Double and Triple Perfect Partitions

Augustine O. Munagi

Seminar in Partition Theory, q-Series and Related Topics 28 March 2024

Presentation Order

- Background and Definitions
- Perfect Partitions
- Double Perfect Partitions
- New Proofs and p-Perfect Partitions
- Triple Perfect Partitions
- Triple4 Perfect Partitions
- Partition Identities

What is a partition?

A partition λ of n is any weakly increasing sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\cdots+\lambda_{k}=n$.

For example 4 has five partitions namely

$$
(4),(1,3),(2,2),(1,1,2),(1,1,1,1) .
$$

Alternative Notation:

$$
\left(\lambda_{1}^{v_{1}}, \lambda_{2}^{v_{2}}, \ldots, \lambda_{t}^{v_{t}}\right), 0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{t}, v_{i}>0, t \leq k:
$$

$$
(4),(1,3),\left(2^{2}\right),\left(1^{2}, 2\right),\left(1^{4}\right)
$$

Basic Objects

Let λ be a partition of n, denoted by $\lambda \vdash n$.
How many nonempty partitions of $m \leq n$ are contained in λ ?
Let $G(\lambda):=$ set of nonempty partitions contained in λ.
E. g.

$$
\begin{gathered}
G\left(\left(1^{3}, 2^{2}\right)\right):(1),\left(1^{2}\right),(2),\left(1^{3}\right),(1,2),\left(1^{2}, 2\right),\left(2^{2}\right),\left(1^{3}, 2\right) \\
\left(1,2^{2}\right),\left(1^{2}, 2^{2}\right),\left(1^{3}, 2^{2}\right)
\end{gathered}
$$

Note that

$$
\left|G\left(\left(\lambda_{1}^{v_{1}}, \lambda_{2}^{v_{2}}, \ldots, \lambda_{k}^{v_{k}}\right)\right)\right|=\left(v_{1}+1\right)\left(v_{2}+1\right) \cdots\left(v_{k}+1\right)-1 .
$$

Perfect Partitions

Definition. (MacMahon)
A perfect partition of n is a partition that contains exactly one partition of every positive integer less than or equal to n.

A perfect partition $\lambda \vdash n$ satisfies $|G(\lambda)|=n$.
Notation: $\operatorname{Per}(n):=$ set of perfect partitions of n. $\operatorname{per}(n):=|\operatorname{Per}(n)|$, number of perfect partitions of n.
E.g., $\operatorname{Per}(5)=\left\{\left(1^{5}\right),\left(1,2^{2}\right),\left(1^{2}, 3\right)\right\}$. So $\operatorname{per}(5)=3$.

Thus, for insatnce,

$$
G\left(\left(1^{2}, 3\right)\right):(1),\left(1^{2}\right),(3),(1,3),\left(1^{2}, 3\right) .
$$

Perfect Partitions and Ordered Factorizations

Perfect partitions are most easily found using ordered factorizations.

Theorem 1

The number of perfect partitions of n is equal to the number of ordered factorizations of $n+1$ without unit factors.

Bijection. An ordered factorization $n+1=q_{1} q_{2} \cdots q_{r}, q_{i}>1$, corresponds to the perfect partition

$$
\lambda=\left(1^{q_{1}-1}, q_{1}^{q_{2}-1},\left(q_{1} q_{2}\right)^{q_{3}-1}, \ldots,\left(q_{1} q_{2} \cdots q_{r-1}\right)^{q_{r}-1}\right) .
$$

This image is a partition of n and contains a unique partition of each $m, 1 \leq m \leq n$.

Ordered Factorization of 6	6	$2 \cdot 3$	$3 \cdot 2$
Perfect Partition of 5	$\left(1^{5}\right)$	$\left(1,2^{2}\right)$	$\left(1^{2}, 3\right)$

Let $f(n, k):=$ number of ordered factorizations of n into k factors; $f(n):=f(n, 1)+f(n, 2)+\cdots$. Then

Theorem 2 (MacMahon, Andrews)

$$
f(n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \prod_{j=1}^{r}\binom{\alpha_{j}+k-i-1}{\alpha_{j}}
$$

where $n+1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is the prime factorization and

$$
1 \leq k \leq \alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}
$$

$f(n, k)$ counts perfect partitions of $n-1$ with k blocks (or runs) of equal parts, and $f(n)=\operatorname{per}(n-1)$:

Let $f(n, k):=$ number of ordered factorizations of n into k factors; $f(n):=f(n, 1)+f(n, 2)+\cdots$. Then

Theorem 2 (MacMahon, Andrews)

$$
f(n, k)=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \prod_{j=1}^{r}\binom{\alpha_{j}+k-i-1}{\alpha_{j}}
$$

where $n+1=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is the prime factorization and

$$
1 \leq k \leq \alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}
$$

$f(n, k)$ counts perfect partitions of $n-1$ with k blocks (or runs) of equal parts, and $f(n)=\operatorname{per}(n-1)$:

$$
\operatorname{per}(n)=f(n+1)
$$

Generalizations and Extensions of Perfect Partitions

- Complete Partitions (Park 1998): partitions $\lambda \vdash n$ that contain at least one partition of every positive integer $<n$.
- M-Partitions (O'Shea 2004): complete partitions with minimal lengths.
- Double Perfect Partitions (Lee 2006): ... discussed below ...
- n-Color Perfect Partitions (Agarwal and Sachdeva 2018): n-color partitions $\lambda \vdash n$ that contain one n-color partition of every positive integer $<n$.
- Perfect Compositions (M. 2020): compositions of n that contain one composition of every positive integer $<n$.
- Full K-Complete Partitions (M. and Takalani 2022): partitions that contain all partitions of every positive integer up to k.
- ... and so forth.

Double Perfect Partitions

Is there a partition of n that contains $t \geq 1$ partitions of each $m, t \leq m \leq n-t$ and one partition of every other integer not exceeding n ?

Lee (2006) showed that the answer is 'yes' only when $t=1$ or 2 .
The case $t=1$ gives perfect partitions!
He decided to study the seemingly overlooked case of $t=2$.

Double Perfect Partitions

Is there a partition of n that contains $t \geq 1$ partitions of each $m, t \leq m \leq n-t$ and one partition of every other integer not exceeding n ?

