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Dyson’s rank and rank parity functions

Dyson’s rank of a partition is defined as the largest part of the
partition minus the number of parts.

For example, the rank of the partition 6 + 5 + 5 + 4 + 2 + 1 + 1 + 1
of 25 is 6− 8 = −2.

Enumeration of partitions belonging to a particular class based on
the parity of their rank is often useful, for, their generating
functions often turn out to be important in combinatorics and
modular forms.
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Well-known rank parity functions

Let N(m,n) denote the number of partitions of n with rank m.

The generating function of N(m,n) is given by
∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =
∞∑
n=0

qn
2

(zq)n(z−1q)n
,

where (a)0 := (a; q)0 = 1,

(a)n := (a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

(a)∞ := (a; q)∞ = lim
n→∞

(a; q)n, |q| < 1,

(a)−n := (1− a/qn)−1
(
1− a/qn−1

)−1 · · · (1− a/q)−1 , n ≥ 1.

If we now let z = −1, we see that the generating function of the
number of partitions of n with even rank minus those with odd
rank is Ramanujan’s third order mock theta function

f(q) :=
∞∑
n=0

qn
2

(−q; q)2n
.
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Well-known rank-parity functions

One can combinatorially show that the generating function of
r(m,n), that is, the number of partitions of n into distinct parts
with rank m is given by

∞∑
n,m=0

r(m,n)zmqn =

∞∑
n=0

qn(n+1)/2

(zq)n
.

Here, the associated rank parity function is a celebrated function
of Ramanujan given by

σ(q) :=

∞∑
n=0

qn(n+1)/2

(−q)n
.

q1/24σ(q) is a prototypical example of a quantum modular form.

The coefficients of σ(q) have properties governed by the arithmetic
of Q(

√
6).
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Rogers-Ramanujan partitions

Consider partitions in which parts differ by at least 2.

These are called the Rogers–Ramanujan partitions because they
are generated by the “sum side” of the first Rogers–Ramanujan
identity , namely,

∞∑
n=0

qn
2

(q)n
=

1

(q; q5)∞(q4; q5)∞
.

The rank parity function associated with partitions into part with
gap at least 1 is rich in properties and has implications in
algebraic number theory and quantum modular forms apart from
theory of partitions and q-series.

Thus, it makes sense to study the corresponding rank parity
function associated to partitions into parts with gap at least 2,
that is, the Rogers-Ramanujan partitions.
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The rank parity function σ2(q)

Let R(m,n) to be the number of Rogers–Ramanujan partitions of
n with rank m. Our first result is1

Theorem (D.-Kumar-Srivastava)

We have

∞∑
n=0

∞∑
m=−∞

R(m,n)zmqn = 1 +
∞∑
n=1

zn−1qn
2

(zq)n
.

Let z = −1 in this result shows that the generating function of the
excess number of Rogers–Ramanujan partitions with odd rank over
those with even rank is the function −2 + σ2(q), where

σ2(q) :=
∞∑
n=0

(−1)nqn
2

(−q)n
= 1− q + q2 − q3 + 2q4 − 2q5 + q6 − q7 + · · · .

1A. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity
function associated with the Rogers-Ramanujan partitions, submitted for publication.
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 6 / 45



The rank parity function σ2(q)

Let R(m,n) to be the number of Rogers–Ramanujan partitions of
n with rank m. Our first result is1

Theorem (D.-Kumar-Srivastava)

We have

∞∑
n=0

∞∑
m=−∞

R(m,n)zmqn = 1 +

∞∑
n=1

zn−1qn
2

(zq)n
.

Let z = −1 in this result shows that the generating function of the
excess number of Rogers–Ramanujan partitions with odd rank over
those with even rank is the function −2 + σ2(q), where

σ2(q) :=
∞∑
n=0

(−1)nqn
2

(−q)n
= 1− q + q2 − q3 + 2q4 − 2q5 + q6 − q7 + · · · .

1A. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity
function associated with the Rogers-Ramanujan partitions, submitted for publication.
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 6 / 45



The rank parity function σ2(q)

Let R(m,n) to be the number of Rogers–Ramanujan partitions of
n with rank m. Our first result is1

Theorem (D.-Kumar-Srivastava)

We have

∞∑
n=0

∞∑
m=−∞

R(m,n)zmqn = 1 +

∞∑
n=1

zn−1qn
2

(zq)n
.

