Rooted partitions and number-theoretic functions

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

Michigan Technological University September 19, 2024

Introduction

An identity with ϕ

An identity with $\boldsymbol{\mu}$

Outline

Introduction

An identity with ϕ

An identity with μ

Let
$$\mathbb{N} = \{0, 1, 2, ...\}$$
,

Let $\mathbb{N} = \{0, 1, 2, ...\}$, and if $n \in \mathbb{N}$ then let $[n] = \{1, 2, ..., n\}$.

 $\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\}$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality.

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$.

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. **Ex.** $\mathcal{P}(4) = \{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)\}$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)\}$ so p(4) = 5.

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\}$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$ Ex. $\Phi(12) = \{1, 5, 7, 11\}$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \operatorname{gcd}(k, n) = 1\}$ and $\phi(n) = \#\Phi(n)$.

Ex. $\Phi(12) = \{1, 5, 7, 11\}$ so $\phi(12) = 4$.

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$

Ex. $\Phi(12) = \{1, 5, 7, 11\}$ so $\phi(12) = 4$.

Finally, still for $n \ge 1$, the *Möbius function* is

$$\mu(n) = \begin{cases} (-1)^{\delta(n)} & \text{if } n \text{ is square free} \\ 0 & \text{else,} \end{cases}$$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$

Ex. $\Phi(12) = \{1, 5, 7, 11\}$ so $\phi(12) = 4$.

Finally, still for $n \ge 1$, the *Möbius function* is

$$\mu(n) = \begin{cases} (-1)^{\delta(n)} & \text{if } n \text{ is square free} \\ 0 & \text{else,} \end{cases}$$

where $\delta(n)$ is number of distinct prime divisors of *n*.

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$

Ex. $\Phi(12) = \{1, 5, 7, 11\}$ so $\phi(12) = 4$.

Finally, still for $n \ge 1$, the *Möbius function* is

$$\mu(n) = \begin{cases} (-1)^{\delta(n)} & \text{if } n \text{ is square free} \\ 0 & \text{else,} \end{cases}$$

where $\delta(n)$ is number of distinct prime divisors of *n*. **Ex.** $\mu(70) = \mu(2 \cdot 5 \cdot 7) = (-1)^3 = -1$

$$\mathcal{P}(n) = \{\lambda \mid \lambda \vdash n\} \text{ and } p(n) = \#\mathcal{P}(n)$$

where # denotes cardinality. We write $|\lambda| := \sum_i \lambda_i$. Ex. $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$ so p(4) = 5.

For $n \ge 1$, *Euler's totient function* is $\phi(n)$ where

 $\Phi(n) = \{k \in [n] \mid \gcd(k, n) = 1\} \text{ and } \phi(n) = \#\Phi(n).$

Ex. $\Phi(12) = \{1, 5, 7, 11\}$ so $\phi(12) = 4$.

Finally, still for $n \ge 1$, the *Möbius function* is

$$\mu(n) = \begin{cases} (-1)^{\delta(n)} & \text{if } n \text{ is square free} \\ 0 & \text{else,} \end{cases}$$

where $\delta(n)$ is number of distinct prime divisors of *n*. **Ex.** $\mu(70) = \mu(2 \cdot 5 \cdot 7) = (-1)^3 = -1$ but $\mu(50) = \mu(2 \cdot 5^2) = 0$.

$S_k(n) =$ number of k's in all the $\lambda \vdash n$.

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), \ (3,1), \ (2,2), \ (2,1,1), \ (1,1,1,1)\}$

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$

and, counting the number of ones in each partition,

 $S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$

and, counting the number of ones in each partition,

$$S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$$

Let

 $S_k^{\geq r}(n) =$ number of k's in all the $\lambda \vdash n$ with parts $\geq r$.

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$

and, counting the number of ones in each partition,

$$S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$$

Let

 $S_k^{\geq r}(n) =$ number of k's in all the $\lambda \vdash n$ with parts $\geq r$.

Merca and Schmidt prove the following identities mainly by manipulation of q-series.

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$

and, counting the number of ones in each partition,

$$S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$$

Let

 $S_k^{\geq r}(n) =$ number of k's in all the $\lambda \vdash n$ with parts $\geq r$.

