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e Dyson’s rank of a partition is defined as the largest part of the
partition minus the number of parts.
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e Dyson’s rank of a partition is defined as the largest part of the
partition minus the number of parts.

of 25is 6 — 8 = —2.

o For example, the rank of the partition 6+5+5+4+2+1+1+1
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Dyson’s rank and rank parity functions

@ Dyson’s rank of a partition is defined as the largest part of the
partition minus the number of parts.

e For example, the rank of the partition 6 +5+5+4+24+1+1+1
of 25is 6 — 8 = —2.

o Enumeration of partitions belonging to a particular class based on
the parity of their rank is often useful, for, their generating
functions often turn out to be important in combinatorics and
modular forms.

Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit; 02-10-2025 2 /45



e Let N(m,n) denote the number of partitions of n with rank m.
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e Let N(m,n) denote the number of partitions of n with rank m.
@ The generating function of N(m,n) is given by

e o 0o qn2
m_mn __
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Well-known rank parity functions

e Let N(m,n) denote the number of partitions of n with rank m.
@ The generating function of N(m,n) is given by

Z Z N(m,n)zmqnzz a

(2q)n(271q)n’

n2

n=0 m=—o0 n=0
where (a)g := (a;q)o = 1,
(a)n :(a;q)n:(1—a)(1—aq)-~-(1—aq"_1), n>1,
(@)oo := (a59)oc = 1im (a5 q)n, lq] < 1,
(@)-n=01-a/g) " (1-a/g" ) (1-a/g)™", n>1
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Well-known rank parity functions

e Let N(m,n) denote the number of partitions of n with rank m.
@ The generating function of N(m,n) is given by

n2

q
Z Z N{m,n)z"¢" Z(zq) (1o

where (a)g := (a;q)o = 1,
(@) = (a;q)n = (1 —a)(1 —aq)--- (1 —ag"™ ), n>1,
(@)oo = (@50)oc = lim (@), Ja] < 1.
(@)n=(1—a/q) " (1=a/g" )" (1=a/g)", n>1.
o If we now let z = —1, we see that the generating function of the

number of partitions of n with even rank minus those with odd
rank is Ramanujan’s third order mock theta function

N~ 4"
fla) = ; (—¢; )%
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@ One can combinatorially show that the generating function of
with rank m is given by

r(m,n), that is, the number of partitions of n into distinct parts

o0

Z r(m,n)z"q"
n,m=0

_ qn(n+1)/2

n=0 (Zq)n
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Well-known rank-parity functions

@ One can combinatorially show that the generating function of
r(m,n), that is, the number of partitions of n into distinct parts
with rank m is given by

o0 X n(n+1)/2
q
E r(m,n)z"q¢" = E —
n,m=0 n=0 (zq)n

e Here, the associated rank parity function is a celebrated function
of Ramanujan given by

X n(n+1)/2
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Well-known rank-parity functions

@ One can combinatorially show that the generating function of
r(m,n), that is, the number of partitions of n into distinct parts
with rank m is given by

o0 X n(n+1)/2
q
E r(m,n)z"q¢" = E —
n,m=0 n=0 (zq)n

e Here, the associated rank parity function is a celebrated function
of Ramanujan given by

X n(n+1)/2

e ¢'/?*5(q) is a prototypical example of a quantum modular form.
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Well-known rank-parity functions

One can combinatorially show that the generating function of
r(m,n), that is, the number of partitions of n into distinct parts
with rank m is given by

o0 X n(n+1)/2
q
E r(m,n)z"q¢" = E —
n,m=0 n=0 (zq)n

Here, the associated rank parity function is a celebrated function
of Ramanujan given by

X n(n+1)/2

q*/**o(q) is a prototypical example of a quantum modular form.
The coefficients of o(q) have properties governed by the arithmetic

of Q(V6).
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o Consider partitions in which parts differ by at least 2.
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@ These are called the Rogers—Ramanujan partitions because they
identity , namely,

o Consider partitions in which parts differ by at least 2.

are generated by the “sum side” of the first Rogers-Ramanujan
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Rogers-Ramanujan partitions

o Consider partitions in which parts differ by at least 2.

@ These are called the Rogers—Ramanujan partitions because they
are generated by the “sum side” of the first Rogers—Ramanujan
identity , namely,

=g 1
nz:% (@n  (©0°)0(q% %) o0

o The rank parity function associated with partitions into part with
gap at least 1 is rich in properties and has implications in
algebraic number theory and quantum modular forms apart from
theory of partitions and g-series.
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Rogers-Ramanujan partitions

o Consider partitions in which parts differ by at least 2.

@ These are called the Rogers—Ramanujan partitions because they
are generated by the “sum side” of the first Rogers—Ramanujan
identity , namely,

=g 1
nz:% (@n  (©0°)0(q% %) o0

o The rank parity function associated with partitions into part with
gap at least 1 is rich in properties and has implications in
algebraic number theory and quantum modular forms apart from
theory of partitions and g-series.

o Thus, it makes sense to study the corresponding rank parity
function associated to partitions into parts with gap at least 2,
that is, the Rogers-Ramanujan partitions.
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e Let R(m,n) to be the number of Rogers—Ramanujan partitions of
n with rank m. Our first result is'

LA. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity
function associated with the Rogers-Ramanugjan partitions, submitted for publicatiom o



e Let R(m,n) to be the number of Rogers—Ramanujan partitions of
n with rank m. Our first result is'

We have

0o o] ln2

Z Z R(m,n)z"q" —1+ZW

n=0m=—oo

'A. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity
function associated with the Rogers-Ramanugjan partitions, submitted for publicatiom o



The rank parity function oo(q)

e Let R(m,n) to be the number of Rogers—Ramanujan partitions of
n with rank m. Our first result is'

Theorem (D.-Kumar-Srivastava)

We have
€9 e > ,n—1 n?
> Y Rmmeme =103 0
n=0m=—o0 n=1 (ZQ)n
@ Let z = —1 in this result shows that the generating function of the

excess number of Rogers—Ramanujan partitions with odd rank over
those with even rank is the function —2 + o2(q), where

2

o0
_1nqn X
a2(q) :=Z—( (_)q) =1-q+ ¢~ +2¢" 20" +¢° — "+
n=0 "

'A. Dixit, G. Kumar and A. Srivastava, Non-Rascoe partitions and a rank parity

function associated with the Rogers-Ramanujan partitions, submitted for publicatiom
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit; 02-10-2025 6 /45



@ Let n be the number of parts and &k be the largest part of a
Rogers—Ramanujan partition.
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@ Let n be the number of parts and &k be the largest part of a

Rogers—Ramanujan partition. Separate out the first 25 — 1 nodes from
j-th part of the partition counted from the bottom, where 1 < j < n.
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@ Let n be the number of parts and &k be the largest part of a

Rogers—Ramanujan partition. Separate out the first 25 — 1 nodes from
j-th part of the partition counted from the bottom, wherZe 1<j<n.
The dotted region, thus, contributes ¢!*3++n-1) — 4~
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@ Let n be the number of parts and &k be the largest part of a
Rogers—Ramanujan partition. Separate out the first 25 — 1 nodes from

j-th part of the partition counted from the bottom, wherZe 1<j<n.
The dotted region, thus, contributes ¢!'*3++(@n=1) — gn°,

