Combinatorial Perspectives on Dyson＇s Crank and the Mex of Partitions

Brian Hopkins，Saint Peter＇s University（Jersey City NJ）

Specialty Seminar in Partitions and q－Series 16 September 2021

Overview

Features recent work of George Andrews and David Newman, JiSun Huh and Byungchan Kim. Collaborators James Sellers, Dennis Stanton, and Ae Ja Yee.

- Crank
- Mex
- Crank \& Mex
- Crank, Mex, and Frobenius Symbols

Partitions and rank

Write $p(n)$ for the number of partitions of n.
Ramanujan 1919 proved (analytically) that

- $p(5 n+4) \equiv 0 \bmod 5$,
- $p(7 n+5) \equiv 0 \bmod 7$, and
- $p(11 n+6) \equiv 0 \bmod 11$.

1944, "Some Guesses in the Theory of Partitions," Eureka
A young Freeman Dyson defined the rank of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ as
$\lambda_{1}-\ell$ and conjectured that this simple partition statistic
combinatorially verifies the modulo 5 and 7 results by grouping the appropriate partitions into 5 or 7 equally numerous classes. Proven correct by Atkin-Swinnerton-Dyer, 1954.

Partitions and crank

But the rank does not show the modulo 11 identity. Dyson suggested that some "more recondite" partition statistic should. He gave it a name and a purpose, but no definition!

Definition (Andrews-Garvan 1988)

Given a partition λ, let $\omega(\lambda)$ be the number of ones in λ and let $\mu(\lambda)$ be the number of parts of λ greater than $\omega(\lambda)$. Then

$$
\operatorname{crank}(\lambda)= \begin{cases}\lambda_{1} & \text { if } \omega(\lambda)=0 \\ \omega(\lambda)-\mu(\lambda) & \text { if } \omega(\lambda)>0\end{cases}
$$

They showed that this definition of the "elusive crank" does all that Dyson hoped for and gives a combinatorial verification of the modulo 5 and 7 identities, too (with different groupings).

For integers m and $n>1$, let $M(n, m)$ be the number of partitions of n with crank m. We use standard q-series notation.

Theorem (Garvan 1988)

$$
\begin{aligned}
\sum_{n \geq 0} M(m, n) q^{n} & =\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 1}(-1)^{n-1} q^{n(n-1) / 2+n|m|}\left(1-q^{n}\right) \\
M(m, n) & =M(-m, n)
\end{aligned}
$$

For integers m and $n>1$, let $M(n, m)$ be the number of partitions of n with crank m. We use standard q-series notation.

Theorem (Garvan 1988)

$$
\begin{aligned}
\sum_{n \geq 0} M(m, n) q^{n} & =\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 1}(-1)^{n-1} q^{n(n-1) / 2+n|m|}\left(1-q^{n}\right) \\
M(m, n) & =M(-m, n)
\end{aligned}
$$

Compare the "not completely different" rank generating function

$$
\sum_{n \geq 0} N(m, n) q^{n}=\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 1}(-1)^{n-1} q^{n(3 n-1) / 2+n|m|}\left(1-q^{n}\right)
$$

Bounded crank

Given $j \geq 0$, we're interested in the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$. By Garvan's formula, we have

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2+j(n+1)}
$$

Bounded crank

Given $j \geq 0$, we're interested in the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$. By Garvan's formula, we have

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2+j(n+1)}
$$

Theorem (H., Sellers, Yee)

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{n \geq 0} \frac{q^{(n+1)(n+j)}}{(q ; q)_{n}(q ; q)_{n+j}}
$$

Note that there is no alternating sum.

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ is the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1-Durfee rectangle size 3×4,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1 -Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4,

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1-Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4, 3 -Durfee rectangle size 1×4, and

Proof ingredient: j-Durfee rectangles

Definition

The j-Durfee rectangle of a partition λ to be the largest rectangle of size $d \times(d+j)$ that fits inside the Ferrers diagram of λ.

$(5,4,4,2,2)$ has 0 -Durfee rectangle (Durfee square) size 3×3, 1-Durfee rectangle size 3×4, 2-Durfee rectangle size 2×4, 3-Durfee rectangle size 1×4, and 4-Durfee rectangle size 1×5.

Proof ingredient: symmetry insight

Use $\operatorname{crank}(\lambda) \leq-j$ rather than $\operatorname{crank}(\lambda) \geq j$.