Lee (2006) showed that the answer is 'yes' only when $t=1$ or 2 .
The case $t=1$ gives perfect partitions!
He decided to study the seemingly overlooked case of $t=2$.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \vdash n$ such that each integer $m, 2 \leq m \leq n-2$ can be represented exactly twice as $m=\sum_{i=1}^{k} \alpha_{i} \lambda_{i}$, where $\alpha_{i} \in\{0,1\}$.

Double Perfect Partitions

Is there a partition of n that contains $t \geq 1$ partitions of each $m, t \leq m \leq n-t$ and one partition of every other integer not exceeding n ?

Lee (2006) showed that the answer is 'yes' only when $t=1$ or 2 .
The case $t=1$ gives perfect partitions!
He decided to study the seemingly overlooked case of $t=2$.

Double Perfect Partitions (Lee 2006)

A double-perfect partition is a partition $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \vdash n$ such that each integer $m, 2 \leq m \leq n-2$ can be represented exactly twice as $m=\sum_{i=1}^{k} \alpha_{i} \lambda_{i}$, where $\alpha_{i} \in\{0,1\}$.
E. g. $\lambda=\left(1^{5}, 2\right) \vdash 7$ is double-perfect:
$G(\lambda):(1),\left(1^{2}\right),(2),\left(1^{3}\right),(1,2),\left(1^{4}\right),\left(1^{2}, 2\right),\left(1^{5}\right),\left(1^{3}, 2\right),\left(1^{4}, 2\right),\left(1^{5}, 2\right)$.

General Form (Lee 2006)

A double-perfect partition $\lambda \vdash n$ has the following form

$$
\begin{gathered}
\left(1^{a_{1}}, 2^{a_{2}},\left(a_{1}+2 a_{2}-1\right)^{a_{3}},\left(\left(a_{1}+2 a_{2}-1\right)\left(a_{3}+1\right)\right)^{a_{4}},\right. \\
\left.\left(\left(a_{1}+2 a_{2}-1\right)\left(a_{3}+1\right)\left(a_{4}+1\right)\right)^{a_{5}}, \ldots\right),
\end{gathered}
$$

where $a_{1} \geq 2$ and a_{2}, a_{3}, \ldots are positive integers such that if $a_{1} \neq 3$ then $a_{2}=1$.
\square

General Form (Lee 2006)

A double-perfect partition $\lambda \vdash n$ has the following form

$$
\begin{gathered}
\left(1^{a_{1}}, 2^{a_{2}},\left(a_{1}+2 a_{2}-1\right)^{a_{3}},\left(\left(a_{1}+2 a_{2}-1\right)\left(a_{3}+1\right)\right)^{a_{4}},\right. \\
\left.\left(\left(a_{1}+2 a_{2}-1\right)\left(a_{3}+1\right)\left(a_{4}+1\right)\right)^{a_{5}}, \ldots\right),
\end{gathered}
$$

where $a_{1} \geq 2$ and a_{2}, a_{3}, \ldots are positive integers such that if $a_{1} \neq 3$ then $a_{2}=1$.

Theorem 3

The number $d(n)$ of double-perfect partitions of n is given by

$$
d(n)=\left\{\begin{array}{lll}
f(n-1) & \text { if } n \not \equiv 1 & (\bmod 4) \\
f(n-1)-f\left(\frac{n-1}{4}\right) & \text { if } n \equiv 1 & (\bmod 4)
\end{array}\right.
$$

In the course of proving Theorem 3,

Lee separated the general form into two types of double-perfect partitions:

$$
\begin{align*}
& \left(1^{3}, 2^{a_{2}},\left(2\left(a_{2}+1\right)\right)^{a_{3}},\left(2\left(a_{2}+1\right)\left(a_{3}+1\right)\right)^{a_{4}}, \ldots,\right. \\
& \left.\quad\left(2\left(a_{2}+1\right)\left(a_{3}+1\right) \cdots\left(a_{r-1}+1\right)\right)^{a_{r}}\right), a_{2} \geq 2, \tag{1}\\
& \left(1^{a_{1}}, 2,\left(a_{1}+1\right)^{a_{2}},\left(\left(a_{1}+1\right)\left(a_{2}+1\right)\right)^{a_{3}}, \ldots,\right. \\
& \left.\quad\left(\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{r-1}+1\right)\right)^{a_{r}}\right), a_{1} \geq 2 . \tag{2}
\end{align*}
$$

These then imply the following ordered factorizations:

$$
\begin{align*}
& n-1=2\left(a_{2}+1\right)\left(a_{3}+1\right) \cdots\left(a_{r-1}+1\right)\left(a_{r}+1\right), \quad a_{2} \geq 2 \tag{1a}\\
& n-1=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{r-1}+1\right)\left(a_{r}+1\right), \quad a_{1} \geq 2 . \tag{2a}
\end{align*}
$$

(excluding the factorizations $n-1=2 \cdot 2 \cdot\left(a_{3}+1\right) \cdots$).

Observation for New Proofs

The foregoing results on double-perfect partitions can be obtained by starting out with perfect partitions.

The $d(n)$-formula shows that $d(n) \longleftarrow f(n-1) \longrightarrow \operatorname{per}(n-2)$.
So the set $D(n)$ of double-perfect partitions of n can be found from perfect partitions by inserting parts of total weight 2.

Recall:
$q_{1} q_{2} \cdots q_{r} \longleftrightarrow\left(1^{q_{1}-1}, q_{1}^{q_{2}-1},\left(q_{1} q_{2}\right)^{q_{3}-1}, \ldots,\left(q_{1} q_{2} \cdots q_{r-1}\right)^{q_{r}-1}\right)$

Double Perfect Partitions from Ordered Factorizations

Proposition 1

Every double-perfect partition $\lambda \vdash N>3$ may be obtained from a perfect partition $\beta \vdash N-2$ in two ways:
I. If the multiplicity of 1 in β is 1 , then insert 1^{2} into β. Denote the resulting set by $A\left(1^{2}\right)$.
II. If β does not contain 2 as a part, insert 2 into β. Denote the resulting set by $B(2)$.
Then

