Double and Triple Perfect Partitions

Augustine O. Munagi

Seminar in Partition Theory, q-Series and Related Topics 28 March 2024

- Background and Definitions
- Perfect Partitions
- Double Perfect Partitions
- New Proofs and *p*-Perfect Partitions
- Triple Perfect Partitions
- Triple4 Perfect Partitions
- Partition Identities

A partition λ of n is any *weakly increasing* sequence of positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ such that $\lambda_1 + \cdots + \lambda_k = n$.

For example 4 has five partitions namely

(4), (1, 3), (2, 2), (1, 1, 2), (1, 1, 1, 1).

Alternative Notation:

 $egin{aligned} &(\lambda_1^{v_1},\lambda_2^{v_2},\ldots,\lambda_t^{v_t}), \ 0<\lambda_1<\lambda_2<\cdots<\lambda_t, \ v_i>0, \ t\leq k:\ &(4),(1,3),(2^2),(1^2,2),(1^4). \end{aligned}$

Let λ be a partition of n, denoted by $\lambda \vdash n$.

How many nonempty partitions of $m \leq n$ are contained in λ ?

Let $G(\lambda) :=$ set of nonempty partitions contained in λ . E. g.

$$G((1^3, 2^2)): (1), (1^2), (2), (1^3), (1, 2), (1^2, 2), (2^2), (1^3, 2), (1, 2^2), (1^2, 2^2), (1^3, 2^2).$$

Note that

$$|G((\lambda_1^{v_1},\lambda_2^{v_2},\ldots,\lambda_k^{v_k}))| = (v_1+1)(v_2+1)\cdots(v_k+1) - 1.$$

Definition. (MacMahon)

A perfect partition of n is a partition that contains exactly one partition of every positive integer less than or equal to n.

A perfect partition $\lambda \vdash n$ satisfies $|G(\lambda)| = n$.

Notation: Per(n) := set of perfect partitions of n. per(n) := |Per(n)|, number of perfect partitions of n.

E.g.,
$$Per(5) = \{(1^5), (1, 2^2), (1^2, 3)\}$$
. So $per(5) = 3$.

Thus, for insatuce,

$$G((1^2,3)): (1), (1^2), (3), (1,3), (1^2,3).$$

Perfect Partitions and Ordered Factorizations

Perfect partitions are most easily found using ordered factorizations.

Theorem 1

The number of perfect partitions of n is equal to the number of ordered factorizations of n + 1 without unit factors.

Bijection. An ordered factorization $n + 1 = q_1q_2 \cdots q_r$, $q_i > 1$, corresponds to the perfect partition

$$\lambda = (1^{q_1-1}, q_1^{q_2-1}, (q_1q_2)^{q_3-1}, \dots, (q_1q_2\cdots q_{r-1})^{q_r-1}).$$

This image is a partition of n and contains a unique partition of each m, $1 \le m \le n$.

Ordered Factorization of 6	6	2 · 3	3 · 2
Perfect Partition of 5	(1^5)	$(1, 2^2)$	$(1^2, 3)$

Let f(n, k) := number of ordered factorizations of n into k factors; $f(n) := f(n, 1) + f(n, 2) + \cdots$. Then

Theorem 2 (MacMahon, Andrews)

$$f(n,k) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} \prod_{j=1}^{r} {\alpha_{j} + k - i - 1 \choose \alpha_{j}},$$

where $n + 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ is the prime factorization and $1 \le k \le \alpha_1 + \alpha_2 + \cdots + \alpha_r$.

f(n, k) counts perfect partitions of n - 1 with k blocks (or runs) of equal parts, and f(n) = per(n - 1):

per(n) = f(n+1).

Let f(n, k) := number of ordered factorizations of n into k factors; $f(n) := f(n, 1) + f(n, 2) + \cdots$. Then

Theorem 2 (MacMahon, Andrews)

$$f(n,k) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} \prod_{j=1}^{r} {\alpha_{j} + k - i - 1 \choose \alpha_{j}},$$

where $n + 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ is the prime factorization and $1 \le k \le \alpha_1 + \alpha_2 + \cdots + \alpha_r$.

f(n, k) counts perfect partitions of n - 1 with k blocks (or runs) of equal parts, and f(n) = per(n - 1):

$$\operatorname{per}(n) = f(n+1).$$

Generalizations and Extensions of Perfect Partitions

- Complete Partitions (Park 1998): partitions λ ⊢ n that contain at least one partition of every positive integer < n.
- *M*-Partitions (O'Shea 2004): complete partitions with minimal lengths.
- Double Perfect Partitions (Lee 2006): ... discussed below ...
- n-Color Perfect Partitions (Agarwal and Sachdeva 2018):
 n-color partitions λ ⊢ n that contain one n-color partition of every positive integer < n.
- Perfect Compositions (M. 2020): compositions of n that contain one composition of every positive integer < n.
- Full K-Complete Partitions (M. and Takalani 2022): partitions that contain all partitions of every positive integer up to k.
- ...and so forth.

Double Perfect Partitions

Is there a partition of *n* that contains $t \ge 1$ partitions of each $m, t \le m \le n-t$ and one partition of every other integer not exceeding *n*?

Lee (2006) showed that the answer is 'yes' only when t = 1 or 2. The case t = 1 gives perfect partitions! He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition $(\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$ such that each integer $m, 2 \leq m \leq n-2$ can be represented exactly twice as $m = \sum_{i=1}^{k} \alpha_i \lambda_i$, where $\alpha_i \in \{0, 1\}$.

E. g. $\lambda = (1^5, 2) \vdash 7$ is double-perfect: $G(\lambda) : (1), (1^2), (2), (1^3), (1, 2), (1^4), (1^2, 2), (1^5), (1^3, 2), (1^4, 2), (1^5, 2).$

Double Perfect Partitions

Is there a partition of *n* that contains $t \ge 1$ partitions of each $m, t \le m \le n-t$ and one partition of every other integer not exceeding *n*?

