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Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

a0 ≥ b1 ≥ a1 ≥ b2 ≥ a2 ≥ · · · ≥ 0

whose sum is n.

a0 b1 a1 b2 a2
· · ·

The counting function for partitions of n is p(n), which has generating function

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
.
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Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose
parts satisfy

a0

b1

b2

a1

b3

b4

a2

b5

b6

a3
· · ·

They found that
∞∑
n=0

d(n)qn =
∞∏
n=1

1 + q3n−1

1− qn
,

where d(n) counts the number of plane partition diamonds of n.
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Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence
of integers

a0 ≥ b1 ≥ a1 ≥ b2 ≥ · · · ≥ 0

with n = a0 + a1 + a2 + . . . ,

and Schmidt type plane partition diamonds are defined
analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

∞∏
n=1

1

(1− qn)2
.

Theorem (Andrews-Paule-Riese 2001)

The generating function for Schmidt type plane partition diamonds is

∞∏
n=1

1 + qn

(1− qn)3
.
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What if we add more nodes?

classical partitions:

a0 b1 a1 b2 a2
· · ·

plane partition diamonds:

a0

b1

b2

a1

b3

b4

a2

b5

b6

a3
· · ·

d-fold partition diamonds:

a0 a1 a2 a3

b1,1

b1,d

b2,1

b2,d

b3,1

b3,d

...
...

...

· · ·
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d-Fold partition diamonds

Definition (d-fold partition diamonds)

A d-fold partition diamond of n is a partition of n whose parts satisfy

a0 a1 a2 a3

b1,1

b1,d

b2,1

b2,d

b3,1

b3,d

...
...

...

· · ·

Schmidt type d-fold partition diamonds are defined in the natural way. We let rd(n) and
sd(n) be the counting functions for d-fold partition diamonds of n and their Schmidt
type counterpart, respectively.
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Results

Proposition (D.-Jameson-Sellers-Wilson)

We have
∞∑
n=0

rd(n)q
n =

∞∏
n=1

Fd(q
(n−1)(d+1)+1, q)

1− qn

and
∞∑
n=0

sd(n)q
n =

∞∏
n=1

Fd(q
n, 1)

(1− qn)d+1
.

Here Fd(q0,w) are polynomials defined recursively by F1(q0,w) := 1 and

Fd(q0,w) =
(1− q0w

d)Fd−1(q0,w)− w(1− q0)Fd−1(q0w ,w)

1− w
.

The proof relies on MacMahon’s partition analysis.
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Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

∞∑
n=0

rd(n)q
n =

∞∏
n=1

Fd(q
(n−1)(d+1)+1, q)

1− qn

∞∑
n=0

sd(n)q
n =

∞∏
n=1

Fd(q
n, 1)

(1− qn)d+1
.

Note that
F1(q0,w) = 1,

F2(q0,w) = 1 + q0w .

Thus
∞∑
n=0

p(n)qn =
∞∑
n=0

r1(n)q
n =

∞∏
n=1

1

1− qn

∞∑
n=0

s2(n)q
n =

∞∏
n=1

1 + qn

(1− qn)3
.
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The Ω≥ operator

Definition
The operator Ω≥ is defined by

Ω
≥

∞∑
s1=−∞

· · ·
∞∑

sr=−∞

As1,··· ,srλ
s1
1 · · ·λsr

r :=
∞∑

s1=0

· · ·
∞∑

sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C in several
complex variables and the λi are restricted to a neighborhood of the circle |λi | = 1. In
addition, the As1,...,sr are required to be such that any of the series involved is absolutely
convergent within the domain of the definition of As1,··· ,sr .

Elimination formulae make Ω≥ a very powerful tool in computing generating functions.
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An example

To use partition analysis to obtain a generating function, one must

1 find the crude form of the generating function, its Ω≥ expression with variables in
place of each part;

2 apply appropriate elimination formulae;

3 substitute q for variables corresponding to summands (and 1 for the rest).

We use qi to keep track of the “links” (the ai ’s) and w to keep track of the “inner”
nodes (the bj,k ’s).

E.g., to find the generating function for classical partitions with at most three parts:

a0 b1 a1λ1 µ1

Start with the crude form

Ω
≥

∑
a0,a1,b1≥0

λb1−a0
1 µa1−b1

1 qa0
0 wb1qa1

1 = Ω
≥

∑
a0,a1,b1≥0

(λ1q0)
a0

(
µ1

λ1
w

)b1
(
q1
µ1

)a1

= Ω
≥

1

(1− λ1q0)(1− λ−1
1 µ1w)(1− µ−1

1 q1)
.
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We use qi to keep track of the “links” (the ai ’s) and w to keep track of the “inner”
nodes (the bj,k ’s).