@ Next, 1/(zq), generates the partition to the right of the dotted region
with z keeping track of k — (2n —1).
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Proof

@ Let n be the number of parts and k be the largest part of a
Rogers—Ramanujan partition. Separate out the first 2§ — 1 nodes from
j-th part of the partition counted from the bottom, wherQe 1<j5<n.
The dotted region, thus, contributes ¢!*+3++@n—1) — gn”,

@ Next, 1/(2q), generates the partition to the right of the dotted region
with z keeping track of k — (2n — 1).

n2
@ Thus, z (Zq) generates a Rogers—Ramanujan partition where the

number of parts is n and z keeps track of the rank k — n.
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Proof

@ Let n be the number of parts and k be the largest part of a
Rogers—Ramanujan partition. Separate out the first 2§ — 1 nodes from
j-th part of the partition counted from the bottom, where 1 < j < n.
The dotted region, thus, contributes g3+ +2n=1) = ¢n°,

@ Next, 1/(2q), generates the partition to the right of the dotted region
with z keeping track of k — (2n — 1).
n2
@ Thus, z (Zq) generates a Rogers—Ramanujan partition where the

number of parts is n and z keeps track of the rank k — n.

Another proof using MacMahon’s Q-operator method:

Z Z m n zmq" =14 Z Z Z . Z Z"j—jqnl-l-nz-‘r'“-‘rnj.

n=0m=—o0 Jj=lni=1ns=n1+2 nj=nj_.1+2
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e John Tyler Rascoe?

considered an interesting class of restricted
partitions, namely, the partitions of a positive integer into distinct

parts in which the number of parts itself is a part of the partition.

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024
https://oeis.org/A240855. (o> «Fr «=r» «=» = DAl
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e John Tyler Rascoe?

considered an interesting class of restricted
partitions, namely, the partitions of a positive integer into distinct
parts in which the number of parts itself is a part of the partition.
@ We call such partitions as Rascoe partitions.

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024
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https://oeis.org/A240855

Rascoe partitions

e John Tyler Rascoe? considered an interesting class of restricted

partitions, namely, the partitions of a positive integer into distinct
parts in which the number of parts itself is a part of the partition.
o We call such partitions as Rascoe partitions.
e The Rascoe partitions of 11 are 9+ 2, 7+3+ 1 and 6 + 3 + 2.

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024
https://oeis.org/A240855.
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Rascoe partitions

e John Tyler Rascoe? considered an interesting class of restricted

partitions, namely, the partitions of a positive integer into distinct
parts in which the number of parts itself is a part of the partition.
o We call such partitions as Rascoe partitions.
e The Rascoe partitions of 11 are 9+ 2, 7+3+ 1 and 6 + 3 + 2.

e Let a(n) denote the number of Rascoe partitions of n. Then
Rascoe gave the following generating function of a(n):

i a(n)q" = nil gz 2": [:1_ IJ .

n=1 m=1 (q)mfl

m(m—1)

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024
https://oeis.org/A240855.
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Rascoe partitions

e John Tyler Rascoe? considered an interesting class of restricted

partitions, namely, the partitions of a positive integer into distinct
parts in which the number of parts itself is a part of the partition.
o We call such partitions as Rascoe partitions.
e The Rascoe partitions of 11 are 9+ 2, 7+3+ 1 and 6 + 3 + 2.

e Let a(n) denote the number of Rascoe partitions of n. Then
Rascoe gave the following generating function of a(n):

ia(n)qn _ nij:lqn(nﬂ)/z Zn: [:L_lJ M

n=1 m=1 (q)m71

2J. T. Rascoe, OEIS Sequence A240855, March 13, 2024

https://oeis.org/A240855.
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o Define a non-Rascoe partition of a positive integer n to be a
not a part of the partition.

partition of n into distinct parts in which the number of parts is

«O>» «F>r «=)r» « =) = o>



o Define a non-Rascoe partition of a positive integer n to be a
not a part of the partition.

5+3+2+1

partition of n into distinct parts in which the number of parts is
@ So the non-Rascoe partitions of 11 are

11,10+ 1,8 +3,84+2+1,7+4,64+5,6+4+1,5+4+2 and
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o Define a non-Rascoe partition of a positive integer n to be a
partition of n into distinct parts in which the number of parts is
not a part of the partition.

@ So the non-Rascoe partitions of 11 are
5+3+2+1.

11,10+ 1,8 +3,84+2+1,7+4,64+5,6+4+1,5+4+2 and

e Let b(n) denote the number of non-Rascoe partitions of n.
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Non-Rascoe partitions

o Define a non-Rascoe partition of a positive integer n to be a
partition of n into distinct parts in which the number of parts is
not a part of the partition.

@ So the non-Rascoe partitions of 11 are
11,10 +1,843,8+2+1,7+4,6 +5,6 +4+ 1,5+ 4+ 2 and
5+3+2+ 1.

e Let b(n) denote the number of non-Rascoe partitions of n.

o Clearly,

S b = (- zqn w2 z [ e
n=0

m(m 1)

m—l
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@ The two objects introduced so far, namely, the rank parity
n TL2

function o9(q) :=> 07 (_(I_)T)qn

partitions of n are intimately connected.

and the number of non-Rascoe
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@ The two objects introduced so far namely, the rank parity
function o2(q) :== >

e}

(-1)g"?
n=0

Con and the number of non-Rascoe
partitions of n are intimately connected.
o0 [e.@]
D b(n)q" = (—@)aco2(q) =
n=0

( qn+1)
n=0
In other words, the non-Rascoe partitions are generated by (

—4)002(q)-
<Or «Fr «Er «Er» E VAl
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The number b(n) is odd if and only if n = m(5m + 1)/2, where m € Z.
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The number b(n) is odd if and only if n = m(5m + 1)/2, where m € Z.

Our main result gives

n2

>t = (-0 Y T = (@Y Lo (mod 2)
n=0

n=0 Q) n




Two applications of the main result

Theorem |

The number b(n) is odd if and only if n = m(5m + 1)/2, where m € Z.

Proof.

Our main result gives
= n o__ = (_1)nqn2 _ - qn2
Z b(n)q" = (=) Z e (9)oc Z (mod 2).
n=0 n=0 Dn 70 (Dn

Then an application of the first Rogers-Ramanujan identity followed by
Jacobi triple product identity yields

q" _ (9)o _ (2.5 3. 5 B, 5
(q)oog;) @ = P — €005 8005 0)o
_ i (_1>nqn(5n+1)/2_
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Two applications of the main result

Theorem |

Let P(j,n) be the number of partitions of n into distinct parts with the
exception that the smallest part, say j, is allowed to repeat exactly j
number of times. Then the excess number of such partitions with even
smallest part over those with odd smallest part equals the number of
non-Rascoe partitions of n, that is,

n

> (1) P(j,n) = b(n),

J=0

where, P(0,n) is, clearly, the number of partitions of n into distinct
parts.
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e Let n = 11. We know that b(11) = 9.

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages). o



e Let n = 11. We know that b(11) = 9.

e P(0,11) = 12 (the number of partitions of 11 into distinct parts)

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages). o



e Let n = 11. We know that b(11) = 9.
e P(0,11) = 12 (the number of partitions of 11 into distinct parts)

e P(1,11) =5 as the number of admissible partitions are
10+1,842+1,7+3+1,6+4+1and54+3+2+1.

