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partition of n € N, written A I n, is a weakly decreasing sequence
of positive integers A = (A1, Ao...., Am) with >, A;j = n. Let
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®(n) = {k € [n] | ged(k, n) =1} and ¢(n) = #d(n).
Ex. ®(12) = {1,5,7,11} so ¢(12) = 4.

Finally, still for n > 1, the Mébius function is

[ (—=1)%(") if nis square free,
pn) = { 0 else,

where 6(n) is number of distinct prime divisors of n.
Ex. u(70) = u(2-5-7) = (—1)® = —1 but u(50) = u(2-5%) = 0.
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Ex. If n=4 and k =1 then
P@) = {(4), (3.1), (2.2), (2,1,1), (1,1,1,1)}
and, counting the number of ones in each partition,
S1(4)=0+1+0+2+4=7.
Let
Skzr(n) = number of k's in all the A = n with parts > r.

Merca and Schmidt prove the following identities mainly by
manipulation of g-series. We prove them combinatorially.

Theorem (Merca-Schmidt)

L. Si(n) = 32355 (k) S (n+1).
2. p(n) = Y53 % 52 (n+3).
3. p(n) = ZZ*% (k) S(n+1).
4. p(n) = =055 w(k) S7(n+2).
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Call a partition A = (A1, A2, ..., Am) of n rooted if one of its parts,
say one of the k's, has been distinguished. This part is called the
root and will be denoted k.

Ex. If A =(5,2,2,2,1,1) then the ways to root A at 2 are

(5,2,2,2,1,1), (5,2,2,2,1,1), and (5,2,2,2,1,1).
Let
S (n) = {\ | A+ n rooted at k and with parts > r}.

and Si(n) = S (n). Clearly #S."(n) = SZ"(n) for all n, k, r.

Let A, v be two partitions with at most one of them rooted.

Their direct sum A\ @ v is obtained by, for each k, concatenating
the string of k's in A with the string of k's in v, including the k if
one exists.

Ex. (5,2,2,1) ® (4,4,2,2,2,1,1) = (5,4,4,2,2,2,2,2,1,1,1).
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n+1

Theorem (Merca-Schmidt) Sy(n) = > (k) SF2(n+1).
k=2

Proof. (Sagan) We give a bijection S1(n) — S’'(n+ 1) where

S1(n) ={\| A+ nrooted at 1}
S'n+1)={\N,r)| N e Skzz(n + 1) for some k and r € ®(k)}.
Given X € Si(n), let
0 = number of 1's in A,

p = position of 1 (positions numbered left to right),

Ex. Suppose that
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n+1

Theorem (Merca-Schmidt) Sy(n) = > (k) SF2(n+1).
k=2

Proof. (Sagan) We give a bijection S1(n) — S’'(n+ 1) where

S1(n) ={\| A+ nrooted at 1}
S'n+1)={\N,r)| N e Skzz(n + 1) for some k and r € ®(k)}.
Given X € Si(n), let
0 = number of 1's in A,
p = position of 1 (positions numbered left to right),
g =gcd(o+ 1, p).
Ex. Suppose that

//////

So



n+1

Theorem (Merca-Schmidt) Sy(n) = > (k) SF2(n+1).
k=2

Proof. (Sagan) We give a bijection S1(n) — S’'(n+ 1) where

S1(n) ={\| A+ nrooted at 1}
S'n+1)={\N,r)| N e SkZZ(n + 1) for some k and r € ®(k)}.
Given X € Si(n), let
o = number of 1'sin A,
p = position of 1 (positions numbered left to right),
g =gcd(o+1,p).
Ex. Suppose that
So
o =05,
p=3,
g =gcd(5+1,3)=3.
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Write
A = v @ w where w contains all the 1's and 1,

Let
g

Ve

N =v®dw where ' = ((0:1\)/g,(o +1)/g,...,(0+1)/g),
r=p/g.

Ex. We have
A= (4,4,2,1,1,1,1,1) = (4,4,2) ® (1,1,1,1,1).
Recallo =5, p=3,and g =gcd(5+1,3) =3. Let
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Write
A = v P w where w contains all the 1's and 1,

Let
g

Ve

N =v®dw where ' = ((0:1\)/g,(o +1)/g,...,(0+1)/g),
r=p/g.

