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What is a partition?

A partition A of n is any weakly increasing sequence of positive
integers (A1, A2,...,Ak) such that Ay + -+ A = n.

For example 4 has five partitions namely
(4),(1,3),(2,2),(1,1,2),(1,1,1,1).

Alternative Notation:

AP A2, G A), 0< A <A< <A vi >0, t < k:

(4),(1,3),(2%), (1%,2), (1*).
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Basic Objects

Let A be a partition of n, denoted by A F n.

How many nonempty partitions of m < n are contained in A7
Let G(A) := set of nonempty partitions contained in A.

E. g

G((1%,2%) : (1), (1%), (2), (1%),(1,2), (1%,2),(2%), (1%,2),
(1,22), (1%,22), (13, 22).

Note that

G222, AN =+ 1) (va+ 1) (v +1) — 1.
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Perfect Partitions

Definition. (MacMahon)
A perfect partition of n is a partition that contains exactly one
partition of every positive integer less than or equal to n.

A perfect partition A - n satisfies |G(A)| = n.

Notation: Per(n) := set of perfect partitions of n.
per(n) := | Per(n)|, number of perfect partitions of n.

E.g.. Per(5) = {(1%), (1,22), (12,3)}. So per(5) = 3.

Thus, for insatnce,

G((12,3)) : (1), (1%), (3), (1,3), (1%, 3).
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Perfect Partitions and Ordered Factorizations

Perfect partitions are most easily found using ordered factorizations.

The number of perfect partitions of n is equal to the number of
ordered factorizations of n -+ 1 without unit factors.

Bijection. An ordered factorization n+1=qi1q2--- g, qi > 1,

corresponds to the perfect partition

A=1""1 g2 ()™ (qige - gr1) Y.

This image is a partition of n and contains a unique partition of

eachm, 1< m<n.

Ordered Factorization of 6 6

Perfect Partition of 5 (1°)

(1,2%)

(1%,3)
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Let f(n, k) := number of ordered factorizations of n into k factors;
f(n):=1f(n1)+f(n,2)+---. Then

Theorem 2 (MacMahon, Andrews)
k r ; =
f(n, k) — Z(_l)i (f) 1—[ (aj + ka. 1>’
i=0 j=1 J

where n+ 1 = p{*p3? - -- p2r is the prime factorization and

1<k<ar+oar+---+a.

o

f(n, k) counts perfect partitions of n — 1 with k blocks (or runs) of equal
parts, and f(n) = per(n —1):
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Let f(n, k) := number of ordered factorizations of n into k factors;
f(n):=1f(n1)+f(n,2)+---. Then

Theorem 2 (MacMahon, Andrews)
k r ; =
f(n, k) — Z(_l)i (f) H (aj + ka. 1>’
i=0 j=1 J

where n+ 1 = p{*p3? - -- p2r is the prime factorization and

1<k<ar+oar+---+a.

o

f(n, k) counts perfect partitions of n — 1 with k blocks (or runs) of equal
parts, and f(n) = per(n —1):

per(n) = f(n+1). J
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Generalizations and Extensions of Perfect Partitions

e Complete Partitions (Park 1998): partitions A - n that contain
at least one partition of every positive integer < n.

@ M-Partitions (O'Shea 2004): complete partitions with minimal
lengths.

@ Double Perfect Partitions (Lee 2006): ... discussed below ...

@ n-Color Perfect Partitions (Agarwal and Sachdeva 2018):
n-color partitions A = n that contain one n-color partition of
every positive integer < n.

@ Perfect Compositions (M. 2020): compositions of n that
contain one composition of every positive integer < n.

e Full K-Complete Partitions (M. and Takalani 2022): partitions
that contain all partitions of every positive integer up to k.

@ ...and so forth.
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Double Perfect Partitions

Is there a partition of n that contains t > 1 partitions of each

m, t < m < n—t and one partition of every other integer not
exceeding n?

Lee (2006) showed that the answer is ‘yes' only when t =1 or 2.
The case t = 1 gives perfect partitions!

He decided to study the seemingly overlooked case of t = 2.
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Double Perfect Partitions

Is there a partition of n that contains t > 1 partitions of each

m, t < m < n—t and one partition of every other integer not
exceeding n?