Equal count since $M(m, n)=M(-m, n)$, but nonpositive cranks only come from the second part of the definition:

$$
\operatorname{crank}(\lambda)=\left\{\begin{array}{lll}
\lambda_{1} & \text { if } \omega(\lambda)=0, & \leftarrow \text { only positive crank } \\
\omega(\lambda)-\mu(\lambda) & \text { if } \omega(\lambda)>0 . & \leftarrow \text { any crank }
\end{array}\right.
$$

Combinatorial proof

Theorem (H., Sellers, Yee)

$$
\sum_{m \geq j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{m \leq-j} \sum_{n \geq 0} M(m, n) q^{n}=\sum_{n \geq 0} \frac{q^{(n+1)(n+j)}}{(q ; q)_{n}(q ; q)_{n+j}}
$$

Nonpositive crank implies $\omega(\lambda)>0$. Consider the j-Durfee rectangle, size $d \times(d+j)$. Now, if $\omega(\lambda)<d+j$, then $\mu(\lambda) \geq d$ since $\lambda_{d} \geq d+j$ and

$$
\operatorname{crank}(\lambda)=\mu(\lambda)-\omega(\lambda)>d-(d+j)=-j
$$

So $\operatorname{crank}(\lambda) \leq-j$ implies $\omega(\lambda) \geq d+j$. The generating function for such λ : the j-Durfee rectangle and the lower bound of $\omega(\lambda)$ give the exponent $d(d+j)+(d+j)$, boxes to the right of the j-Durfee rectangle account for $(q ; q)_{d}$, boxes below give $(q ; q)_{d+j}$.

Another combinatorial proof

We also show

$$
\begin{aligned}
& (q ; q)_{\infty} \sum_{n \geq 0} \frac{q^{n+j}}{(q ; q)_{n}(q ; q)_{n+j}}=\frac{1}{(q ; q)_{\infty}} \sum_{n \geq 0}(-1)^{n} q^{n(n+1) / 2+j(n+1)} \\
& (q ; q)_{\infty} \sum_{n \geq 0} \frac{q^{n+j}}{(q ; q)_{n}(q ; q)_{n+j}}=\sum_{n \geq 0} \frac{q^{(n+1)(n+j)}}{(q ; q)_{n}(q ; q)_{n+j}}
\end{aligned}
$$

by considering two sign-reversing involutions on the triples of partitions (π, κ, ν) where π is a partition into distinct parts, κ is a nonempty partition with largest part at least j, and ν is a partition into parts that are at least j less than the largest part of κ.

The mex of a partition is the smallest missing (positive) part, e.g.,

$$
\operatorname{mex}((2,2,2))=1, \quad \operatorname{mex}((3,1,1,1))=2, \quad \operatorname{mex}((3,2,1))=4
$$

Terminology from combinatorial game theory (at least by 1973, Gundy values), combination of minimal excluded number.

References in partitions:

- Grabner-Knopfmacher 2006 "least gap"
- Andrews 2011 "smallest number that is not a summand"
- Andrews-Newman 2019 "minimal excludant" /mex

Let $x(m, n)$ be the number of partitions of n with mex m.
Write $t_{k}=1+\cdots+k$ for the k th triangular number.

Proposition (H., Sellers, Stanton 2022)

$$
x(m, n)=p\left(n-t_{m-1}\right)-p\left(n-t_{m}\right)
$$

To have mex m, a partition must include parts $1, \ldots, m-1$. Removing one of each of those leaves a partition of $n-t_{m-1}$.

And the partition must exclude m. The number of partitions of n with m also included is $p\left(n-t_{m}\right)$, so the number with m excluded is $p\left(n-t_{m-1}\right)-p\left(n-t_{m}\right)$.

Definition

Let $m_{a, b}(n)$ to be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}^{o}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ to be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}^{(}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{\mathrm{e}}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ to be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Definition

Let $m_{a, b}(n)$ to be the number of partitions of n with mex congruent to a modulo b.

Also, write superscript e for the number of partitions with an even number of parts, similarly for superscript o.

n	2	3	4	5	6	7	8	9	10	11	12
$m_{1,2}(n)$	1	2	3	4	6	8	12	16	23	30	42
$m_{1,4}(n)$	1	1	2	2	4	4	7	8	13	15	23
$m_{3,4}(n)$	0	1	1	2	2	4	5	8	10	15	19
$m_{1,2}(n)$	1	1	2	2	3	4	6	8	11	15	21
$m_{1,2}^{e}(n)$	0	1	1	2	3	4	6	8	12	15	21

Splitting the mexes

Proposition (H., Sellers, Yee)

$$
m_{1,2}^{o}(n)= \begin{cases}m_{1,2}^{e}(n)+(-1)^{m+1} & \text { when } n=m(3 m \pm 1) \\ m_{1,2}^{e}(n) & \text { otherwise }\end{cases}
$$

Combinatorial proof comes down to considering triples (π, μ, ν) where π is a partition into distinct even parts, μ is a partition into odd parts, and ν is a partition into distinct odd parts. A sign-reversing involutions leaves just ($\pi, \emptyset, \emptyset$), then apply Franklin's bijection to $\left(\pi_{1} / 2, \pi_{2} / 2, \ldots\right)$.

Splitting the mexes

Theorem (Andrews, Newman 2019)

$m_{1,2}(n)$ is almost always even and is odd exactly when $n=m(3 m \pm 1)$ for some m.

