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Partition Fixed Points

Blecher & Knopfmacher (Ramanujan J. 2022) introduced the idea
of fixed points to partitions, parts that satisfy λi = i .

Here order matters. Most of their work concerns fixed points in
partitions written in non-decreasing order, e.g.,

P(5) = {11111, 1112, 113, 122, 14, 23, 5}.

They do discuss, and we will focus on, fixed points in partitions
written in non-increasing order, e.g.,

P(5) = {5, 41, 32, 311, 221, 2111, 11111}.
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Partition Fixed Points Conjecture

A fixed point is an “increasing” characteristic (Does λ1 = 1? Does
λ2 = 2? etc.) so partitions (in non-increasing order) have at most
one fixed point.

P(5) = {5, 41, 32, 311, 221, 2111, 11111}.

Note that 3 partitions of 5 have a fixed point while 4 do not.

Blecher–Knopfmacher conjecture

For n ≥ 2, there are more partitions of n without a fixed point
than with a fixed point.

But P(2) = {2, 11} has one of each, so . . .
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Partition Fixed Points Conjecture

Having a fixed point is “increasing” (Does λ1 = 1? Does λ2 = 2?
etc.) so non-increasing partitions have at most one fixed point.

P(5) = {5, 41, 32, 311, 221, 2111, 11111}.

Note that 3 partitions of 5 have a fixed point while 4 do not.

Adjusted Blecher–Knopfmacher conjecture

For n > 2, there are more partitions of n without a fixed point
than with a fixed point.

n 1 2 3 4 5 6 7 8 9 10

no fixed point 0 1 2 3 4 6 8 12 16 23
1 fixed point 1 1 1 2 3 5 7 10 14 19
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Overview

1 Proving their conjecture connects to several partition
concepts:

Frobenius symbol
Dyson’s crank
minimal excluded part, mex

2 Generalization to k-fixed points uses mexk and k-Durfee
rectangle, gives results about intervals of crank values

3 Refinement of fixed points into an integer triangle has many
patterns, connects to excedances of partitions and unimodal
compositions
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1. Durfee square

Ferrers diagrams of (5, 3, 3, 3, 1) and (4, 4, 4, 2, 1) which both have
3× 3 Durfee squares.
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1. A Jacobi formula

d × d

α

β′

A partition consists of its Durfee square, a subpartition α below
and a subpartition β′ to the right, each with first part at most d .

∑
n≥0

p(n)qn =
∑
d≥0

qd
2

(q; q)2d
.
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1. Fixed points to Frobenius symbols

z z z z z
z z z
z z z
z z z
z

@
@
@
@
@
@
@
@
@

z z z z
z z z z
z z z z
z z
z

@
@
@
@
@
@
@

@
@

53331 ∼
(
4 1 0
4 2 1

)
and 44421 ∼

(
3 2 1
4 2 0

)
The black dot shows the fixed point,
corresponds to a 0 in the top row of the Frobenius symbol,
equivalently, at the bottom right edge of the Durfee square.

Brian Hopkins, bhopkins@saintpeters.edu Partition Fixed Points



1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. has 0
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1. Mex

The minimal excludant (mex) of a partition is the smallest positive
integer that is not a part. E.g.,

mex(5) = mex(32) = 1, mex(311) = 2, mex(221) = 3.

Sprague and Grundy 1930s analysis of combinatorial games.
In partitions, Grabner–Knopfmacher 2006 “least gap.” Andrews
2011 “smallest part that is not a summand,” Andrews–Newman
2019 mex.

Write mexa,b(n) for the number of partitions of n with mex
congruent to a mod b.
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex even mex

by generating function arguments.

(Liu 2012 gives some related combinatorial arguments.)
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex > even mex Shen 2019

Yufei Shen was an undergraduate student of George Andrews,
actual result

mex1,2(n) ≥ mex0,2(n) for n ≥ 2

via extensive q-series manipulations.

Done, but . . . is there a better answer?
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1. Crank

Dyson predicted (and named) the crank statistic in 1944,
George Andrews and Frank Garvan found it in 1988.

Let ω(λ) be the number of ones in λ and µ(λ) the number of parts
of λ greater than ω(λ). The crank c of λ = (λ1, . . . , λk) is

c(λ) =

{
λ1 if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0.

Write M(m, n) for the number of partitions of n with crank m.
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex > even mex Shen 2019
↕ ↕ H.–S., A.–N. 2020

nonneg. crank negative crank

by generating function arguments.