Merca and Schmidt prove the following identities mainly by manipulation of q-series. We prove them combinatorially.

 $S_k(n) =$ number of k's in all the $\lambda \vdash n$.

Ex. If n = 4 and k = 1 then

 $\mathcal{P}(4) = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$

and, counting the number of ones in each partition,

$$S_1(4) = 0 + 1 + 0 + 2 + 4 = 7.$$

Let

 $S_k^{\geq r}(n) =$ number of k's in all the $\lambda \vdash n$ with parts $\geq r$.

Merca and Schmidt prove the following identities mainly by manipulation of q-series. We prove them combinatorially.

Theorem (Merca-Schmidt)

1.
$$S_1(n) = \sum_{k=2}^{n+1} \phi(k) \ S_k^{\geq 2}(n+1).$$

2. $p(n) = \sum_{k=3}^{n+3} \frac{\phi(k)}{2} \ S_k^{\geq 3}(n+3).$
3. $p(n) = \sum_{k=1}^{n+1} \mu(k) \ S_k(n+1).$
4. $p(n) = -\sum_{k=2}^{n+2} \mu(k) \ S_k^{\geq 2}(n+2).$

Outline

Introduction

An identity with ϕ

An identity with μ

Call a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ of *n* rooted if one of its parts, say one of the *k*'s, has been distinguished.

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5, \hat{2}, 2, 2, 1, 1), (5, 2, \hat{2}, 2, 1, 1), \text{ and } (5, 2, 2, \hat{2}, 1, 1).$

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5,\hat{2},2,2,1,1), \ (5,2,\hat{2},2,1,1), \ \text{and} \ (5,2,2,\hat{2},1,1).$

Let

 $\mathcal{S}_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts} \geq r\}.$

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5, \hat{2}, 2, 2, 1, 1), (5, 2, \hat{2}, 2, 1, 1), \text{ and } (5, 2, 2, \hat{2}, 1, 1).$

Let

 $\mathcal{S}_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts} \geq r\}.$ and $\mathcal{S}_k(n) = \mathcal{S}_k^{\geq 1}(n).$

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5,\hat{2},2,2,1,1), \ (5,2,\hat{2},2,1,1), \ \text{and} \ (5,2,2,\hat{2},1,1).$

Let

 $S_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts} \geq r\}.$ and $S_k(n) = S_k^{\geq 1}(n)$. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r.

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5, \hat{2}, 2, 2, 1, 1), (5, 2, \hat{2}, 2, 1, 1), \text{ and } (5, 2, 2, \hat{2}, 1, 1).$

Let

 $S_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts } \geq r\}.$ and $S_k(n) = S_k^{\geq 1}(n)$. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r. Let λ, ν be two partitions with at most one of them rooted.

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5, \hat{2}, 2, 2, 1, 1), (5, 2, \hat{2}, 2, 1, 1), \text{ and } (5, 2, 2, \hat{2}, 1, 1).$

Let

 $S_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts } \geq r\}.$ and $S_k(n) = S_k^{\geq 1}(n)$. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r. Let λ, ν be two partitions with at most one of them rooted. Their *direct sum* $\lambda \oplus \nu$ is obtained by, for each k, concatenating the string of k's in λ with the string of k's in ν , including the \hat{k} if one exists.

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5, \hat{2}, 2, 2, 1, 1), (5, 2, \hat{2}, 2, 1, 1), \text{ and } (5, 2, 2, \hat{2}, 1, 1).$

Let

 $S_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts} \geq r\}.$

and $S_k(n) = S_k^{\geq 1}(n)$. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r.

Let λ, ν be two partitions with at most one of them rooted. Their *direct sum* $\lambda \oplus \nu$ is obtained by, for each k, concatenating the string of k's in λ with the string of k's in ν , including the \hat{k} if one exists.

Ex. $(5, 2, 2, 1) \oplus (4, 4, 2, \hat{2}, 2, 1, 1) = (5, 4, 4, 2, 2, 2, \hat{2}, 2, 1, 1, 1).$

Call a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ of *n* rooted if one of its parts, say one of the *k*'s, has been distinguished. This part is called the root and will be denoted \hat{k} .