New proof:

$$
\begin{aligned}
m_{1,2}(n) & =m_{1,2}^{o}(n)+m_{1,2}^{e}(n) \\
& = \begin{cases}2 m_{1,2}^{e}(n)+(-1)^{m+1} & \text { when } n=m(3 m \pm 1), \\
2 m_{1,2}^{e}(n) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Connecting crank and mex

Theorem (Andrews, Newman 2020; H., Sellers 2020)

The number of partitions of n with nonnegative crank equals the number of partitions of n with odd mex. I.e.,

$$
M_{\geq 0}(n)=m_{1,2}(n)
$$

Connecting crank and mex

Theorem (Andrews, Newman 2020; H., Sellers 2020)

The number of partitions of n with nonnegative crank equals the number of partitions of n with odd mex. I.e.,

$$
M_{\geq 0}(n)=m_{1,2}(n) .
$$

Generalize the mex: For j a part in λ, let $\operatorname{mex}_{j}(\lambda)$ to be the least integer greater than j that is not a part of λ. Not defined if j not a part of λ. (Thinking of 0 as a part of every partition, mex $_{0}=$ mex.)

Theorem (H., Sellers, Stanton 2022)

The number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$ equals the number of partitions of n with odd mex $_{j}$.

Connecting crank and mex

We have $m_{1,2}(n)=m_{1,4}(n)+m_{3,4}(n)$. What do those correspond to among the partitions with nonnegative crank?

Connecting crank and mex

We have $m_{1,2}(n)=m_{1,4}(n)+m_{3,4}(n)$. What do those correspond to among the partitions with nonnegative crank?

Theorem (Huh, Kim 2021)

$$
M_{\geq 0}^{e}(n)=m_{1,4}(n), \quad M_{\geq 0}^{o}(n)=m_{3,4}(n)
$$

Our proof: The generating function by number of parts is

$$
\sum_{k, n \geq 0} M_{\leq 0}(k, n) z^{k} q^{n}=\sum_{n \geq 0} \frac{z^{2 n} q^{n(n+1)}}{(z q ; q)_{n}(q ; q)_{n}}
$$

Substituting $z=-1$ gives

$$
\sum_{n \geq 0}\left(M_{\leq 0}^{e}(n)-M_{\leq 0}^{o}(n)\right) q^{n}=\sum_{n \geq 0} \frac{q^{n(n+1)}}{(-q ; q)_{n}(q ; q)_{n}}=\sum_{n \geq 0} \frac{q^{n(n+1)}}{\left(q^{2} ; q^{2}\right)_{n}}
$$

This connects to formulas derived from our first theorem.

Another crank result

Proposition (H., Sellers, Yee)

$$
M_{\leq 0}^{e}(n)= \begin{cases}M_{\leq 0}^{o}(n) & \text { if } n \text { is odd } \\ M_{\leq 0}^{o}(n)+q(n / 2) & \text { if } n \text { is even }\end{cases}
$$

The proof adjusts the partitions to the right of and below the Durfee square to make a sign-reversing involution. The fixed points are in bijection to partitions of n into distinct even parts.

Crank, mex, and Frobenius symbols

$(5,4,4,2,2)$ Ferrers diagram and Frobenius symbol

$$
\left(\begin{array}{lll}
4 & 2 & 1 \\
4 & 3 & 0
\end{array}\right)
$$

Theorem (Andrews 2011)

The number of partitions of n with no 0 in the top row of their Frobenius symbols equals the number of partitions of n with odd mex.

Crank and Frobenius symbols

Theorem (H., Sellers, Stanton 2022)

The number of partitions of $n-j$ with no j in the top row of their Frobenius symbols equals the number of partitions λ of n with $\operatorname{crank}(\lambda) \geq j$.

New proof: By our first theorem, partitions with this bounded crank are in bijection with partitions of n with at least $d+j$ parts 1 where the j-Durfee rectangle is $d \times(d+j)$. Delete $d+j$ parts 1 and increase each of the d largest parts by 1 . This makes a partition λ^{\prime} of $n-j$ with

$$
\lambda_{d}^{\prime} \geq d+j+1 \quad \text { and } \quad \lambda_{d+1}^{\prime} \leq d+j=(d+1)+(j-1)
$$

Thus the top entries in columns d and $d+1$ of the Frobenius symbol are at least $j+1$ and at most $j-1$, respectively: no j.

Crank and Frobenius symbols

Theorem (H., Sellers, Yee)

The number of partitions of n with crank 0 equals the number of partitions of n whose Frobenius symbol has no 0 and the first two entries of the bottom row differ by 1 .

- B. Hopkins, J. A. Sellers, Turning the partition crank, Amer. Math. Monthly 127 (2020) 654-657.
- B. Hopkins, J. A. Sellers, D. Stanton, Dyson's crank and the mex of integer partitions, J. Combin. Theory Ser. A 185 (2022) 105523. arXiv:2009.10873. Free until 10/8/21 via https://authors.elsevier.com/a/1dc4\~M894ga4D.
- B. Hopkins, J. A. Sellers, A. J. Yee, Combinatorial perspectives on the crank and mex partition statistics, submitted, arXiv:2108.09414