Let z = −1 in this result shows that the generating function of the
excess number of Rogers–Ramanujan partitions with odd rank over
those with even rank is the function −2 + σ2(q), where

σ2(q) :=

∞∑
n=0

(−1)nqn
2

(−q)n
= 1− q + q2 − q3 + 2q4 − 2q5 + q6 − q7 + · · · .

1A. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity
function associated with the Rogers-Ramanujan partitions, submitted for publication.
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 6 / 45



Proof

Let n be the number of parts and k be the largest part of a
Rogers–Ramanujan partition.

Separate out the first 2j − 1 nodes from
j-th part of the partition counted from the bottom, where 1 ≤ j ≤ n.
The dotted region, thus, contributes q1+3+···+(2n−1) = qn

2

.

Next, 1/(zq)n generates the partition to the right of the dotted region
with z keeping track of k − (2n− 1).

Thus, zn−1qn
2

(zq)n
generates a Rogers–Ramanujan partition where the

number of parts is n and z keeps track of the rank k − n.

Another proof using MacMahon’s Ω-operator method:
∞∑

n=0

∞∑
m=−∞

R(m,n)zmqn = 1 +
∞∑
j=1

∞∑
n1=1

∞∑
n2=n1+2

· · ·
∞∑

nj=nj−1+2

znj−jqn1+n2+···+nj .
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Rascoe partitions

John Tyler Rascoe2 considered an interesting class of restricted
partitions, namely, the partitions of a positive integer into distinct
parts in which the number of parts itself is a part of the partition.

We call such partitions as Rascoe partitions.

The Rascoe partitions of 11 are 9 + 2, 7 + 3 + 1 and 6 + 3 + 2.
Let a(n) denote the number of Rascoe partitions of n. Then
Rascoe gave the following generating function of a(n):

∞∑
n=1

a(n)qn =

∞∑
n=1

qn(n+1)/2
n∑

m=1

[
n− 1

m− 1

]
qm(m−1)

(q)m−1
.

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024
https://oeis.org/A240855.
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Non-Rascoe partitions

Define a non-Rascoe partition of a positive integer n to be a
partition of n into distinct parts in which the number of parts is
not a part of the partition.

So the non-Rascoe partitions of 11 are
11, 10 + 1, 8 + 3, 8 + 2 + 1, 7 + 4, 6 + 5, 6 + 4 + 1, 5 + 4 + 2 and
5 + 3 + 2 + 1.

Let b(n) denote the number of non-Rascoe partitions of n.

Clearly,

∞∑
n=0

b(n)qn = (−q)∞ −
∞∑
n=1

qn(n+1)/2
n∑

m=1

[
n− 1

m− 1

]
qm(m−1)

(q)m−1
.
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The main result

The two objects introduced so far, namely, the rank parity

function σ2(q) :=
∑∞

n=0
(−1)nqn2

(−q)n and the number of non-Rascoe
partitions of n are intimately connected.

Theorem (D.-Kumar-Srivastava)

∞∑
n=0

b(n)qn = (−q)∞σ2(q) =
∞∑
n=0

(−1)nqn
2
(−qn+1)∞.

In other words, the non-Rascoe partitions are generated by (−q)∞σ2(q).
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Two applications of the main result

Theorem

The number b(n) is odd if and only if n = m(5m+ 1)/2, where m ∈ Z.

Proof.

Our main result gives
∞∑
n=0

b(n)qn = (−q)∞
∞∑
n=0

(−1)nqn
2

(−q)n
≡ (q)∞

∞∑
n=0

qn
2

(q)n
(mod 2).

Then an application of the first Rogers-Ramanujan identity followed by
Jacobi triple product identity yields

(q)∞

∞∑
n=0

qn
2

(q)n
=

(q)∞
(q; q5)∞(q4; q5)∞

= (q2; q5)∞(q3; q5)∞(q5; q5)∞

=
∞∑

n=−∞
(−1)nqn(5n+1)/2.
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Two applications of the main result

Theorem

Let P (j, n) be the number of partitions of n into distinct parts with the
exception that the smallest part, say j, is allowed to repeat exactly j
number of times. Then the excess number of such partitions with even
smallest part over those with odd smallest part equals the number of
non-Rascoe partitions of n, that is,

n∑
j=0

(−1)jP (j, n) = b(n),

where, P (0, n) is, clearly, the number of partitions of n into distinct
parts.
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Example

Let n = 11. We know that b(11) = 9.