Lee (2006) showed that the answer is 'yes' only when t = 1 or 2. The case t = 1 gives perfect partitions! He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition $(\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$ such that each integer $m, 2 \leq m \leq n-2$ can be represented exactly twice as $m = \sum_{i=1}^k \alpha_i \lambda_i$, where $\alpha_i \in \{0, 1\}$.

E. g. $\lambda = (1^5, 2) \vdash 7$ is double-perfect: $G(\lambda) : (1), (1^2), (2), (1^3), (1, 2), (1^4), (1^2, 2), (1^5), (1^3, 2), (1^4, 2), (1^5, 2).$

Double Perfect Partitions

Is there a partition of *n* that contains $t \ge 1$ partitions of each $m, t \le m \le n-t$ and one partition of every other integer not exceeding *n*?

Lee (2006) showed that the answer is 'yes' only when t = 1 or 2. The case t = 1 gives perfect partitions! He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition $(\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$ such that each integer $m, 2 \leq m \leq n-2$ can be represented exactly twice as $m = \sum_{i=1}^k \alpha_i \lambda_i$, where $\alpha_i \in \{0, 1\}$.

E. g.
$$\lambda = (1^5, 2) \vdash 7$$
 is double-perfect:
 $G(\lambda) : (1), (1^2), (2), (1^3), (1, 2), (1^4), (1^2, 2), (1^5), (1^3, 2), (1^4, 2), (1^5, 2).$

General Form (Lee 2006)

A double-perfect partition $\lambda \vdash n$ has the following form

$$egin{aligned} &(1^{a_1},2^{a_2},(a_1+2a_2-1)^{a_3},((a_1+2a_2-1)(a_3+1))^{a_4},\ &((a_1+2a_2-1)(a_3+1)(a_4+1))^{a_5},\ldots), \end{aligned}$$

where $a_1 \ge 2$ and a_2, a_3, \ldots are positive integers such that if $a_1 \ne 3$ then $a_2 = 1$.

Theorem 3

The number d(n) of double-perfect partitions of n is given by

$$d(n) = \begin{cases} f(n-1) & \text{if } n \not\equiv 1 \pmod{4}, \\ f(n-1) - f(\frac{n-1}{4}) & \text{if } n \equiv 1 \pmod{4}. \end{cases}$$

General Form (Lee 2006)

A double-perfect partition $\lambda \vdash n$ has the following form

$$egin{aligned} &(1^{a_1},2^{a_2},(a_1+2a_2-1)^{a_3},((a_1+2a_2-1)(a_3+1))^{a_4},\ &((a_1+2a_2-1)(a_3+1)(a_4+1))^{a_5},\ldots), \end{aligned}$$

where $a_1 \ge 2$ and a_2, a_3, \ldots are positive integers such that if $a_1 \ne 3$ then $a_2 = 1$.

Theorem 3

The number d(n) of double-perfect partitions of n is given by

$$d(n) = \begin{cases} f(n-1) & \text{if } n \not\equiv 1 \pmod{4}, \\ f(n-1) - f(\frac{n-1}{4}) & \text{if } n \equiv 1 \pmod{4}. \end{cases}$$

In the course of proving Theorem 3,

Lee **separated the general form into two types** of double-perfect partitions:

$$\begin{array}{l} (1^{3},2^{a_{2}},(2(a_{2}+1))^{a_{3}},(2(a_{2}+1)(a_{3}+1))^{a_{4}},\ldots,\\ (2(a_{2}+1)(a_{3}+1)\cdots(a_{r-1}+1))^{a_{r}}),\ a_{2}\geq2, \end{array} (1) \\ (1^{a_{1}},2,(a_{1}+1)^{a_{2}},((a_{1}+1)(a_{2}+1))^{a_{3}},\ldots,\\ ((a_{1}+1)(a_{2}+1)\cdots(a_{r-1}+1))^{a_{r}}),\ a_{1}\geq2. \end{array} (2)$$

These then **imply** the following ordered factorizations:

$$n-1=2(a_2+1)(a_3+1)\cdots(a_{r-1}+1)(a_r+1), a_2\geq 2$$
 (1a)

$$n-1 = (a_1+1)(a_2+1)\cdots(a_{r-1}+1)(a_r+1), a_1 \ge 2.$$
 (2a)

(excluding the factorizations $n-1=2\cdot 2\cdot (a_3+1)\cdots)$.

The foregoing results on double-perfect partitions can be obtained by starting out with perfect partitions.

The d(n)-formula shows that $d(n) \leftarrow f(n-1) \rightarrow per(n-2)$.

So the set D(n) of double-perfect partitions of n can be found from perfect partitions by inserting parts of total weight 2.

Recall:

$$q_1q_2\cdots q_r \longleftrightarrow (1^{q_1-1}, q_1^{q_2-1}, (q_1q_2)^{q_3-1}, \ldots, (q_1q_2\cdots q_{r-1})^{q_r-1})$$

Double Perfect Partitions from Ordered Factorizations

Proposition 1

Every double-perfect partition $\lambda \vdash N > 3$ may be obtained from a perfect partition $\beta \vdash N - 2$ in two ways:

- I. If the multiplicity of 1 in β is 1, then insert 1^2 into β . Denote the resulting set by $A(1^2)$.
- II. If β does not contain 2 as a part, insert 2 into β . Denote the resulting set by B(2).