Ex. If $\lambda = (5, 2, 2, 2, 1, 1)$ then the ways to root λ at 2 are

 $(5,\hat{2},2,2,1,1), \ (5,2,\hat{2},2,1,1), \ \text{and} \ (5,2,2,\hat{2},1,1).$

Let

 $\mathcal{S}_k^{\geq r}(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } k \text{ and with parts} \geq r\}.$

and $S_k(n) = S_k^{\geq 1}(n)$. Clearly $\#S_k^{\geq r}(n) = S_k^{\geq r}(n)$ for all n, k, r.

Let λ, ν be two partitions with at most one of them rooted. Their *direct sum* $\lambda \oplus \nu$ is obtained by, for each k, concatenating the string of k's in λ with the string of k's in ν , including the \hat{k} if one exists.

Ex. $(5, 2, 2, 1) \oplus (4, 4, 2, \hat{2}, 2, 1, 1) = (5, 4, 4, 2, 2, 2, \hat{2}, 2, 1, 1, 1)$. Note that this operation is not commutative as

 $(4,4,2,\hat{2},2,1,1)\oplus(5,2,2,1)=(5,4,4,2,\hat{2},2,2,2,1,1,1).$

Theorem (Merca-Schmidt)
$$S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1).$$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1).$ Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1).$ Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$

Ex. Suppose that

 $\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let

o = number of 1's in λ ,

Ex. Suppose that

 $\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let $\rho = \text{ number of } 1$'s in λ .

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$$
 $o = 5,$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let $\rho = \text{ number of } 1$'s in λ .

 $p = position of \hat{1}$ (positions numbered left to right),

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15)$$

$$o = 5$$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let $\rho = \text{ number of } 1$'s in λ .

 $p = position of \hat{1}$ (positions numbered left to right),

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15)$$
 $o = 5,$

$$p = 3$$
,

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let

o = number of 1's in λ , p = position of $\hat{1}$ (positions numbered left to right), g = gcd(o + 1, p).

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$$

$$o = 5,$$

 $p = 3,$

Theorem (Merca-Schmidt) $S_1(n) = \sum_{k=2}^{n+1} \phi(k) S_k^{\geq 2}(n+1)$. Proof. (Sagan) We give a bijection $S_1(n) \to S'(n+1)$ where $S_1(n) = \{\lambda \mid \lambda \vdash n \text{ rooted at } 1\}$ $S'(n+1) = \{(\lambda', r) \mid \lambda' \in S_k^{\geq 2}(n+1) \text{ for some } k \text{ and } r \in \Phi(k)\}.$ Given $\lambda \in S_1(n)$, let

o = number of 1's in λ , p = position of $\hat{1}$ (positions numbered left to right), g = gcd(o + 1, p).

Ex. Suppose that

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) \in \mathcal{S}_1(15).$$

$$o = 5,$$

 $p = 3,$
 $g = \gcd(5 + 1, 3) = 3.$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Ex. We have

 $\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1)$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Ex. We have

$$\lambda = (4,4,2,1,1,\hat{1},1,1) = (4,4,2) \oplus (1,1,\hat{1},1,1).$$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' =
u \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$

Ex. We have

$$\lambda = (4,4,2,1,1,\hat{1},1,1) = (4,4,2) \oplus (1,1,\hat{1},1,1).$$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3.

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3. Let

$$\omega' = \widehat{(5+1)/3}, (5+1)/3, (5+1)/3) = (\hat{2}, 2, 2).$$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3. Let

$$\omega' = \widehat{(5+1)/3}, (5+1)/3, (5+1)/3) = (\hat{2}, 2, 2).$$
 So $\lambda' = (4, 4, 2) \oplus (\hat{2}, 2, 2) = (4, 4, 2, \hat{2}, 2, 2)$

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3. Let

$$\omega' = (\widehat{(5+1)}/3, (5+1)/3, (5+1)/3) = (\hat{2}, 2, 2).$$

So $\lambda' = (4,4,2) \oplus (\hat{2},2,2) = (4,4,2,\hat{2},2,2)$ and r = 3/3 = 1.