P (0, 11) = 12 (the number of partitions of 11 into distinct parts)

P (1, 11) = 5 as the number of admissible partitions are
10 + 1, 8 + 2 + 1, 7 + 3 + 1, 6 + 4 + 1 and 5 + 3 + 2 + 1.

P (2, 11) = 2, since only 7 + 2 + 2 and 4 + 3 + 2 + 2 are admissible.

Then P (0, 11)− P (1, 11) + P (2, 11) = 12− 5 + 2 = 9, which agrees
with b(11).

Andrews and El Bachraoui3 have recently studied partitions where
the smallest part appears exactly k times, where k ∈ N is fixed,
and the remaining parts are distinct.

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025), 129537 (16 pages).
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Hecke-Rogers type representation for σ2(q)

An important feature of σ(q) is that it has a Hecke-Rogers type
representation due to Andrews, Dyson and Hickerson4, namely,

σ(q) =

∞∑
n≥0
|j|≤n

(−1)n+jqn(3n+1)/2−j2(1− q2n+1).

For σ2(q), we found the following Hecke-Rogers type
representations:

Theorem

(i) σ2(q) =
1

(−q)∞

{
1 +

∞∑
n=1

(−1)nqn(5n−1)/2(1 + q2n)

(1 + qn)

n∑
j=0

(−1)j
(q)j

(
−q1−n

)j }
,

(ii) σ2(q) =
1

(−q)∞

{
1−

∞∑
n=1

(−1)nqn(5n−1)/2(1 + q2n)

(1− qn)

n−1∑
m=0

(−1)m
(q)m

(−q−n)m
}
.

4G. E. Andrews, F. J. Dyson and D. Hickerson, Partitions and indefinite
quadratic forms, Invent. Math. 91 (1988), 391–407.
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Generating functions of Rascoe & non-Rascoe partitions

Theorem

(i)

∞∑
n=1

a(n)qn =

∞∑
n=1

qn(n+1)/2
n∑

m=1

[
n− 1

m− 1

]
qm(m−1)

(q)m−1
, (1)

(ii)

∞∑
n=1

b(n)qn =

∞∑
n=1

qn(n+1)/2
n∑

m=1

[
n− 1

m− 1

]
qm

2

(q)m
. (2)

Proof: Assume n to be the number of parts in a partition, and m to
be the number of parts greater than n. Clearly, 0 ≤ m ≤ n− 1.
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Generating functions of Rascoe & non-Rascoe partitions

Region A is formed by taking k nodes from the kth part of the
partition (counted from below), for 1 ≤ k ≤ n.

The sub-partition forming the region B has m+ 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are ≥ n and distinct.

The sub-partition in region C is generated by 1/(q)m as there can
be at most m number of parts.

Finally, Region D has at most (n−m− 1) parts, each ≤ m, and
is, therefore, generated by

[
n−1
m

]
.

Thus, a Rascoe partition with n number of parts is generated by

qn(n+1)/2
n−1∑
m=0

[
n− 1

m

]
qm(m+1)

(q)m
.

Now sum over n from 1 to ∞ and replace m by m− 1 to arrive at
the required generating function.
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Generating functions of Rascoe & non-Rascoe partitions

To prove

∞∑
n=1

b(n)qn =

∞∑
n=1

qn(n+1)/2
n∑

m=1

[
n− 1

m− 1

]
qm

2

(q)m
,

consider the following Ferrers diagram of a non-Rascoe partition.
Clearly, 1 ≤ m ≤ n.

The region A is formed from parts > n which are also distinct, it
contains exactly the parts n+ 1, · · · , n+m. Therefore, it
contributes qnm+m(m+1)/2 towards the generating function.
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Region C is generated by 1/(q)m as there can be at most m
number of parts.

Finally, region D is a sub-partition consisting of at most (n−m)
parts, each ≤ (m− 1), and is thus generated by

[
n−1
m−1

]
. Therefore,

the non-Rascoe partitions with n number of parts are generated by

n∑
m=1

[
n− 1

m− 1

]
qnm+m(m+1)/2q(n−m)(n−m+1)/2

(q)m
.

Summing over n yields the required generating function.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 18 / 45



Generating functions of Rascoe & non-Rascoe partitions

Since the region B is formed by taking k nodes from kth part of the
partition, where 1 ≤ k ≤ n−m, it will contribute q(n−m)(n−m+1)/2.

Region C is generated by 1/(q)m as there can be at most m
number of parts.

