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Ordinary Integer Partitions

An ordinary partition of a positive integer n is a finite
non-increasing sequence of positive integers b1, b2, . . . bk such
that n = b1 + b2 + . . .+ bk where the bi are called parts of
the partition for i = 1, 2, . . . , k.

If we take n = 6, the corresponding partitions are

6, 5+1, 4+2, 3+3, 4+1+1, 3+2+1, 2+2+2, 3+1+1+1,

2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.
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Burcu Barsakçı Method of Weighted Words on Cylindric Partitions



Ordinary Integer Partitions

The Ferrers board of the partition 3 + 2 + 1 is

.

We have the following infinite product representation of the
partition function:

P(q) =
∏
k≥1

1

1− qk
.

The last series and the infinite product converge absolutely for
|q| < 1.
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Plane Partitions

If we call ordinary partitions as one-dimensional partitions, we
also have two-dimensional partitions, in other words, plane
partitions.

Plane partitions of n are two-dimensional arrays of
non-negative integers such that rows from left to right and
columns from top to bottom are non-increasing.

One of the plane partitions of n = 30 is

4 4 3 2 1

4 3 1 1

3 2 1

1
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3-D Ferrers board of Plane Partitions

3-D Ferrers board of the running example is

(figure credit: https://en.wikipedia.org/wiki/Plane_partition )

Burcu Barsakçı Method of Weighted Words on Cylindric Partitions

https://en.wikipedia.org/wiki/Plane_partition


The Generating Function for Plane Partitions

The generating function for plane partitions is given by the
following MacMahon formula [16]:

PP(q) =
∑
n≥0

pp(n) · qn

=
∏
n≥1

1

(1− qn)n
,

where pp(n) gives the number of plane partitions of n.
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Cylindric Partitions (Gessel and Krattenthaler [12] )

Let r and ℓ be positive integers. Let c = (c1, c2, . . . , cr ) be a
composition where c1 + c2 + . . .+ cr = ℓ.

The integer r is called the rank of the cylindric partition, while
the integer ℓ is called the level of the cylindric partition.

A cylindric partition with profile c is a vector partition
Λ = (λ(1), λ(2), . . . , λ(r)) where each λ(i) is an ordinary

partition such that λ(i) = λ
(i)
1 + λ

(i)
2 + . . .+ λ

(i)
si and for all i

and j ,

λ
(i)
j ≥ λ

(i+1)
j+ci+1

, λ
(r)
j ≥ λ

(1)
j+c1

.
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An Example of a Cylindric Partition with a profile
c = (c1, c2, . . . , cr)

Consider the cylindric partition Λ = ((5, 4), (8, 2), (7, 5, 1))
with profile c = (0, 1, 2) where λ(1) = (5, 4), λ(2) = (8, 2),
and λ(3) = (7, 5, 1) are ordinary partitions

c1 = 0, c2 = 1, c3 = 2 and λ(2) is shifted to the left by c2,
λ(3) is shifted to the left by c3, and as a hidden condition λ(1)

is shifted to the left by c1, so that horizontally and vertically
we have numbers in the non-increasing form.

5 4 0
8 2 0

7 5 1
5 4 0
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3-D Ferrers board of the running example

Figure: 3-D Ferrers board of cylindric partition
Λ = ((5, 4), (8, 2), (7, 5, 1)) with profile c = (0, 1, 2)
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Slices of the running example

Figure: Slices of cylindric partition Λ = ((5, 4), (8, 2), (7, 5, 1)) with
profile c = (0, 1, 2)
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Slices of the running example

≤ ≤ ≤ ≤

≤ ≤

≤ .
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Shapes of Slices [15]

Each slice having a profile c = (c1, c2, . . . , cr ) has a shape.
We define the shape of a slice as follows:

Without distinguishing between the white and gray squares in
the representation of a slice, we remove k squares from each
row, where k is the length of the r th row.

Since in a slice with a profile c = (c1, c2, . . . , cr ), there are r
rows, after the operation above, we will be left with (r − 1)
rows (counting zeroes), and starting from the top row, we
write the number of squares left in the rows, respectively. We
call this the shape of a slice.
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Examples: Shapes of slices

Shape of the slice with profile c = (1, 1, 1) below is (2, 2):

Shape of the slice with profile c = (1, 1, 1) below is (1, 0):
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Generating Functions of Cylindric Partitions with a given
profile c = (c1, c2, . . . , cr)

The size of a cylindric partition Λ = (λ(1), λ(2), . . . , λ(r)) with
a profile c = (c1, c2, . . . , cr ) is denoted by |Λ|.
The largest part of a cylindric partition is denoted by max(Λ)

For cylindric partition Λ = ((5, 4), (8, 2), (7, 5, 1)) with profile
c = (0, 1, 2), |Λ| = 32 and max(Λ) = 8.