 $\lambda = \nu \oplus \omega$ where ω contains all the 1's and $\hat{1}$,

Let

$$\lambda' = \nu \oplus \omega'$$
 where $\omega' = (\overbrace{(o+1)/g, (o+1)/g, \dots, (o+1)/g}^g),$
 $r = p/g.$

Ex. We have

$$\lambda = (4, 4, 2, 1, 1, \hat{1}, 1, 1) = (4, 4, 2) \oplus (1, 1, \hat{1}, 1, 1).$$

Recall o = 5, p = 3, and g = gcd(5 + 1, 3) = 3. Let

$$\omega' = \widehat{(5+1)/3}, (5+1)/3, (5+1)/3) = (\hat{2}, 2, 2).$$

So $\lambda' = (4, 4, 2) \oplus (\hat{2}, 2, 2) = (4, 4, 2, \hat{2}, 2, 2)$ and r = 3/3 = 1.

One can show that the map $\lambda \mapsto (\lambda', r)$ is a bijection by constructing its inverse.

Outline

Introduction

An identity with ϕ

An identity with $\boldsymbol{\mu}$

Let ${\mathcal S}$ be a finite set.

Ex. Let
$$S = [5]$$
 and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$.

Ex. Let
$$S = [5]$$
 and $\iota(1) = 3$, $\iota(2) = 2$, $\iota(3) = 1$, $\iota(4) = 5$, $\iota(5) = 4$.
Then $\iota^2(1) = \iota(3) = 1$

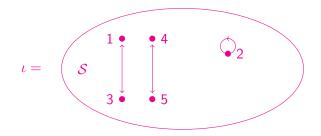
Ex. Let
$$S = [5]$$
 and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$.
Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$.

Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = id$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$.

Ex. Let
$$S = [5]$$
 and $\iota(1) = 3$, $\iota(2) = 2$, $\iota(3) = 1$, $\iota(4) = 5$, $\iota(5) = 4$.
Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$.

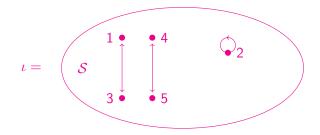
Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = id$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$.

Ex. Let
$$S = [5]$$
 and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$.
Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$.



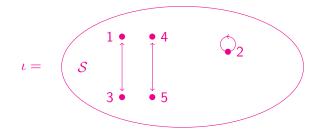
Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = \text{id}$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$. This graph can be decomposed into directed cycles.

Ex. Let
$$S = [5]$$
 and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$.
Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$.



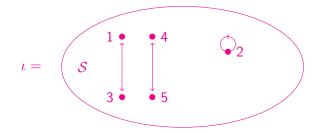
Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = id$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$. This graph can be decomposed into directed cycles.

Ex. Let S = [5] and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$. Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$. The cycle containing 1 is $1 \leftrightarrow \iota(1)$ or $1 \leftrightarrow 3$.



Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = \mathrm{id}$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$. This graph can be decomposed into directed cycles. Lemma ι is an involution iff each cycle contains 1 or 2 elements.

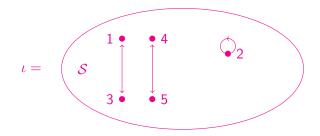
Ex. Let S = [5] and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$. Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$. The cycle containing 1 is $1 \leftrightarrow \iota(1)$ or $1 \leftrightarrow 3$.



Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = \operatorname{id}$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$. This graph can be decomposed into directed cycles. Lemma ι is an involution iff each cycle contains 1 or 2 elements. Let

$$\mathsf{Fix}\,\iota = \{s \in \mathcal{S} \mid \iota(s) = s\}.$$

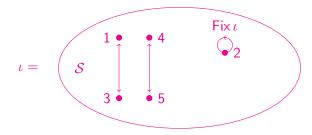
Ex. Let S = [5] and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$. Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$. The cycle containing 1 is $1 \leftrightarrow \iota(1)$ or $1 \leftrightarrow 3$.