Then

$$D(N) = A(1^2) \cup B(2).$$

Proof. Let $h(m) \in G(\beta)$, $1 \le m \le n$ and write (ρ, γ) for $\rho \cup \gamma$. Assume that $\lambda \vdash N$ is obtained from $\beta \in Per(N-2)$ by insertion of 1^2 or 2 according to 1 or II respectively. We find one additional partition of each $j \in \{2, 3, ..., N-2\}$, namely $((1^2), h(j-2))$ or ((2), h(j-2)). Then one new partition of each of N-1 and N appears, that is, $((1^2), h(N-3))$ or ((2), h(N-3)) and $((1^2), h(N-2))$ or ((2), h(N-2)). Thus the resulting partition λ is double-perfect. 13/39 E.g., let $\beta = (1^2, 3) \in \text{Per}(5)$. Then from II, $\lambda = ((2), \beta) = (1^2, 2, 3) \in D(7)$, and our proof runs as follows:

j	$h(j) \in G(eta)$	$\gamma\in G(\lambda)\setminus G(\beta)$
1	(1)	_
2	(1^2)	((2), h(0)) = (2)
3	(3)	((2), h(1)) = (1, 2)
4	(1, 3)	$((2), h(2)) = (1^2, 2)$
5	$(1^2, 3)$	((2), h(3)) = (2, 3)
6	_	((2), h(4)) = (1, 2, 3)
7	_	$((2), h(5)) = (1^2, 2, 3)$

All members of D(7) are obtained as follows:

Ordered Factorization of 6	6	2 · 3	3 · 2
Perfect Partitions of 5	(1^5)	$(1, 2^2)$	$(1^2, 3)$
Insert Parts	2	12	2
Double-Perfect Partition of 7	$(1^5, 2)$	$(1^3, 2^2)$	$(1^2, 2, 3)$

E.g., let $\beta = (1^2, 3) \in \text{Per}(5)$. Then from II, $\lambda = ((2), \beta) = (1^2, 2, 3) \in D(7)$, and our proof runs as follows:

j	$h(j) \in G(\beta)$	$\gamma\in G(\lambda)\setminus G(\beta)$
1	(1)	_
2	(1^2)	((2), h(0)) = (2)
3	(3)	((2), h(1)) = (1, 2)
4	(1,3)	$((2), h(2)) = (1^2, 2)$
5	$(1^2, 3)$	((2), h(3)) = (2, 3)
6	_	((2), h(4)) = (1, 2, 3)
7	_	$((2), h(5)) = (1^2, 2, 3)$

All members of D(7) are obtained as follows:

Ordered Factorization of 6	6	2 · 3	3 · 2
Perfect Partitions of 5	(1^5)	$(1, 2^2)$	$(1^2, 3)$
Insert Parts	2	1 ²	2
Double-Perfect Partition of 7	$(1^5, 2)$	$(1^3, 2^2)$	$(1^2, 2, 3)$

Shape and Enumeration

• Obtain the perfect partitions β corresponding to factorizations of the forms $N-1 = 2q_2q_3 \cdots q_k$, $q_2 > 2$ and $N-1 = q_1q_2q_3 \cdots q_k$, $q_1 > 2$:

I.
$$\beta = (1, 2^{q_2-1}, (2q_2)^{q_3-1}, (2q_2q_3)^{q_4-1}, \dots, (2q_2q_3 \cdots q_{k-1})^{q_k-1}).$$

II.
$$\beta = (1^{q_1-1}, q_1^{q_2-1}, (q_1q_2)^{q_3-1}, \dots, (q_1q_2q_3\cdots q_{k-1})^{q_k-1}).$$

Insert 1^2 and 2 (respectively) to obtain the desired shapes of $\lambda \in D(N)$.

• Proposition 1 implies that d(N) = f(N - 1), with the exception of certain duplicates.

The factorizations $N - 1 = 2 \cdot 2 \cdot m$ and $N - 1 = 4 \cdot m$ (*m* fixed) produce the same double-perfect partitions:

$$N-1 = 2 \cdot 2 \cdot m \longmapsto (1,2,4^{m-1}) \longrightarrow (1^3,2,4^{m-1}) \in A(1^2);$$

$$N-1 = 4 \cdot m \longmapsto (1^3,4^{m-1}) \longrightarrow (1^3,2,4^{m-1}) \in B(2).$$

So if 4|(N-1) we remove factorizations of the form $N-1 = 2 \cdot 2 \cdot m$ and get $d(N) = f(N-1) - f(\frac{N-1}{4})$. This completes the proof of Theorem 3.

Shape and Enumeration

• Obtain the perfect partitions β corresponding to factorizations of the forms $N-1 = 2q_2q_3 \cdots q_k$, $q_2 > 2$ and $N-1 = q_1q_2q_3 \cdots q_k$, $q_1 > 2$:

I.
$$\beta = (1, 2^{q_2-1}, (2q_2)^{q_3-1}, (2q_2q_3)^{q_4-1}, \dots, (2q_2q_3 \cdots q_{k-1})^{q_k-1}).$$

II.
$$\beta = (1^{q_1-1}, q_1^{q_2-1}, (q_1q_2)^{q_3-1}, \dots, (q_1q_2q_3\cdots q_{k-1})^{q_k-1}).$$

Insert 1^2 and 2 (respectively) to obtain the desired shapes of $\lambda \in D(N)$.

• Proposition 1 implies that d(N) = f(N - 1), with the exception of certain duplicates.

The factorizations $N - 1 = 2 \cdot 2 \cdot m$ and $N - 1 = 4 \cdot m$ (*m* fixed) produce the same double-perfect partitions:

$$N-1 = 2 \cdot 2 \cdot m \longmapsto (1,2,4^{m-1}) \longrightarrow (1^3,2,4^{m-1}) \in A(1^2);$$

$$N-1 = 4 \cdot m \longmapsto (1^3,4^{m-1}) \longrightarrow (1^3,2,4^{m-1}) \in B(2).$$

So if 4|(N-1) we remove factorizations of the form $N-1 = 2 \cdot 2 \cdot m$ and get $d(N) = f(N-1) - f(\frac{N-1}{4})$. This completes the proof of Theorem 3.