Lee (2006) showed that the answer is ‘yes' only when t =1 or 2.
The case t = 1 gives perfect partitions!

He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006) |

A double-perfect partition is a partition (A1, Az,...,Ak) F n such
that each integer m, 2 < m < n — 2 can be represented exactly
twice as m = Y.5; a;);, where a; € {0,1}.
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Double Perfect Partitions

Is there a partition of n that contains t > 1 partitions of each

m, t < m < n—t and one partition of every other integer not
exceeding n?

Lee (2006) showed that the answer is ‘yes' only when t =1 or 2.
The case t = 1 gives perfect partitions!

He decided to study the seemingly overlooked case of t = 2.

Double Perfect Partitions (Lee 2006) |

A double-perfect partition is a partition (A1, Az,...,Ak) F n such
that each integer m, 2 < m < n — 2 can be represented exactly
twice as m = Y.5; a;);, where a; € {0,1}.

E. g A =(1%2) F 7 is double-perfect:
G(A): (1),(1%),(2),(1°),(1,2),(1%),(1%,2), (1°), (1,2), (1%,2), (1°, 2).
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General Form (Lee 2006)
A double-perfect partition A F n has the following form

(1°,2%2, (a1 + 23, — 1), ((a1 + 2a2 — 1)(a3 + 1))*,
((a1 +2a2 —1)(a3 +1)(as + 1))™,...),

where a; > 2 and ap, as, . .. are positive integers such that if a; # 3
then a, = 1.
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General Form (Lee 2006)
A double-perfect partition A F n has the following form

(171,22, (a1 + 2ap — 1), (a1 + 220 — 1)(a3 + 1)),
((a1 + 22 — 1)(a3 + 1)(as + 1)), ...),

where a; > 2 and ap, as, . .. are positive integers such that if a; # 3
then a, = 1.

V.

The number d(n) of double-perfect partitions of n is given by

f(n—1)— f(”;l) ifn=1 (mod 4).

d(n):{f(n—l) if nZ1 (mod 4),
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In the course of proving Theorem 3,

Lee separated the general form into two types of
double-perfect partitions:

(1%,2%, (2(a2 + 1)), (2(a2 + 1)(as + 1))™, ...,
(2(a2 +1)(as +1)---(ar 1 +1))%), a2 > 2,
(17,2, (a1 + 1), (a1 + 1)(a2 + 1)), ..,
((a+1)(a2+1)- (a1 + 1)), a > 2.

These then imply the following ordered factorizations:
n—1=2a+1)(azs+1)---(ar—1 +1)(ar + 1), ar > 2
n—1=(a+1)(ax+1)---(ar=1 +1)(ar +1), a1 > 2.

(excluding the factorizations n—1=2-2-(a3+1)---).
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Observation for New Proofs

The foregoing results on double-perfect partitions can be obtained
by starting out with perfect partitions.

The d(n)-formula shows that d(n) «— f(n—1) — per(n —2).

So the set D(n) of double-perfect partitions of n can be found from
perfect partitions by inserting parts of total weight 2.

Recall:

_ -1 _ _
qiqe - qr—— (121,07 (1) ® L, (i -+ - gr—1)T )
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Double Perfect Partitions from Ordered Factorizations

Proposition 1 |

Every double-perfect partition A = N > 3 may be obtained from a perfect
partition S+ N — 2 in two ways:
I. If the multiplicity of 1 in 8 is 1, then insert 12 into 8. Denote the
resulting set by A(12).
Il. If B does not contain 2 as a part, insert 2 into 5. Denote the
resulting set by B(2).
Then
D(N) = A(1%) U B(2).

Proof. Let h(m) € G(B), 1 < m < n and write (p,7y) for pU+y.

Assume that A - N is obtained from B € Per(N — 2) by insertion of 12 or

2 according to | or Il respectively.

We find one additional partition of each j € {2,3,..., N — 2}, namely

((12), h(j — 2)) or ((2), h(j — 2)).