$$
D(N)=A\left(1^{2}\right) \cup B(2) .
$$

Proof. Let $h(m) \in G(\beta), 1 \leq m \leq n$ and write (ρ, γ) for $\rho \cup \gamma$. Assume that $\lambda \vdash N$ is obtained from $\beta \in \operatorname{Per}(N-2)$ by insertion of 1^{2} or 2 according to I or II respectively.
We find one additional partition of each $j \in\{2,3, \ldots, N-2\}$, namely $\left(\left(1^{2}\right), h(j-2)\right)$ or $((2), h(j-2))$.
Then one new partition of each of $N-1$ and N appears, that is, $\left(\left(1^{2}\right), h(N-3)\right)$ or $((2), h(N-3))$ and $\left(\left(1^{2}\right), h(N-2)\right)$ or ((2), $\left.h(N-2)\right)$.
Thus the resulting partition λ is double-perfect.
E.g., let $\beta=\left(1^{2}, 3\right) \in \operatorname{Per}(5)$. Then from II, $\lambda=((2), \beta)=\left(1^{2}, 2,3\right) \in D(7)$, and our proof runs as follows:

j	$h(j) \in G(\beta)$	$\gamma \in G(\lambda) \backslash G(\beta)$
1	(1)	-
2	$\left(1^{2}\right)$	$((2), h(0))=(2)$
3	(3)	$((2), h(1))=(1,2)$
4	$(1,3)$	$((2), h(2))=\left(1^{2}, 2\right)$
5	$\left(1^{2}, 3\right)$	$((2), h(3))=(2,3)$
6	-	$((2), h(4))=(1,2,3)$
7	-	$((2), h(5))=\left(1^{2}, 2,3\right)$

All members of $D(7)$ are obtained as follows:

E.g., let $\beta=\left(1^{2}, 3\right) \in \operatorname{Per}(5)$. Then from II, $\lambda=((2), \beta)=\left(1^{2}, 2,3\right) \in D(7)$, and our proof runs as follows:

j	$h(j) \in G(\beta)$	$\gamma \in G(\lambda) \backslash G(\beta)$
1	(1)	-
2	$\left(1^{2}\right)$	$((2), h(0))=(2)$
3	(3)	$((2), h(1))=(1,2)$
4	$(1,3)$	$((2), h(2))=\left(1^{2}, 2\right)$
5	$\left(1^{2}, 3\right)$	$((2), h(3))=(2,3)$
6	-	$((2), h(4))=(1,2,3)$
7	-	$((2), h(5))=\left(1^{2}, 2,3\right)$

All members of $D(7)$ are obtained as follows:

Ordered Factorization of 6	6	$2 \cdot 3$	$3 \cdot 2$
Perfect Partitions of 5	$\left(1^{5}\right)$	$\left(1,2^{2}\right)$	$\left(1^{2}, 3\right)$
Insert Parts	2	1^{2}	2
Double-Perfect Partition of 7	$\left(1^{5}, 2\right)$	$\left(1^{3}, 2^{2}\right)$	$\left(1^{2}, 2,3\right)$

Shape and Enumeration

- Obtain the perfect partitions β corresponding to factorizations of the forms $N-1=2 q_{2} q_{3} \cdots q_{k}, q_{2}>2$ and $N-1=q_{1} q_{2} q_{3} \cdots q_{k}, q_{1}>2$:
I. $\beta=\left(1,2^{q_{2}-1},\left(2 q_{2}\right)^{q_{3}-1},\left(2 q_{2} q_{3}\right)^{q_{4}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$.
II. $\beta=\left(1^{q_{1}-1}, q_{1}^{q_{2}-1},\left(q_{1} q_{2}\right)^{q_{3}-1}, \ldots,\left(q_{1} q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$.

Insert 1^{2} and 2 (respectively) to obtain the desired shapes of $\lambda \in D(N)$.

- Proposition 1 implies that $d(N)=f(N-1)$, with the exception of certain duplicates.
The factorizations $N-1=2 \cdot 2 \cdot \mathrm{~m}$ and $N-1=4 \cdot m$ (m fixed) produce the same double-perfect partitions:
$N-1=2 \cdot 2 \cdot m \longmapsto\left(1,2,4^{m-1}\right) \longrightarrow\left(1^{3}, 2,4^{m-1}\right) \in A\left(1^{2}\right)$; $N-1=4 \cdot m \longmapsto\left(1^{3}, 4^{m-1}\right) \longrightarrow\left(1^{3}, 2,4^{m-1}\right) \in B(2)$.

So if $4 \mid(N-1)$ we remove factorizations of the form $N-1=2 \cdot 2 \cdot m$ and get $d(N)=f(N-1)-f\left(\frac{N-1}{4}\right)$. This completes the proof of Theorem 3.

Shape and Enumeration

- Obtain the perfect partitions β corresponding to factorizations of the forms $N-1=2 q_{2} q_{3} \cdots q_{k}, q_{2}>2$ and $N-1=q_{1} q_{2} q_{3} \cdots q_{k}, q_{1}>2$:
I. $\beta=\left(1,2^{q_{2}-1},\left(2 q_{2}\right)^{q_{3}-1},\left(2 q_{2} q_{3}\right)^{q_{4}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$.
II. $\beta=\left(1^{q_{1}-1}, q_{1}^{q_{2}-1},\left(q_{1} q_{2}\right)^{q_{3}-1}, \ldots,\left(q_{1} q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$.

Insert 1^{2} and 2 (respectively) to obtain the desired shapes of $\lambda \in D(N)$.

- Proposition 1 implies that $d(N)=f(N-1)$, with the exception of certain duplicates.
The factorizations $N-1=2 \cdot 2 \cdot m$ and $N-1=4 \cdot m$ (m fixed) produce the same double-perfect partitions:
$N-1=2 \cdot 2 \cdot m \longmapsto\left(1,2,4^{m-1}\right) \longrightarrow\left(1^{3}, 2,4^{m-1}\right) \in A\left(1^{2}\right)$;
$N-1=4 \cdot m \longmapsto\left(1^{3}, 4^{m-1}\right) \longrightarrow\left(1^{3}, 2,4^{m-1}\right) \in B(2)$.
So if $4 \mid(N-1)$ we remove factorizations of the form $N-1=2 \cdot 2 \cdot m$ and get $d(N)=f(N-1)-f\left(\frac{N-1}{4}\right)$. This completes the proof of Theorem 3 .

Superset of p-Perfect Partitions

Let $V(\lambda)$ denote the sequence of multiplicities of members of $G(\lambda)$ when arranged by increasing weights. For example, the weights of partitions in $G\left(\left(1^{5}, 2\right)\right)$ are $1,2,2,3,3,4,4,5,5,6,7$, or $1,2^{2}, 3^{2}, 4^{2}, 5^{2}, 6,7$. Thus $V\left(\left(1^{5}, 2\right)\right)=1,2,2,2,2,1,1$.