(Konan 2023 gives a bijective proof, presented spring 2022 here.)
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex > even mex Shen 2019
↕ ↕ H.–S., A.–N. 2020

nonneg. crank negative crank
↕ ↕ Garvan 1988

nonneg. crank > positive crank

clear from the crank generating function.

(Berkovich–Garvan 2002 define “pseudo-conjugation” which proves
crank symmetry combinatorially.)
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex > even mex Shen 2019
↕ ↕ H.–S., A.–N. 2020

nonneg. crank negative crank
↕ ↕ Garvan 1988

nonneg. crank > positive crank

H.-Sellers 2020

In P(n), the number with odd mex exceeds the number with even
mex by the number of crank 0 partitions.

mex1,2(n)−mex0,2(n) = M(0, n) for n ≥ 3.
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1. Connections

no fixed point ? fixed point
↕ ↕

top Frob. no 0 top Frob. 0
↕ ↕ Andrews 2011

odd mex > even mex Shen 2019
↕ ↕ H.–S., A.–N. 2020

nonneg. crank negative crank
↕ ↕ Garvan 1988

nonneg. crank > positive crank

H.-Sellers 2023?

In P(n), the number without a fixed point exceeds the number
with a fixed point by the number of crank 0 partitions.

g(n)− f (n) = mex1,2(n)−mex0,2(n) = M(0, n) for n ≥ 3.
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2. Generalized fixed points

Given an integer k , say a partition λ has a k-fixed point if there is
an i such that λi = i + k.
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44421 has a −2-fixed point and a 1-fixed point.
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2. k-Durfee rectangle

From H., Sellers, Yee 2022:

Given an integer k , the k-Durfee rectangle of λ ∈ P(n) is the
largest d × (d + k) rectangle that fits in the Ferrers diagram of λ.

Leads to a nice expression for the number of partitions with crank
bounded from below:

∑
m≥j

∑
n≥0

M(m, n)qn =
∑
i≥0

q(i+1)(i+j)

(q; q)i (q; q)i+j
.
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2. k-fixed point generating function

i × (i + k)

α

β′

The number of partitions of n with a k-fixed point is given by

∑
n≥0

fk(n)q
n =

∑
i≥1

qi(i+k)

(q; q)i+k(q; q)i−1
.
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2. More without k-fixed points than with, positive case

For k ≥ 0, the difference between partitions of n without and with
k-fixed points is the number of partitions of n with crank in the
centered interval from −k to k :

gk(n)− fk(n) =
k∑

ℓ=−k

M(ℓ, n)

= p(n) + 2
∑
j≥1

(−1)j p

(
n − j(j + 2k − 1)

2

)
.

The k = 0 case is g(n)− f (n) = M(0, n); this generalizes the
resolution of the Blecher–Knopfmacher conjecture.
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2. Generalized mex

from H., Sellers, Stanton 2022:

Given a partition λ and a nonnegative integer j , let mexj(λ) be the
smallest integer greater than j that is not a part of λ.

For example, α = (5, 3, 3, 3, 1) has mex1(α) = 2 and mex2(α) = 4.
The unindexed mex corresponds to the j = 0 case.

Given n ≥ 2 and j ≥ 0,∑
m≥j

M(m, n) = #{µ ⊢ n | mexj −j ≡ 1 mod 2 and j is a part of µ}

= #{ν ⊢ n − j | mexj −j ≡ 1 mod 2}
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2. Equivalences for k-fixed points, k positive

For k ≥ 0, the following are equal:

partitions of n without a k-fixed point (i.e., gk(n)),

partitions of n whose Frobenius symbol has no k in the top
row,

partitions of n with mexk(λ)− k odd,

partitions of n with crank at least −k ,

partitions of n + k with crank at least k .

Generating function proofs. The equality of the last two,∑
m≥−k

M(m, n) =
∑
m≥k

M(m, n + k),

calls for a “move these dots around” combinatorial proof.
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2. Issue for −k-fixed points (k positive)
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53331 does not have a −2-fixed point, 44421 does. What about 3?

Best to use f−k(n), p(n, k − 1) partitions with up to k − 1 parts,
g ′
−k(n) partitions with at least k parts and no −k-fixed points.
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2. Results for −k-fixed points

f−k(n) + p(n, k − 1) =
∑

m≥−k+1

M(m, n), g ′
−k(n) =

∑
m≥k

M(m, n);

f−k(n) + p(n, k − 1)− g ′
−k(n) =

k−1∑
m=−k+1

M(m, n)

= p(n) + 2
∑
j≥1

(−1)j p

(
n − j(j + 2k − 3)

2

)
.