Then one new partition of each of N — 1 and N appears, that is,

((12), A(N = 3)) or ((2), A(N — 3)) and ((12), A(N —2)) or ((2), A(N - 2)).
Thus the resulting partition A is double-perfect. 13/39



E.g. let 8= (1%,3) € Per(5). Then from Il
A =((2),8) = (1%,2,3) € D(7), and our proof runs as follows:

j | hG) ‘ )G(ﬂ) Y€ G\ G(B)

1 1 —

21 (@) (), 0) = ()

3 () ((2), h(1)) = (1,2)
sl 13 | (,h2)=01%2)
5 (153) | ((2,h3)=(23)
6 = ((2), F@®) = (1,2,3)
7 ((2), h(5)) = (12,2,3)

All members of D(7) are obtained as follows:
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E.g. let 8= (1%,3) € Per(5). Then from Il
A =((2),8) = (1%,2,3) € D(7), and our proof runs as follows:

j h(j)(E)G(ﬁ) Y€ G\ G(B)
1 1 —

21 (@) (), 0) = ()

3 () ((2), h(1)) = (1,2)
sl 13 | (,h2)=01%2)
5 (153) | ((2,h3)=(23)
6 = ((2), F@®) = (1,2,3)
7 ((2), h(5)) = (12,2,3)

All members of D(7) are obtained as follows:

Ordered Factorization of 6

6 2.3 3:2
Perfect Partitions of 5 (1®) | (1,22 | (13,3)
Insert Parts 2 12 2
Double-Perfect Partition of 7 | (1%,2) | (13,22) | (1%,2,3)
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Shape and Enumeration

e Obtain the perfect partitions 8 corresponding to factorizations of the
forms N —1=2¢xq3---qx, @2 >2and N — 1= qi1G2q3 -~ Gk, q1 > 2:

l. ﬂ = (1) 2(]2—1, (2q2)q3_11 (2q2Q3)q4_1> DR (QQ2Q3 e qkfl)qk_1)~

B =1%7" 6f 7 (@a2) ™ (10203 - 1) ™ 7).
Insert 12 and 2 (respectively) to obtain the desired shapes of A € D(N).
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Shape and Enumeration

e Obtain the perfect partitions 8 corresponding to factorizations of the
forms N —1=2¢xq3---qx, @2 >2and N — 1= qi1G2q3 -~ Gk, q1 > 2:

l. ﬂ = (1) 2(]2—1, (2q2)q3_11 (2q2Q3)q4_1> DR (QQ2Q3 e qkfl)qk_1)~

B =1%7" 6f 7 (@a2) ™ (10203 - 1) ™ 7).
Insert 12 and 2 (respectively) to obtain the desired shapes of A € D(N).

e Proposition 1 implies that d(N) = f(N — 1), with the exception of
certain duplicates.

The factorizations N—1=2-2-mand N —1=4-m (m fixed) produce
the same double-perfect partitions:

N—-1=2-2-mr—(1,2,4™1) — (13,2,4m1) € A(1?);
N—1=4-m— (13,4"1) — (13,2,4™1) € B(2).

So if 4|/(N — 1) we remove factorizations of the form N —1=2-.2.m and
get d(N) = f(N —1) — f(%2). This completes the proof of Theorem 3.
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Superset of p-Perfect Partitions

Let V/(A) denote the sequence of multiplicities of members of G(X)
when arranged by increasing weights. For example, the weights of
partitions in G((15,2)) are 1,2,2,3,3,4,4,5,5,6,7, or
1,22,32,42 582 6,7. Thus V/((1%,2)) = 1,2,2,2,2,1, 1.

A perfect partition A F n contains partitions of
14213t ... (n—1)%, nt. So

V(A)=1,1,1,...,1,1. (3)
A double-perfect partition A - n follows the representation
scheme 1,22,3%,...,(n—2)?, n—1,n which gives

V() =1,2,2,...,2,1,1. (4)
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Superset of p-Perfect Partitions

Let V/(A) denote the sequence of multiplicities of members of G(X)
when arranged by increasing weights. For example, the weights of
partitions in G((15,2)) are 1,2,2,3,3,4,4,5,5,6,7, or
1,22,32,42 582 6,7. Thus V/((1%,2)) = 1,2,2,2,2,1, 1.