A perfect partition $\lambda \vdash n$ contains partitions of $1^{1}, 2^{1}, 3^{1}, \ldots,(n-1)^{1}, n^{1}$. So

$$
\begin{equation*}
V(\lambda)=1,1,1, \ldots, 1,1 \tag{3}
\end{equation*}
$$

A double-perfect partition $\lambda \vdash n$ follows the representation scheme $1,2^{2}, 3^{2}, \ldots,(n-2)^{2}, n-1, n$ which gives

$$
\begin{equation*}
V(\lambda)=1,2,2, \ldots, 2,1,1 \tag{4}
\end{equation*}
$$

Notice that the sequences (3) and (4) are weakly unimodal.

Superset of p-Perfect Partitions

Let $V(\lambda)$ denote the sequence of multiplicities of members of $G(\lambda)$ when arranged by increasing weights. For example, the weights of partitions in $G\left(\left(1^{5}, 2\right)\right)$ are $1,2,2,3,3,4,4,5,5,6,7$, or $1,2^{2}, 3^{2}, 4^{2}, 5^{2}, 6,7$. Thus $V\left(\left(1^{5}, 2\right)\right)=1,2,2,2,2,1,1$.

A perfect partition $\lambda \vdash n$ contains partitions of $1^{1}, 2^{1}, 3^{1}, \ldots,(n-1)^{1}, n^{1}$. So

$$
\begin{equation*}
V(\lambda)=1,1,1, \ldots, 1,1 \tag{3}
\end{equation*}
$$

A double-perfect partition $\lambda \vdash n$ follows the representation scheme $1,2^{2}, 3^{2}, \ldots,(n-2)^{2}, n-1, n$ which gives

$$
\begin{equation*}
V(\lambda)=1,2,2, \ldots, 2,1,1 \tag{4}
\end{equation*}
$$

Notice that the sequences (3) and (4) are weakly unimodal.

Generally consider any $\lambda \vdash n$ and make the following assumptions.
(Q1) λ is a complete partition, that is, $G(\lambda)$ contains at least one partition of every $m, 1 \leq m \leq n$.
So the sequence of weights of members of $G(\lambda)$ has the form

$$
1^{s_{1}}, 2^{s_{2}}, 3^{s_{3}}, \ldots,(n-1)^{s_{n-1}}, n^{s_{n}}, s_{i}>0
$$

(Q2) The sequence $V(\lambda)=s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ is weakly unimodal.
Let $S_{p}(n)$ be the set of partitions $\lambda \vdash n$ that satisfy properties (Q1) and (Q2) such that $\max (V(\lambda))=p$:
$S_{p}(n)=\{\lambda \vdash n \mid \lambda$ is complete, $V(\lambda)$ is unimodal and $\max (V(\lambda))=p\}$.
Then $S_{1}(n)=\operatorname{Per}(n)$. However, $D(n) \subsetneq S_{2}(n)$ in general. E.g., $\left(1^{4}, 3\right) \in S_{2}(7) \backslash D(7)$. (Note: $\left.V\left(\left(1^{4}, 3\right)\right)=1,1,2,2,1,1,1\right)$.

Generally consider any $\lambda \vdash n$ and make the following assumptions.
(Q1) λ is a complete partition, that is, $G(\lambda)$ contains at least one partition of every $m, 1 \leq m \leq n$.
So the sequence of weights of members of $G(\lambda)$ has the form

$$
1^{s_{1}}, 2^{s_{2}}, 3^{s_{3}}, \ldots,(n-1)^{s_{n-1}}, n^{s_{n}}, s_{i}>0
$$

(Q2) The sequence $V(\lambda)=s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ is weakly unimodal.
Let $S_{p}(n)$ be the set of partitions $\lambda \vdash n$ that satisfy properties (Q1) and (Q2) such that $\max (V(\lambda))=p$:
$S_{p}(n)=\{\lambda \vdash n \mid \lambda$ is complete, $V(\lambda)$ is unimodal and $\max (V(\lambda))=p\}$.
Then $S_{1}(n)=\operatorname{Per}(n)$. However, $D(n) \subsetneq S_{2}(n)$ in general.
E.g., $\left(1^{4}, 3\right) \in S_{2}(7) \backslash D(7)$. (Note: $\left.V\left(\left(1^{4}, 3\right)\right)=1,1,2,2,1,1,1\right)$.

$S_{p}(n)$ is a superset of p-perfect partitions of n.

Definition
Given an integer $p>1$, a p-perfect partition of n is any $\lambda \in S_{p}(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1 , ends with two 1 's and has p distinct terms:

$$
\begin{gathered}
V(\lambda)=1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1, s_{i}>1 \\
\max \left(s_{2}, s_{3}, \ldots, s_{n-2}\right)=p \\
\left|\left\{1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1\right\}\right|=p
\end{gathered}
$$

$S_{p}(n)$ is a superset of p-perfect partitions of n.

Definition

Given an integer $p>1$, a p-perfect partition of n is any $\lambda \in S_{p}(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1 , ends with two 1 's and has p distinct terms:

$$
\begin{gathered}
V(\lambda)=1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1, s_{i}>1 \\
\max \left(s_{2}, s_{3}, \ldots, s_{n-2}\right)=p \\
\left|\left\{1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1\right\}\right|=p .
\end{gathered}
$$

$S_{p}(n)$ is a superset of p-perfect partitions of n.

Definition

Given an integer $p>1$, a p-perfect partition of n is any $\lambda \in S_{p}(n)$ for which the sequence $V(\lambda)$ is 'minimal' in the sense that $V(\lambda)$ starts with a single 1 , ends with two 1 's and has p distinct terms:

$$
\begin{gathered}
V(\lambda)=1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1, s_{i}>1 \\
\max \left(s_{2}, s_{3}, \ldots, s_{n-2}\right)=p \\
\left|\left\{1, s_{2}, s_{3}, \ldots, s_{n-2}, 1,1\right\}\right|=p .
\end{gathered}
$$

\Longrightarrow triple-perfect partitions $\lambda \in S_{3}(n) \ldots \ldots$?