Superset of *p*-Perfect Partitions

Let $V(\lambda)$ denote the sequence of multiplicities of members of $G(\lambda)$ when arranged by increasing weights. For example, the weights of partitions in $G((1^5, 2))$ are 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, or 1, 2², 3², 4², 5², 6, 7. Thus $V((1^5, 2)) = 1, 2, 2, 2, 2, 1, 1.$

A perfect partition $\lambda \vdash n$ contains partitions of $1^1, 2^1, 3^1, \ldots, (n-1)^1, n^1$. So

$$V(\lambda) = 1, 1, 1, \dots, 1, 1.$$
 (3)

A double-perfect partition $\lambda \vdash n$ follows the representation scheme $1, 2^2, 3^2, \ldots, (n-2)^2, n-1, n$ which gives

$$V(\lambda) = 1, 2, 2, \dots, 2, 1, 1.$$
 (4)

Notice that the sequences (3) and (4) are weakly unimodal.

Superset of *p*-Perfect Partitions

Let $V(\lambda)$ denote the sequence of multiplicities of members of $G(\lambda)$ when arranged by increasing weights. For example, the weights of partitions in $G((1^5, 2))$ are 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, or 1, 2², 3², 4², 5², 6, 7. Thus $V((1^5, 2)) = 1, 2, 2, 2, 2, 1, 1.$

A perfect partition $\lambda \vdash n$ contains partitions of $1^1, 2^1, 3^1, \ldots, (n-1)^1, n^1$. So

$$V(\lambda) = 1, 1, 1, \dots, 1, 1.$$
 (3)

A double-perfect partition $\lambda \vdash n$ follows the representation scheme $1, 2^2, 3^2, \ldots, (n-2)^2, n-1, n$ which gives

$$V(\lambda) = 1, 2, 2, \dots, 2, 1, 1.$$
 (4)

Notice that the sequences (3) and (4) are weakly unimodal.

Generally consider any $\lambda \vdash n$ and make the following assumptions.

(Q1) λ is a complete partition, that is, $G(\lambda)$ contains at least one partition of every m, $1 \le m \le n$.

So the sequence of weights of members of $G(\lambda)$ has the form

$$1^{s_1}, 2^{s_2}, 3^{s_3}, \ldots, (n-1)^{s_{n-1}}, n^{s_n}, s_i > 0.$$

(Q2) The sequence $V(\lambda) = s_1, s_2, s_3, \dots, s_n$ is weakly unimodal.

Let $S_p(n)$ be the set of partitions $\lambda \vdash n$ that satisfy properties (Q1) and (Q2) such that $\max(V(\lambda)) = p$:

 $S_p(n) = \{\lambda \vdash n \mid \lambda \text{ is complete}, V(\lambda) \text{ is unimodal and } \max(V(\lambda)) = p\}.$

Then $S_1(n) = Per(n)$. However, $D(n) \subsetneq S_2(n)$ in general. E.g., $(1^4, 3) \in S_2(7) \setminus D(7)$. (Note: $V((1^4, 3)) = 1, 1, 2, 2, 1, 1, 1)$. Generally consider any $\lambda \vdash n$ and make the following assumptions.

(Q1) λ is a complete partition, that is, $G(\lambda)$ contains at least one partition of every m, $1 \le m \le n$.

So the sequence of weights of members of $G(\lambda)$ has the form

$$1^{s_1}, 2^{s_2}, 3^{s_3}, \ldots, (n-1)^{s_{n-1}}, n^{s_n}, s_i > 0.$$

(Q2) The sequence $V(\lambda) = s_1, s_2, s_3, \dots, s_n$ is weakly unimodal.

Let $S_p(n)$ be the set of partitions $\lambda \vdash n$ that satisfy properties (Q1) and (Q2) such that $\max(V(\lambda)) = p$:

 $S_p(n) = \{\lambda \vdash n \mid \lambda \text{ is complete}, V(\lambda) \text{ is unimodal and } \max(V(\lambda)) = p\}.$

Then $S_1(n) = Per(n)$. However, $D(n) \subsetneq S_2(n)$ in general. E.g., $(1^4, 3) \in S_2(7) \setminus D(7)$. (Note: $V((1^4, 3)) = 1, 1, 2, 2, 1, 1, 1)$.

$S_p(n)$ is a superset of *p*-perfect partitions of *n*.

Definition

Given an integer p > 1, a *p*-perfect partition of *n* is any $\lambda \in S_p(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1, ends with two 1's and has *p* distinct terms:

$$egin{aligned} V(\lambda) &= 1, s_2, s_3, \dots, s_{n-2}, 1, 1, \;\; s_i > 1, \ && \max(s_2, s_3, \dots, s_{n-2}) = p, \ && |\{1, s_2, s_3, \dots, s_{n-2}, 1, 1\}| = p. \end{aligned}$$

 \implies triple-perfect partitions $\lambda \in S_3(n)$ $\dots ?$

$S_p(n)$ is a superset of *p*-perfect partitions of *n*.

Definition

Given an integer p > 1, a *p*-perfect partition of *n* is any $\lambda \in S_p(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1, ends with two 1's and has *p* distinct terms:

$$egin{aligned} \mathcal{V}(\lambda) &= 1, s_2, s_3, \dots, s_{n-2}, 1, 1, \;\; s_i > 1, \ && \mathsf{max}(s_2, s_3, \dots, s_{n-2}) = p, \ && |\{1, s_2, s_3, \dots, s_{n-2}, 1, 1\}| = p. \end{aligned}$$

 \implies triple-perfect partitions $\lambda \in S_3(n)$?

$S_p(n)$ is a superset of *p*-perfect partitions of *n*.

Definition

Given an integer p > 1, a *p*-perfect partition of *n* is any $\lambda \in S_p(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1, ends with two 1's and has *p* distinct terms:

$$egin{aligned} \mathcal{V}(\lambda) &= 1, s_2, s_3, \dots, s_{n-2}, 1, 1, \;\; s_i > 1, \ && \mathsf{max}(s_2, s_3, \dots, s_{n-2}) = p, \ && |\{1, s_2, s_3, \dots, s_{n-2}, 1, 1\}| = p. \end{aligned}$$

 \Rightarrow triple-perfect partitions $\lambda \in S_3(n)$?

