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What is a partition?

A partition � of n is any weakly increasing sequence of positive

integers (�1; �2; : : : ; �k) such that �1 + � � �+ �k = n.

For example 4 has �ve partitions namely

(4); (1; 3); (2; 2); (1; 1; 2); (1; 1; 1; 1):

Alternative Notation:

(�v11 ; �
v2
2 ; : : : ; �

vt
t ); 0 < �1 < �2 < � � � < �t ; vi > 0; t � k :

(4); (1; 3); (22); (12; 2); (14):
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Basic Objects

Let � be a partition of n, denoted by � ` n.

How many nonempty partitions of m � n are contained in � ?

Let G (�) := set of nonempty partitions contained in �.

E. g.

G ((13; 22)) : (1); (12); (2); (13); (1; 2); (12; 2); (22); (13; 2);

(1; 22); (12; 22); (13; 22):

Note that

jG ((�v11 ; �
v2
2 ; : : : ; �

vk
k ))j = (v1 + 1)(v2 + 1) � � � (vk + 1)� 1.
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Perfect Partitions

De�nition. (MacMahon)

A perfect partition of n is a partition that contains exactly one

partition of every positive integer less than or equal to n.

A perfect partition � ` n satis�es jG (�)j = n.

Notation: Per(n) := set of perfect partitions of n.
per(n) := jPer(n)j, number of perfect partitions of n.

E.g., Per(5) = f(15); (1; 22); (12; 3)g. So per(5) = 3.

Thus, for insatnce,

G ((12; 3)) : (1); (12); (3); (1; 3); (12; 3):
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Perfect Partitions and Ordered Factorizations

Perfect partitions are most easily found using ordered factorizations.

Theorem 1

The number of perfect partitions of n is equal to the number of

ordered factorizations of n + 1 without unit factors.

Bijection. An ordered factorization n + 1 = q1q2 � � � qr ; qi > 1,

corresponds to the perfect partition

� = (1q1�1; q
q2�1
1 ; (q1q2)

q3�1; : : : ; (q1q2 � � � qr�1)
qr�1):

This image is a partition of n and contains a unique partition of

each m; 1 � m � n.

Ordered Factorization of 6 6 2 � 3 3 � 2
Perfect Partition of 5 (15) (1; 22) (12; 3)
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Let f (n; k) := number of ordered factorizations of n into k factors;

f (n) := f (n; 1) + f (n; 2) + � � � . Then

Theorem 2 (MacMahon, Andrews)

f (n; k) =
kX

i=0

(�1)i
 
k

i

!
rY

j=1

 
�j + k � i � 1

�j

!
;

where n + 1 = p�11 p�22 � � � p
�r
r is the prime factorization and

1 � k � �1 + �2 + � � �+ �r .

f (n; k) counts perfect partitions of n � 1 with k blocks (or runs) of equal
parts, and f (n) = per(n � 1):

per(n) = f (n + 1):
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Generalizations and Extensions of Perfect Partitions

Complete Partitions (Park 1998): partitions � ` n that contain

at least one partition of every positive integer < n.

M-Partitions (O'Shea 2004): complete partitions with minimal

lengths.

Double Perfect Partitions (Lee 2006): . . . discussed below . . .

n-Color Perfect Partitions (Agarwal and Sachdeva 2018):

n-color partitions � ` n that contain one n-color partition of

every positive integer < n.

Perfect Compositions (M. 2020): compositions of n that

contain one composition of every positive integer < n.

Full K -Complete Partitions (M. and Takalani 2022): partitions

that contain all partitions of every positive integer up to k .

. . . and so forth.
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Double Perfect Partitions

Is there a partition of n that contains t � 1 partitions of each

m; t � m � n � t and one partition of every other integer not

exceeding n ?

Lee (2006) showed that the answer is `yes' only when t = 1 or 2.

The case t = 1 gives perfect partitions!

He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition (�1; �2; : : : ; �k) ` n such

that each integer m; 2 � m � n � 2 can be represented exactly

twice as m =
Pk

i=1 �i�i , where �i 2 f0; 1g.

E. g. � = (15; 2) ` 7 is double-perfect:

G (�) : (1); (12); (2); (13); (1; 2); (14); (12; 2); (15); (13; 2); (14; 2); (15; 2).
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General Form (Lee 2006)

A double-perfect partition � ` n has the following form

(1a1 ; 2a2 ; (a1 + 2a2 � 1)a3 ; ((a1 + 2a2 � 1)(a3 + 1))a4 ;

((a1 + 2a2 � 1)(a3 + 1)(a4 + 1))a5 ; : : :);

where a1 � 2 and a2; a3; : : : are positive integers such that if a1 6= 3

then a2 = 1.