There are Two Classes of Triple Perfect partitions λ

First: the sequence of weights of members of $G(\lambda)$ has the form

$$
1, \underbrace{2,3, \ldots, u}_{2 \text { times }}, \underbrace{u+1, u+2, u+3, u+4}_{3 \text { times }}, \underbrace{u+5, \ldots, n-2}_{2 \text { times }}, n-1, n .
$$

By symmetry $u=\frac{n-5}{2}$, so n is odd. Refer to such partitions as triple4-perfect partitions, denoted by $T_{4}(n)$. So any $\lambda \in T_{4}(n)$ satisfies

$$
\begin{gathered}
V(\lambda)=1, \underbrace{2,2, \ldots, 2}_{(n-7) / 2 \text { times }}, 3,3,3,3, \underbrace{2,2, \ldots, 2}_{(n-7) / 2 \text { times }}, 1,1 \\
V(\lambda)=1,2^{(n-7) / 2}, 3^{4}, 2^{(n-7) / 2}, 1^{2}, n>8
\end{gathered}
$$

Second: the sequence of weights of members of $G(\lambda)$ has the form

$$
1, \underbrace{2,3}_{2 \text { times }}, \underbrace{4,5, \ldots, n-4}_{3 \text { times }}, \underbrace{n-3, n-2}_{2 \text { times }}, n-1, n .
$$

These constitute the (main) set of triple-perfect partitions, denoted by $T(n)$. So each $\lambda \in T(n)$ satisfies

$$
\begin{aligned}
& V(\lambda)=1,2,2, \underbrace{3,3, \ldots, 3}_{N-7 \text { times }}, 2,2,1,1 \\
& V(\lambda)=1,2^{2}, 3^{N-7}, 2^{2}, 1^{2}, \quad N>7
\end{aligned}
$$

Minimality Statement

Theorem 4

Let $\lambda \in S_{3}(n)$. Then $V(\lambda)$ is minimal if and only if
(1) $\lambda \in T_{4}(n)$:

$$
V(\lambda)=1,2^{(n-7) / 2}, 3^{4}, 2^{(n-7) / 2}, 1^{2}, n>8
$$

(2) or $\lambda \in T(n)$:

$$
V(\lambda)=1,2^{2}, 3^{n-7}, 2^{2}, 1^{2}, n>7
$$

((The proof of Theorem 4 is under construction, still needs to be perfected!))

We will discuss Triple-Perfect Partitions first; then Triple4-Perfect Partitions.

Triple Perfect Partitions

If $\lambda \vdash N$ is triple-perfect, then $G(\lambda)$ contains partitions of

$$
\begin{gathered}
1,2^{2}, 3^{2}, 4^{3}, 5^{3} \ldots,(N-5)^{3},(N-4)^{3},(N-3)^{2},(N-2)^{2},(N-1), N . \\
\Longrightarrow V(\lambda)=1,2^{2}, 3^{N-7}, 2^{2}, 1^{2}, \quad N>7 .
\end{gathered}
$$

\square

Triple Perfect Partitions

If $\lambda \vdash N$ is triple-perfect, then $G(\lambda)$ contains partitions of

$$
\begin{gathered}
1,2^{2}, 3^{2}, 4^{3}, 5^{3} \ldots,(N-5)^{3},(N-4)^{3},(N-3)^{2},(N-2)^{2},(N-1), N . \\
\Longrightarrow V(\lambda)=1,2^{2}, 3^{N-7}, 2^{2}, 1^{2}, \quad N>7 .
\end{gathered}
$$

Definition

A triple-perfect partition is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash N$ such that each integer m with $4 \leq m \leq N-4$ can be represented three times as $m=\sum_{i=1}^{k} \alpha_{i} \lambda_{i}, \alpha_{i} \in\{0,1\}$ and each integer m with $m \in\{2,3\} \cup\{N-3, N-2\}$ can be represented two times.

Triple Perfect Partitions from Perfect Partitions

Theorem 5

Every triple-perfect partition $\lambda \vdash N>7$ may be obtained from a perfect partition $\beta \vdash N-4$ in three ways:
I. If the multiplicity of 1 in β is 1 , then insert 1^{4} into $\beta: A\left(1^{4}\right)$.
II. If the multiplicity of 1 in β is 1 , then insert 1,3 into $\beta: B(1,3)$.
III. If β does not contain 2 as a part, insert 2^{2} into β : $C\left(2^{2}\right)$.

Then

$$
T(N)=A\left(1^{4}\right) \cup B(1,3) \cup C\left(2^{2}\right)
$$

Proof. Assume that $\lambda \vdash N$ is obtained from $\beta \in \operatorname{Per}(N-4)$ using I, II or III. We claim that $\lambda \in T(N)$.

On insertion of parts into β, we find one additional partition of each of 2, 3: $\left(1^{2}\right),\left(1^{3}\right)$ or $\left(1^{2}\right),(3)$ or $(2),(1,2)$ with respect to I, II or III, respectively.
Then two additional partitions of each $m \in[4, N-4]$ follow:
$\left(1^{3}, h(m-3)\right),\left(1^{2}, h(m-2)\right)$ or $\left(1^{2}, h(m-2)\right),(3, h(m-3))$ or $(2, h(m-2)),\left(2^{2}, h(m-4)\right)$.
Then we obtain two new partitions of both $N-3, N-2$ by symmetry, followed by one new partition of $N-1$ and N.

Thus $G(\lambda)$ matches the desired scheme for triple-perfect partitions.
Lastly, it can be proved that inserting the remaining partitions of 4 into β, namely, (4) and ($1^{2}, 2$), does not affect the foregoing results.

Example

$$
\beta=\left(1^{2}, 3^{2}\right) \in \operatorname{Per}(8) \Longrightarrow \lambda=\left(1^{2}, 2^{2}, 3^{2}\right) \in T(12) \text {, from } C\left(2^{2}\right):
$$

weight	$G(\beta)$	$G(\lambda) \backslash G(\beta)$	
1	(1)	-	-
2	$\left(1^{2}\right)$	(2)	-
3	(3)	$(1,2)$	-
4	$(1,3)$	$\left(1^{2}, 2\right)$	$\left(2^{2}\right)$
5	$\left(1^{2}, 3\right)$	$(2,3)$	$\left(1,2^{2}\right)$
6	$\left(3^{2}\right)$	$(1,2,3)$	$\left(1^{2}, 2^{2}\right)$
7	$\left(1,3^{2}\right)$	$\left(1^{2}, 2,3\right)$	$\left(2^{2}, 3\right)$
8	$\left(1^{2}, 3^{2}\right)$	$\left(2,3^{2}\right)$	$\left(1,2^{2}, 3\right)$
9	-	$\left(1,2,3^{2}\right)$	$\left(1^{2}, 2^{2}, 3\right)$
10	-	$\left(1^{2}, 2,3^{2}\right)$	$\left(2^{2}, 3^{2}\right)$
11	-	-	$\left(1,2^{2}, 3^{2}\right)$
12	-	-	$\left(1^{2}, 2^{2}, 3^{2}\right)$

