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Let N = {0, 1, 2, . . .},

and if n ∈ N then let [n] = {1, 2, . . . , n}. A
partition of n ∈ N, written λ ⊢ n, is a weakly decreasing sequence
of positive integers λ = (λ1, λ2. . . . , λm) with

∑
i λi = n. Let

P(n) = {λ | λ ⊢ n} and p(n) = #P(n)

where # denotes cardinality. We write |λ| :=
∑

i λi .
Ex. P(4) = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)} so p(4) = 5.

For n ≥ 1, Euler’s totient function is ϕ(n) where

Φ(n) = {k ∈ [n] | gcd(k , n) = 1} and ϕ(n) = #Φ(n).

Ex. Φ(12) = {1, 5, 7, 11} so ϕ(12) = 4.

Finally, still for n ≥ 1, the Möbius function is

µ(n) =

{
(−1)δ(n) if n is square free,
0 else,

where δ(n) is number of distinct prime divisors of n.
Ex. µ(70) = µ(2 · 5 · 7) = (−1)3 = −1 but µ(50) = µ(2 · 52) = 0.
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Let
Sk(n) = number of k ’s in all the λ ⊢ n.

Ex. If n = 4 and k = 1 then

P(4) = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}
and, counting the number of ones in each partition,

S1(4) = 0 + 1 + 0 + 2 + 4 = 7.

Let

S≥r
k (n) = number of k ’s in all the λ ⊢ n with parts ≥ r .

Merca and Schmidt prove the following identities mainly by
manipulation of q-series. We prove them combinatorially.

Theorem (Merca-Schmidt)

1. S1(n) =
∑n+1

k=2 ϕ(k) S≥2
k (n + 1).

2. p(n) =
∑n+3

k=3
ϕ(k)
2 S≥3

k (n + 3).

3. p(n) =
∑n+1

k=1 µ(k) Sk(n + 1).

4. p(n) = −
∑n+2

k=2 µ(k) S≥2
k (n + 2).
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Call a partition λ = (λ1, λ2, . . . , λm) of n rooted if one of its parts,
say one of the k ’s, has been distinguished.

This part is called the
root and will be denoted k̂ .
Ex. If λ = (5, 2, 2, 2, 1, 1) then the ways to root λ at 2 are

(5, 2̂, 2, 2, 1, 1), (5, 2, 2̂, 2, 1, 1), and (5, 2, 2, 2̂, 1, 1).

Let

S≥r
k (n) = {λ | λ ⊢ n rooted at k and with parts ≥ r}.

and Sk(n) = S≥1
k (n). Clearly #S≥r

k (n) = S≥r
k (n) for all n, k , r .

Let λ, ν be two partitions with at most one of them rooted.
Their direct sum λ⊕ ν is obtained by, for each k , concatenating
the string of k ’s in λ with the string of k’s in ν, including the k̂ if
one exists.
Ex. (5, 2, 2, 1)⊕ (4, 4, 2, 2̂, 2, 1, 1) = (5, 4, 4, 2, 2, 2, 2̂, 2, 1, 1, 1).
Note that this operation is not commutative as

(4, 4, 2, 2̂, 2, 1, 1)⊕ (5, 2, 2, 1) = (5, 4, 4, 2, 2̂, 2, 2, 2, 1, 1, 1).
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Theorem (Merca-Schmidt) S1(n) =
n+1∑
k=2

ϕ(k) S≥2
k (n + 1).

Proof. (Sagan) We give a bijection S1(n) → S ′(n + 1) where

S1(n) = {λ | λ ⊢ n rooted at 1}
S ′(n + 1) = {(λ′, r) | λ′ ∈ S≥2

k (n + 1) for some k and r ∈ Φ(k)}.

Given λ ∈ S1(n), let

o = number of 1’s in λ,

p = position of 1̂ (positions numbered left to right),

g = gcd(o + 1, p).

Ex. Suppose that

λ = (4, 4, 2, 1, 1, 1̂, 1, 1) ∈ S1(15).

So

o = 5,

p = 3,

g = gcd(5 + 1, 3) = 3.
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Write
λ = ν ⊕ ω where ω contains all the 1’s and 1̂,

Let

λ′ = ν ⊕ ω′ where ω′ = (

g︷ ︸︸ ︷
̂(o + 1)/g , (o + 1)/g , . . . , (o + 1)/g),

r = p/g .

Ex. We have

λ = (4, 4, 2, 1, 1, 1̂, 1, 1) = (4, 4, 2)⊕ (1, 1, 1̂, 1, 1).

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3. Let

ω′ = ̂(5 + 1)/3, (5 + 1)/3, (5 + 1)/3) = (2̂, 2, 2).

So λ′ = (4, 4, 2)⊕ (2̂, 2, 2) = (4, 4, 2, 2̂, 2, 2) and r = 3/3 = 1.