Finally, region D is a sub-partition consisting of at most (n−m)
parts, each ≤ (m− 1), and is thus generated by

[
n−1
m−1

]
. Therefore,

the non-Rascoe partitions with n number of parts are generated by

n∑
m=1

[
n− 1

m− 1

]
qnm+m(m+1)/2q(n−m)(n−m+1)/2

(q)m
.

Summing over n yields the required generating function.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 18 / 45



Generating functions of Rascoe & non-Rascoe partitions

Since the region B is formed by taking k nodes from kth part of the
partition, where 1 ≤ k ≤ n−m, it will contribute q(n−m)(n−m+1)/2.

Region C is generated by 1/(q)m as there can be at most m
number of parts.

Finally, region D is a sub-partition consisting of at most (n−m)
parts, each ≤ (m− 1), and is thus generated by

[
n−1
m−1

]
.

Therefore,
the non-Rascoe partitions with n number of parts are generated by

n∑
m=1

[
n− 1

m− 1

]
qnm+m(m+1)/2q(n−m)(n−m+1)/2

(q)m
.

Summing over n yields the required generating function.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 18 / 45



Generating functions of Rascoe & non-Rascoe partitions

Since the region B is formed by taking k nodes from kth part of the
partition, where 1 ≤ k ≤ n−m, it will contribute q(n−m)(n−m+1)/2.

Region C is generated by 1/(q)m as there can be at most m
number of parts.

Finally, region D is a sub-partition consisting of at most (n−m)
parts, each ≤ (m− 1), and is thus generated by

[
n−1
m−1

]
. Therefore,

the non-Rascoe partitions with n number of parts are generated by

n∑
m=1

[
n− 1

m− 1

]
qnm+m(m+1)/2q(n−m)(n−m+1)/2

(q)m
.

Summing over n yields the required generating function.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 18 / 45



Generating functions of Rascoe & non-Rascoe partitions

Since the region B is formed by taking k nodes from kth part of the
partition, where 1 ≤ k ≤ n−m, it will contribute q(n−m)(n−m+1)/2.

Region C is generated by 1/(q)m as there can be at most m
number of parts.

Finally, region D is a sub-partition consisting of at most (n−m)
parts, each ≤ (m− 1), and is thus generated by

[
n−1
m−1

]
. Therefore,

the non-Rascoe partitions with n number of parts are generated by

n∑
m=1

[
n− 1

m− 1

]
qnm+m(m+1)/2q(n−m)(n−m+1)/2

(q)m
.

Summing over n yields the required generating function.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 18 / 45



Alternate representation of σ2(q) using conjugation

Theorem
∞∑
n=0

znqn
2

(−q)n
=

1

(−q)∞

∞∑
n=0

qn(n+1)/2
n∑
i=0

ziqi(i−1)/2

(q)n−i
,

In particular, σ2(q) =
1

(−q)∞

∞∑
n=0

qn(n+1)/2
n∑
i=0

(−1)iqi(i−1)/2

(q)n−i
.

Proof: Let P (i,N) denote the number of partitions of N into distinct
parts, except the smallest part, say i, which repeats exactly i number
of times.
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Proof of the alternate representation of σ2(q)

Then qi
2

generates the dotted region and (−qi+1)∞ will generate the
portion above it.

Therefore,
∞∑
N=0

N∑
i=0

P (i,N)ziqN =
∞∑
i=0

ziqi
2
(−qi+1)∞. (3)

Take the conjugate of the above partition.
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Proof of the alternate representation of σ2(q)

In the conjugate partition, the largest part, say n, repeats i times.

No number > (n− i) and < n can be a part since the smallest part i in
the original partition appears exactly i number of times, and so the
portion below the dotted region must contain at least one occurrence of
each part ≤ (n− i).
The dotted region thus contributes qni towards the generating function,

and q(n−i)(n−i+1)/2

(q)n−i
generates the portion below it.

The corresponding generating function of the number of such conjugate
partitions, where z now keeps track of the number of times the largest
part repeats, is given by

∞∑
n=0

n∑
i=0

ziqniq(n−i)(n−i+1)/2

(q)n−i
=
∞∑
n=0

qn(n+1)/2
n∑
i=0

ziqi(i−1)/2

(q)n−i
. (4)

The result now follows from (3) and (4).
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A finite analogue of an identity of Bhargava and Adiga

Bhargava and Adiga generalized a result of Ramanujan.