The following generating function

Fc(z , q) :=
∑
Λ∈Pc

zmax(Λ)q|Λ|

is the generating function for cylindric partitions, where Pc

denotes the set of all cylindric partitions with profile c .
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Borodin’s formula [5] for Cylindric Partitions with a given
profile c = (c1, c2, . . . , cr)

Let r and ℓ be positive integers. Let c = (c1, c2, . . . , cr ) be a
composition where ℓ = c1 + c2 + . . .+ cr . Define t := r + ℓ and
s(i , j) := ci + ci+1 + . . .+ cj . Then,

Figure: Borodin formula

where the definition for q-Pochhammer symbols:

(a; q)n :=
n∏

j=1

(1− aqj−1), (a; q)∞ := lim
n→∞

(a; q)n.
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Some of the Works on Cylindric Partitions

In his proof for the above formula [5], Borodin used a
probabilistic approach.
Foda and Welsh gave a proof for Borodin’s formula in the
context of affine and Wr algebras [10].
Corteel and Welsh used cylindric partitions to reproduce the
four A2 Rogers - Ramanujan type identities and to prove a
similar fifth identity [6].
Corteel, Dousse, and Uncu worked on the cylindric partitions
with a given profile for rank 3 and level 5, thus obtaining new
A2 Rogers - Ramanujan type identities [7].
Warnaar found results for Fc(z , q) for rank 3 and level ̸≡ 0
(mod 3) [19].
Alternative generating functions for cylindric partitions of
various profiles in the form of series or infinite product times
series have been considered in the works of Kanade and
Russell [13], Uncu [18], and Warnaar [20] using other
approaches.
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What is our aim?

We try to give a more combinatorial explanation of generating
functions of cylindric partitions with a given profile and we are
trying to find expressions alternative to Borodin’s formula.

For this purpose, we tried to use method of weighted words
[1, 8, 9].

The method of weighted words was first introduced by Alladi
and Gordon [1] to prove Schur’s identity [17].

They computed the generating functions for the minimal
partitions satisfying some minimal distance conditions, and
used q-series identities.

Later, this method was used by Dousse to prove other
partition identities, but she created a new version of the
method in which she used recurrences and q-difference
equations instead of using minimal partitions and q-series
identities [8, 9].
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What is our strategy?

We fix a profile c = (c1, c2, . . . , cr ).

Let us consider cylindric partitions having profile c = (2, 1)
with rank r = 2 and level ℓ = 3.

We determine the shapes of the slices for the cylindric
partitions with the fixed profile.

For the slices of the cylindric partitions with the given profile,
there are exactly

(
ℓ+r−1
r−1

)
=
(4
1

)
shapes.
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What is our strategy?

The corresponding shapes are (0), (1), (2), (3) and let us denote
these shapes by a, c,b, and d, respectively.
Slices that have these shapes with minimum positive weight are
shown below.

(aq1), (bq1),

(cq2), (dq2).
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What is our strategy?

We find the minimum distance conditions between slices with
certain shapes.
For example, as shown below, after the slice aq1 we cannot
put the slice dq2, as the crossed white square in the slice aq1

is not contained in dq2.

But after aq1, we can put dq4. Moreover, we can have the
following placement with the slices aq1, bq3 and dq4,
respectively.

The above placement of the slices creates cylindric partition
Λ = ((2, 2, 1), (3)) with profile c = (2, 1).
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What is our strategy?

Creating slice flows for the given profiles, we compute the
beginning terms of the generating functions. And we search
for a pattern!

Slice flow for profile c = (2, 1) is given below:
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Sketch of the Proof for Profile c = (2, 1)

The beginning terms of the generating function for profile
c = (2, 1) when repetition of slices is not allowed is as follows:
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Sketch of the Proof for Profile c = (2, 1)

If we allow slices to repeat, the expression becomes:
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Sketch of the Proof for Profile c = (2, 1)

Putting a = b = c = d = 1, we obtain the following sum:
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Sketch of the Proof for Profile c = (2, 1)

Let us denote the first part of this new sum above by P(q), that is,

P(q) := (
1

1− q1
)(
1 + q2

1− q2
)(

1

1− q3
)(
1 + q4

1− q4
)(

1

1− q5
)(
1 + q6

1− q6
).

Then, how we get the other parts of the sum is as follows:

( q1

1−q1
)( 1

1−q2
)( 1

1−q3
)(1+q4

1−q4
)( 1

1−q5
)(1+q6

1−q6
) = P(q) · q1

1+q2

( 1
1−q1

)( 1
1−q2

)( q3

1−q3
)( 1

1−q4
)( 1

1−q5
)(1+q6

1−q6
) = P(q) · q3

(1+q2)(1+q4)

( 1
1−q1

)(1+q2

1−q2
)( 1

1−q3
) 1
1−q4

( q5

1−q5
)( 1

1−q6
) = P(q) · q5

(1+q4)(1+q6)

( q1

1−q1
)( 1

1−q2
)( q3

1−q3
)( 1

1−q4
)( 1

1−q5
)(1+q6

1−q6
) = P(q) · q1·q3

(1+q2)(1+q4)