Let S be a finite set. Bijection $\iota : S \to S$ is an *involution* if $\iota^2 = \operatorname{id}$, the identity map. Any bijection $\iota : S \to S$ can be considered as a digraph with vertex set S and an arc \vec{st} if $\iota(s) = t$. This graph can be decomposed into directed cycles. Lemma ι is an involution iff each cycle contains 1 or 2 elements. Let

$$\mathsf{Fix}\,\iota = \{s \in \mathcal{S} \mid \iota(s) = s\}.$$

Ex. Let S = [5] and $\iota(1) = 3, \iota(2) = 2, \iota(3) = 1, \iota(4) = 5, \iota(5) = 4$. Then $\iota^2(1) = \iota(3) = 1$ and similarly $\iota^2(s) = s$ for all $s \in [5]$. The cycle containing 1 is $1 \leftrightarrow \iota(1)$ or $1 \leftrightarrow 3$. Also Fix $\iota = \{2\}$.



A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$.

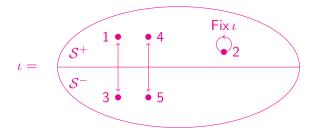
A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$. Let

 $\mathcal{S}^+ = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = +1 \}, \qquad \mathcal{S}^- = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = -1 \}.$

A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$. Let

 $\mathcal{S}^+ = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = +1 \}, \qquad \mathcal{S}^- = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = -1 \}.$

Ex. Let sgn 1 = sgn 2 = sgn 4 = +1 and sgn 3 = sgn 5 = -1.



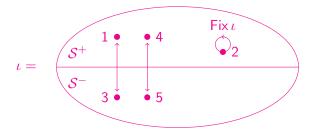
A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$. Let

 $\mathcal{S}^+ = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = +1 \}, \qquad \mathcal{S}^- = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = -1 \}.$

Involution $\iota : S \to S$ is sign reversing if

- 1. For every two-cycle $s \leftrightarrow t$ of ι we have $\operatorname{sgn} s = -\operatorname{sgn} t$.
- 2. For every fixed point s of ι we have sgn s = +1.

Ex. Let sgn 1 = sgn 2 = sgn 4 = +1 and sgn 3 = sgn 5 = -1.



A set S is *signed* if there is a map $sgn : S \to \{-1, +1\}$. Let

 $\mathcal{S}^+ = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = +1 \}, \qquad \mathcal{S}^- = \{ s \in \mathcal{S} \mid \operatorname{sgn} s = -1 \}.$

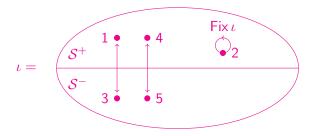
Involution $\iota : S \to S$ is sign reversing if

- 1. For every two-cycle $s \leftrightarrow t$ of ι we have $\operatorname{sgn} s = -\operatorname{sgn} t$.
- 2. For every fixed point s of ι we have sgn s = +1.

So in this case

$$\sum_{\boldsymbol{s}\in\mathcal{S}}\operatorname{sgn}\boldsymbol{s} = \#\operatorname{Fix}\iota.$$

Ex. Let sgn 1 = sgn 2 = sgn 4 = +1 and sgn 3 = sgn 5 = -1.



Proof. (Sagan) By definition of μ we can restrict the sum to square-free k.

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{ \lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part} \}.$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{ \lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part} \}.$

Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda$$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k)$$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) \, \mathcal{S}_k(n+1).$$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) S_k(n+1).$$

Also, there is a bijection between partitions $\nu \in \mathcal{P}(n)$ and the partitions $\nu' \in \mathcal{S}(n+1)$ obtained by inserting a $\hat{1}$ at the end of ν .

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) \, \mathcal{S}_k(n+1).$$

Also, there is a bijection between partitions $\nu \in \mathcal{P}(n)$ and the partitions $\nu' \in \mathcal{S}(n+1)$ obtained by inserting a $\hat{1}$ at the end of ν . **Ex.** $\nu = (5, 3, 3, 2, 1, 1) \leftrightarrow \nu' = (5, 3, 3, 2, 1, 1, \hat{1}).$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) \, \mathcal{S}_k(n+1).$$