Theorem 3

The number d(n) of double-perfect partitions of n is given by

d(n) =

(
f (n � 1) if n 6� 1 (mod 4);

f (n � 1)� f (n�1
4

) if n � 1 (mod 4):
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In the course of proving Theorem 3,

Lee separated the general form into two types of

double-perfect partitions:

(13; 2a2 ; (2(a2 + 1))a3 ; (2(a2 + 1)(a3 + 1))a4 ; : : : ;

(2(a2 + 1)(a3 + 1) � � � (ar�1 + 1))ar ); a2 � 2; (1)

(1a1 ; 2; (a1 + 1)a2 ; ((a1 + 1)(a2 + 1))a3 ; : : : ;

((a1 + 1)(a2 + 1) � � � (ar�1 + 1))ar ); a1 � 2: (2)

These then imply the following ordered factorizations:

n � 1 = 2(a2 + 1)(a3 + 1) � � � (ar�1 + 1)(ar + 1); a2 � 2 (1a)

n � 1 = (a1 + 1)(a2 + 1) � � � (ar�1 + 1)(ar + 1); a1 � 2: (2a)

(excluding the factorizations n � 1 = 2 � 2 � (a3 + 1) � � � ).
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Observation for New Proofs

The foregoing results on double-perfect partitions can be obtained

by starting out with perfect partitions.

The d(n)-formula shows that d(n) � f (n � 1) �! per(n � 2).

So the set D(n) of double-perfect partitions of n can be found from

perfect partitions by inserting parts of total weight 2.

Recall:

q1q2 � � � qr  ! (1q1�1; q
q2�1
1 ; (q1q2)

q3�1; : : : ; (q1q2 � � � qr�1)
qr�1)
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Double Perfect Partitions from Ordered Factorizations

Proposition 1

Every double-perfect partition � ` N > 3 may be obtained from a perfect
partition � ` N � 2 in two ways:

I. If the multiplicity of 1 in � is 1, then insert 12 into �. Denote the
resulting set by A(12).

II. If � does not contain 2 as a part, insert 2 into �. Denote the
resulting set by B(2).

Then
D(N) = A(12) [ B(2):

Proof. Let h(m) 2 G (�); 1 � m � n and write (�; 
) for � [ 
.
Assume that � ` N is obtained from � 2 Per(N � 2) by insertion of 12 or
2 according to I or II respectively.
We �nd one additional partition of each j 2 f2; 3; : : : ;N � 2g, namely
((12); h(j � 2)) or ((2); h(j � 2)).
Then one new partition of each of N � 1 and N appears, that is,
((12); h(N�3)) or ((2); h(N�3)) and ((12); h(N�2)) or ((2); h(N�2)).
Thus the resulting partition � is double-perfect. 13/39



E.g., let � = (12; 3) 2 Per(5). Then from II,
� = ((2); �) = (12; 2; 3) 2 D(7), and our proof runs as follows:

j h(j) 2 G (�) 
 2 G (�) n G (�)
1 (1) �
2 (12) ((2); h(0)) = (2)
3 (3) ((2); h(1)) = (1; 2)
4 (1; 3) ((2); h(2)) = (12; 2)
5 (12; 3) ((2); h(3)) = (2; 3)
6 � ((2); h(4)) = (1; 2; 3)
7 � ((2); h(5)) = (12; 2; 3)

All members of D(7) are obtained as follows:

Ordered Factorization of 6 6 2 � 3 3 � 2
Perfect Partitions of 5 (15) (1; 22) (12; 3)
Insert Parts 2 12 2

Double-Perfect Partition of 7 (15; 2) (13; 22) (12; 2; 3)
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Shape and Enumeration

� Obtain the perfect partitions � corresponding to factorizations of the
forms N � 1 = 2q2q3 � � � qk ; q2 > 2 and N � 1 = q1q2q3 � � � qk ; q1 > 2:

I. � = (1; 2q2�1; (2q2)
q3�1; (2q2q3)

q4�1; : : : ; (2q2q3 � � � qk�1)
qk�1):

II. � = (1q1�1; qq2�1
1

; (q1q2)
q3�1; : : : ; (q1q2q3 � � � qk�1)

qk�1):

Insert 12 and 2 (respectively) to obtain the desired shapes of � 2 D(N).