( q1

1−q1
)( 1

1−q2
)( 1

1−q3
)( 1

1−q4
)( q5

1−q5
)( 1

1−q6
) = P(q) · q1·q5

(1+q2)(1+q4)(1+q6)

( 1
1−q1

)( 1
1−q2

)( q3

1−q3
)( 1

1−q4
)( q5

1−q5
)( 1

1−q6
) = P(q) · q3·q5

(1+q2)(1+q4)(1+q6)

( q1

1−q1
)( 1

1−q2
)( q3

1−q3
)( 1

1−q4
)( q5

1−q5
)( 1

1−q6
) = P(q) · q1·q3·q5

(1+q2)(1+q4)(1+q6)
.
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Sketch of the Proof for Profile c = (2, 1)

Let n be the number of distinct sizes of slices with shape a.

When n = 0, we have the following generating function:

S(q) :=

∏
k≥1(1 + q2k)∏
k≥1(1− qk)

=
(−q2; q2)∞
(q; q)∞

.

When n = 1, we have the following generating function:(
q1

1 + q2
+

∑
k≥1

q2k+1

(1 + q2k)(1 + q2k+2)

)
· S(q).
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Sketch of the Proof for Profile c = (2, 1)

When n = 2, we have the following generating function:(
q1 · q3

(1 + q2)(1 + q4)
+
∑
k≥1

q1 · q2k+3

(1 + q2)(1 + q2k+2)(1 + q2k+4)

+
∑
k≥1

q2k+1 · q2k+3

(1 + q2k)(1 + q2k+2)(1 + q2k+4)

+
∑
n≥1

∑
k≥1

q2k+1 · q2k+2n+3

(1 + q2k)(1 + q2k+2)(1 + q2k+2n+2)(1 + q2k+2n+4)

)
· S(q).
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Sketch of the Proof for Profile c = (2, 1)

Lemma

For any integer k ≥ 0, we have the following identity:

For any integer k ≥ 0, n ≥ 2, we have the following identity:
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Sketch of the Proof for Profile c = (2, 1)

Lemma

For any integer m ≥ 1, the following holds.

∑
k≥1

q2k+1 · q2k+3 . . . q2k+2m−1

(1 + q2k)(1 + q2k+2) . . . (1 + q2k+2m)

=
q2m

1− q2m
· q1q3 . . . q2m−1

(1 + q2)(1 + q4) . . . (1 + q2m)
.
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Sketch of the Proof for Profile c = (2, 1)

Lemma

For any integer mi ≥ 1 where i = 1, 2, . . . , n, the following identity
holds:
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Sketch of the Proof for Profile c = (2, 1)

We compute the sums for cases n = 1 and n = 2.

We reach a formula for general n.

We proceed by induction on n, and we conclude the proof.

Burcu Barsakçı Method of Weighted Words on Cylindric Partitions



Our Results for r = 2, ℓ = 2

The results we have found are given below, where the left hand
sides are the alternative expressions we find while the right hand
sides are the infinite products obtained by the Borodin’s formula.

Profile c = (1, 1):

(−q; q2)∞
(q; q)∞

=
1

(q4; q4)∞(q; q4)2∞(q3; q4)2∞
.

Profile c = (2, 0) :

(−q2; q2)∞
(q; q)∞

=
1

(q; q)∞(q2; q4)∞
.
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Our Results for r = 2, ℓ = 3 and r = 3, ℓ = 2

Profiles c = (2, 1) and c = (1, 1, 0):(∑
n≥0

qn
2

(q4; q4)n

)
· (−q2; q2)∞

(q; q)∞
=

1

(q; q)∞(q; q5)∞(q4; q5)∞
.

Profiles c = (3, 0) and c = (2, 0, 0):(∑
n≥0

qn
2+2·n

(q4; q4)n

)
· (−q2; q2)∞

(q; q)∞
=

1

(q; q)∞(q2; q5)∞(q3; q5)∞
.
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Our Results for r = 2, ℓ = 4 and r = 4, ℓ = 2

Profiles c = (4, 0) and c = (2, 0, 0, 0):

Profiles c = (2, 2) and c = (1, 0, 1, 0):

Profiles c = (3, 1) and c = (1, 1, 0, 0):
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Future Work

Our plan is to continue to work on cylindric partitions with
rank 2 and levels ≥ 5.

We will try to generalize our results.

We will also simultaneously work on cylindric partitions with
profile c = (1, 1, 1).
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Burcu Barsakçı Method of Weighted Words on Cylindric Partitions



References

[8] Dousse, J., 2017. The method of weighted words revisited.
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Burcu Barsakçı Method of Weighted Words on Cylindric Partitions



References

[19] Warnaar, S. O., 2023. The A2 Andrews-Gordon identities and
cylindric partitions. Transactions of the American Mathematical
Society, Series B, 10(22), pp.715-765.

[20] Warnaar, S.O., 2025. An A2 Bailey tree and A
(1)
2

Rogers-Ramanujan-type identities. Journal of the European
Mathematical Society.
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