An equivalent form of this generalization was given by Srivastava5:

∞∑
n=0

qn(n−1)/2
(λ/x)n

(y)n

(−x)n

(q)n
=

(x)n
(y)n

∞∑
n=0

qn(n−1)/2
(λ/y)n
(x)n

(−y)n

(q)n
.

We need a finite version of this transformation to complete the
proof of our main result.

Theorem

n∑
m=0

[
n

m

]
(−λ/a)ma

mqm(m+1)/2

(−bq)m
=

(−aq)n
(−bq)n

n∑
m=0

[
n

m

]
(−λ/b)mbmqm(m+1)/2

(−aq)m
.

We derived this result using Andrews’ finite Heine transformation.

5H. M. Srivastava, A note on a generalization of a q-series transformation of
Ramanujan, Proc. Japan Acad. Ser. A 63 (1987), 143–145.
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Final step towards the proof of the main result

Letting a→ 0 in the above identity, we obtain
n∑

m=0

[
n

m

] (
−bqm+1

)
n−m λ

mqm
2

=

n∑
m=0

[
n

m

]
(−λ/b)mbmqm(m+1)/2. (5)

Put λ = 1 and b = −q−1 in (5) to get
n∑

m=0

[
n

m

]
qm

2
(qm)n−m = (q)n

n∑
m=0

(−1)mqm(m−1)/2

(q)n−m
.

Recall that

σ2(q) =
1

(−q)∞

∞∑
n=0

qn(n+1)/2
n∑
i=0

(−1)iqi(i−1)/2

(q)n−i
.

Therefore,

σ2(q) =
1

(−q)∞

∞∑
n=0

qn(n+1)/2
n∑

m=0

[
n− 1

m− 1

]
qm

2

(q)m
,

which proves the result.
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Rascoe partitions and “almost” distinct partitions

Theorem

Let P (j, n) be the number of partitions of n into distinct parts with the
exception that the smallest part, say j, is allowed to repeat exactly j
number of times. Then the excess number of such partitions with even
smallest part over those with odd smallest part equals the number of
non-Rascoe partitions of n, that is,

n∑
j=0

(−1)jP (j, n) = b(n),

where, P (0, n) is, clearly, the number of partitions of n into distinct
parts.
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Proof

Recall that we have proved

∞∑
N=0

N∑
i=0

P (i,N)ziqN =

∞∑
i=0

ziqi
2
(−qi+1)∞.

The result simply follows by letting z = −1 in the above identity
and using the main result

∞∑
n=0

b(n)qn = (−q)∞σ2(q) =
∞∑
n=0

(−1)nqn
2
(−qn+1)∞.
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Generalized Rogers-Ramanujan partitions and identities

Let ` ∈ N ∪ {0}. We define a generalized Rogers–Ramanujan
partition of a number N to be a partition of N into parts > ` and
in which the difference between any two parts is greater than or
equal to 2.

Garrett, Ismail and Stanton6 showed that the generating function
of the number of generalized Rogers–Ramanujan partitions
satisfies the generalized Rogers–Ramanujan identity

∞∑
n=0

qn
2+`n

(q)n
=

(−1)`q−`(`−1)/2c`(q)

(q; q5)∞(q4; q5)∞
− (−1)`q−`(`−1)/2d`(q)

(q2; q5)∞(q3; q5)∞
,

where c`(q) and d`(q) are Laurent polynomials in q defined by

c`(q) :=
∑
j

(−1)jq
j(5j−3)

2

[
`− 1⌊
`+1−5j

2

⌋], d`(q) :=
∑
j

(−1)jq
j(5j+1)

2

[
`− 1⌊
`−1−5j

2

⌋].

6K. Garrett, M. E. H. Ismail and D. Stanton, Variants of Rogers–Ramanujan
identities, Adv. Appl. Math. 23 (1999), 274–299.
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in which the difference between any two parts is greater than or
equal to 2.

Garrett, Ismail and Stanton6 showed that the generating function
of the number of generalized Rogers–Ramanujan partitions
satisfies the generalized Rogers–Ramanujan identity

∞∑
n=0

qn
2+`n

(q)n
=

(−1)`q−`(`−1)/2c`(q)

(q; q5)∞(q4; q5)∞
− (−1)`q−`(`−1)/2d`(q)

(q2; q5)∞(q3; q5)∞
,

where c`(q) and d`(q) are Laurent polynomials in q defined by

c`(q) :=
∑
j

(−1)jq
j(5j−3)

2

[
`− 1⌊
`+1−5j

2

⌋], d`(q) :=
∑
j

(−1)jq
j(5j+1)

2

[
`− 1⌊
`−1−5j

2

⌋].
6K. Garrett, M. E. H. Ismail and D. Stanton, Variants of Rogers–Ramanujan

identities, Adv. Appl. Math. 23 (1999), 274–299.
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Generalizations of the previous results

Throughout the sequel, we consider ` ∈ N ∪ {0}.