Ex. We have
A= (4,4,2,1,1,1,1,1) = (4,4,2) ® (1,1,1,1,1).
Recallo =5, p=3,and g =gcd(5+1,3) =3. Let
W =(5+1)/3,(5+1)/3,(5+1)/3) = (2,2,2).

So N = (4,4,2)®(2,2,2) = (4,4,2,2,2,2) andr=3/3=1.



Write
A = v @ w where w contains all the 1's and 1,

Let
g

Ve

N =v®dw where ' = ((oﬁ/g,(o +1)/g,...,(0+1)/g),
r=p/g.

Ex. We have
A= (4,4,2,1,1,1,1,1) = (4,4,2) ® (1,1,1,1,1).
Recallo =5, p=3,and g =gcd(5+1,3) =3. Let
W =(5+1)/3,(5+1)/3,(5+1)/3) = (2,2,2).

So N = (4,4,2)®(2,2,2) = (4,4,2,2,2,2) and r=3/3=1.

One can show that the map A — ()X, r) is a bijection by
constructing its inverse.



Outline

An identity with p



Let S be a finite set.



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map.



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then 2(1) =(3) =1



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].



Let S be a finite set. Bijection ¢ : S — S is an involution if
= id, the identity map. Any bijection ¢ : & — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.

Ex. Let S = [5] and ¢(1) = 3,¢(2 )—2 /(3) 1,.(4) =5,u5) =4
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].



Let S be a finite set. Bijection ¢ : S — S is an involution if
= id, the identity map. Any bijection ¢ : & — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.

Ex. Let S = [5] and ¢(1) = 3,¢(2 )—2 /(3) 1,.(4) =5,.5) =4
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].



Let S be a finite set. Bijection ¢ : S — S is an involution if

= id, the identity map. Any bijection ¢ : & — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.
This graph can be decomposed into directed cycles.

Ex. Let S = [5] and ¢(1) = 3,¢(2 )—2 /(3) 1,.(4) =5,u5) =4
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].



Let S be a finite set. Bijection ¢ : S — S is an involution if

1? = id, the identity map. Any bijection 1 : S — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.
This graph can be decomposed into directed cycles.

Ex. Let S =[5] and ¢(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].
The cycle containing 1is 1 <+ ¢(1) or 1 <> 3.



Let S be a finite set. Bijection ¢ : S — S is an involution if

1? = id, the identity map. Any bijection 1 : S — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.
This graph can be decomposed into directed cycles.

Lemma ¢ is an involution iff each cycle contains 1 or 2 elements.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].
The cycle containing 1is 1 <+ ¢(1) or 1 <> 3.



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map. Any bijection 1 : S — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.
This graph can be decomposed into directed cycles.
Lemma ¢ is an involution iff each cycle contains 1 or 2 elements.
Let

Fix. ={s € S| s) =s}.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].
The cycle containing 1is 1 <+ ¢(1) or 1 <> 3.



Let S be a finite set. Bijection ¢ : S — S is an involution if
1? = id, the identity map. Any bijection 1 : S — S can be
considered as a digraph with vertex set S and an arc st if i(s) = t.
This graph can be decomposed into directed cycles.
Lemma ¢ is an involution iff each cycle contains 1 or 2 elements.
Let

Fix. ={s € S| s) =s}.

Ex. Let S =[5] and «(1) = 3,:(2) = 2,¢(3) = 1,:(4) = 5,¢(5) = 4.
Then (2(1) = «(3) = 1 and similarly (2(s) = s for all s € [5].

The cycle containing 1is 1 <+ ¢(1) or 1 <> 3.

Also Fix: = {2}.
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A set S is signed if there is a map sgn : § — {—1,+1}. Let
ST ={se S |sgns=+1}, S ={seS8|sgns=—-1}.

Involution ¢ : & — S is sign reversing if
1. For every two-cycle s <+ t of + we have sgns = —sgn t.
2. For every fixed point s of + we have sgns = +1.