A perfect partition A F n contains partitions of
14213t ... (n—1)%, nt. So

V(A)=1,1,1,...,1,1. (3)
A double-perfect partition A - n follows the representation
scheme 1,22,3%,...,(n—2)?, n—1,n which gives

V() =1,2,2,...,2,1,1. (4)

Notice that the sequences (3) and (4) are weakly unimodal.
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Generally consider any A - n and make the following assumptions.

(Q1) A is a complete partition, that is, G(A) contains at least one
partition of every m, 1 < m < n.

So the sequence of weights of members of G(X) has the form

19,22 3% . (n— 1) n™, s > 0.

(Q2) The sequence V(A) = s1,5,53,.--,5, is weakly unimodal.

Let S,(n) be the set of partitions A - n that satisfy properties (Q1) and
(Q2) such that max(V(A\)) = p:

Sp(n) ={AF n|Xis complete, V() is unimodal and max(V(A)) = p}.

17/39



Generally consider any A - n and make the following assumptions.

(Q1) A is a complete partition, that is, G(A) contains at least one
partition of every m, 1 < m < n.

So the sequence of weights of members of G(X) has the form
19,22 3% (n— 1), n%, s >0.
(Q2) The sequence V(A) = s1,5,53,.--,5, is weakly unimodal.

Let S,(n) be the set of partitions A - n that satisfy properties (Q1) and
(Q2) such that max(V(A\)) = p:

Sp(n) ={AF n|Xis complete, V() is unimodal and max(V(A)) = p}.

Then S:(n) = Per(n). However, D(n) C S»(n) in general.
E.g.. (14,3) € Sy(7)\ D(7). (Note: V((14,3)) =1,1,2,2,1,1,1).
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Sp(n) is a superset of p-perfect partitions of n. J
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Sp(n) is a superset of p-perfect partitions of n.

Definition

Given an integer p > 1, a p-perfect partition of n is any A € S,(n)
for which the sequence V/(X) is ‘minimal’ in the sense that V()
starts with a single 1, ends with two 1's and has p distinct terms:

V()\) =1,%,53,...,5.-2,1,1, s; > 1,
max(sy, $3,...,Sp-2) = P,
|{17 g Ty o o < p T U 1}| =P
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Sp(n) is a superset of p-perfect partitions of n.

Definition

Given an integer p > 1, a p-perfect partition of n is any A € S,(n)
for which the sequence V/(X) is ‘minimal’ in the sense that V()
starts with a single 1, ends with two 1's and has p distinct terms:

V()\) =1,%,53,...,5.-2,1,1, s; > 1,
max(sy, $3,...,Sp-2) = P,
|{17 g Ty o o < p T U 1}| =P

— triple-perfect partitions A € S3(n) ......7
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There are Two Classes of Triple Perfect partitions A

First: the sequence of weights of members of G(A) has the form

1,2,3,...,u,u+Lu+2,u+3,u+4u+5,...,n—2,n—1,n.

2 times 3 times 2 times
By symmetry u = ”7_5 so n is odd. Refer to such partitions as
tripled-perfect partitions, denoted by T4(n). So any A € T4(n)
satisfies
VA) =1, 2,2,...,2,3,3,3,3, 2,2,...,2 ,1,1.
S———— S———

(n—7)/2 times (n—7)/2 times

V(A) =1,20077)/2 3% o(n=7)/2 12~ g,
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Second: the sequence of weights of members of G(X) has the form

1, 2,3 ,4,5,...,n—4,n—-3,n—-2,n—1,n.
—~

2 times 3 times 2 times

These constitute the (main) set of triple-perfect partitions,
denoted by T(n). So each A € T(n) satisfies

V(A) =1,2,2,3,3,...,3,2,2,1,1.
——

N—7 times

V(A)=1,22,3N"7 2212 N >7.
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Minimality Statement

Let A € S3(n). Then V/(A) is minimal if and only if
Q )¢ T4(n):

V(A) =1,20n77/2 3% 2(n=1)/2 12 > g,

Q or Ae T(n):

V(A)=1,22,3"72%12 n>T.

((The proof of Theorem 4 is under construction, still needs to be
perfected!))

We will discuss Triple-Perfect Partitions first; then Tripled-Perfect
Partitions.
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If A+ N is triple-perfect, then G()) contains partitions of
1,22,3%,47 57 (N —=5)°, (N —4)° (N =3)% (N —2)?,(N - 1), N.