E.g., to find the generating function for classical partitions with at most three parts:

a0 b1 a1λ1 µ1

Start with the crude form

Ω
≥

∑
a0,a1,b1≥0

λb1−a0
1 µa1−b1

1 qa0
0 wb1qa1

1 =

Ω
≥

∑
a0,a1,b1≥0

(λ1q0)
a0

(
µ1

λ1
w

)b1
(
q1
µ1

)a1

= Ω
≥

1

(1− λ1q0)(1− λ−1
1 µ1w)(1− µ−1

1 q1)
.

Dalen Dockery d-Fold Partition Diamonds
Seminar in Partitions, q-Series, and Related Topics 30 November 2023
12 / 28



Background and Motivation Partition Analysis The Main Theorem Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

1 find the crude form of the generating function, its Ω≥ expression with variables in
place of each part;

2 apply appropriate elimination formulae;

3 substitute q for variables corresponding to summands (and 1 for the rest).

We use qi to keep track of the “links” (the ai ’s) and w to keep track of the “inner”
nodes (the bj,k ’s).

E.g., to find the generating function for classical partitions with at most three parts:

a0 b1 a1λ1 µ1

Start with the crude form

Ω
≥

∑
a0,a1,b1≥0

λb1−a0
1 µa1−b1

1 qa0
0 wb1qa1

1 = Ω
≥

∑
a0,a1,b1≥0

(λ1q0)
a0

(
µ1

λ1
w

)b1
(
q1
µ1

)a1

= Ω
≥

1

(1− λ1q0)(1− λ−1
1 µ1w)(1− µ−1

1 q1)
.

Dalen Dockery d-Fold Partition Diamonds
Seminar in Partitions, q-Series, and Related Topics 30 November 2023
12 / 28



Background and Motivation Partition Analysis The Main Theorem Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

1 find the crude form of the generating function, its Ω≥ expression with variables in
place of each part;

2 apply appropriate elimination formulae;

3 substitute q for variables corresponding to summands (and 1 for the rest).

We use qi to keep track of the “links” (the ai ’s) and w to keep track of the “inner”
nodes (the bj,k ’s).

E.g., to find the generating function for classical partitions with at most three parts:

a0 b1 a1λ1 µ1

Start with the crude form

Ω
≥

∑
a0,a1,b1≥0

λb1−a0
1 µa1−b1

1 qa0
0 wb1qa1

1 = Ω
≥

∑
a0,a1,b1≥0

(λ1q0)
a0

(
µ1

λ1
w

)b1
(
q1
µ1

)a1

= Ω
≥

1

(1− λ1q0)(1− λ−1
1 µ1w)(1− µ−1

1 q1)
.

Dalen Dockery d-Fold Partition Diamonds
Seminar in Partitions, q-Series, and Related Topics 30 November 2023
12 / 28



Background and Motivation Partition Analysis The Main Theorem Concluding Remarks

Elimination identities

Now we need to eliminate λ1 and µ1.

MacMahon (1906) provides several elimination identities, including

Ω
≥

1

(1− λx)(1− λ−1y)
=

1

(1− x)(1− xy)
(1)

Ω
≥

1

(1− λx1)(1− λx2)(1− λ−1y)
=

1− x1x2y

(1− x1)(1− x2)(1− x1y)(1− x2y)
.

Using (1),

Ω
≥

1

(1− λ1q0)(1− λ−1
1 µ1w)(1− µ−1

1 q1)
= Ω

≥

1

(1− q0)(1− µ1q0w)(1− µ−1
1 q1)

=
1

(1− q0)(1− q0w)(1− q0q1w)
.

Letting q0 = q1 = w = q, the generating function is

1

(1− q)(1− q2)(1− q3)
.
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Extending MacMahon’s identities

We will need the following generalization of the previous identities.

Lemma (D.-Jameson-Sellers-Wilson)

For d ≥ 1 and j ∈ Z, we have

Ω
≥

λj

(1− λx1) · · · (1− λxd)(1− λ−1y)
=

1

(1− y)

[
1

(1− x1) · · · (1− xd)

− y j+1

(1− x1y) · · · (1− xdy)

]
.
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Extending MacMahon’s identities

Lemma (D.-Jameson-Sellers-Wilson)

Ω
≥

λj

(1− λx1) · · · (1− λxd)(1− λ−1y)
=

1

(1− y)

[
1

(1− x1) · · · (1− xd)

− y j+1

(1− x1y) · · · (1− xdy)

]
.