Corollary

A triple-perfect partition $\lambda \vdash N$ has one of the following forms:
$\lambda=\left(1^{5}, 2^{q_{2}-1},\left(2 q_{2}\right)^{q_{3}-1},\left(2 q_{2} q_{3}\right)^{q_{4}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$,
$\lambda=\left(1^{2}, 2^{q_{2}-1}, 3,\left(2 q_{2}\right)^{q_{3}-1},\left(2 q_{2} q_{3}\right)^{q_{4}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}\right)$,
$\lambda=\left(1^{q_{1}-1}, 2^{2}, q_{1}^{q_{2}-1},\left(q_{1} q_{2}\right)^{q_{3}-1}, \ldots,\left(q_{1} q_{2} \cdots q_{k-1}\right)^{q_{k}-1}\right), q_{1}>2$.

Proof. Convert the following factorizations to perfect partitions, and then insert $\left(1^{4}\right),(1,3)$ and $\left(2^{2}\right)$ respectively.

$$
\begin{align*}
& N-3=2 q_{2} q_{3} \cdots q_{k}, q_{i}>1 \forall i, \tag{5a}\\
& N-3=2 q_{2} q_{3} \cdots q_{k} \tag{6a}\\
& N-3=q_{1} q_{2} q_{3} \cdots q_{k}, q_{1}>2 \tag{7a}
\end{align*}
$$

The Counting Formula for $T(N)$

SN	Factorization	Set	Count
(1)	$N-3=2 q_{2} q_{3} \cdots q_{k}$	$A\left(1^{4}\right)$	$f\left(\frac{N-3}{2}\right)$
(2)	$N-3=2 q_{2} q_{3} \cdots q_{k}$	$B(1,3)$	$f\left(\frac{N-3}{2}\right)$
(3)	$N-3=q_{1} q_{2} q_{3} \cdots q_{k}, q_{1}>2$	$C\left(2^{2}\right)$	$f(N-3)-f\left(\frac{N-3}{2}\right)$

Duplicated partitions arise from factorizations of the form $2 \cdot 3 \cdot m$:

$$
2 \cdot 3 \cdot m \longmapsto\left(1,2^{2}, 6^{m-1}\right) \longrightarrow\left\{\begin{array}{l}
\left(1^{5}, 2^{2}, 6^{m-1}\right) \in A\left(1^{4}\right) \\
\left(1^{2}, 2^{2}, 3,6^{m-1}\right) \in B(1,3) .
\end{array}\right.
$$

However, these two partitions belong uniquely to the set $C\left(2^{2}\right)$:
$6 \cdot m \longmapsto\left(1^{5}, 6^{m-1}\right) \longrightarrow\left(1^{5}, 2^{2}, 6^{m-1}\right) \in C\left(2^{2}\right)$,
$3 \cdot 2 \cdot m \longmapsto\left(1^{2}, 3,6^{m-1}\right) \longrightarrow\left(1^{2}, 2^{2}, 3,6^{m-1}\right) \in C\left(2^{2}\right)$.

So when $N-3 \equiv 0(\bmod 6)$, the number of duplicated partitions is $f\left(\frac{N-3}{6}\right)$, and should be subtracted from $\left|A\left(1^{4}\right)\right|$ and $|B(1,3)|$.
Hence the number $t(N)$ of triple-perfect partitions of N is given by

$$
\left\{\begin{array}{lc}
2\left(f\left(\frac{N-3}{2}\right)-f\left(\frac{N-3}{6}\right)\right)+f(N-3)-f\left(\frac{N-3}{2}\right), & N-3 \equiv 0(\bmod 6) \\
2 f\left(\frac{N-3}{2}\right)+f(N-3)-f\left(\frac{N-3}{2}\right), & N-3 \equiv 2,4(\bmod 6) \\
f(N-3), & \text { otherwise }
\end{array}\right.
$$

So when $N-3 \equiv 0(\bmod 6)$, the number of duplicated partitions is $f\left(\frac{N-3}{6}\right)$, and should be subtracted from $\left|A\left(1^{4}\right)\right|$ and $|B(1,3)|$.
Hence the number $t(N)$ of triple-perfect partitions of N is given by

$$
\left\{\begin{array}{lc}
2\left(f\left(\frac{N-3}{2}\right)-f\left(\frac{N-3}{6}\right)\right)+f(N-3)-f\left(\frac{N-3}{2}\right), & N-3 \equiv 0(\bmod 6), \\
2 f\left(\frac{N-3}{2}\right)+f(N-3)-f\left(\frac{N-3}{2}\right), & N-3 \equiv 2,4(\bmod 6), \\
f(N-3), & \text { otherwise. }
\end{array}\right.
$$

That is,

Theorem 6

The number $t(N)$ of triple-perfect partitions of N is given by

$$
t(N)= \begin{cases}f(N-3) & \text { if } N \equiv 0 \quad(\bmod 2), \\ f(N-3)+f\left(\frac{N-3}{2}\right) & \text { if } N \equiv \pm 1 \quad(\bmod 6), \\ \left.f(N-3)+f\left(\frac{N-3}{2}\right)-2 f\left(\frac{N-3}{6}\right)\right) & \text { if } N \equiv 3 \quad(\bmod 6) .\end{cases}
$$

Example: $T(33)=\{?\}$

From the formula $t(33)=f(30)+f(15)-2 \cdot f(5)=13+3-2=14$. But $T(33)$ is determined by $\operatorname{Per}(29)$ via the set $F(30)$ of factorizations:

SN	$F(30)$	$\operatorname{Per}(29)$	Insert	$T(33)$	Type
1	30	$\left(1^{29}\right)$	2^{2}	$\left(1^{29}, 2^{2}\right)$	III
2	$2 \cdot 15$	$\left(1,2^{14}\right)$	1^{4}	$\left(1^{5}, 2^{14}\right)$	I
3	$2 \cdot 15$	$\left(1,2^{14}\right)$	1,3	$\left(1^{2}, 2^{14}, 3\right)$	II
4	$15 \cdot 2$	$\left(1^{14}, 15\right)$	2^{2}	$\left(1^{14}, 2^{2}, 15\right)$	III
5	$3 \cdot 10$	$\left(1^{2}, 3^{9}\right)$	2^{2}	$\left(1^{2}, 2^{2}, 3^{9}\right)$	III
6	$10 \cdot 3$	$\left(1^{9}, 10^{2}\right)$	2^{2}	$\left(1^{9}, 2^{2}, 10^{2}\right)$	III
7	$5 \cdot 6$	$\left(1^{4}, 5^{5}\right)$	2^{2}	$\left(1^{4}, 2^{2}, 5^{5}\right)$	III
8	$6 \cdot 5$	$\left(1^{5}, 6^{4}\right)$	2^{2}	$\left(1^{5}, 2^{2}, 6^{4}\right)$	III
9	$2 \cdot 5 \cdot 3$	$\left(1,2^{4}, 10^{2}\right)$	1^{4}	$\left(1^{5}, 2^{4}, 10^{2}\right)$	I
10	$2 \cdot 5 \cdot 3$	$\left(1,2^{4}, 10^{2}\right)$	1,3	$\left(1^{2}, 2^{4}, 3,10^{2}\right)$	II
11	$3 \cdot 2 \cdot 5$	$\left(1^{2}, 3,6^{4}\right)$	2^{2}	$\left(1^{2}, 2^{2}, 3,6^{4}\right)$	III
12	$3 \cdot 5 \cdot 2$	$\left(1^{2}, 3^{4}, 15\right)$	2^{2}	$\left(1^{2}, 2^{2}, 3^{4}, 15\right)$	III
13	$5 \cdot 2 \cdot 3$	$\left(1^{4}, 5,10^{2}\right)$	2^{2}	$\left(1^{4}, 2^{2}, 5,10^{2}\right)$	III
14	$5 \cdot 3 \cdot 2$	$\left(1^{4}, 5^{2}, 15\right)$	2^{2}	$\left(1^{4}, 2^{2}, 5^{2}, 15\right)$	III
	$2 \cdot 3 \cdot 5$	$\left(1,2^{2}, 6^{4}\right)$	-	\emptyset	none

Triple4 Perfect Partitions

If $\lambda \vdash N$ is triple4-perfect, then $G(\lambda)$ contains partitions of
$1, \underbrace{2,3, \ldots, \frac{n-5}{2}}_{2 \text { times }}, \underbrace{\frac{n-3}{2}, \frac{n-1}{2}, \frac{n+1}{2}, \frac{n+3}{2}}_{3 \text { times }}, \underbrace{\frac{n+5}{2}, \ldots, n-3, n-2}_{2 \text { times }}, n-1, n$.
They are defined only for odd weights $n=2 m-1>8$. Therefore,

$$
V(\lambda)=1,2^{(n-7) / 2}, 3^{4}, 2^{(n-7) / 2}, 1^{2}, \quad n>8 .
$$

Triple4 Perfect Partitions

If $\lambda \vdash N$ is triple4-perfect, then $G(\lambda)$ contains partitions of

$$
1, \underbrace{2,3, \ldots, \frac{n-5}{2}}_{2 \text { times }}, \underbrace{\frac{n-3}{2}, \frac{n-1}{2}, \frac{n+1}{2}, \frac{n+3}{2}}_{3 \text { times }}, \underbrace{\frac{n+5}{2}, \ldots, n-3, n-2}_{2 \text { times }}, n-1, n .
$$

They are defined only for odd weights $n=2 m-1>8$. Therefore,

$$
V(\lambda)=1,2^{(n-7) / 2}, 3^{4}, 2^{(n-7) / 2}, 1^{2}, \quad n>8 .
$$

Definition

A triple4 perfect partition is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash 2 m-1$, that contains three partitions of each of the four integers $m-2, m-1, m, m+1$, and two partitions of each member of $\{2, \ldots, m-3\} \cup\{m+2, \ldots, 2 m-3\}, m>4$.

Triple4 Perfect Partitions from Ordered Factorizations

The following assertion may be established analogously like before.

Theorem 7

Every triple4-perfect partition $\lambda \vdash 2 m-1, m \neq 6$ may be obtained from a partition $\beta \in \operatorname{Per}(m-1)$ in two ways:
I. If the multiplicity of 1 in β is 1 , then insert $1^{2}, m-2$ into β. $\Longrightarrow E\left(1^{2}, m-2\right)$.
II. If β does not contain 2 as a part, insert $2, m-2$ into β. $\Longrightarrow W(2, m-2)$.
Then

$$
T_{4}(2 m-1)=E\left(1^{2}, m-2\right) \cup W(2, m-2) .
$$

Note: this is the same as the construction of double-perfect partitions in Proposition 1 except for the additional part $m-2$.

Corollary

A triple4-perfect partition $\lambda \vdash 2 m-1$ has either of the forms $\left(q_{i}>1\right)$:
$\lambda=\left(1^{3}, 2^{q_{2}-1},\left(2 q_{2}\right)^{q_{3}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}, m-2\right), q_{2}>2$;
$\lambda=\left(1^{q_{1}-1}, 2, q_{1}^{q_{3}-1}, \ldots,\left(q_{1} q_{3} q_{4} \cdots q_{k-1}\right)^{q_{k}-1}, m-2\right), q_{1}>2$.

Corollary

A triple4-perfect partition $\lambda \vdash 2 m-1$ has either of the forms $\left(q_{i}>1\right)$:
$\lambda=\left(1^{3}, 2^{q_{2}-1},\left(2 q_{2}\right)^{q_{3}-1}, \ldots,\left(2 q_{2} q_{3} \cdots q_{k-1}\right)^{q_{k}-1}, m-2\right), q_{2}>2$;
$\lambda=\left(1^{q_{1}-1}, 2, q_{1}^{q_{3}-1}, \ldots,\left(q_{1} q_{3} q_{4} \cdots q_{k-1}\right)^{q_{k}-1}, m-2\right), q_{1}>2$.

Theorem 8

The number $t_{4}(2 m-1)$ is given by

$$
t_{4}(2 m-1)=0, m<5, t_{4}(9)=1, t_{4}(11)=6
$$

and if $m \geq 7$, then

$$
t_{4}(2 m-1)= \begin{cases}f(m) & \text { if } m \neq 0 \quad(\bmod 4) \\ f(m)-f\left(\frac{m}{4}\right) & \text { if } m \equiv 0 \quad(\bmod 4)\end{cases}
$$

Examples

- From the $t(n)$-formula, $t(11)=f(8)+f(4)=6$:

$$
T(11)=\left\{\left(1^{7}, 2^{2}\right),\left(1^{5}, 2^{3}\right),\left(1^{2}, 2^{3}, 3\right),\left(1^{5}, 2,4\right),\left(1^{3}, 2^{2}, 4\right),\left(1^{2}, 2,3,4\right)\right\} ;
$$

every $\lambda \in T(11)$ is both triple- and triple4-perfect because $V(\lambda)=1,2^{2}, 3^{4}, 2^{2}, 1^{2}$. However, the first three members cannot be obtained from Theorem 7 since none of them contains $m-2=4$.