Theorem

∞∑
N=0

∞∑
m=−∞

R`(m,N)zmqN = 1 +

∞∑
n=1

zn+`−1qn
2+`n

(zq)n
.

Let n denote the number of parts of a partition.
A generalized Rascoe (resp. non-Rascoe) partition of N , associated
with `, is a partition of N into distinct parts containing (resp. not
containing) n+ ` as a part.

Theorem
∞∑
N=1

a`(N)qN =
∞∑
n=1

qn(n+1)/2
n−1∑
m=0

[
n+ `− 1

m+ `

]
q(m+`)(m+1)

(q)m
,

∞∑
N=1

b`(N)qN =

∞∑
n=1

qn(n+1)/2
n∑

m=0

[
n+ `− 1

m+ `− 1

]
qm

2+`m

(q)m
.
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A generalized rank-parity function

Define

σ2,`(q) :=

∞∑
n=0

(−1)nqn
2+`n

(−q)n
.

When ` is odd, σ2,`(q) is the excess number of generalized
Rogers–Ramanujan partitions with even rank over those with odd
rank, whereas for ` even, the same is counted by 2− σ2,`(q).

Theorem
∞∑
n=0

b`(n)qn = (−q)∞σ2,`(q).

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 28 / 45



A generalized rank-parity function

Define

σ2,`(q) :=

∞∑
n=0

(−1)nqn
2+`n

(−q)n
.

When ` is odd, σ2,`(q) is the excess number of generalized
Rogers–Ramanujan partitions with even rank over those with odd
rank, whereas for ` even, the same is counted by 2− σ2,`(q).

Theorem
∞∑
n=0

b`(n)qn = (−q)∞σ2,`(q).

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 28 / 45



A generalized rank-parity function

Define

σ2,`(q) :=

∞∑
n=0

(−1)nqn
2+`n

(−q)n
.

When ` is odd, σ2,`(q) is the excess number of generalized
Rogers–Ramanujan partitions with even rank over those with odd
rank, whereas for ` even, the same is counted by 2− σ2,`(q).

Theorem
∞∑
n=0

b`(n)qn = (−q)∞σ2,`(q).

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parity function 02–10–2025 28 / 45



Parity of b`(n)

Theorem

Let ` ∈ N ∪ {0} and let b`(n) denote the generalized non-Rascoe partitions of
n. Also, let p(N,M, k) denote the number of partitions of k into at most M
parts, each ≤ N . Then,

∞∑
n=0

b`(n)qn

≡
∞∑

j,m=−∞
k=0

(
p
(
`− 1−

⌊
`+1−5j

2

⌋
,
⌊
`+1−5j

2

⌋
, k
)

+ p
(
`− 1−

⌊
`−1−5m

2

⌋
,
⌊
`−1−5m

2

⌋
, k
))

× q
j(5j−3)

2 +
m(5m+1)

2 − `(`−1)
2 +k (mod 2).

Corollary

(i) b1(n) is odd if and only if n = m(5m−3)
2 , where m ∈ Z,

(ii) b2(n) is odd if and only if n = m(5m+1)
2 − 1 or n = m(5m−3)

2 − 1, where
m ∈ Z.
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Hecke-Rogers type representations for σ2,`(q)

Theorem

σ2,`(q) =
1

(−q)∞

{
(−q)` −

∞∑
n=1

(−1)n+`q
n(5n−1)

2
+2`n(1 + q`+2n)(qn+1)`−1

×
n+`−1∑
m=0

(−1)m
(q)m

(−q−n)m
}
,

σ2,`(q) =
1

(−q)∞

{
(−q)` +

∞∑
n=1

(−1)nq
n(5n−1)

2
+2`n(1 + q`+2n)(−qn+1)`−1

×
n∑

m=0

(−1)m
(q)m

(−q1−n−`)m
}

A curious identity needed to show the equivalence:

(−1)n
(q)n

(−q)n

n∑
j=0

(−1)j(−1)jq−j(n+`)

(q)j
= (−1)n+` (q)n+`

(−q)n+`

n+∑̀
j=0

(−1)j(−1)jq−jn

(q)j
.
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A generalized modular relation of Ramanujan

Page 27 of Ramanujan’s Lost Notebook contains a beautiful identity
first proved by Andrews7:

For a ∈ C\{0}, and b ∈ C,

∞∑
m=0

a−2mqm
2

(bq)m

∞∑
n=0

anbnqn
2/4

(q)n
+
∞∑
m=0

a−2m−1qm
2+m

(bq)m

∞∑
n=0

anbnq(n+1)2/4

(q)n

=
1

(bq)∞

∞∑
n=−∞

anqn
2/4 − (1− b)

∞∑
n=1

anqn
2/4

n−1∑
`=0

b`

(q)`
.