Proof (sketch). We have

Ω
≥

λj

(1− λx1) · · · (1− λxd)(1− λ−1y)
= Ω

≥

∑
a1,...,ad+1≥0

λj+a1+···+ad−ad+1xa1
1 · · · xad

d y ad+1

= Ω
≥

∑
a1,...,ad≥0

0≤ k ≤ a1+···+ad+j

λkxa1
1 · · · xad

d y a1+···+ad+j−k

=
∑

a1,...,ad≥0

xa1
1 · · · xad

d

a1+···+ad+j∑
k=0

y k ,

and the result follows from finite geometric series. □
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Crude forms for d-fold partition diamonds

Set Dd,n := Dd,n(q0, q1, . . . , qn;w) to be the generating function for d-fold partition
diamonds of fixed length n.

Label the edges on the left (resp. right) of the jth diamond
λ1,j , λ2,j , . . . , λd,j (resp. µ1,j , µ2,j , . . . , µd,j).

For d , n ≥ 1 and 1 ≤ k ≤ n, define

h := hd :=
1

1− λ1,1 · · ·λ1,d q0

fk := fk,d :=
1(

1− µk,1

λk,1
w
)
· · ·
(
1− µk,d

λk,d
w
)
·
(
1− λk+1,1···λk+1,d

µk,1···µk,d
qk+1

)
gn := gn,d :=

1− λn+1,1···λn+1,d

µn,1···µn,d
qn+1

1− qn+1

µn,1···µn,d

Fact:
Dd,n = Ω

≥
h · f1 · · · fn · gn.
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The crude forms (continued)

For ρ ≥ 0 we will need D
(ρ)
d,n := D

(ρ)
d,n(q0, q1, · · · , qn;w), which is defined to be the

generating function for d-fold partition diamonds of fixed length n, with an ≥ ρ.

Another fact:

D
(ρ)
d,n = Ω

≥
h · f1 · · · fn · gn

(
qn

µn,1 · · ·µn,d

)ρ

.

These are connected via
D

(ρ)
d,n = (q0 · · · qn)ρwdnρDd,n.

This can be shown algebraically, or combinatorially via a bijection between the sets of
partitions.
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Theorem

Theorem (D.-Jameson-Sellers-Wilson)

For d ≥ 1 and n ≥ 1,

Dd,n(q0, . . . , qn;w) =

(
n−1∏
k=0

Fd(Qkw
dk ,w)

(1− Qkwdk) · · · (1− Qkwdk+d)

)
1

1− Qnwdn
,

where Fd is as previously defined and Qk := q0q1 · · · qk .

Note that

∞∑
n=0

rd(n)q
n = lim

n→∞
Dd,n(q, · · · , q; q) =

∞∏
n=1

Fd(q
(n−1)(d+1)+1, q)

1− qn

∞∑
n=0

sd(n)q
n = lim

n→∞
Dd,n(q, · · · , q, 1) =

∞∏
n=1

Fd(q
n), 1

(1− qn)d+1
.
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For d ≥ 1 and n ≥ 1,

Dd,n(q0, . . . , qn;w) =

(
n−1∏
k=0

Fd(Qkw
dk ,w)

(1− Qkwdk) · · · (1− Qkwdk+d)

)
1

1− Qnwdn
,

where Fd is as previously defined and Qk := q0q1 · · · qk .

Note that

∞∑
n=0

rd(n)q
n = lim

n→∞
Dd,n(q, · · · , q; q) =

∞∏
n=1

Fd(q
(n−1)(d+1)+1, q)

1− qn

∞∑
n=0

sd(n)q
n = lim

n→∞
Dd,n(q, · · · , q, 1) =

∞∏
n=1

Fd(q
n), 1

(1− qn)d+1
.
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Proof outline

Here we sketch the proof, by:

1 treating the case d = 1, n = 1 (i.e., D1,1)

2 for n = 1 fixed, inductively proving the result for Dd,1

3 for arbitrary d , inducting on n starting from Dd,1
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The base case D1,1

We must show

D1,1(q0, q1;w) =
1

(1− q0)(1− q0w)(1− q0q1w)
.