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages). o



Example

e Let n = 11. We know that b(11) = 9.
e P(0,11) = 12 (the number of partitions of 11 into distinct parts)

e P(1,11) =5 as the number of admissible partitions are
10+1,8+2+1,74+3+1,6+4+1and5+3+2+1.

e P(2,11) =2, since only 7+ 2+ 2 and 4+ 3 + 2 + 2 are admissible.

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages).
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Example

e Let n = 11. We know that b(11) = 9.

e P(0,11) = 12 (the number of partitions of 11 into distinct parts)

P(1,11) = 5 as the number of admissible partitions are
10+1,8+2+1,74+3+1,6+4+1and5+3+2+1.

e P(2,11) =2, since only 7+ 2+ 2 and 4+ 3 + 2 + 2 are admissible.

e Then P(0,11) — P(1,11) + P(2,11) = 12 — 5+ 2 = 9, which agrees
with b(11).

3G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages).
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit; 02-10-2025 13 /45



Example

e Let n = 11. We know that b(11) = 9.
e P(0,11) = 12 (the number of partitions of 11 into distinct parts)

e P(1,11) =5 as the number of admissible partitions are
10+1,8+2+1,74+3+1,6+4+1and5+3+2+1.

e P(2,11) =2, since only 7+ 2+ 2 and 4+ 3 + 2 + 2 are admissible.

e Then P(0,11) — P(1,11) + P(2,11) = 12 — 5+ 2 = 9, which agrees
with b(11).

e Andrews and El Bachraoui® have recently studied partitions where
the smallest part appears exactly k times, where k € N is fixed,
and the remaining parts are distinct.

3@G. E. Andrews and M. El Bachraoui, On the generating functions for partitions
with repeated smallest part, J. Math. Anal. Appl. 549 (2025),129537 (16=pages).
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o(q) =

e An important feature of o(q) is that it has a Hecke-Rogers type
representation due to Andrews, Dyson and Hickerson

, namely,
l7l<n

1G. E. Andrews, F. J. Dyson and D. Hickerson, Partitions and indefinite
quadratic forms, Invent. Math. 91 (1988), 391-407. = &5 =, . =. Do
~ Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit. ~ 02-10-2025 14 /45
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Hecke-Rogers type representation for oo(q)

e An important feature of o(q) is that it has a Hecke-Rogers type
representation due to Andrews, Dyson and Hickerson?, namely,
o0
o(q) = D (—1) g er AT (1 - g,

n>0
l71<n

e For 05(q), we found the following Hecke-Rogers type

representations:
Theorem
) n n(Sn 1)/2 1+q2n w j
0 = e S G e}
0 onlg) = — & (DY 20 42 S (D, i
) lg)= <—q>oo{1 2 =D 2 g ) }

4G. E. Andrews, F. J. Dyson and D. Hickerson, Partitions and indefinite
quadratic forms, Invent. Math. 91 (1988), 391-407.
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Theorem
0> a(m)g" =Y "2 37 [n - 1} g
n=1 n=1 m
(i) Y b(n)g" =
n=1

m(m—1)
(@Dm—1’

m=1
be the number of parts greater than n.

(1)

(2)

m—1](
Proof: Assume n to be the number of parts in a partition, and m to




i 3 a(n)q"” = o n(ntn)2 N |7 — 1] gm0

()7;1 e T;q mzzl [m—l] (@Dm-1’ 1)
i = b n __ . n(n+1)/2 ~ [n—1 ﬁ (2)

( )77,2::1 i nZ::lq mEZ:l [m—l] (@)m

Proof: Assume n to be the number of parts in a partition, and m to
be the number of parts greater than n. Clearly, 0 <m <mn — 1.




kth

@ Region A is formed by taking k& nodes from the
partition (counted from below), for 1 < k < n.

part of the

«O» «F>» «E» «E>» A



Generating functions of Rascoe & non-Rascoe partitions

@ Region A is formed by taking k nodes from the k' part of the
partition (counted from below), for 1 < k < n.

@ The sub-partition forming the region B has m + 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct.
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Generating functions of Rascoe & non-Rascoe partitions

@ Region A is formed by taking k nodes from the k' part of the
partition (counted from below), for 1 < k < n.

@ The sub-partition forming the region B has m + 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct.

@ The sub-partition in region C' is generated by 1/(q)., as there can
be at most m number of parts.
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Generating functions of Rascoe & non-Rascoe partitions

Region A is formed by taking k nodes from the k*® part of the
partition (counted from below), for 1 < k < n.

The sub-partition forming the region B has m + 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct.

The sub-partition in region C' is generated by 1/(q),, as there can
be at most m number of parts.

Finally, Region D has at most (n —m — 1) parts, each < m, and

is, therefore, generated by [”ﬂ;l]
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Generating functions of Rascoe & non-Rascoe partitions

Region A is formed by taking k nodes from the k*® part of the
partition (counted from below), for 1 < k < n.

The sub-partition forming the region B has m + 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct.

The sub-partition in region C' is generated by 1/(q),, as there can
be at most m number of parts.

Finally, Region D has at most (n —m — 1) parts, each < m, and
is, therefore, generated by [” 1].

Thus, a Rascoe partition with n number of parts is generated by
— 17 ¢™ (m+1)
n(n+1)/2 |:77, :|
Z -
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Generating functions of Rascoe & non-Rascoe partitions

Region A is formed by taking k nodes from the k*® part of the
partition (counted from below), for 1 < k < n.

The sub-partition forming the region B has m + 1 parts, each
equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct.

The sub-partition in region C' is generated by 1/(q),, as there can
be at most m number of parts.

Finally, Region D has at most (n —m — 1) parts, each < m, and
is, therefore, generated by [” 1].

Thus, a Rascoe partition with n number of parts is generated by
— 17 ¢™ (m+1)
n(n+1)/2 |:77, :|
Z -

Now sum over n from 1 to co and replace m by m — 1 to arrive at
the required generating function.
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[e.e]
To prove Z b(n)q"
n=1

2
an(n-i-l)/Q Z [’n - 1]
consider the following Ferrers dlagram of a non—Rascoe partition
Clearly, 1 <m <n.

«O>» «F>r «=)r» « =) = o>



Generating functions of Rascoe & non-Rascoe partitions

(0.9] 00 2
To prove Z b(n)q" = Z n(n+1)/2 Z [n — 1]
n=1 n=1

consider the following Ferrers diagram of a non—Rascoe partition.
Clearly, 1 <m <n.

m

@ The region A is formed from parts > n which are also distinct, it
contains exactly the parts n 4+ 1,--- ,n + m. Therefore, it
contributes ¢"™T™(M+1)/2 towards the generating function.
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e Since the region B is formed by taking k nodes from k' part of the
partition, where 1 < k < n —m, it will contribute ¢

(n—m)(n—m+1)/2

«O>» «F>r «=)r» « =) = o>



e Since the region B is formed by taking k nodes from k' part of the
partition, where 1 < k < n —m, it will contribute ¢

@ Region C is generated by 1/(q),, as there can be at most m
number of parts.

