}
,

where u = (
√

5− 1)/2. But

Li2(1− u)− 1

4
Li2(u) + log2(u)− 1

16
log2(1− u) =

π2

24
,

(−q2; q2)∞ =
1

(q2; q4)∞
∼ 1√

2
exp

{
− π2

24 log(q)

}
,

so that the identity can be guessed.
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Unlikelihood of “higher analogues” of Rogers’ identity

Recall the s = 3 case of our main result with a = b = 1:

∞∑
m=0

q
3m2

2

(q)m

∞∑
n=0

q
n2

6

(q)n
+ q

1
6

∞∑
m=0

q
3m2

2 +m

(q)m

∞∑
n=0

q
n(n+4)

6

(q)n
+ q

2
3

∞∑
m=0

q
3m2

2 +2m

(q)m

∞∑
n=0

q
n(n+2)

6

(q)n

=
1

(q)∞

∞∑
n=−∞

qn
2/6.

Are
∑∞

m=0
q3m

2/2

(q)m
and

∑∞
n=0

qn
2/6

(q)n
related in the same way as the series in

Rogers’ identity?

If v is the positive root of z3 + z − 1 = 0, then as q → 1−,∑∞
m=0 q

3
2m

2

/(q)m∑∞
n=0 q

n2/(q6; q6)n
∼ 1√

3
exp

{
− 1

log(q)

(
Li2(1− v) +

5

4
log2(v)− 1

6
Li2(v)

)}
.

It is true that 6Li2(v)− 30Li2(1− v)− 36Li2(−v2) = π2, but using this, we
see that the expression in the parantheses still depends on v!
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Concluding remarks

Recall the identity on page 26 of the Lost Notebook:

∞∑
n=−∞

anqn
2/4

∞∑
n=0

(−a)nqn
2/4

(q)n
−

∞∑
n=−∞

(−a)nqn
2/4

∞∑
n=0

anqn
2/4

(q)n

= 2q1/4(q)∞

∞∑
m=0

a−2m−1qm
2+m

(bq)m
.

Can this identity be generalized in a similar manner as (1) was
generalized to our main result?

Do there exist analogues of Ramanujan’s result where one has sum
of products of three or more generalized Rogers-Ramanujan
functions?

This is because identities for sums or differences of products of
quadruples of Rogers-Ramanujan functions G(q), H(q) do exist.
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Concluding remarks: The work of Bressoud, O. Santos
and Mondek

Let a = b = 1 in the series
∑∞

m=0 a
−smqsm(m−1)/2+m(k+s/2)/(bq)m

occurring in the main result, where s ∈ N and 0 ≤ k ≤ s− 1.

Its special case when s is even and k ≤ s/2 is considered by
Bressoud, O. Santos and Mondek7 who showed that three different
restricted partitions have it as their generating function.

This suggests the remaining cases may also be of interest.

7D. M. Bressoud, J. P. O. Santos and P. Mondek, A family of partition identities
proved combinatorially, Ramanujan J. 4 (2000), 311–315.
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Its special case when s is even and k ≤ s/2 is considered by
Bressoud, O. Santos and Mondek7 who showed that three different
restricted partitions have it as their generating function.

This suggests the remaining cases may also be of interest.

7D. M. Bressoud, J. P. O. Santos and P. Mondek, A family of partition identities
proved combinatorially, Ramanujan J. 4 (2000), 311–315.
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Thank You!!
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