No analogues for generalized mex or Frobenius symbol entries.

H., Sellers, On Blecher and Knopfmacher’s fixed points for integer
partitions, submitted, arXiv:2305.05096.

Brian Hopkins, bhopkins@saintpeters.edu Partition Fixed Points

https://arxiv.org/abs/2305.05096


3. Refining fixed point partitions

Separate fixed point partitions by which part is fixed. E.g.,

P(5) = {5, 41, 32, 311, 221, 2111, 11111}.

5 has 1 fixed partition with λ1 = 1 and 2 with λ2 = 2.

3?

The smallest fixed point partition with λ3 = 3 is 333 in P(9).

1? Clear that, for each n, the only fixed point partition with
λ1 = 1 is the all-1 partition 1n.
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3. Triangle of fixed point partitions f (n, d)

n 1 2 3 4 Σ

1 1 1
2 1 1
3 1 1
4 1 1 2
5 1 2 3
6 1 4 5
7 1 6 7
8 1 9 10
9 1 12 1 14

10 1 16 2 19
11 1 20 5 26
12 1 25 9 35
13 1 30 16 47
14 1 36 25 62
15 1 42 39 82
16 1 49 56 1 107

(d , . . . , d) ∈ P(d2) is first
partition with fixed point
d , so column d begins in
row d2.

Row sums are the number
of partitions of n with pos-
itive crank/ even mex . . .
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3. f (n, d) triangle column formulas

d × d

α

β′

In order to have a fixed point λd = d , need the first part of β to
be at most d − 1.

∑
n≥d2

f (n, d)qn =
qd

2

(q; q)d(q; q)d−1
.
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3. f (n, d) triangle entries

By the generating function, know f (n, d) satisfies a degree d2

linear recurrence relation.
Can do better using the previous column of the triangle:

For d ≥ 2 and n ≥ d2,

f (n, d) =f (n − d + 1, d) + f (n − d , d)

− f (n − 2d + 1, d) + f (n − 2d + 1, d − 1).

A moderately involved combinatorial proof shows

F (n, d) ∪ F (n − 2d + 1, d)
∼= F (n − d + 1, d) ∪ F (n − d , d) ∪ F (n − 2d + 1, d − 1).
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3. f (n, d) triangle examples of inter-column recurrence

n 1 2 3 4 Σ

1 1 1
2 1 1
3 1 1
4 1 1 2
5 1 2 3
6 1 4 5
7 1 6 7
8 1 9 10
9 1 12 1 14

10 1 16 2 19

11 1 − 20 5 26

12 1 + 25 9 35

13 1 + 30 16 47

14 1 = 36 25 62

f (14, 2) =
30 + 25− 20 + 1 = 36
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3. f (n, d) triangle examples of inter-column recurrence

n 1 2 3 4 Σ

1 1 1
2 1 1
3 1 1
4 1 1 2
5 1 2 3
6 1 4 5
7 1 6 7
8 1 9 10

9 1 12 − 1 14

10 1 16 2 19

11 1 20 + 5 26

12 1 25 + 9 35

13 1 30 16 47

14 1 36 = 25 62

f (14, 2) =
30 + 25− 20 + 1 = 36

f (14, 3) =
9 + 5− 1 + 12 = 25
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3. f (n, d) triangle diagonal sums

1

1

1

1 1

1 2

1 4

1 6

1 9

1 12 1

1

1

1

1

2

3

5

7

10

1, 1, 1, 1, 2, 3, 5, 7, 10,
13, 18, 23, 31, 40, 53, 68 is
OEIS A118199, “partitions
of n having no part equal
to the size of their Durfee
square.”
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3. f (n, d) triangle diagonal sums

Partitions of n having no part equal to the size of their Durfee
square are conjugate to

d × d

α

β′

d × d

β

α′

partitions of n with a fixed point λd and also λd+1 = d .
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3. f (n, d) triangle diagonal sums

Partitions of n having no part equal to the size of their Durfee
square are conjugate to

d × d

α

β′ d × d

β

α′

partitions of n with a fixed point λd and also λd+1 = d .
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3. f (n, d) triangle diagonal sums

Let A(n) be the partitions of n with λd = λd+1 = d for any d .