(n—m)(n—m+1)/2

«O> «Fr «=>r «E)» = o>



Generating functions of Rascoe & non-Rascoe partitions

e Since the region B is formed by taking k nodes from k' part of the
partition, where 1 < k < n — m, it will contribute ¢(»—™(n—m+1)/2,

e Region C is generated by 1/(q),, as there can be at most m
number of parts.

e Finally, region D is a sub-partition consisting of at most (n —m)
parts, each < (m — 1), and is thus generated by [:;__11]
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Generating functions of Rascoe & non-Rascoe partitions

e Since the region B is formed by taking k nodes from k' part of the
partition, where 1 < k < n — m, it will contribute ¢(»—™(n—m+1)/2,

e Region C is generated by 1/(q),, as there can be at most m
number of parts.

e Finally, region D is a sub-partition consisting of at most (n —m)
parts, each < (m — 1), and is thus generated by [:;__11] Therefore,

the non-Rascoe partitions with n number of parts are generated by

n

m=1

(@)m

n—1 qnm+m(m+1)/2q(n—m)(n—m+1)/2
]
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Generating functions of Rascoe & non-Rascoe partitions

e Since the region B is formed by taking k nodes from k' part of the
partition, where 1 < k < n — m, it will contribute ¢(»—™(n—m+1)/2,

e Region C is generated by 1/(q),, as there can be at most m
number of parts.

e Finally, region D is a sub-partition consisting of at most (n —m)
parts, each < (m — 1), and is thus generated by [:;__11] Therefore,
the non-Rascoe partitions with n number of parts are generated by
n

m=1

n—1 qnm+m(m+1)/2q(n—m)(n—m+1)/2
]

(@)m

e Summing over n yields the required generating function.
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In particular, oa(q

n(n+1)/2
Z q Z

pe qz(z 1)/2
of times

n(n+1)/2 Z

z z(z 1)/2
(q n—i
Proof: Let P(i, N) denote the number of partitions of N into distinct
parts, except the smallest part, say ¢, which repeats exactly ¢ number




n quz(z 1)/2

Z q n(n+1)/2
D Zq Z
n(n+1)/2 Z

z z(z 1)/2

In particular, oa(q (
q n—i

Proof: Let P(i, N) denote the number of partitions of N into distinct

parts, except the smallest part, say ¢, which repeats exactly ¢ number
of times.

«O>» «F>r «=)r» « =)

DA



Then qi2 generates the dotted region and (—¢‘*!). will generate the
portion above it.

«O>» «F>r «=)r» « =) = Q>



Then qi2 generates the dotted region and (—¢‘*!). will generate the
portion above it.

co N
Therefore, Z ZP(i,N)zin =
N=0i=0

o0

S Hq (g
1=0

i+1)oo-

«O>» «F>r «=)r» « =) = o>

3)



Then qi2 generates the dotted region and (—¢‘*!). will generate the
portion above it.

co N
Therefore, Z ZP(i,N)zin =
N=0i=0

o0

Zii2

2'q" (="
1=0

3)

Take the conjugate of the above partition.

. .
.
«O>» «F>r «=)r» « =) = o>




In the conjugate partition, the largest part, say n, repeats ¢ times.

«O>» «F>r «=)r» « =) = Q>



Proof of the alternate representation of 5(q)

In the conjugate partition, the largest part, say n, repeats ¢ times.
No number > (n — i) and < n can be a part since the smallest part i in
the original partition appears exactly ¢ number of times, and so the

portion below the dotted region must contain at least one occurrence of
each part < (n —1).
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Proof of the alternate representation of 5(q)

In the conjugate partition, the largest part, say n, repeats ¢ times.

No number > (n — i) and < n can be a part since the smallest part i in
the original partition appears exactly ¢ number of times, and so the
portion below the dotted region must contain at least one occurrence of
each part < (n —1).

The dotted region thus contributes ¢ towards the generating function,

(n—1i)(n—1i+1)/2

and < o generates the portion below it.
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Proof of the alternate representation of 5(q)

In the conjugate partition, the largest part, say n, repeats ¢ times.

No number > (n — i) and < n can be a part since the smallest part i in

the original partition appears exactly ¢ number of times, and so the

portion below the dotted region must contain at least one occurrence of

each part < (n —1).

The dotted region thus contributes ¢ towards the generating function,
gn—D(n—i+1)/2 . :

and B )N generates the portion below it.

The corresponding generating function of the number of such conjugate

partitions, where z now keeps track of the number of times the largest

part repeats, is given by

1)/2

— an(n—l-l)/QZ Z ql - (4)

i mq(n 1)(n—i+1)/

I

n=0 =0
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Proof of the alternate representation of 5(q)

In the conjugate partition, the largest part, say n, repeats ¢ times.

No number > (n — i) and < n can be a part since the smallest part i in

the original partition appears exactly ¢ number of times, and so the

portion below the dotted region must contain at least one occurrence of

each part < (n —1).

The dotted region thus contributes ¢ towards the generating function,
gn—D(n—i+1)/2 . :

and B )N generates the portion below it.

The corresponding generating function of the number of such conjugate

partitions, where z now keeps track of the number of times the largest

part repeats, is given by

1)/2

— an(n—l-l)/QZ Z ql - (4)

The result now follows from (3) and (4).

i mq(n 1)(n—i+1)/

I

n=0 =0
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o Bhargava and Adiga generalized a result of Ramanujan.

SH. M. Srivastava, A note on a generalization of a g-series transformation of
Ramanugan, Proc. Japan Acad. Ser. A 63 (1987), 143-145. .5 . - =, .=, = <oac
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A finite analogue of an identity of Bhargava and Adiga

@ Bhargava and Adiga generalized a result of Ramanujan.

e An equivalent form of this generalization was given by Srivastava’:

[e.e]

Z qn(n—l)/2 (Az)p (=2)" _ (@)n iqn(n—l)/Q (A Y)n ()"

Wn (@Dn W

SH. M. Srivastava, A note on a generalization of a g-series transformation of
Ramanugan, Proc. Japan Acad. Ser. A 63 (1987), 143-145.
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit; 02-10-2025 22 /45



A finite analogue of an identity of Bhargava and Adiga

@ Bhargava and Adiga generalized a result of Ramanujan.

e An equivalent form of this generalization was given by Srivastava’:

[e.e]

Z qn(n—l)/Q (Az)p (=2)" _ (@)n iqn(n—l)/Q (A Y)n ()"

Wn (@Dn W

@ We need a finite version of this transformation to complete the
proof of our main result.

SH. M. Srivastava, A note on a generalization of a g-series transformation of
Ramanugan, Proc. Japan Acad. Ser. A 63 (1987), 143-145.
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A finite analogue of an identity of Bhargava and Adiga

@ Bhargava and Adiga generalized a result of Ramanujan.

e An equivalent form of this generalization was given by Srivastava’:

- n(n—l)/z(/\/x)n (—2)" _ (#)n n(n—1)/2 (A Y)n ()"
ngoq (y)n (Q)n (y)n nzzoq (x)n (Q)n .

@ We need a finite version of this transformation to complete the
proof of our main result.