— V(\)=1,223" 72212 N>7T.
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Triple Perfect Partitions

If A+ N is triple-perfect, then G()) contains partitions of
1’22v32a ‘3‘ Bj co »(N - >)3(N - ')3v(N - 3)2v(N - 2)2v(N - 1)v N.

— Vv(\)=1,223""72212, N>T.

Definition |
A triple-perfect partition is a partition A = (A1,...,Ax) F N such
that each integer m with 4 < m < N — 4 can be represented three
times as m = .5 ; a;);, a; € {0,1} and each integer m with

m € {2,3} U{N — 3, N — 2} can be represented two times.
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Triple Perfect Partitions from Perfect Partitions

Every triple-perfect partition A = N > 7 may be obtained from a
perfect partition 8= N — 4 in three ways:

. If the multiplicity of 1 in B is 1, then insert 14 into B : A(1%).
[I. If the multiplicity of 1 in S is 1, then insert 1,3 into 8 : B(1,3).

[1l. If B does not contain 2 as a part, insert 22 into B : C(22).
Then

T(N) = A(1*) U B(1,3) U C(22).

Proof. Assume that A - N is obtained from g € Per(N — 4) using |, Il
or Ill. We claim that A € T(N).
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On insertion of parts into £, we find one additional partition of each of
2,3: (12),(13) or (12),(3) or (2),(1,2) with respect to I, Il or Il
respectively.

Then two additional partitions of each m € [4, N — 4] follow:

(13: h(m - 3))v (12, h(m - 2)) or (12, h(m - 2))1 (3) h(m - 3)) or

(2: h(m - 2))’ (22’ h(m - 4))

Then we obtain two new partitions of both N — 3, N — 2 by symmetry,
followed by one new partition of N —1 and N.

Thus G(A) matches the desired scheme for triple-perfect partitions.

Lastly, it can be proved that inserting the remaining partitions of 4 into

B, namely, (4) and (12,2), does not affect the foregoing results.
O
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Example

B = (12,3%) € Per(8) = X = (12,22,32) € T(12), from C(22):

weight | G(B) G(A)\ G(B)
1 (1) - -
2 (1%) (2) =
3 (3) (1,2) —
4 (1,3) (12,2) (2%)
5 (12,3) (2,3) (1,22)
6 (3%) (1,2,3) (12,22)
7 (1,3%) | (1%,2,3) (22,3)
8 (12,3%) | (2,3?) (1,22,3)
9 — (1,2,3%) | (1%,2%,3)
10 — (12,2,3%) | (22,3?)
11 — (1,22,3%)
12 — (12,22,32%)
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A triple-perfect partition A = N has one of the following forms:
A= (151 2(72—1’ (2Q2)q3_1: (2(72q3)q4_1; coayg (2q2CI3 T Qk—l)qk_l);
(5)
A= (12: 2q271: 37 (2q2)q3711 (QCI2CI3)q471: °cog (2q2q3 T qk—l)qkil))
(6)
A= (19122 g2 ()™ L (g2 1)), g > 2.
(7)
v
Proof. Convert the following factorizations to perfect partitions,
and then insert (1%), (1,3) and (22) respectively.
N—-3=2qq  -qk, qi>1Vi, (5a)
N —3 =293 qk, (6a)
N—3=aqqq-qk ¢ > 2. (7a)
]
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The Counting Formula for T(N)

SN Factorization Set Count
(1) N —3=2gq3-q« A(1%) F(2532)
(2) N —3=2g2q5qi B(1,3) f(453)
(3) | N=3=qqoqs---q, 1 >2 | C(22) | f(N-3)—F(Y33)

Duplicated partitions arise from factorizations of the form 2-3-m:

(1%,22,6m71) € A(1%)

2:3-m— (1,22,6™1) —
(12,22,3,6™ 1) € B(1,3).

However, these two partitions belong uniquely to the set C(22):
6-mr—s (15,6m71) — (15,22,6™71) € C(2?),

3:2-m— (12,3,6m 1) — (12,22,3,6™ 1) € C(2?).
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So when N —3 =0 (mod 6), the number of duplicated partitions is
f(X=2), and should be subtracted from |A(1*)| and |B(L, 3)|.