Also, there is a bijection between partitions $\nu \in \mathcal{P}(n)$ and the partitions $\nu' \in \mathcal{S}(n+1)$ obtained by inserting a $\hat{1}$ at the end of ν . **Ex.** $\nu = (5, 3, 3, 2, 1, 1) \leftrightarrow \nu' = (5, 3, 3, 2, 1, 1, \hat{1}).$ Note

$$\operatorname{sgn} \nu' = \mu(1) = 1 > 0.$$

Proof. (Sagan) By definition of μ we can restrict the sum to square-free k. Let

 $S(n+1) = \{\lambda \vdash n+1 \mid \lambda \text{ is a partition rooted at a square-free part}\}.$ Let the sign of a partition λ with root \hat{k} be

$$\operatorname{sgn} \lambda = \mu(k) = (-1)^{\delta(k)}.$$

Since the number of ways to root λ at k is the number of k's in λ

$$\sum_{\lambda \in \mathcal{S}(n+1)} \operatorname{sgn} \lambda = \sum_{k \text{ square-free }} \sum_{\lambda \in \mathcal{S}_k(n+1)} \mu(k) = \sum_{k \text{ square-free }} \mu(k) S_k(n+1).$$

Also, there is a bijection between partitions $\nu \in \mathcal{P}(n)$ and the partitions $\nu' \in \mathcal{S}(n+1)$ obtained by inserting a $\hat{1}$ at the end of ν . **Ex.** $\nu = (5, 3, 3, 2, 1, 1) \leftrightarrow \nu' = (5, 3, 3, 2, 1, 1, \hat{1}).$ Note

$$\operatorname{sgn} \nu' = \mu(1) = 1 > 0.$$

So it suffices to produce a sign-reversing involution ι on S(n+1) with the rooted partitions ending in $\hat{1}$ as fixed points.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime p.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*. **Ex.** $\pi(75) = \pi(3 \cdot 5^2) = 3$

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime p. **Ex.** $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$.

If $\lambda \in S(n+1)$ with root \hat{k} then let *m* be the number of parts equal to *k* after and including \hat{k} .

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let *m* be the number of parts equal to *k* after and including \hat{k} .

Ex. $\lambda = (3, 3, 2, 2, 2, 2, 1, 1).$

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let *m* be the number of parts equal to *k* after and including \hat{k} .

Ex. $\lambda = (3, 3, 2, 2, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} . Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\overbrace{\hat{k}, k, \dots, k}^{m}).$

Ex. $\lambda = (3, 3, 2, 2, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} . Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\overbrace{\hat{k}, k, \dots, k}^{m}).$

Ex. $\lambda = (3, 3, 2, \hat{2}, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$. Furthermore $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} . Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\overbrace{\hat{k}, k, \dots, k}^{m}).$

Ex. $\lambda = (3, 3, 2, \hat{2}, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$. Furthermore $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$

We now have 2 cases for constructing $\lambda' = \iota(\lambda)$ depending on the the relative sizes of $\pi(k)$ and $\pi(m)$.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \ge 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} . Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\overbrace{\hat{k}, k, \dots, k}^{m}).$

Ex. $\lambda = (3, 3, 2, \hat{2}, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$. Furthermore $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$

We now have 2 cases for constructing $\lambda' = \iota(\lambda)$ depending on the the relative sizes of $\pi(k)$ and $\pi(m)$. Consider any $\lambda \in S(n+1)$ not ending with $\hat{1}$.

$$\pi(n) = \begin{cases} \text{ smallest prime dividing } n & \text{if } n \geq 2, \\ \infty & \text{if } n = 1, \end{cases}$$

where we consider $\infty > p$ for any prime *p*.

Ex. $\pi(75) = \pi(3 \cdot 5^2) = 3$ and $\pi(1) = \infty$. If $\lambda \in S(n+1)$ with root \hat{k} then let m be the number of parts equal to k after and including \hat{k} . Write

$$\lambda = \nu \oplus \kappa$$
 where $\kappa = (\overbrace{\hat{k}, k, \dots, k}^{m}).$

Ex. $\lambda = (3, 3, 2, \hat{2}, 2, 2, 1, 1)$. Thus the root is k = 2 and there are m = 3 parts of that size after and including $\hat{2}$. Furthermore $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$

We now have 2 cases for constructing $\lambda' = \iota(\lambda)$ depending on the the relative sizes of $\pi(k)$ and $\pi(m)$. Consider any $\lambda \in S(n+1)$ not ending with $\hat{1}$. So min $\{\pi(k), \pi(m)\} \neq \infty$ making both cases well defined.

Case 1:
$$\pi(k) \le \pi(m)$$
.