Theorem
" n (—)\/a)mamqm(m-‘rl)/? B (_aq)n " n (_)\/b)mbmqm(m+1)/2
mz:o I:m] (—=bq)m - (=bq)n ";) [m] (—aq)m

We derived this result using Andrews’ finite Heine transformation.

SH. M. Srivastava, A note on a generalization of a g-series transformation of
Ramanugan, Proc. Japan Acad. Ser. A 63 (1987), 143-145.
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Letting a — 0 in the above identity, we obtain
n
n 11
[m] (=0a™""), A"
m=0

n
2

-3 m (= A/b)b™ g2 (5)
m=0

«O» «F>» «E» «E>» A



Letting a — 0 in the above identity, we obtain
n n 5 n
+1
> [1] o, xman
m=0
Put A\=1and b=

n m __mi(m
=2, [m] (=A/B)mb™ ™™D (5)
m=0
—g~1 in (5) to get
n n m m(m—l)/2
n]
D |0 @™ )n Z
m=0 [m =0

nm

«O> «Fr «=>r «E)» = o>




Final step towards the proof of the main result

Letting a — 0 in the above identity, we obtain

n

> [M] o), = 3 [P amanaee,

m=0 m=0
Put A\=1and b= —¢!in (5) to get
n n m2 ” B n
3 |7 @ =00 32 S
Recall that

8
3

$ pinsiing D
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Final step towards the proof of the main result

Letting a — 0 in the above identity, we obtain

n

> [M] o), = 3 [P amanaee,

m=0 m=0
Put A\=1and b= —¢!in (5) to get
n n m2 ” B n (
Recall that

1 0 n (_1)Zqz(z—1)/2
_ n(n+1)/2
02(q q
@)= e 2 (@
Therefore,

00 n m2
o2(g) = — > gtz [n_l] i
(—0o0 = A= lm = 1] (@)m

which proves the result.
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Rascoe partitions and “almost” distinct partitions

Theorem

Let P(j,n) be the number of partitions of n into distinct parts with the
exception that the smallest part, say j, is allowed to repeat exactly j
number of times. Then the excess number of such partitions with even
smallest part over those with odd smallest part equals the number of
non-Rascoe partitions of n, that is,

n

> (1) P(j,n) = b(n),

J=0

where, P(0,n) is, clearly, the number of partitions of n into distinct
parts.
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@ Recall that we have proved

o N
Z ZP(i,N)zin =
N=0i=0

[e.9]

Z ziqiz (_qi+1
i=0

oo

«O» «F>» «E» «E>» A



@ Recall that we have proved

o
Z Ziqiz(_qz'+1)
i=0

@ The result simply follows by letting 2
and using the main result

Zb

—1 in the above identity

q (_qn+1)oo-
«O» «F>» «E» «E>» A
~ Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit, ~ 02-10-2025  25/45



Generalized Rogers-Ramanujan partitions and identities

o Let £ € NU{0}. We define a generalized Rogers—Ramanujan
partition of a number N to be a partition of IV into parts > £ and
in which the difference between any two parts is greater than or
equal to 2.

SK. Garrett, M. E. H. Ismail and D. Stanton, Variants of Rogers—Ramanugjan
identities, Adv. Appl. Math. 23 (1999), 274-299.
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Generalized Rogers-Ramanujan partitions and identities

o Let £ € NU{0}. We define a generalized Rogers—Ramanujan
partition of a number N to be a partition of IV into parts > £ and
in which the difference between any two parts is greater than or
equal to 2.

e Garrett, Ismail and Stanton® showed that the generating function
of the number of generalized Rogers—Ramanujan partitions
satisfies the generalized Rogers—Ramanujan identity

g () () (-0

(@ (@0°)o(dh¢%)s (% 0°)o0 (0 0%) o0

where ¢;(q) and dy(q) are Laurent polynomials in ¢ defined by

ot = S [ k| = S| L]

J J

SK. Garrett, M. E. H. Ismail and D. Stanton, Variants of Rogers—Ramanugjan
identities, Adv. Appl. Math. 23 (1999), 274-299.
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Throughout the sequel, we consider ¢ € N U {0}.

Ry(m, N)z"gN =1+

o zn+£—1 qn2 +4n

(2q)n

«O>» «Fr «=» « =) A

n=1




Throughout the sequel, we consider ¢ € N U {0}.
o0 o

N=0m=—o0

" i zn+£—1

qn2 +In

(2q)n

«O>» «F>r «=)r» « =) = o>

n=1
o Let n denote the number of parts of a partition.




Throughout the sequel, we consider ¢ € N U {0}.
o0 o

Z Z Ry(m, N

N=0m=—c0

n+€ 1 n+€n
D

o Let n denote the number of parts of a partition
9

e A generalized Rascoe (resp. non-Rascoe) partition of N, associated
containing) n + ¢ as a part

with ¢, is a partition of N into distinct parts containing (resp. not

«O> «Fr «=>r «E)» = o>



Generalizations of the previous results
Throughout the sequel, we consider ¢ € NU {0}.
Theorem
€9 ce €9 zn+€flqn2+fn
55 Rlm g - 143 I

N=0m=—00 n=1 (ZQ)n

e Let n denote the number of parts of a partition.

e A generalized Rascoe (resp. mnon-Rascoe) partition of N, associated
with ¢, is a partition of N into distinct parts containing (resp. not

containing) n + ¢ as a part.

Theorem
00 n—1 ¢ 1
Z ann+1/22|:n+£—1:|q(m+)(m+)7
N=1 =1 . (@)m
n 249
be ann+1/2 {n—i—f—l]qm-l-m.
— |m+ =1 (Q)m
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e Define

02,0(q) = Z =

nqn2+fn

(_Q)n

«O» «F>» «E» «E>» A

n=0



e Define

0 2
-1 nqn +én

02.4(g) == =l
n=0

(_Q)n

e When / is odd, o34(q) is the excess number of generalized

Rogers—Ramanujan partitions with even rank over those with odd
rank, whereas for ¢ even, the same is counted by 2 — o3 4(q).

«O>» «F>r «=)r» « =) = o>



e Define

00 2
-1 nqn +én
orlg) = 3 Y
n=0

(_Q)n

e When / is odd, o34(q) is the excess number of generalized

o

Rogers—Ramanujan partitions with even rank over those with odd
rank, whereas for ¢ even, the same is counted by 2 — o3 4(q).

> be(n)q" = (—q)oc02,(q)-
n=0

«O>» «F>r «=)r» « =) = o>




Let ¢ € NU{0} and let be(n) denote the generalized non-Rascoe partitions of

n. Also, let p(N, M, k) denote the number of partitions of k into at most M
parts, each < N. Then,

o0

> bu(n)g
n=0

k=0

.:o_ogp (6 =1 _[l+12—5jJ : [e+12—5jJ ,k) bp(0—1-|t=tim | |=lm ,k))

j(55—38 m(5m+1 L(£—1
w L RO 2o

(mod 2).