This identity can be used to relate the generating functions of b`(n)
and b`+1(n).

7G.E. Andrews, Partitions: Yesterday and Today, New Zealand Math. Soc.,
Wellington, 1979.
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A relation between the generating functions of b`(n) and
b`+1(n)

Theorem

For ` ∈ N ∪ {0},

∞∑
m=0

(−1)mqm
2+m`

(−q)m

∞∑
n=0

(−1)nqn
2−n`

(q)2n
−
∞∑

m=0

(−1)mqm
2+m+m`

(−q)m

∞∑
n=0

(−1)nq(n+1)2−n`

(q)2n+1

=
1

(−q)∞

∞∑
n=−∞

(−1)nqn
2−n` − 2

∞∑
n=1

(−1)nqn
2−n`

2n−1∑
k=0

(−1)k

(q)k
.

∞∑
m=0

(−1)mqm
2+m`

(−q)m

∞∑
n=0

(−1)nqn
2+n−n`

(q)2n+1
+

∞∑
m=0

(−1)mqm
2+m+m`

(−q)m

∞∑
n=0

(−1)nqn
2+n−n`+ `

2

(q)2n

=
−1

(−q)∞

∞∑
n=−∞

(−1)nqn
2+n−n` + 2

∞∑
n=0

(−1)nqn
2+n−n`

2n∑
k=0

(−1)k

(q)k
.
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Generating functions of b1(n), b2(n) and tenth order
mock theta functions

Corollary

(i)

∞∑
m=0

(−1)mqm
2

(−q)m

∞∑
n=0

(−1)nqn
2

(q)2n
−
∞∑

m=0

(−1)mqm
2+m

(−q)m

∞∑
n=0

(−1)nq(n+1)2

(q)2n+1

=
1

(−q)∞

∞∑
n=−∞

(−1)nqn
2

− 2

∞∑
n=1

(−1)nqn
2
2n−1∑
k=0

(−1)k

(q)k
.

(ii)

∞∑
m=0

(−1)mqm
2

(−q)m

∞∑
n=0

(−1)nqn
2+n

(q)2n+1
+

∞∑
m=0

(−1)mqm
2+m

(−q)m

∞∑
n=0

(−1)nqn
2+n

(q)2n

=
−1

(−q)∞

∞∑
n=−∞

(−1)nqn
2+n + 2

∞∑
n=0

(−1)nqn
2+n

2n∑
k=0

(−1)k

(q)k
.

Tenth order mock theta functions:

X(q) :=

∞∑
n=0

(−1)nqn
2

(−q)2n
, and χ(q) :=

∞∑
n=0

(−1)nq(n+1)2

(−q)2n+1
.
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A congruence

Theorem

Let cX(n) and cχ(n) be the coefficients of the tenth order mock theta
functions X(q) and χ(q). Then, for k ∈ N,

k∑
n=0

b(n)cX(k − n) + b1(n)cχ(k − n) ≡ 0 (mod 2).

Kang, Kim, Matsusaka and Yoo8 proved c5(40n− 1) ≡ cX10(n)
(mod 2) and c5(40n− 9) ≡ cχ10(n) (mod 2), where c5(n) is the Fourier

coefficient of j5(τ) := 1
q

(q;q)6∞
(q5;q5)6∞

= 1
q −6 +

∑∞
n=1 c5(n)qn. Hence, we have

k∑
n=0

b(n)c5(40k − 40n− 1) + b1(n)c5(40k − 40n− 9) ≡ 0 (mod 2).

8S.-Y. Kang, S. Kim, T. Matsusaka and J. Yoo, Hauptmoduln and even-order
mock theta functions modulo 2, J. Korean Math. Soc., 62 No. 5 (2025), 1297–1312.
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Unrestricted Rascoe and non-Rascoe partitions

Let c(n) denote the partitions of n in which the number of parts is
a part, and let e(n) denote the partitions of n in which the number
of parts is not a part.