FP(n − 1, 1) ∪ FP(n − 2, 2) ∪ · · · ∼= A(n)

by simply adding a copy of the fixed point. E.g.,

FP(8, 1) ∪ FP(7, 2) A(9)

11111111 19

52 522
421 4221
322 3222
3211 32211
2221 22221
22111 222111

(Note that 333 is not in A(9): λ3 = 3 but there is no λ4.)
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3. f (n, d) triangle anti-diagonal sums

1

1

1

1 1

1 2

1 4

1 6

1 9

1 12 1

1

1

2

3

5

7

11

1, 1, 2, 3, 5, 7, 11, 15, 22,
30, 42, 56, 77, 101, . . . ,
the partition numbers p(n).
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3. f (n, d) triangle anti-diagonal sums

FP(n + 1, 1) ∪ FP(n + 2, 2) ∪ · · · ∼= P(n)

by simply removing the fixed point. E.g.,

FP(7, 1) ∪ FP(8, 2) ∪ FP(9, 3) P(6)

1111111 16

62 6
521 51
422 42
4211 411
3221 321
32111 3111
2222 222
22211 2211
221111 21111
333 33
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3. Partition excedance

Co-opting another permutation statistic, the excedance of a
partition is the number of parts for which λi > i .

P(5) = {5
•
, 4
•
1, 2

•
2, 3

•
11, 2

•
21, 2

•
111, 11111}.

The smallest partition with two excedances is 3
•
3
•
∈ P(6).

With non-increasing order, if λ has k excedances, those occur in
the first k parts.
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3. Triangle of partition excedances e(n, k)

n 1 2 3 4 Σ

1 1 1
2 1 1 2
3 1 2 3
4 1 4 5
5 1 6 7
6 1 9 1 11
7 1 12 2 15
8 1 16 5 22
9 1 20 9 30

10 1 25 16 42
11 1 30 25 56
12 1 36 39 1 77
13 1 42 56 2 101

e(n, k) with k ≥ 1 counts
partitions of n with k − 1
excedances.

OEIS A353318, column k
begins in row (k − 1)k.

Same columns as f (n, d):
e(n, k) = f (n+k , k) [easy]
which gives a version of
Pascal’s lemma.

Clearly row sums are p(n),
match antidiagonal sums in
f (n, d) triangle.
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3. e(n, k) triangle example of inter-column recurrence

n 1 2 3 4 Σ

1 1 1
2 1 1 2
3 1 2 3
4 1 4 5
5 1 6 7

6 1 9 − 1 11

7 1 12 2 15

8 1 16 + 5 22

9 1 20 + 9 30

10 1 25 16 42

11 1 30 = 25 56
12 1 36 39 1 77
13 1 42 56 2 101

e(11, 3) =
9 + 5− 1 + 12 = 25
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3. e(n, k) triangle anti-diagonal sums

1

1 1

1 2

1 4

1 6

1 9 1

1 12 2

1 16 5

1 20 9

2

3

5

8

12

18

26

2, 3, 5, 8, 12, 18, 26, 37,
52, 98, . . . , is A084376,
p(n)+p(n+1) [moderate].
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3. Unimodal compositions

A unimodal composition of n is an ordered collection of positive
integer parts ci with

∑
i ci = n and

c1 ≤ · · · ≤ cp−1 ≤ cp ≥ cp+1 ≥ · · · ≥ cs

for some index p; call cp the peak.

Among the 16 compositions of 5, only 212 is not unimodal.
Unimodal with peak 1: 11111.
Unimodal with peak 2: 221, 2111, 122, 1211, 1121, 1112.
Unimodal with peak 3: 32, 311, 23, 131, 113.
Unimodal with peak 4: 41, 14.
Unimodal with peak 5: 5.
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3. Triangle of unimodal compositions u(n, p)

1 2 3 4 5 6 7 8

1
1 1
1 2 1
1 4 2 1
1 6 5 2 1
1 9 9 5 2 1
1 12 16 10 5 2 1
1 16 25 19 10 5 2 1

u(n, p) with p ≥ 1 counts
unimodal compositions of
n with peak p.

OEIS A229706, column k
begins in row k

Same columns as f (n, d):
u(n, p) = f (n+p(p−1), p)
[moderate] which gives a
version of Pascal’s lemma.
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3. u(n, p) triangle example of inter-column recurrence

1 2 3 4 5 6 7 8

1
1 1

1 2 − 1

1 4 2 1

1 6 + 5 2 1

1 9 + 9 5 2 1

1 12 16 10 5 2 1

1 16 = 25 19 10 5 2 1

u(8, 3) = 25

Could pursue analagous combinatorial analysis of k-fixed points for
any integer k . . .
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