Hence the number t(N) of triple-perfect partitions of N is given by

2(F(M2) — F(E2)) + F(N - 3) — F(252), N—3=0(mod 6),
2f (M3 3) f(N —3) — f(%53), N —3=2,4(mod 6),
f(N—3), otherwise. 0
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So when N —3 =0 (mod 6), the number of duplicated partitions is
f(X=2), and should be subtracted from |A(1*)| and |B(L, 3)|.

Hence the number t(N) of triple-perfect partitions of N is given by

2(F(M2) — F(E2)) + F(N - 3) — F(252), N—3=0(mod 6),

2f(N 3) 4 F(N —3) — (N23)’ N —3=2,4(mod 6),
F(N = 3), otherwise. O
That is,

The number t(N) of triple-perfect partitions of N is given by

f(N—3) if N=0 (mod 2),
t(N) = ¢ f(N —3) + f(253) if N=+1 (mod 6),
f(N—3)+f(23) —2f(X2)) if N=3 (mod 6).
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Example: T(33)={7}

From the formula t(33) = f(30) + f(15) —2-f(5) =13 +3 -2 =14
But T(33) is determined by Per(29) via the set F(30) of factorizations:

SN | F(30) Per(29) Insert T(33) Type
1 30 (1%9) 22 (12%,22) I
2 | 2-15 (1,2') 1 (15,21%) |
3 ] 2-15 (1,21%) 1,3 (12,2%4,3) I
4 | 15-2 (114,15) 22 (1%4,22)15) 1]
5 | 3-10 (12,39) 22 (12,22,39) 1
6 | 10-3 | (1°,10?%) 22 (1°,22,10%) 1
7 56 (14,5%) 22 (14,22, 5%) 1
8 6-5 (1°,6%) 22 (15,22, 6%) 1
9 | 2-5-3|(1,24,10%) | 14 (1%,2%,10%) |
10 | 2-5-3 | (1,24,10%) | 1,3 | (12,2%,3,10%) | 1II
11 [ 3-2-5| (12,3,6%) 22 (12,22,3,6%) | Il
12 | 3.5.2 | (12,3%,15) | 22 | (12,2%2,3%15) | 1l
13 | 5-2-3 | (1%,5,10%) | 22 | (1%,2%,5,10%) | 1l
14 | 5-3-2 | (14,5%,15) | 22 (14,22,52,15) | 1l
2-3-5 | (1,2%,6%) - 0 none
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If A+ N is tripled-perfect, then G() contains partitions of

n—5n—-3 n—-1 n+1 n+3 n+5
21’\2’2’2’24’2

~~ ~~

yoreyh—=3,n—2,n-1n.

>

1,2,3,...,

2 times 3 times 2 times

They are defined only for odd weights n=2m — 1 > 8. Therefore,

V()\) — 1,2(n—7)/2,34,2(n—7)/21 12, n> 8.
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Triple4 Perfect Partitions

If A+ N is tripled-perfect, then G() contains partitions of

n—5n-3 n—-1n+1 n+3 n+5
, , , , , yoreyh—=3,n—2,n-1n.
2 2 2 2 2 2

2 times 3 times 2 times

1,2,3,...,

They are defined only for odd weights n=2m — 1 > 8. Therefore,

V(}\) — 1’2(n—7)/2,34,2(n—7)/2, 12, n > 8.

Definition |
A triple4 perfect partition is a partition A = (A1,...,A¢) F2m —1,
that contains three partitions of each of the four integers
m—2,m—1,m m+1, and two partitions of each member of
{2,...,m=3}yU{m+2,...,2m—3}, m > 4.
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Triple4 Perfect Partitions from Ordered Factorizations

The following assertion may be established analogously like before.

Every triple4-perfect partition A =2m — 1, m # 6 may be obtained
from a partition B € Per(m — 1) in two ways:
| If the multiplicity of 1 in B is 1, then insert 12, m — 2 into B.
= E(1%,m - 2).
[I. If B8 does not contain 2 as a part, insert 2, m — 2 into 8.
= W(2,m-2).
Then

Ta(2m—1)=E(1%,m—-2)u W(2,m—2).