� Proposition 1 implies that d(N) = f (N � 1), with the exception of
certain duplicates.

The factorizations N � 1 = 2 � 2 �m and N � 1 = 4 �m (m �xed) produce
the same double-perfect partitions:

N � 1 = 2 � 2 �m 7�! (1; 2; 4m�1) �! (13; 2; 4m�1) 2 A(12);

N � 1 = 4 �m 7�! (13; 4m�1) �! (13; 2; 4m�1) 2 B(2).

So if 4j(N � 1) we remove factorizations of the form N � 1 = 2 � 2 �m and
get d(N) = f (N � 1)� f (N�1

4
). This completes the proof of Theorem 3.
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Superset of p-Perfect Partitions

Let V (�) denote the sequence of multiplicities of members of G (�)
when arranged by increasing weights. For example, the weights of

partitions in G ((15; 2)) are 1; 2; 2; 3; 3; 4; 4; 5; 5; 6; 7, or

1; 22; 32; 42; 52; 6; 7. Thus V ((15; 2)) = 1; 2; 2; 2; 2; 1; 1.

A perfect partition � ` n contains partitions of

11; 21; 31; : : : ; (n � 1)1; n1. So

V (�) = 1; 1; 1; : : : ; 1; 1: (3)

A double-perfect partition � ` n follows the representation

scheme 1; 22; 32; : : : ; (n � 2)2; n � 1; n which gives

V (�) = 1; 2; 2; : : : ; 2; 1; 1: (4)

Notice that the sequences (3) and (4) are weakly unimodal.
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Generally consider any � ` n and make the following assumptions.

(Q1) � is a complete partition, that is, G (�) contains at least one
partition of every m; 1 � m � n.

So the sequence of weights of members of G (�) has the form

1s1 ; 2s2 ; 3s3 ; : : : ; (n � 1)sn�1 ; nsn ; si > 0:

(Q2) The sequence V (�) = s1; s2; s3; : : : ; sn is weakly unimodal.

Let Sp(n) be the set of partitions � ` n that satisfy properties (Q1) and
(Q2) such that max(V (�)) = p :

Sp(n) = f� ` n j � is complete,V (�) is unimodal and max(V (�)) = pg:

Then S1(n) = Per(n). However, D(n) ⊊ S2(n) in general.

E.g., (14; 3) 2 S2(7) n D(7). (Note: V ((14; 3)) = 1; 1; 2; 2; 1; 1; 1).
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Sp(n) is a superset of p-perfect partitions of n.

De�nition

Given an integer p > 1, a p-perfect partition of n is any � 2 Sp(n)
for which the sequence V (�) is `minimal' in the sense that V (�)
starts with a single 1, ends with two 1's and has p distinct terms:

V (�) = 1; s2; s3; : : : ; sn�2; 1; 1; si > 1;

max(s2; s3; : : : ; sn�2) = p;

jf1; s2; s3; : : : ; sn�2; 1; 1gj = p:

=) triple-perfect partitions � 2 S3(n) . . . . . . ?
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There are Two Classes of Triple Perfect partitions �

First: the sequence of weights of members of G (�) has the form

1; 2; 3; : : : ; u| {z }
2 times

; u + 1; u + 2; u + 3; u + 4| {z }
3 times

; u + 5; : : : ; n � 2| {z }
2 times

; n � 1; n:

By symmetry u = n�5
2
, so n is odd. Refer to such partitions as

triple4-perfect partitions, denoted by T4(n). So any � 2 T4(n)
satis�es

V (�) = 1; 2; 2; : : : ; 2| {z }
(n�7)=2 times

; 3; 3; 3; 3; 2; 2; : : : ; 2| {z }
(n�7)=2 times

; 1; 1:

V (�) = 1; 2(n�7)=2; 34; 2(n�7)=2; 12; n > 8:
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Second: the sequence of weights of members of G (�) has the form

1; 2; 3|{z}
2 times

; 4; 5; : : : ; n � 4| {z }
3 times

; n � 3; n � 2| {z }
2 times

; n � 1; n:

These constitute the (main) set of triple-perfect partitions,

denoted by T (n). So each � 2 T (n) satis�es

V (�) = 1; 2; 2; 3; 3; : : : ; 3| {z }
N�7 times

; 2; 2; 1; 1:

V (�) = 1; 22; 3N�7; 22; 12; N > 7:
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Minimality Statement

Theorem 4

Let � 2 S3(n). Then V (�) is minimal if and only if

1 � 2 T4(n):

V (�) = 1; 2(n�7)=2; 34; 2(n�7)=2; 12; n > 8:

2 or � 2 T (n):

V (�) = 1; 22; 3n�7; 22; 12; n > 7:

((The proof of Theorem 4 is under construction, still needs to be

perfected!))