«O>» «F>r «=)r» « =) o>



Parity of by(n)
Theorem

Let £ € NU{0} and let be(n) denote the generalized non-Rascoe partitions of

n. Also, let p(N, M, k) denote the number of partitions of k into at most M
parts, each < N. Then,

o0

> be(n)q"
n=0
_ (+1-5; £4+1-5; —1— r—1—
=> " (p(e— 1| 255, | 2555 k) +p (e - 1| St |, | S8 1))
"m0
g e G o))
Corollary

1 1\n) s o i ana onty nzi,wereme 5
i) b1(n) is odd if and only if n = ™BT=8) yp zZ

(i) ba(n) is odd if and only if n = % —1lorn= W — 1, where
m € Z.
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e}

)+2€n(1+q€+2n)( qn+1)€—1

o2,6(q) = - ) { Q)e+2( "

Xi m 1n2)}

m=0




Hecke-Rogers type representations for o ¢(q)

Theorem |
24(0) = g { (= DML g )

o0 n=1

n+l—1
(_1)m —n\m
- mz_:o (Q)m( ) }

7249 = (—i) {(—q)z + 3 (1) T (L 4 ) (g

&0 n=1

(=)
S
=
~—
3

m=

A curious identity needed to show the equivalence:
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Hecke-Rogers type representations for o ¢(q)

Theorem |
24(0) = g { (= DML g )
o0 n=1
n+l—1
(_1)m —n\m
- mz_:o (Q)m( ) }
7249 = (—i) {(—q)z + 3 (1) T (L 4 ) (g

(=)
S
=
~—
3

m=

A curious identity needed to show the equivalence:

" (@) & )igI 0 it (@Dnge X (=1);(~1)ig=m
q n JZ j ( 1) i (*Q)m—e _];) (Q)] .
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Page 27 of Ramanujan’s Lost Notebook contains a beautiful identity
first proved by Andrews”:

"G.E. Andrews, Partitions: Yesterday and Today, New Zealand Math. Soc.,
Wellington, 1979.

«O>» «F>r «=)r» « =) = o>



A generalized modular relation of Ramanujan

Page 27 of Ramanujan’s Lost Notebook contains a beautiful identity
first proved by Andrews”: For a € C\{0}, and b € C,

i a—QQO2 i nbn n?/4 N Z Qm—lqm2+m i anbnq(n+1)2/4
m=0 (b(])m n=0 (b(])m n=0 (Q)n
n—1 Y
n, n?/4 1 —b 2/4 a
a’q a’
n_zoo )nz:l =0 Q)z

"G.E. Andrews, Partitions: Yesterday and Today, New Zealand Math. Soc.,
Wellington, 1979.
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A generalized modular relation of Ramanujan

Page 27 of Ramanujan’s Lost Notebook contains a beautiful identity
first proved by Andrews”: For a € C\{0}, and b € C,

o a—QQO2 o0 nbn n?/4 Qm—lqm2+m o anbnq(n+1)2/4
+
T;) (b@)m 7;) Z O)m = (Dn
n—1 Y
n . n%/4 1 _ b) 2/4 o
a’q a’
n—zoo nz:l /=0 Q)g

This identity can be used to relate the generating functions of by(n)
and bpi1(n).

"G.E. Andrews, Partitions: Yesterday and Today, New Zealand Math. Soc.,
Wellington, 1979.
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A relation between the generating functions of by(n) and

bes1(n)

Theorem
For £ e NU {0},

e 2

> —n m m m+m n . (n 2
ymgm 2 +me (—1)ngn—nt 2 4mAme (=1)2g(ntD)

i

m—0 m p— (q)2n =0 m p— (q)2n+1
1 00 o) 2n— 1
_ n n 7712
= oo 2 (1 22 (1
n—=—oo n=1 k=0

m m 24tme o0 (_1)nqn2+n—n€ s ( 1)mqm2+'rn+m€ o (_1)nqn2+n—n€+

T

mZ:O nL ngo (q)2n+1 +7nz:0 (7q)m nz

(Q)Qn

oo

n n2+n—nt rL n 2in—nt
(@)oo n:z_oo( D" +22 Z (a)

>~
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Generating functions of by(n), be(n) and tenth order
mock theta functions

Corollary |
) ee (_1)mqm2 co (_1 n n co m P 24m © (_1)nq(n+1)2
(i) 2 -» b >

m=0 (_Q)m n=0 ( m=0 n=0 (q)2"+1
00 2n71
1 (—1)k
- o 3 e S S
(—@os , — = (@)
€9 m m €9 (_1)nqn2+n c9 ( 1)m mZ4m © n n 24n
11 +
ZO m n=0 (q)2n+1 7;) ( g
_ —1 i ( 1)nqn +n_’_2i< 1)nqn2+” 2n (_1)k
(7q) n=—o0o n=0 k=0 (q)k
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Generating functions of by(n), be(n) and tenth order
mock theta functions

Corollary |
) ee (_1)mqm2 co (_1 n n co m P 24m © (_1)nq(n+1)2
(1) (—q) Z @)2 Z Z ()

m=0 T)m n=0 m=0 n=0 9)2n+1
00 2n71
1 (—1)’“
> IEITERE) YEILD'S
(_q)oo n=—oo n=1 k=0 (q)k
€9 m m €9 (_1)nqn2+n c9 m m 24m © n n 24n
11 +
ZO m n—0 (q)2n+1 7;) g
_ —1 i (_1)nqn,2+n _’_2i<_ n n +nzn 1)k
(@)oo vt = (0

Tenth order mock theta functions:

- oo (_1)nqn i - &9 (_1)nq(n+1)2
X9 '7"; (—@)2n 44a) '7;::0 (—@a2n+1 |
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Let cx(n) and cy(n) be the coefficients of the tenth order mock theta
functions X(q) and x(q). Then, for k € N,

k
Z b(n)ex(k—n) +bi(n)ey(k—n) =0 (mod 2).

n=0

8S.-Y. Kang, S. Kim, T. Matsusaka and J. Yoo, Hauptmoduln and even-order
mock theta functions modulo 2, J. Korean Math. Soc., 62 No.=5 (2025), 1297-1312:c
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A congruence

Theorem
Let cx(n) and cy(n) be the coefficients of the tenth order mock theta
functions X (q) and x(q). Then, for k € N,

k
Z b(n)ex(k—mn)+bi(n)ey(k—n) =0 (mod 2).

n=0

Kang, Kim, Matsusaka and Yoo® proved c5(40n — 1) = cx,,(n)
(mod 2) and c5(40n —9) = ¢y,,(n) (mod 2), where c5(n) is the Fourier

.76
coefficient of j5(7) := %(égzggj?go = % —64+> >, ¢5(n)¢". Hence, we have

k
> b(n)es(40k — 40n — 1) + by (n)es (40k — 400 — 9) =0 (mod 2).

n=0

8S.-Y. Kang, S. Kim, T. Matsusaka and J. Yoo, Hauptmoduln and even-order
mock theta functions modulo 2, J. Korean Math. Soc., 62 No.=5 (2025), 1297-1312
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@ Let ¢(n) denote the partitions of n in which the number of parts is
of parts is not a part.

a part, and let e(n) denote the partitions of n in which the number

9J. Perry, OEIS Sequence A229816, September 30, 2013
https://oeis.org/A229816. (o> «Fr «=r» «=» = DAl
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Unrestricted Rascoe and non-Rascoe partitions

e Let ¢(n) denote the partitions of n in which the number of parts is
a part, and let e(n) denote the partitions of n in which the number

of parts is not a part.