Examples

- From the $t(n)$-formula, $t(11)=f(8)+f(4)=6$:

$$
T(11)=\left\{\left(1^{7}, 2^{2}\right),\left(1^{5}, 2^{3}\right),\left(1^{2}, 2^{3}, 3\right),\left(1^{5}, 2,4\right),\left(1^{3}, 2^{2}, 4\right),\left(1^{2}, 2,3,4\right)\right\} ;
$$

every $\lambda \in T(11)$ is both triple- and triple4-perfect because $V(\lambda)=1,2^{2}, 3^{4}, 2^{2}, 1^{2}$. However, the first three members cannot be obtained from Theorem 7 since none of them contains $m-2=4$.

- $t_{4}(15)=t_{4}(2 \cdot 8-1)=f(8)-f(2)=4-1=3:$

Factorization of $m=8$	8	$2 \cdot 4$	$4 \cdot 2$	$2 \cdot 2 \cdot 2$
Perfect Partitions of 7	$\left(1^{7}\right)$	$\left(1,2^{3}\right)$	$\left(1^{3}, 4\right)$	\emptyset
Insert Parts	2,6	$1^{2}, 6$	2,6	-
$T_{4}(15)$	$\left(1^{7}, 2,6\right)$	$\left(1^{3}, 2^{3}, 6\right)$	$\left(1^{3}, 2,4,6\right)$	-

A Partition Identity I

By comparison of the formulas for $d(N)$ and $t_{4}(N)$ we obtain

$$
t_{4}(2 m-1)=d(m+1), m \geq 5
$$

Proof. Define a bijection $D(m+1) \longrightarrow T_{4}(2 m-1)$ by

$$
\lambda \longmapsto(\lambda,(m-2)) .
$$

$$
\text { E.g. } d(9)=t_{4}(15)=3 \quad(m-2=6):
$$

$D(9)$	$\left(1^{7}, 2\right)$	$\left(1^{3}, 2^{3}\right)$	$\left(1^{3}, 2,4\right)$
$T_{4}(15)$	$\left(1^{7}, 2,6\right)$	$\left(1^{3}, 2^{3}, 6\right)$	$\left(1^{3}, 2,4,6\right)$

Note that weights of partitions in any $\lambda \in T_{4}(15)$ fulfill the scheme

$$
1,2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{3}, 7^{3}, 8^{3}, 9^{3}, 10^{2}, 11^{2}, 12^{2}, 13^{2}, 14,15:
$$

E.g. $\lambda=\left(1^{7}, 2,6\right)$ contains, i.e., members of $G(\lambda)$:
(1)

$$
\begin{gathered}
\left(1^{2}\right),(2)\left\|\left(1^{3}\right),(1,2)\right\|\left(1^{4}\right),\left(1^{2}, 2\right) \|\left(1^{5}\right),\left(1^{3}, 2\right) \\
\left(1^{6}\right),\left(1^{4}, 2\right),(6)\left\|\left(1^{7}\right),\left(1^{5}, 2\right),(1,6)\right\|\left(1^{6}, 2\right),\left(1^{2}, 6\right),(2,6) \|\left(1^{7}, 2\right),\left(1^{3}, 6\right),(1,2,6) \\
\left(1^{4}, 6\right),\left(1^{2}, 2,6\right)\left\|\left(1^{5}, 6\right),\left(1^{3}, 2,6\right)\right\|\left(1^{6}, 6\right),\left(1^{4}, 2,6\right) \|\left(1^{7}, 6\right),\left(1^{5}, 2,6\right) \\
\left(1^{6}, 2,6\right) \|\left(1^{7}, 2,6\right) .
\end{gathered}
$$

A Partition Identity II

By comparison of the formulas for $d(N)$ and $t(N)$ we obtain
Given an odd integer $N>8$, then

$$
d(N+1)=t(N+3) \quad(=f(N))
$$

Proof. Define a bijection $D(N+1) \longrightarrow T(N+3)$ by

$$
\lambda \longmapsto((2), \lambda) .
$$

Hence
If $\mathrm{N}>8$ is any Odd integer, then

A Partition Identity II

By comparison of the formulas for $d(N)$ and $t(N)$ we obtain
Given an odd integer $N>8$, then

$$
d(N+1)=t(N+3) \quad(=f(N))
$$

Proof. Define a bijection $D(N+1) \longrightarrow T(N+3)$ by

$$
\lambda \longmapsto((2), \lambda) .
$$

Hence
If $N>8$ is any Odd integer, then

$$
d(N+1)=t(N+3)=t_{4}(2 N-1)
$$

REFERENCES I

(1) A. K. Agarwal and R. Sachdeva, Combinatorics of n-color perfect partitions, Ars Combinatoria, 136 (2018), 29-43.
(2) A. K. Agarwal and M.V Subbarao, Some properties of perfect partitions, Indian J. Pure Appl. Math., 22 (1991), 737-743.
(3) G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1984, 1998.
(9) H.-K. Lee, Double perfect partitions, Discrete Math. 306 (5) (2006), 519-525.
(5) P.A. MacMahon, Combinatory Analysis, Volume 1, Cambridge University Press, 1915.
(6 P.A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math. 20 (1891) 103-119.

REFERENCES II

(1) A. O. Munagi, Perfect Compositions of Numbers, J. Integer Seq. 23 (2020), art. 20.5.1.
(2) A. O. Munagi and A.N. Takalani, Full K-Complete Partitions, Integers 22 (2022), \#A73, 17pp.
(3) E. O'Shea, M-partitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 81-93.
(9) S. K. Park, Complete partitions, Fibonacci Quart. 36 (1998), 354-360.
(6) S. K. Park, The r-complete partitions, Discrete Math. 183 (1998), 293-297.
(O. J. Rodseth, Enumeration of M-partitions, Discrete Math. 306 (7) (2006), 694-698.

Thank you for your attention!