There are Two Classes of Triple Perfect partitions λ

First: the sequence of weights of members of $G(\lambda)$ has the form

$$1, \underbrace{2, 3, \ldots, u}_{2 \text{ times}}, \underbrace{u+1, u+2, u+3, u+4}_{3 \text{ times}}, \underbrace{u+5, \ldots, n-2}_{2 \text{ times}}, n-1, n.$$

By symmetry $u = \frac{n-5}{2}$, so *n* is odd. Refer to such partitions as triple4-perfect partitions, denoted by $T_4(n)$. So any $\lambda \in T_4(n)$ satisfies

$$V(\lambda) = 1, \underbrace{2, 2, \dots, 2}_{(n-7)/2 \text{ times}}, 3, 3, 3, 3, 3, \underbrace{2, 2, \dots, 2}_{(n-7)/2 \text{ times}}, 1, 1.$$

$$V(\lambda) = 1, 2^{(n-7)/2}, 3^4, 2^{(n-7)/2}, 1^2, n > 8.$$

Second: the sequence of weights of members of $G(\lambda)$ has the form

These constitute the (main) set of triple-perfect partitions, denoted by T(n). So each $\lambda \in T(n)$ satisfies

$$V(\lambda) = 1, 2, 2, \underbrace{3, 3, \dots, 3}_{N-7 \text{ times}}, 2, 2, 1, 1.$$

$$V(\lambda) = 1, 2^2, 3^{N-7}, 2^2, 1^2, \quad N > 7.$$

Minimality Statement

Theorem 4

Let $\lambda \in S_3(n)$. Then $V(\lambda)$ is minimal if and only if a $\lambda \in T_4(n)$: $V(\lambda) = 1, 2^{(n-7)/2}, 3^4, 2^{(n-7)/2}, 1^2, n > 8.$ a or $\lambda \in T(n)$: $V(\lambda) = 1, 2^2, 3^{n-7}, 2^2, 1^2, n > 7.$

((The proof of Theorem 4 is under construction, still needs to be perfected!))

We will discuss Triple-Perfect Partitions first; then Triple4-Perfect Partitions.

Triple Perfect Partitions

If $\lambda \vdash N$ is triple-perfect, then $G(\lambda)$ contains partitions of

 $1, 2^{2}, 3^{2}, 4^{3}, 5^{3} \dots, (N-5)^{3}, (N-4)^{3}, (N-3)^{2}, (N-2)^{2}, (N-1), N.$ $\implies V(\lambda) = 1, 2^{2}, 3^{N-7}, 2^{2}, 1^{2}, \quad N > 7.$

Definition

A triple-perfect partition is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash N$ such that each integer m with $4 \leq m \leq N - 4$ can be represented three times as $m = \sum_{i=1}^{k} \alpha_i \lambda_i$, $\alpha_i \in \{0, 1\}$ and each integer m with $m \in \{2, 3\} \cup \{N - 3, N - 2\}$ can be represented two times.

Triple Perfect Partitions

If $\lambda \vdash N$ is triple-perfect, then $G(\lambda)$ contains partitions of

 $1, 2^{2}, 3^{2}, 4^{3}, 5^{3} \dots, (N-5)^{3}, (N-4)^{3}, (N-3)^{2}, (N-2)^{2}, (N-1), N.$ $\implies V(\lambda) = 1, 2^{2}, 3^{N-7}, 2^{2}, 1^{2}, \quad N > 7.$

Definition

A triple-perfect partition is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash N$ such that each integer m with $4 \leq m \leq N - 4$ can be represented three times as $m = \sum_{i=1}^{k} \alpha_i \lambda_i$, $\alpha_i \in \{0, 1\}$ and each integer m with $m \in \{2, 3\} \cup \{N - 3, N - 2\}$ can be represented two times.

Theorem 5

Every triple-perfect partition $\lambda \vdash N > 7$ may be obtained from a perfect partition $\beta \vdash N - 4$ in three ways:

- I. If the multiplicity of 1 in β is 1, then insert 1⁴ into β : $A(1^4)$.
- II. If the multiplicity of 1 in β is 1, then insert 1, 3 into β : B(1,3).
- III. If β does not contain 2 as a part, insert 2² into β : $C(2^2)$.

Then

$$T(N) = A(1^4) \cup B(1,3) \cup C(2^2).$$

Proof. Assume that $\lambda \vdash N$ is obtained from $\beta \in Per(N-4)$ using I, II or III. We claim that $\lambda \in T(N)$.

On insertion of parts into β , we find one additional partition of each of 2, 3: $(1^2), (1^3)$ or $(1^2), (3)$ or (2), (1, 2) with respect to I, II or III, respectively.

Then two additional partitions of each $m \in [4, N - 4]$ follow: (1³, h(m - 3)), (1², h(m - 2)) or (1², h(m - 2)), (3, h(m - 3)) or (2, h(m - 2)), (2², h(m - 4)).

Then we obtain two new partitions of both N - 3, N - 2 by symmetry, followed by one new partition of N - 1 and N.

Thus $G(\lambda)$ matches the desired scheme for triple-perfect partitions.

Lastly, it can be proved that inserting the remaining partitions of 4 into β , namely, (4) and (1², 2), does not affect the foregoing results.