So in this case

ngns = # Fixt.

seS

Ex. Let sgnl =sgn2 =sgn4 = +1 and sgn3 = sgnb = —1.
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Theorem (Merca-Schmidt) p(n) = > (k) Sk(n+1).

k=1
Proof. (Sagan) By definition of ;1 we can restrict the sum to
square-free k. Let

S(n+1) = {\F n+1| X is a partition rooted at a square-free part}.
Let the sign of a partition A with root k be
sgn A = p(k) = (-1)°%).
Since the number of ways to root A at k is the number of k's in A
Z sgn )\ = Z Z u(k) = Z p(k) Sk(n+1).
AeS(n+1) k square-free A\eSy(n+1) k square-free

Also, there is a bijection between partitions v € P(n) and the
partitions o/ € S(n + 1) obtained by inserting a 1 at the end of v.
Ex. v = (5,3,3,2,1,1) & ¢/ = (5,3,3,2,1,1,1).
Note

sgnv = p(l) =1>0.
So it suffices to produce a sign-reversing involution ¢ on S(n+ 1)
with the rooted partitions ending in 1 as fixed points.
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T o if n=1,

where we consider co > p for any prime p.
Ex. 7(75) = n(3-5%) = 3 and 7(1) = co.
If X € S(n+ 1) with root k then let m be the number of parts
equal to k after and including k.
Write
m
/A_/a
A=v® Kk where k = (k, k,..., k).

Ex. A=(3,3,2,2,2,2,1,1). Thus the root is k = 2 and there
are m = 3 parts of that size after and including 2. Furthermore

A=(3,3,2,1,1)®(2,2,2)

We now have 2 cases for constructing \' = +(\) depending on the
the relative sizes of m(k) and m(m). Consider any A € S(n+ 1)
not ending with 1. So min{x(k), 7(m)} # oo making both cases
well defined.
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(3,3,2,1,1) @ (2,2,2), with root k =2 and m = 3 parts

A=
in k= (2,2,2). Now (k) = 7(2) = 2 and 7(m) = 7(3) = 3 so
< 7m(m). Let

ki =k/m(k)=2/2=1and m; =m-mw(k)=3-2=6.
So ' = (1,1,1,1,1,1) and

N =(3,3211)a(1,1,1,1,1,1)=(3,3,2,1,1,1,1,1,1,1,1).
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Case 1: 7(k) < m(m). Then we let
ki = k/m(k) and my = m-7(k).
Also let mi

//\_H
N =v® k" where & = (ki, ki, ..., k).

Ex. A=(3,3,2,1,1) @ (2,2,2), with root k =2 and m = 3 parts
ink=(2,2, 2) Now 7(k) = 7(2) = 2 and w(m) = 7(3) =3 so
m(k) < mw(m). Let

ki =k/m(k)=2/2=1and m; =m-mw(k)=3-2=6.
So s’ =(1,1,1,1,1,1) and
N=(3,3211)aed11111)=332111111,11).
Case 2: w(k) > m(m). Then we let
ko =k-m(m) and my = m/m(m).
Also let my

—
N =v @ K" where £” = (ko, ko, . . ., ko).



Case 1: 7(k) < m(m). Then we let
ki = k/m(k) and my = m-7(k).
Also let mi

//\_H
N =v® k" where & = (ki, ki, ..., k).

Ex. A=(3,3,2,1,1) @ (2,2,2), with root k =2 and m = 3 parts
ink=(2,2, 2) Now 7(k) = 7(2) = 2 and w(m) = 7(3) =3 so
m(k) < mw(m). Let

ki =k/m(k)=2/2=1and m; =m-mw(k)=3-2=6.
So s’ =(1,1,1,1,1,1) and
N=(3,3211ed,1,1,111) =(3,3211111,11,1).

Case 2: w(k) > m(m). Then we let
ko =k-m(m) and my = m/m(m).

Also let my
—

N =v® k" where &’ = (kAg, ko, ..., ka).
One can check that Cases 1 and 2 are sign-reversing inverses. [
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