Note: this is the same as the construction of double-perfect partitions in
Proposition 1 except for the additional part m — 2.
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Corollary

A triple4-perfect partition A = 2m — 1 has either of the forms

(gi > 1):

A= (131 2(1271’ (2q2)q371: acog (2(72Q3 e qk—l)qkilz m— 2)) g2 > 2;
A= (1q1717 21 qf371: ° 00 g (CIICI3CI4 T qkfl)qkila m — 2)1 qL > 2.
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Corollary

A triple4-perfect partition A = 2m — 1 has either of the forms

(gi > 1):

A= (13,2970 (202)" Y, (20203 - qre1) T, m = 2), g2 > 2;
A= (1£I1*1, 21 q;’371: ° 00 g (CI1CI3CI4 T qkfl)qkila m— 2)1 q1 > 2.

The number t4(2m — 1) is given by

ta(2m—1)=0, m<5, t4(9) =1, ta(11) =6
and if m > 7, then

f(m) if mZ0 (mod 4),

f(m)—f(7) ifm=0 (mod 4).

t4(2m = 1) = {
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Examples

e From the t(n)-formula, t(11) = f(8) + (4) = 6:
T(11) = {(17,2%),(15,2%), (1%,23,3), (1%,2,4), (1%,2%,4),(1%,2,3,4)};

every A € T(11) is both triple- and triple4-perfect because
V(\) =1,22,3% 22 12 However, the first three members cannot be
obtained from Theorem 7 since none of them contains m — 2 = 4.
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Examples

e From the t(n)-formula, t(11) = f(8) + (4) = 6:
T(11) = {(17,2%),(15,2%), (1%,23,3), (1%,2,4), (1%,2%,4),(1%,2,3,4)};

every A € T(11) is both triple- and triple4-perfect because
V(\) =1,22,3% 22 12 However, the first three members cannot be
obtained from Theorem 7 since none of them contains m — 2 = 4.

o t,(15) = t,(2-8—1) = f(8) — f(2) =4 — 1 = 3:

Factorization of m =8 8 2.4 4.2 2.2.2
Perfect Partitions of 7 (1" (1,2%) (13,4) 0
Insert Parts 2,6 17,6 2,6 -
T4(15) (17,2,6) | (1%,23,6) | (13,2,4,6) -
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A Partition Identity |
By comparison of the formulas for d(N) and t4(/N) we obtain
ta(2m—1) =d(m+1), m > 5.
Proof. Define a bijection D(m+ 1) — T4(2m — 1) by

A— (A (m—2)).

E.g. d(9) = t;(15) =3 (m—2=6):

D(g) (17,2) (13,23) 13 2.4
T4(15) || (17,2,6) | (13,2%,6) | (13

|l
N~
N
O |~

)

Lt )
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Note that weights of partitions in any A € T4(15) fulfill the scheme
1,22,32,42 52, 6,7°,8%,93, 102,112,122, 132,14, 15 :

E.g. A =(17,2,6) contains, i.e., members of G()):

(1)
(1%), @)I1(1*), (1, 2)[1(2*), (1%, 2)[1(2%), (1%,2)
(1%), (1%,2), (6)[1(17), (1°,2), (1, 6)[(1%,2), (1%,6), (2, 6)II(1", 2), (1%,6), (1,2,6)
(1%,6), (1%,2,6)[|(1°,6), (1%,2,6)[|(1°,6), (1%,2,6)[/(1",6), (1%, 2,6)
(1°,2,6)[|(17, 2, 6).
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By comparison of the formulas for d(N) and t(N) we obtain

Given an odd integer N > 8, then }

d(N+1)=t(N+3) (= f(N)).

Proof. Define a bijection D(N + 1) — T(N + 3) by

A ((2), ).
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A Partition Identity Il
By comparison of the formulas for d(N) and t(N) we obtain
Given an odd integer N > 8, then
d(N+1)=t(N+3) (=Ff(N)).

Proof. Define a bijection D(N + 1) — T(N + 3) by

A —s ((2),A).

Hence

If N> 8is any Odd integer, then

d(N+1)=t(N+3)=1ty(2N —-1).
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Thank you for your attention!
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