Example

$\beta = (1^2, 3^2) \in \mathsf{Per}(8) \implies \lambda = (1^2, 2^2, 3^2) \in T(12)$, from $C(2^2)$:

weight	$G(\beta)$	$G(\lambda)\setminus G(oldsymbol{eta})$	
1	(1)	_	_
2	(1^2)	(2)	—
3	(3)	(1,2)	_
4	(1,3)	$(1^2, 2)$	(2 ²)
5	$(1^2, 3)$	(2,3)	$(1, 2^2)$
6	(3 ²)	(1, 2, 3)	$(1^2, 2^2)$
7	$(1, 3^2)$	$(1^2, 2, 3)$	(2 ² , 3)
8	$(1^2, 3^2)$	$(2, 3^2)$	$(1, 2^2, 3)$
9	-	$(1, 2, 3^2)$	$(1^2, 2^2, 3)$
10	_	$(1^2, 2, 3^2)$	$(2^2, 3^2)$
11	_	_	$(1, 2^2, 3^2)$
12	_	_	$(1^2, 2^2, 3^2)$

Corollary

A triple-perfect partition
$$\lambda \vdash N$$
 has one of the following forms:

$$\lambda = (1^{5}, 2^{q_{2}-1}, (2q_{2})^{q_{3}-1}, (2q_{2}q_{3})^{q_{4}-1}, \dots, (2q_{2}q_{3}\cdots q_{k-1})^{q_{k}-1}),$$
(5)

$$\lambda = (1^{2}, 2^{q_{2}-1}, 3, (2q_{2})^{q_{3}-1}, (2q_{2}q_{3})^{q_{4}-1}, \dots, (2q_{2}q_{3}\cdots q_{k-1})^{q_{k}-1}),$$
(6)

$$\lambda = (1^{q_{1}-1}, 2^{2}, q_{1}^{q_{2}-1}, (q_{1}q_{2})^{q_{3}-1}, \dots, (q_{1}q_{2}\cdots q_{k-1})^{q_{k}-1}), q_{1} > 2.$$
(7)

Proof. Convert the following factorizations to perfect partitions, and then insert $(1^4), (1, 3)$ and (2^2) respectively.

$$N - 3 = 2q_2q_3 \cdots q_k, \ q_i > 1 \ \forall i,$$
(5a)

$$N - 3 = 2q_2q_3 \cdots q_k,$$
(6a)

$$N - 3 = q_1q_2q_3 \cdots q_k, \ q_1 > 2.$$
(7a)

26/39

The Counting Formula for T(N)

SN	Factorization	Set	Count
(1)	$N-3=2q_2q_3\cdots q_k$	$A(1^4)$	$f(\frac{N-3}{2})$
(2)	$N-3=2q_2q_3\cdots q_k$	B(1,3)	$f(\frac{N-3}{2})$
(3)	$N-3=q_1q_2q_3\cdots q_k,\ q_1>2$	$C(2^{2})$	$f(N-3)-f(\frac{N-3}{2})$

Duplicated partitions arise from factorizations of the form $2 \cdot 3 \cdot m$:

$$2 \cdot 3 \cdot m \longmapsto (1, 2^2, 6^{m-1}) \longrightarrow \begin{cases} (1^5, 2^2, 6^{m-1}) \in A(1^4) \\ (1^2, 2^2, 3, 6^{m-1}) \in B(1, 3). \end{cases}$$

However, these two partitions belong uniquely to the set $C(2^2)$: $6 \cdot m \longmapsto (1^5, 6^{m-1}) \longrightarrow (1^5, 2^2, 6^{m-1}) \in C(2^2)$, $3 \cdot 2 \cdot m \longmapsto (1^2, 3, 6^{m-1}) \longrightarrow (1^2, 2^2, 3, 6^{m-1}) \in C(2^2)$. So when $N - 3 \equiv 0 \pmod{6}$, the number of duplicated partitions is $f(\frac{N-3}{6})$, and should be subtracted from $|A(1^4)|$ and |B(1,3)|.

Hence the number t(N) of triple-perfect partitions of N is given by

$$\begin{cases} 2(f(\frac{N-3}{2}) - f(\frac{N-3}{6})) + f(N-3) - f(\frac{N-3}{2}), & N-3 \equiv 0 \pmod{6}, \\ 2f(\frac{N-3}{2}) + f(N-3) - f(\frac{N-3}{2}), & N-3 \equiv 2, 4 \pmod{6}, \\ f(N-3), & \text{otherwise.} & \Box \end{cases}$$

That is,

Theorem 6

The number t(N) of triple-perfect partitions of N is given by

$$t(N) = \begin{cases} f(N-3) & \text{if } N \equiv 0 \pmod{2}, \\ f(N-3) + f(\frac{N-3}{2}) & \text{if } N \equiv \pm 1 \pmod{6}, \\ f(N-3) + f(\frac{N-3}{2}) - 2f(\frac{N-3}{6})) & \text{if } N \equiv 3 \pmod{6}. \end{cases}$$

So when $N - 3 \equiv 0 \pmod{6}$, the number of duplicated partitions is $f(\frac{N-3}{6})$, and should be subtracted from $|A(1^4)|$ and |B(1,3)|.

Hence the number t(N) of triple-perfect partitions of N is given by

$$\begin{cases} 2(f(\frac{N-3}{2}) - f(\frac{N-3}{6})) + f(N-3) - f(\frac{N-3}{2}), & N-3 \equiv 0 \pmod{6}, \\ 2f(\frac{N-3}{2}) + f(N-3) - f(\frac{N-3}{2}), & N-3 \equiv 2, 4 \pmod{6}, \\ f(N-3), & \text{otherwise.} & \Box \end{cases}$$

That is,

Theorem 6

The number t(N) of triple-perfect partitions of N is given by

$$t(N) = \begin{cases} f(N-3) & \text{if } N \equiv 0 \pmod{2}, \\ f(N-3) + f(\frac{N-3}{2}) & \text{if } N \equiv \pm 1 \pmod{6}, \\ f(N-3) + f(\frac{N-3}{2}) - 2f(\frac{N-3}{6})) & \text{if } N \equiv 3 \pmod{6}. \end{cases}$$

Example: $T(33) = \{?\}$

From the formula $t(33) = f(30) + f(15) - 2 \cdot f(5) = 13 + 3 - 2 = 14$. But T(33) is determined by Per(29) via the set F(30) of factorizations:

SN	F(30)	Per(29)	Insert	T(33)	Туре
1	30	(1^{29})	2 ²	$(1^{29}, 2^2)$	
2	2 · 15	$(1, 2^{14})$	14	$(1^5, 2^{14})$	
3	2 · 15	$(1, 2^{14})$	1,3	$(1^2, 2^{14}, 3)$	
4	15 · 2	$(1^{14}, 15)$	2 ²	$(1^{14}, 2^2, 15)$	
5	3 · 10	$(1^2, 3^9)$	2 ²	$(1^2, 2^2, 3^9)$	
6	10 · 3	$(1^9, 10^2)$	2 ²	$(1^9, 2^2, 10^2)$	
7	5.6	$(1^4, 5^5)$	2 ²	$(1^4, 2^2, 5^5)$	
8	6 · 5	$(1^5, 6^4)$	2 ²	$(1^5, 2^2, 6^4)$	
9	2 · 5 · 3	$(1, 2^4, 10^2)$	14	$(1^5, 2^4, 10^2)$	
10	2 · 5 · 3	$(1, 2^4, 10^2)$	1,3	$(1^2, 2^4, 3, 10^2)$	l II
11	3 · 2 · 5	$(1^2, 3, 6^4)$	2 ²	$(1^2, 2^2, 3, 6^4)$	
12	3 · 5 · 2	$(1^2, 3^4, 15)$	2 ²	$(1^2, 2^2, 3^4, 15)$	
13	5 · 2 · 3	$(1^4, 5, 10^2)$	2 ²	$(1^4, 2^2, 5, 10^2)$	
14	5 · 3 · 2	$(1^4, 5^2, 15)$	2 ²	$(1^4, 2^2, 5^2, 15)$	
	2 · 3 · 5	$(1, 2^2, 6^4)$	-	Ø	none

29/39

Triple4 Perfect Partitions

If $\lambda \vdash N$ is triple4-perfect, then $G(\lambda)$ contains partitions of

They are defined only for odd weights n = 2m - 1 > 8. Therefore,

$$V(\lambda) = 1, 2^{(n-7)/2}, 3^4, 2^{(n-7)/2}, 1^2, \quad n > 8.$$

Definition

A triple4 perfect partition is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash 2m - 1$, that contains three partitions of each of the **four integers** m - 2, m - 1, m, m + 1, and two partitions of each member of $\{2, \dots, m - 3\} \cup \{m + 2, \dots, 2m - 3\}, m > 4$.

Triple4 Perfect Partitions

If $\lambda \vdash N$ is triple4-perfect, then $G(\lambda)$ contains partitions of

They are defined only for odd weights n = 2m - 1 > 8. Therefore,

$$V(\lambda) = 1, 2^{(n-7)/2}, 3^4, 2^{(n-7)/2}, 1^2, \quad n > 8.$$

Definition

A triple4 perfect partition is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash 2m - 1$, that contains three partitions of each of the four integers m-2, m-1, m, m+1, and two partitions of each member of $\{2, \dots, m-3\} \cup \{m+2, \dots, 2m-3\}, m > 4$.

Triple4 Perfect Partitions from Ordered Factorizations

The following assertion may be established analogously like before.

Theorem 7

Every triple4-perfect partition $\lambda \vdash 2m - 1$, $m \neq 6$ may be obtained from a partition $\beta \in Per(m - 1)$ in two ways:

1. If the multiplicity of 1 in β is 1, then insert 1^2 , m-2 into β . $\implies E(1^2, m-2)$.

II. If β does not contain 2 as a part, insert 2, m - 2 into β . $\implies W(2, m - 2).$

Then

$$T_4(2m-1) = E(1^2, m-2) \cup W(2, m-2).$$

Note: this is the same as the construction of double-perfect partitions in Proposition 1 except for the additional part m - 2.

Corollary

A triple4-perfect partition $\lambda \vdash 2m - 1$ has either of the forms $(q_i > 1)$:

$$\lambda = (1^3, 2^{q_2-1}, (2q_2)^{q_3-1}, \dots, (2q_2q_3\cdots q_{k-1})^{q_k-1}, m-2), q_2 > 2;$$

 $\lambda = (1^{q_1-1}, 2, q_1^{q_3-1}, \dots, (q_1q_3q_4\cdots q_{k-1})^{q_k-1}, m-2), q_1 > 2.$

Theorem 8

The number $t_4(2m-1)$ is given by

$$t_4(2m-1)=0, \ m<5, \ t_4(9)=1, \ t_4(11)=6$$

and if $m \ge 7$, then

$$t_4(2m-1) = \begin{cases} f(m) & \text{if } m \not\equiv 0 \pmod{4}, \\ f(m) - f(\frac{m}{4}) & \text{if } m \equiv 0 \pmod{4}. \end{cases}$$

Corollary

A triple4-perfect partition $\lambda \vdash 2m - 1$ has either of the forms $(q_i > 1)$:

$$\lambda = (1^3, 2^{q_2-1}, (2q_2)^{q_3-1}, \dots, (2q_2q_3\cdots q_{k-1})^{q_k-1}, m-2), q_2 > 2;$$

 $\lambda = (1^{q_1-1}, 2, q_1^{q_3-1}, \dots, (q_1q_3q_4\cdots q_{k-1})^{q_k-1}, m-2), q_1 > 2.$

Theorem 8

The number $t_4(2m-1)$ is given by

$$t_4(2m-1)=0, \ m<5, \ t_4(9)=1, \ t_4(11)=6$$

and if $m \ge 7$, then

$$t_4(2m-1) = \begin{cases} f(m) & \text{if } m \not\equiv 0 \pmod{4}, \\ f(m) - f(\frac{m}{4}) & \text{if } m \equiv 0 \pmod{4}. \end{cases}$$

Examples

• From the t(n)-formula, t(11) = f(8) + f(4) = 6:

 $T(11) = \{(1^7, 2^2), (1^5, 2^3), (1^2, 2^3, 3), (1^5, 2, 4), (1^3, 2^2, 4), (1^2, 2, 3, 4)\};\$

every $\lambda \in T(11)$ is both triple- and triple4-perfect because $V(\lambda) = 1, 2^2, 3^4, 2^2, 1^2$. However, the first three members cannot be obtained from Theorem 7 since none of them contains m - 2 = 4.