One can show that the map λ 7→ (λ′, r) is a bijection by
constructing its inverse.
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Let S be a finite set.

Bijection ι : S → S is an involution if
ι2 = id, the identity map.

Any bijection ι : S → S can be
considered as a digraph with vertex set S and an arc s⃗t if ι(s) = t.
This graph can be decomposed into directed cycles.
Lemma ι is an involution iff each cycle contains 1 or 2 elements.
Let

Fix ι = {s ∈ S | ι(s) = s}.

Ex. Let S = [5] and ι(1) = 3, ι(2) = 2, ι(3) = 1, ι(4) = 5, ι(5) = 4.
Then ι2(1) = ι(3) = 1 and similarly ι2(s) = s for all s ∈ [5].
The cycle containing 1 is 1 ↔ ι(1) or 1 ↔ 3.
Also Fix ι = {2}.
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A set S is signed if there is a map sgn : S → {−1,+1}.

Let

S+ = {s ∈ S | sgn s = +1}, S− = {s ∈ S | sgn s = −1}.

Involution ι : S → S is sign reversing if

1. For every two-cycle s ↔ t of ι we have sgn s = − sgn t.

2. For every fixed point s of ι we have sgn s = +1.

So in this case ∑
s∈S

sgn s = #Fix ι.

Ex. Let sgn 1 = sgn 2 = sgn 4 = +1 and sgn 3 = sgn 5 = −1.
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Theorem (Merca-Schmidt) p(n) =
n+1∑
k=1

µ(k) Sk(n + 1).

Proof. (Sagan) By definition of µ we can restrict the sum to
square-free k. Let

S(n+1) = {λ ⊢ n+1 | λ is a partition rooted at a square-free part}.
Let the sign of a partition λ with root k̂ be

sgnλ = µ(k) = (−1)δ(k).

Since the number of ways to root λ at k is the number of k ’s in λ∑
λ∈S(n+1)

sgnλ =
∑

k square-free

∑
λ∈Sk (n+1)

µ(k) =
∑

k square-free

µ(k) Sk(n+1).

Also, there is a bijection between partitions ν ∈ P(n) and the
partitions ν ′ ∈ S(n + 1) obtained by inserting a 1̂ at the end of ν.
Ex. ν = (5, 3, 3, 2, 1, 1) ↔ ν ′ = (5, 3, 3, 2, 1, 1, 1̂).
Note

sgn ν ′ = µ(1) = 1 > 0.

So it suffices to produce a sign-reversing involution ι on S(n + 1)
with the rooted partitions ending in 1̂ as fixed points.
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To construct the sign-reversion involution, we will need

π(n) =

{
smallest prime dividing n if n ≥ 2,
∞ if n = 1,

where we consider ∞ > p for any prime p.

Ex. π(75) = π(3 · 52) = 3 and π(1) = ∞.
If λ ∈ S(n + 1) with root k̂ then let m be the number of parts
equal to k after and including k̂ .

Write

λ = ν ⊕ κ where κ = (

m︷ ︸︸ ︷
k̂, k, . . . , k).

Ex. λ = (3, 3, 2, 2̂, 2, 2, 1, 1). Thus the root is k = 2 and there
are m = 3 parts of that size after and including 2̂. Furthermore

λ = (3, 3, 2, 1, 1)⊕ (2̂, 2, 2)

We now have 2 cases for constructing λ′ = ι(λ) depending on the
the relative sizes of π(k) and π(m). Consider any λ ∈ S(n + 1)
not ending with 1̂. So min{π(k), π(m)} ≠ ∞ making both cases
well defined.
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Case 1: π(k) ≤ π(m).

Then we let

k1 = k/π(k) and m1 = m · π(k).

Also let

λ′ = ν ⊕ κ′ where κ′ = (

m1︷ ︸︸ ︷
k̂1, k1, . . . , k1).

Ex. λ = (3, 3, 2, 1, 1)⊕ (2̂, 2, 2), with root k = 2 and m = 3 parts
in κ = (2̂, 2, 2). Now π(k) = π(2) = 2 and π(m) = π(3) = 3 so
π(k) ≤ π(m). Let

k1 = k/π(k) = 2/2 = 1 and m1 = m · π(k) = 3 · 2 = 6.

So κ′ = (1̂, 1, 1, 1, 1, 1) and

λ′ = (3, 3, 2, 1, 1)⊕ (1̂, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, 1̂, 1, 1, 1, 1, 1).

Case 2: π(k) > π(m). Then we let

k2 = k · π(m) and m2 = m/π(m).

Also let

λ′ = ν ⊕ κ′′ where κ′′ = (

m2︷ ︸︸ ︷
k̂2, k2, . . . , k2).

One can check that Cases 1 and 2 are sign-reversing inverses.
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