We will discuss Triple-Perfect Partitions �rst; then Triple4-Perfect

Partitions.
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Triple Perfect Partitions

If � ` N is triple-perfect, then G (�) contains partitions of

1; 22; 32; 43; 53 : : : ; (N � 5)3; (N � 4)3; (N � 3)2; (N � 2)2; (N � 1);N:

=) V (�) = 1; 22; 3N�7; 22; 12; N > 7:

De�nition

A triple-perfect partition is a partition � = (�1; : : : ; �k) ` N such

that each integer m with 4 � m � N � 4 can be represented three

times as m =
Pk

i=1 �i�i ; �i 2 f0; 1g and each integer m with

m 2 f2; 3g [ fN � 3;N � 2g can be represented two times.
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Triple Perfect Partitions from Perfect Partitions

Theorem 5

Every triple-perfect partition � ` N > 7 may be obtained from a

perfect partition � ` N � 4 in three ways:

I. If the multiplicity of 1 in � is 1, then insert 14 into � : A(14).

II. If the multiplicity of 1 in � is 1, then insert 1; 3 into � : B(1; 3).

III. If � does not contain 2 as a part, insert 22 into � : C (22).

Then

T (N) = A(14) [ B(1; 3) [ C (22):

Proof. Assume that � ` N is obtained from � 2 Per(N � 4) using I, II

or III. We claim that � 2 T (N).
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On insertion of parts into �, we �nd one additional partition of each of
2; 3: (12); (13) or (12); (3) or (2); (1; 2) with respect to I, II or III,
respectively.

Then two additional partitions of each m 2 [4;N � 4] follow:
(13; h(m � 3)); (12; h(m � 2)) or (12; h(m � 2)); (3; h(m � 3)) or
(2; h(m � 2)); (22; h(m � 4)).

Then we obtain two new partitions of both N � 3;N � 2 by symmetry,
followed by one new partition of N � 1 and N.

Thus G (�) matches the desired scheme for triple-perfect partitions.

Lastly, it can be proved that inserting the remaining partitions of 4 into

�, namely, (4) and (12; 2), does not a�ect the foregoing results.

□
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Example

� = (12; 32) 2 Per(8) =) � = (12; 22; 32) 2 T (12), from C (22):

weight G (�) G (�) n G (�)

1 (1) � �

2 (12) (2) �
3 (3) (1; 2) �

4 (1; 3) (12; 2) (22)
5 (12; 3) (2; 3) (1; 22)
6 (32) (1; 2; 3) (12; 22)
7 (1; 32) (12; 2; 3) (22; 3)
8 (12; 32) (2; 32) (1; 22; 3)

9 � (1; 2; 32) (12; 22; 3)
10 � (12; 2; 32) (22; 32)

11 � � (1; 22; 32)
12 � � (12; 22; 32)
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Corollary

A triple-perfect partition � ` N has one of the following forms:

� = (15; 2q2�1; (2q2)
q3�1; (2q2q3)

q4�1; : : : ; (2q2q3 � � � qk�1)
qk�1);

(5)

� = (12; 2q2�1; 3; (2q2)
q3�1; (2q2q3)

q4�1; : : : ; (2q2q3 � � � qk�1)
qk�1);

(6)

� = (1q1�1; 22; q
q2�1
1 ; (q1q2)

q3�1; : : : ; (q1q2 � � � qk�1)
qk�1); q1 > 2:

(7)

Proof. Convert the following factorizations to perfect partitions,

and then insert (14); (1; 3) and (22) respectively.

N � 3 = 2q2q3 � � � qk ; qi > 1 8 i ; (5a)

N � 3 = 2q2q3 � � � qk ; (6a)

N � 3 = q1q2q3 � � � qk ; q1 > 2: (7a)

□
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The Counting Formula for T (N)

SN Factorization Set Count

(1) N � 3 = 2q2q3 � � � qk A(14) f (N�3
2

)

(2) N � 3 = 2q2q3 � � � qk B(1; 3) f (N�3
2

)

(3) N � 3 = q1q2q3 � � � qk ; q1 > 2 C (22) f (N � 3)� f (N�3
2

)

Duplicated partitions arise from factorizations of the form 2 � 3 �m :

2 � 3 �m 7�! (1; 22; 6m�1) �!