•
$$t_4(15) = t_4(2 \cdot 8 - 1) = f(8) - f(2) = 4 - 1 = 3$$
:

Factorization of $m = 8$		2 · 4	4 · 2	2 · 2 · 2
Perfect Partitions of 7	(1^7)	$(1, 2^3)$	$(1^3, 4)$	Ø
Insert Parts	2,6	1 ² ,6	2,6	
$T_4(15)$	$(1^7, 2, 6)$	$(1^3, 2^3, 6)$	$(1^3, 2, 4, 6)$	

Examples

• From the t(n)-formula, t(11) = f(8) + f(4) = 6:

 $T(11) = \{(1^7, 2^2), (1^5, 2^3), (1^2, 2^3, 3), (1^5, 2, 4), (1^3, 2^2, 4), (1^2, 2, 3, 4)\};\$

every $\lambda \in T(11)$ is both triple- and triple4-perfect because $V(\lambda) = 1, 2^2, 3^4, 2^2, 1^2$. However, the first three members cannot be obtained from Theorem 7 since none of them contains m - 2 = 4.

•
$$t_4(15) = t_4(2 \cdot 8 - 1) = f(8) - f(2) = 4 - 1 = 3$$
:

Factorization of $m = 8$	8	2 · 4	4 · 2	2 · 2 · 2
Perfect Partitions of 7	(17)	$(1, 2^3)$	$(1^3, 4)$	Ø
Insert Parts	2,6	1 ² ,6	2,6	-
$T_4(15)$	$(1^7, 2, 6)$	$(1^3, 2^3, 6)$	$(1^3, 2, 4, 6)$	-

A Partition Identity I

By comparison of the formulas for d(N) and $t_4(N)$ we obtain

$$t_4(2m-1) = d(m+1), m \ge 5.$$

Proof. Define a bijection $D(m+1) \rightarrow T_4(2m-1)$ by

 $\lambda \mapsto (\lambda, (m-2)).$

 Note that weights of partitions in any $\lambda \in T_4(15)$ fulfill the scheme

$$1, 2^2, 3^2, 4^2, 5^2, 6^3, 7^3, 8^3, 9^3, 10^2, 11^2, 12^2, 13^2, 14, 15$$
:

E.g. $\lambda = (1^7, 2, 6)$ contains, i.e., members of $G(\lambda)$:

$$(1)$$

$$(1^{2}), (2)||(1^{3}), (1, 2)||(1^{4}), (1^{2}, 2)||(1^{5}), (1^{3}, 2)$$

$$(1^{6}), (1^{4}, 2), (6)||(1^{7}), (1^{5}, 2), (1, 6)||(1^{6}, 2), (1^{2}, 6), (2, 6)||(1^{7}, 2), (1^{3}, 6), (1, 2, 6)$$

$$(1^{4}, 6), (1^{2}, 2, 6)||(1^{5}, 6), (1^{3}, 2, 6)||(1^{6}, 6), (1^{4}, 2, 6)||(1^{7}, 6), (1^{5}, 2, 6)$$

$$(1^{6}, 2, 6)||(1^{7}, 2, 6).$$

A Partition Identity II

By comparison of the formulas for d(N) and t(N) we obtain

Given an odd integer N > 8, then

$$d(N+1) = t(N+3) \quad (= f(N)).$$

Proof. Define a bijection $D(N+1) \rightarrow T(N+3)$ by $\lambda \mapsto ((2), \lambda).$

Hence

If N>8 is any Odd integer, then $d(N+1)=t(N+3)=t_4(2N-1).$

A Partition Identity II

By comparison of the formulas for d(N) and t(N) we obtain

Given an odd integer N > 8, then

$$d(N+1) = t(N+3) \quad (= f(N)).$$

Proof. Define a bijection $D(N+1) \rightarrow T(N+3)$ by

 $\lambda \mapsto ((2), \lambda).$

Hence

If N>8 is any Odd integer, then $d(N+1)=t(N+3)=t_4(2N-1).$

REFERENCES I

- A. K. Agarwal and R. Sachdeva, Combinatorics of n-color perfect partitions, Ars Combinatoria, 136 (2018), 29-43.
- A. K. Agarwal and M.V Subbarao, Some properties of perfect partitions, Indian J. Pure Appl. Math., 22 (1991), 737–743.
- G.E. Andrews, *The Theory of Partitions*, Cambridge University Press, Cambridge, 1984, 1998.
- H.-K. Lee, Double perfect partitions, Discrete Math. 306 (5) (2006), 519-525.
- P.A. MacMahon, Combinatory Analysis, Volume 1, Cambridge University Press, 1915.
- P.A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, *Messenger Math.* 20 (1891) 103-119.

REFERENCES II

- A. O. Munagi, Perfect Compositions of Numbers, J. Integer Seq. 23 (2020), art. 20.5.1.
- A. O. Munagi and A.N. Takalani, Full K-Complete Partitions, Integers 22 (2022), #A73, 17pp.
- E. O'Shea, *M*-partitions: optimal partitions of weight for one scale pan, *Discrete Math.* 289 (2004), 81–93.
- S. K. Park, Complete partitions, Fibonacci Quart. 36 (1998), 354–360.
- S. K. Park, The r-complete partitions, Discrete Math. 183 (1998), 293-297.
- O. J. Rodseth, Enumeration of *M*-partitions, *Discrete Math*. 306 (7) (2006), 694–698.

Thank you for your attention!