But a 1-fold partition diamond of length 1 is classical partition with at most three
parts.

This was exactly the conclusion of the previous example.
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Induction on d

Now we want to show for d ≥ 1 that

Dd,1(q0, q1;w) =
Fd(q0,w)

(1− q0)(1− q0w) · · · (1− q0wd) · (1− q0q1wd)

Suppose the result holds for d − 1. Then

Dd,1(q0, q1;w) = Ω
≥

1

(1− λ1 · · ·λd q0) ·
(
1− λ−1

1 µ1w
)
· · · (1− λ−1

d µdw)

· 1

(1− µ−1
1 · · ·µ−1

d q1)

= Ω
≥

Dd−1,1(λdq0, µ
−1
d q1;w)

1− λ−1
d µdw

= Ω
≥

Fd−1(λdq0,w)

(1− λdq0) · · · (1− λdq0wd−1)(1− λd
µd

q0q1wd−1)(1− µd
λd

w)

=
1

1− q0q1wd
Ω
≥

Fd−1(λdq0,w)

(1− λdq0) · · · (1− λdq0wd−1)(1− λ−1
d w)

by eliminating µd .
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Induction on d (continued)

Set

Fd−1(q0,w) =
n∑

i=0

ai (w)qi
0.

Then

Dd,1(q0, q1;w) =

n∑
i=0

ai (w)qi
0

1− q0q1wd
Ω
≥

λi
d

(1− λdq0) · · · (1− λdq0wd−1)(1− λ−1
d w)

=

n∑
i=0

ai (w)qi
0

(1− q0) · · · (1− q0wd)(1− q0q1wd)

[
1− q0w

d

1− w
− w i+1(1− q0)

1− w

]
,

by applying our lemma. So we have shown the numerator is

n∑
i=0

ai (w)qi
0

[
1− q0w

d

1− w
− w i+1(1− q0)

1− w

]
,

which simplifies to Fd(q0,w).
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Induction on n (sketch)

We want to show

Dd,n+1(q0, . . . , qn;w) =
Fd(Qnw

dn,w)Dn(q0, · · · , qn;w)

(1− Qnwdn+1) · · · (1− Qnwdn+d)(1− Qn+1wdn+d)
.

Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds
for n, and note

Dd,n+1 == Ω
≥
h · f1 · · · fn+1 · gn+1

=Ω
≥
h · f1 · · · fn−1

1(
1− µn,1

λn,1
w
)
· · ·
(
1− µn,d

λn,d
w
) · 1(

1− λn+1,1···λn+1,d

µn,1···µn,d
qn
)

· 1(
1− µn+1,1

λn+1,1
w
)
· · ·
(
1− µn+1,d

λn+1,d
w
) · 1(

1− 1
µn+1,1···µn+1,d

qn+1

)

Use the case Dd,1 on the last d + 2 terms (in red), obtaining an expression

involving D
(ρ)
d,n.

Apply the relationship between Dd,n and D
(ρ)
d,n and simplify.
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Eulerian polynomials

The Eulerian polynomials Ad are defined for non-negative integers d by A0(q) = 1 and
for d ≥ 1,

Ad(q) = (1 + (d − 1)q)Ad−1(q) + q(1− q)A′
d−1(q).

One quickly verifies that Fd(q, 1) = Ad(q) for all d ≥ 1.

Euler (1768) showed

Ad(q)

(1− q)d+1
=

∞∑
j=0

(j + 1)dqj .

Thus

∞∑
n=0

sd(n) =
∞∏
n=1

Fd(q
n, 1)

(1− qn)d+1
=

∞∏
n=1

Ad(q
n)

(1− qn)d+1

=
∞∏
n=1

(
∞∑
j=0

(j + 1)dqjn

)
.
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n=0

sd(n) =
∞∏
n=1

Fd(q
n, 1)

(1− qn)d+1
=

∞∏
n=1

Ad(q
n)

(1− qn)d+1

=
∞∏
n=1

(
∞∑
j=0

(j + 1)dqjn

)
.
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Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for
sd(n), such as the infinite family

sd(2n + 1) ≡ 0 (mod 2d)

for all d ≥ 1 and all n ≥ 0.

Much more on congruences next week!
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Thank you! Questions?

Dalen Dockery d-Fold Partition Diamonds
Seminar in Partitions, q-Series, and Related Topics 30 November 2023
28 / 28


	Background and Motivation
	Partition Analysis
	The Main Theorem
	Concluding Remarks