(
(15; 22; 6m�1) 2 A(14)

(12; 22; 3; 6m�1) 2 B(1; 3):

However, these two partitions belong uniquely to the set C (22):

6 �m 7�! (15; 6m�1) �! (15; 22; 6m�1) 2 C (22),

3 � 2 �m 7�! (12; 3; 6m�1) �! (12; 22; 3; 6m�1) 2 C (22).
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So when N � 3 � 0 (mod 6), the number of duplicated partitions is
f (N�3

6
), and should be subtracted from jA(14)j and jB(1; 3)j.

Hence the number t(N) of triple-perfect partitions of N is given by8><
>:
2(f (N�3

2
)� f (N�3

6
)) + f (N � 3)� f (N�3

2
); N � 3 � 0 (mod 6);

2f (N�3
2

) + f (N � 3)� f (N�3
2

); N � 3 � 2; 4 (mod 6);

f (N � 3); otherwise: □

That is,

Theorem 6

The number t(N) of triple-perfect partitions of N is given by

t(N) =

8><
>:
f (N � 3) if N � 0 (mod 2);

f (N � 3) + f (N�3
2

) if N � �1 (mod 6);

f (N � 3) + f (N�3
2

)� 2f (N�3
6

)) if N � 3 (mod 6):
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Example: T (33) = f ? g

From the formula t(33) = f (30) + f (15)� 2 � f (5) = 13+ 3� 2 = 14.

But T (33) is determined by Per(29) via the set F (30) of factorizations:

SN F (30) Per(29) Insert T (33) Type

1 30 (129) 22 (129; 22) III
2 2 � 15 (1; 214) 14 (15; 214) I
3 2 � 15 (1; 214) 1; 3 (12; 214; 3) II
4 15 � 2 (114; 15) 22 (114; 22; 15) III
5 3 � 10 (12; 39) 22 (12; 22; 39) III
6 10 � 3 (19; 102) 22 (19; 22; 102) III
7 5 � 6 (14; 55) 22 (14; 22; 55) III
8 6 � 5 (15; 64) 22 (15; 22; 64) III
9 2 � 5 � 3 (1; 24; 102) 14 (15; 24; 102) I
10 2 � 5 � 3 (1; 24; 102) 1; 3 (12; 24; 3; 102) II
11 3 � 2 � 5 (12; 3; 64) 22 (12; 22; 3; 64) III
12 3 � 5 � 2 (12; 34; 15) 22 (12; 22; 34; 15) III
13 5 � 2 � 3 (14; 5; 102) 22 (14; 22; 5; 102) III
14 5 � 3 � 2 (14; 52; 15) 22 (14; 22; 52; 15) III

2 � 3 � 5 (1; 22; 64) � ; none
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Triple4 Perfect Partitions

If � ` N is triple4-perfect, then G (�) contains partitions of

1; 2; 3; : : : ;
n � 5

2| {z }
2 times

;
n � 3

2
;
n � 1

2
;
n + 1

2
;
n + 3

2| {z }
3 times

;
n + 5

2
; : : : ; n � 3; n � 2| {z }

2 times

; n�1; n:

They are de�ned only for odd weights n = 2m � 1 > 8. Therefore,

V (�) = 1; 2(n�7)=2; 34; 2(n�7)=2; 12; n > 8:

De�nition

A triple4 perfect partition is a partition � = (�1; : : : ; �k) ` 2m � 1,

that contains three partitions of each of the four integers

m � 2;m � 1;m;m + 1, and two partitions of each member of

f2; : : : ;m � 3g [ fm + 2; : : : ; 2m � 3g; m > 4.
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Triple4 Perfect Partitions from Ordered Factorizations

The following assertion may be established analogously like before.

Theorem 7

Every triple4-perfect partition � ` 2m � 1; m 6= 6 may be obtained

from a partition � 2 Per(m � 1) in two ways:

I. If the multiplicity of 1 in � is 1, then insert 12;m � 2 into �.

=) E (12;m � 2).

II. If � does not contain 2 as a part, insert 2;m � 2 into �.

=) W (2;m � 2).