Theorem
o) B oo n My — —9 qmn+2n71 _ q
;C qu;mzo[”— —1] @m (P
ce 2 M —m — 2 mn+n_1_q+q2
2 +ZZ[ n—m } @~ (@

n=1 n=2m=0

9J. Perry, OEIS Sequence A229816, September 30, 2013

https://oeis.org/A229816.
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Unrestricted Rascoe and non-Rascoe partitions

e Let ¢(n) denote the partitions of n in which the number of parts is
a part, and let e(n) denote the partitions of n in which the number
of parts is not a part.

Theorem

00 o n
n—m —2 qmn+2n71 q

Y=o 35 [T -

n=1 n=2m=0 n—m-—1 (Q)m (q )OO

s 2 &e i mn—+n 2
2n—m —2 1—qg+
I D) Dl
n=1 q n=2m=0 1)m 1)oo

George Beck? has conjectured that e(n) is the total number of distinct
parts of each partition of 2n + 2 with rank n + 1.

9J. Perry, OEIS Sequence A229816, September 30, 2013

https://oeis.org/A229816.
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Unrestricted Rascoe and non-Rascoe partitions

e Let ¢(n) denote the partitions of n in which the number of parts is
a part, and let e(n) denote the partitions of n in which the number
of parts is not a part.

Theorem

00 o n
n—m —2 qmn+2n71 q

Y=o 35 [T -

n=1 n=2m=0 n—m-—1 (Q)m (q )OO

s 2 &e i mn—+n 2
2n—m —2 1—qg+
I D) Dl
n=1 q n=2m=0 1)m 1)oo

George Beck? has conjectured that e(n) is the total number of distinct
parts of each partition of 2n + 2 with rank n + 1. This conjecture is
still open.

9J. Perry, OEIS Sequence A229816, September 30, 2013

https://oeis.org/A229816.
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e While 09(q) is intimately connected with the generating function
of restricted partition function b(n),

1P, S. Kaur, S. C. Bhoria, P. Eyyunni and B. Maji, Minimal ezcludant over
partitions into distinct parts, Int. J. Number Theory 18 no. 9:5(2022), 2015-2028.5q ¢
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e While 09(q) is intimately connected with the generating function
of restricted partition function b(n), o(q) is linked with a sum of
the mex-statistic, namely!?,

1P, S. Kaur, S. C. Bhoria, P. Eyyunni and B. Maji, Minimal ezcludant over
partitions into distinct parts, Int. J. Number Theory 18 no. 9:5(2022), 2015-2028.5q ¢
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Concluding remarks

e While 03(q) is intimately connected with the generating function
of restricted partition function b(n), o(q) is linked with a sum of
the mex-statistic, namely!?,

[e.9]

(@)oo (q) =Y _ oamex(n)q",

n=0

where ogmex(n) := 3 cp(,) mex(m) with mex(m) denotes the
minimal excludant of the partition 7, that is, the smallest positive
integer that is not a part of m, and D(n) denotes the set of
partitions of n into distinct parts.

0p_ Q. Kaur, S. C. Bhoria, P. Eyyunni and B. Maji, Minimal excludant over
partitions into distinct parts, Int. J. Number Theory 18 no. 9:(2022), 2015-2028.
Atul Dixit (IIT Gandhinagar) Non-Rascoe partitions & a rank parit; 02-10-2025 36 /45



o Ramanujan’s Lost Notebook:

o(@) =1+q) (Qn(—0)™ (6)
n=0

1D, Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.
11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675.. -5 =, . =. = 9Hac
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Concluding remarks: Asymptotics of b(n)?

o Ramanujan’s Lost Notebook: -
o(@) =1+q) (Qn(—0)™ (6)
n=0

@ Does there exist an analogous representation for oa(q)? The
importance of having it, if at all it exists, is now explained.

1D, Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.
11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675.
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Concluding remarks: Asymptotics of b(n)?

o Ramanujan’s Lost Notebook: -
o(@) =1+q) (Qn(—0)™ (6)
n=0

@ Does there exist an analogous representation for oa(q)? The
importance of having it, if at all it exists, is now explained.

o Let 0*(q) = -2 % 14" (¢% ¢*)n. Cohen established an analogue
of (6) for o*(q), and showed that if ¢ is a root of unity, then

o(q) = —o*(¢7").

1D, Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.
11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675.
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Concluding remarks: Asymptotics of b(n)?

e Ramanujan’s Lost Notebook: -
o(@) =1+q) (Qn(—0)™ (6)
n=0

@ Does there exist an analogous representation for oa(q)? The
importance of having it, if at all it exists, is now explained.

o Let 0*(q) = -2 % 14" (¢% ¢*)n. Cohen established an analogue
of (6) for o*(q), and showed that if ¢ is a root of unity, then
o(q) = —o*(¢).

o Zagier!'! used this relation to show that if ¢ = e™, then as t — 07,

55 1073 32671 286333
—9_9 2 _ 99,3 4 _ 5 6_ ...
o(q) t+ 5t 3t + 19 t 50 t” + = t

1D, Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.
11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675.
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Concluding remarks: Asymptotics of b(n)?

e Ramanujan’s Lost Notebook: -
o(@) =1+q) (Qn(—0)™ (6)
n=0

@ Does there exist an analogous representation for oa(q)? The
importance of having it, if at all it exists, is now explained.

o Let 0*(q) = -2 % 14" (¢% ¢*)n. Cohen established an analogue
of (6) for o*(q), and showed that if ¢ is a root of unity, then
o(q) = —o*(¢).

o Zagier!'! used this relation to show that if ¢ = e™, then as t — 07,

55 1073 32671 286333
—9_9 2 _ 99,3 4 _ 5 6_ ...
o(q) t+ 5t 3t + 19 t 50 t” + = t

e Thus, if there exists a representation for o2(q) analogous to (6)
and one is able to proceed in a similar manner as that for o(q) it
may allow us to find an asymptotic formula of b(n) as n — oc.

1D, Zagier, Quantum modular forms, Quantas of Maths, Clay Math. Proc., Vol.

11, Amer. Math. Soc., Providence, RI, 2010, pp. 659-675.
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e What can be said about the modularity of o2(q)?
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modular form.

e We note that o(q) is a prototypical example of a quantum
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e We note that o(q) is a prototypical example of a quantum
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e Hecke-Rogers type representations for o2(q) are somewhat
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e What can be said about the modularity of o2(q)?
modular form.

e We note that o(q) is a prototypical example of a quantum
different.

e Hecke-Rogers type representations for o2(q) are somewhat

e f(g): third order mock theta function
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Concluding remarks: Modularity of o2(q)?

e What can be said about the modularity of o2(q)?

We note that o(q) is a prototypical example of a quantum
modular form.

Hecke-Rogers type representations for o9(q) are somewhat
different.

f(q): third order mock theta function

qY/ 26(q): quantum modular form
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Concluding remarks: Modularity of o2(q)?

e What can be said about the modularity of o2(q)?

We note that o(q) is a prototypical example of a quantum
modular form.

Hecke-Rogers type representations for o9(q) are somewhat
different.

f(q): third order mock theta function

qY/ 26(q): quantum modular form

e generating function of e(n): (1 — ¢+ ¢*)/(q)oo (modular)
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Concluding remarks: Modularity of o2(q)?

e What can be said about the modularity of o2(q)?