Case 1: $\pi(k) \le \pi(m)$. Then we let $k_1 = k/\pi(k)$ and $m_1 = m \cdot \pi(k)$.

Case 1: $\pi(k) \leq \pi(m)$. Then we let $k_1 = k/\pi(k)$ and $m_1 = m \cdot \pi(k)$. Also let $\lambda' = \nu \oplus \kappa'$ where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$.

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

 m_1

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1}).$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$.

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$.

$$k_1=k/\pi(k)$$
 and $m_1=m\cdot\pi(k).$

 m_1

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \ldots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

 $k_1 = k/\pi(k) = 2/2 = 1$ and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6.$ So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \ldots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

 $k_1 = k/\pi(k) = 2/2 = 1$ and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$. So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$ and $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1)$

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So $\kappa' = (1, 1, 1, 1, 1, 1)$ and

 $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, \hat{1}, 1, 1, 1, 1, 1).$

$$k_1=k/\pi(k)$$
 and $m_1=m\cdot\pi(k).$

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$ and

 $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, \hat{1}, 1, 1, 1, 1, 1).$

Case 2: $\pi(k) > \pi(m)$.

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \dots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$ and

 $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, \hat{1}, 1, 1, 1, 1, 1).$

Case 2: $\pi(k) > \pi(m)$. Then we let

 $k_2 = k \cdot \pi(m)$ and $m_2 = m/\pi(m)$.

$$k_1 = k/\pi(k)$$
 and $m_1 = m \cdot \pi(k)$.

m

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \ldots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$ and

 $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, \hat{1}, 1, 1, 1, 1, 1).$

Case 2: $\pi(k) > \pi(m)$. Then we let

$$k_2=k\cdot\pi(m)$$
 and $m_2=m/\pi(m).$

Also let

$$\lambda' =
u \oplus \kappa''$$
 where $\kappa'' = (\overbrace{\widehat{k_2, k_2, \dots, k_2}}^{m_2})$

$$k_1=k/\pi(k)$$
 and $m_1=m\cdot\pi(k).$

m

 m_2

Also let

$$\lambda' =
u \oplus \kappa'$$
 where $\kappa' = (\overbrace{\widehat{k_1}, k_1, \ldots, k_1}^{m_1})$

Ex. $\lambda = (3, 3, 2, 1, 1) \oplus (\hat{2}, 2, 2)$, with root k = 2 and m = 3 parts in $\kappa = (\hat{2}, 2, 2)$. Now $\pi(k) = \pi(2) = 2$ and $\pi(m) = \pi(3) = 3$ so $\pi(k) \le \pi(m)$. Let

$$k_1 = k/\pi(k) = 2/2 = 1$$
 and $m_1 = m \cdot \pi(k) = 3 \cdot 2 = 6$.

So $\kappa' = (\hat{1}, 1, 1, 1, 1, 1)$ and

 $\lambda' = (3, 3, 2, 1, 1) \oplus (\hat{1}, 1, 1, 1, 1, 1) = (3, 3, 2, 1, 1, \hat{1}, 1, 1, 1, 1, 1).$

Case 2: $\pi(k) > \pi(m)$. Then we let

$$k_2=k\cdot\pi(m)$$
 and $m_2=m/\pi(m).$

Also let

$$\lambda' =
u \oplus \kappa''$$
 where $\kappa'' = (\overbrace{\widehat{k_2}, k_2, \dots, k_2})$

One can check that Cases 1 and 2 are sign-reversing inverses.

References

- 1. Cristina Ballantine, George Beck, Mircea Merca, Bruce E. Sagan, Elementary symmetric partitions, arXiv:2409.11268.
- 2. Mircea Merca and Maxie D. Schmidt. A partition identity related to Stanley's theorem. *Amer. Math. Monthly*, 125(10):929–933, 2018.
- Mircea Merca and Maxie D. Schmidt. The partition function p(n) in terms of the classical Möbius function. Ramanujan J., 49(1):87–96, 2019.
- Bruce E. Sagan. Combinatorics: the Art of Counting, volume 210 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2020.
 Click the link for the book on my web page for a free copy.
- 5. Bruce E. Sagan. Rooted partitions and number-theoretic functions. *Ramanujan J.*, 64(1):253–264, 2024.

THANKS FOR LISTENING!