Then

T4(2m � 1) = E (12;m � 2) [W (2;m � 2):

Note: this is the same as the construction of double-perfect partitions in

Proposition 1 except for the additional part m � 2.
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Corollary

A triple4-perfect partition � ` 2m � 1 has either of the forms

(qi > 1):

� = (13; 2q2�1; (2q2)
q3�1; : : : ; (2q2q3 � � � qk�1)

qk�1;m � 2); q2 > 2;

� = (1q1�1; 2; q
q3�1
1 ; : : : ; (q1q3q4 � � � qk�1)

qk�1;m � 2); q1 > 2:

Theorem 8

The number t4(2m � 1) is given by

t4(2m � 1) = 0; m < 5; t4(9) = 1; t4(11) = 6

and if m � 7, then

t4(2m � 1) =

(
f (m) if m 6� 0 (mod 4);

f (m)� f (m
4
) if m � 0 (mod 4):
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Examples

� From the t(n)-formula, t(11) = f (8) + f (4) = 6 :

T (11) = f(17; 22); (15; 23); (12; 23; 3); (15; 2; 4); (13; 22; 4); (12; 2; 3; 4)g;

every � 2 T (11) is both triple- and triple4-perfect because

V (�) = 1; 22; 34; 22; 12. However, the �rst three members cannot be

obtained from Theorem 7 since none of them contains m � 2 = 4.

� t4(15) = t4(2 � 8� 1) = f (8)� f (2) = 4� 1 = 3:

Factorization of m = 8 8 2 � 4 4 � 2 2 � 2 � 2
Perfect Partitions of 7 (17) (1; 23) (13; 4) ;
Insert Parts 2,6 12; 6 2,6 �

T4(15) (17; 2; 6) (13; 23; 6) (13; 2; 4; 6) �

33/39



Examples

� From the t(n)-formula, t(11) = f (8) + f (4) = 6 :

T (11) = f(17; 22); (15; 23); (12; 23; 3); (15; 2; 4); (13; 22; 4); (12; 2; 3; 4)g;

every � 2 T (11) is both triple- and triple4-perfect because

V (�) = 1; 22; 34; 22; 12. However, the �rst three members cannot be

obtained from Theorem 7 since none of them contains m � 2 = 4.

� t4(15) = t4(2 � 8� 1) = f (8)� f (2) = 4� 1 = 3:

Factorization of m = 8 8 2 � 4 4 � 2 2 � 2 � 2
Perfect Partitions of 7 (17) (1; 23) (13; 4) ;
Insert Parts 2,6 12; 6 2,6 �

T4(15) (17; 2; 6) (13; 23; 6) (13; 2; 4; 6) �

33/39



A Partition Identity I

By comparison of the formulas for d(N) and t4(N) we obtain

t4(2m � 1) = d(m + 1); m � 5:

Proof. De�ne a bijection D(m + 1) �! T4(2m � 1) by

� 7�! (�; (m � 2)):

□

E.g. d(9) = t4(15) = 3 (m � 2 = 6):

D(9) (17; 2) (13; 23) (13; 2; 4)

T4(15) (17; 2; 6) (13; 23; 6) (13; 2; 4; 6)
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Note that weights of partitions in any � 2 T4(15) ful�ll the scheme

1; 22; 32; 42; 52; 63; 73; 83; 93; 102; 112; 122; 132; 14; 15 :

E.g. � = (17; 2; 6) contains, i.e., members of G (�):

(1)

(12); (2)jj(13); (1; 2)jj(14); (12; 2)jj(15); (13; 2)

(16); (14; 2); (6)jj(17); (15; 2); (1; 6)jj(16; 2); (12; 6); (2; 6)jj(17; 2); (13; 6); (1; 2; 6)

(14; 6); (12; 2; 6)jj(15; 6); (13; 2; 6)jj(16; 6); (14; 2; 6)jj(17; 6); (15; 2; 6)

(16; 2; 6)jj(17; 2; 6):
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A Partition Identity II

By comparison of the formulas for d(N) and t(N) we obtain

Given an odd integer N > 8, then

d(N + 1) = t(N + 3) (= f (N) ):

Proof. De�ne a bijection D(N + 1) �! T (N + 3) by

� 7�! ((2); �):

□
Hence

If N > 8 is any Odd integer, then

d(N + 1) = t(N + 3) = t4(2N � 1):
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Thank you for your attention!
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