We note that o(q) is a prototypical example of a quantum
modular form.

Hecke-Rogers type representations for o9(q) are somewhat
different.

f(q): third order mock theta function

qY/ 26(q): quantum modular form

e generating function of e(n): (1 — g+ ¢?)/(q)oo (modular)
?

e generating function of b(n):
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o Numerical calculations led us to the following exotic conjecture.

it
a
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partitions of an integer n. For k > 1 and k not a multiple of 29,
the following congruence holds:

o Numerical calculations led us to the following exotic conjecture
e Conjecture: Let b(n) denote the number of non-Rascoe

b(29k +21) = 0

(mod 4).
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A mod 4 congruence conjecture

@ Numerical calculations led us to the following exotic conjecture.
e Conjecture: Let b(n) denote the number of non-Rascoe
partitions of an integer n. For k£ > 1 and k£ not a multiple of 29,
the following congruence holds:
b(29k +21) =0 (mod 4).
o This conjecture has been verified for the first 10° values in
[b(n) ).
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A mod 4 congruence conjecture

@ Numerical calculations led us to the following exotic conjecture.

e Conjecture: Let b(n) denote the number of non-Rascoe
partitions of an integer n. For k£ > 1 and k£ not a multiple of 29,
the following congruence holds:

b(29k +21) =0 (mod 4).

o This conjecture has been verified for the first 10° values in

{b(n)}7Z0-
e If k is a multiple of 29, say, kK = 29m, then b(29k + 21) may or may
not be divisible by 4.
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A mod 4 congruence conjecture

@ Numerical calculations led us to the following exotic conjecture.

e Conjecture: Let b(n) denote the number of non-Rascoe
partitions of an integer n. For k£ > 1 and k£ not a multiple of 29,
the following congruence holds:

b(29k +21) =0 (mod 4).

e This conjecture has been verified for the first 10° values in
{b(n)}nZo-

e If k is a multiple of 29, say, kK = 29m, then b(29k + 21) may or may
not be divisible by 4.

e For eg., for 0 < m < 118, b(29-29m+21) is divisible by 4 when m =
0,1,7,8,13,19,22,27,28,29,32,37,41, 44,47, 48,49, 50, 51, 52, 53, 57,
64,67,69,74,75,76,77,78,79,81, 82,83, 84, 85,89, 95,100, 102, 104,
106, 108,109,115,116,117 and 118.
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A mod 4 congruence conjecture

@ Numerical calculations led us to the following exotic conjecture.

e Conjecture: Let b(n) denote the number of non-Rascoe
partitions of an integer n. For k£ > 1 and k£ not a multiple of 29,
the following congruence holds:

b(29k +21) =0 (mod 4).

o This conjecture has been verified for the first 10° values in
{b(n)}nZo-

e If k is a multiple of 29, say, kK = 29m, then b(29k + 21) may or may
not be divisible by 4.

e For eg., for 0 < m < 118, b(29-29m+21) is divisible by 4 when m =
0,1,7,8,13,19,22,27,28,29,32,37,41,44,47,48,49, 50, 51, 52, 53, 57,
64,67,69,74,75,76,77,78,79, 81,82, 83,84, 85,89, 95, 100, 102, 104,
106,108,109, 115,116,117 and 118.

e It is not divisible by 4 for the remaining values of m for
0<m <118
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nazp= For[i =1, 1 <3447, i++,
Print["i=", 1, ", Vv[", 29 %1 +22, "]/4->", Part[v /4, 29 x1+22]]]

i=1, v[51]/4->610
i=2, v[80]/4->11752

i=3, v[109]/4->142685

i=4, v[138]/4->1292884

i=5, V[167]/4->9520703

i=6, v[196]/4->59915930

i=7, v[225]/4->332934022

i=8, v[254]/4->1670 900892

=9, V[283]/4->7 699747703

=10, V[312]/4->32986 689 459
i=11, v[341]/4->132659038514
i=12, v[370]/4->504 675790 149
=13, V[399]/4->1827582396612
i=14, v[428]/4->6332375280317
i=15, V[457]/4->21083951124723
i=16, V[486]/4->67704 349034656
i=17, V[515]/4->210 336744474961
=18, V[544]/4->633 895496 144200

i=19, v[573]/4->1857559541768 440




Vv [602]/4->5303759392595666

V([631]/4->14781881135541676
V[660]/4->40279220804471241
V[689]/4->107 464142278707 666
Vv[718]/4->281085728617730780
V[T747]/4->721627327214380656
V[776]/4->1820306056 914286 117
Vv[805] /4->4515955297 041751515
Vv[834]/4->11028298139173 296 985
Vv[863] /4->26531915178401943 905

Vv [892]/4->62928731974381123 826
Vv[921]/4->147 245934756 486 123493
v[950] /4->340112541538682434878
Vv[979]/4->775957215788 017 863 330
v[1008]/4->1749529 642389 000991807
Vv[1037]/4->3900223048 751474083499
Vv[1066]/4->8 600893847 126 824 048 132
Vv[1095]/4->18770320895889141280840
Vv[1124]/4->40555478458970247818128
Vv[1153]/4->86784410177740670779704
Vv[1182]/4->183993605392779312110388
v[1211]/4->386614 145041143 360535458

Vv[1240]/4->805384710 731945224993 991

«F

DA



A mod 4 congruence conjecture

i=43, v[1269]/4->1663828046866705733662796
i=44, v[1298]/4->3409686715761266480881367
i=45, v[1327]/4->6933242266107579247 137022
i=46, v[1356]/4->13992098393915947 106757979
i=47, v[1385]/4->28032181780224036688022552
i=48, v[1414]/4->55764295956 197 855156468 750
i=49, v[1443]/4->110172597235272160058211254
i=50, v[1472]/4->216220654083780952074672305
i=51, v[1501]/4->421609996593875079031862795
i=52, v[1530]/4->816948493306785102876551773
i=53, v[1559]/4->1573347656836679488992878101
i=54, v[1588]/4->3012129690212181557 085158048
i=55, v[1617]/4->5733383834212005676222597 301
i=56, v[1646]/4->10851833379685187366607353378

i=57, v[1675]/4->20427416900015535853888124274
152989912130680123 609695048519

4
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o It seems that the arithmetic progression 29k 4 21 in our mod 4
congruence conjecture appears from nowhere.
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o It seems that the arithmetic progression 29k 4 21 in our mod 4
congruence conjecture appears from nowhere.

e Probably its appearance can be better understood once the
modularity of o2(q) is established.
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o It seems that the arithmetic progression 29k 4 21 in our mod 4

congruence conjecture appears from nowhere.

e Probably its appearance can be better understood once the
modularity of o2(q) is established.

e What can be said about the exceptions to the condition k # 29m?

«O> «Fr «=>r «E)» = o>



@ In this work, we have concentrated only on the number of

non-Rascoe partitions, that is, b(n), or its generalization by(n).
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@ In this work, we have concentrated only on the number of
non-Rascoe partitions, that is, b(n), or its generalization by(n).

also warrant a serious study.

e The number of Rascoe partitions a(n) and its generalization ag(n)

«O>» «F>r «=)r» « =) = o>



Thank You!!