Theorem

∞∑
n=1

c(n)qn = q +
∞∑
n=2

n∑
m=0

[
2n−m− 2

n−m− 1

]
qmn+2n−1

(q)m
=

q

(q2)∞
,

∞∑
n=1

e(n)qn = 1 +
q2

1− q
+

∞∑
n=2

n∑
m=0

[
2n−m− 2

n−m

]
qmn+n

(q)m
=

1− q + q2

(q)∞
.

George Beck9 has conjectured that e(n) is the total number of distinct
parts of each partition of 2n+ 2 with rank n+ 1. This conjecture is
still open.

9J. Perry, OEIS Sequence A229816, September 30, 2013
https://oeis.org/A229816.
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Concluding remarks

While σ2(q) is intimately connected with the generating function
of restricted partition function b(n),

σ(q) is linked with a sum of
the mex-statistic, namely10,

(−q)∞σ(q) =
∞∑
n=0

σdmex(n)qn,

where σdmex(n) :=
∑

π∈D(n) mex(π) with mex(π) denotes the
minimal excludant of the partition π, that is, the smallest positive
integer that is not a part of π, and D(n) denotes the set of
partitions of n into distinct parts.

10P. S. Kaur, S. C. Bhoria, P. Eyyunni and B. Maji, Minimal excludant over
partitions into distinct parts, Int. J. Number Theory 18 no. 9, (2022), 2015–2028.
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Concluding remarks: Asymptotics of b(n)?

Ramanujan’s Lost Notebook:

σ(q) = 1 + q

∞∑
n=0

(q)n(−q)n. (6)

Does there exist an analogous representation for σ2(q)? The
importance of having it, if at all it exists, is now explained.

Let σ∗(q) = −2
∑∞

n=0 q
n+1(q2; q2)n. Cohen established an analogue

of (6) for σ∗(q), and showed that if q is a root of unity, then
σ(q) = −σ∗(q−1).
Zagier11 used this relation to show that if q = e−t, then as t→ 0+,

σ(q) = 2− 2t+ 5t2 − 55

3
t3 +

1073

12
t4 − 32671

60
t5 +

286333

72
t6 − · · · .

Thus, if there exists a representation for σ2(q) analogous to (6)
and one is able to proceed in a similar manner as that for σ(q) it
may allow us to find an asymptotic formula of b(n) as n→∞.

11D. Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.
11, Amer. Math. Soc., Providence, RI, 2010, pp. 659–675.
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Concluding remarks: Modularity of σ2(q)?

What can be said about the modularity of σ2(q)?

We note that σ(q) is a prototypical example of a quantum
modular form.

Hecke-Rogers type representations for σ2(q) are somewhat
different.

f(q): third order mock theta function

q1/24σ(q): quantum modular form

generating function of e(n): (1− q + q2)/(q)∞ (modular)

generating function of b(n): ?
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A mod 4 congruence conjecture

Numerical calculations led us to the following exotic conjecture.

Conjecture: Let b(n) denote the number of non-Rascoe
partitions of an integer n. For k ≥ 1 and k not a multiple of 29,
the following congruence holds:

b(29k + 21) ≡ 0 (mod 4).

This conjecture has been verified for the first 105 values in
{b(n)}∞n=0.

If k is a multiple of 29, say, k = 29m, then b(29k+ 21) may or may
not be divisible by 4.

For eg., for 0 ≤ m ≤ 118, b(29 ·29m+21) is divisible by 4 when m =
0, 1, 7, 8, 13, 19, 22, 27, 28, 29, 32, 37, 41, 44, 47, 48, 49, 50, 51, 52, 53, 57,
64, 67, 69, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 89, 95, 100, 102, 104,
106, 108, 109, 115, 116, 117 and 118.

It is not divisible by 4 for the remaining values of m for
0 ≤ m ≤ 118.
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A mod 4 congruence conjecture

It seems that the arithmetic progression 29k + 21 in our mod 4
congruence conjecture appears from nowhere.

Probably its appearance can be better understood once the
modularity of σ2(q) is established.

What can be said about the exceptions to the condition k 6= 29m?
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Concluding remarks

In this work, we have concentrated only on the number of
non-Rascoe partitions, that is, b(n), or its generalization b`(n).

The number of Rascoe partitions a(n) and its generalization a`(n)
also warrant a serious study.
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Thank You!!
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