The Main Theorem

Concluding Remarks

d-Fold Partition Diamonds: Generating Functions and Partition Analysis

Dalen Dockery joint with Marie Jameson, James A. Sellers, and Samuel Wilson

Department of Mathematics University of Tennessee, Knoxville

Seminar in Partitions, *q*-Series, and Related Topics 30 November 2023

Partition Analysis

The Main Theorem

Concluding Remarks

Table of Contents

1 Background and Motivation

2 Partition Analysis

3 The Main Theorem

4 Concluding Remarks

The Main Theorem

Concluding Remarks

Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

$$a_0 \geq b_1 \geq a_1 \geq b_2 \geq a_2 \geq \cdots \geq 0$$

whose sum is n.

The Main Theorem

Concluding Remarks

Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

$$a_0 \geq b_1 \geq a_1 \geq b_2 \geq a_2 \geq \cdots \geq 0$$

whose sum is n.

The counting function for partitions of n is p(n), which has generating function

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}$$

The Main Theorem

Concluding Remarks

Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose parts satisfy

The Main Theorem

Concluding Remarks

Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose parts satisfy

They found that

$$\sum_{n=0}^{\infty} d(n)q^n = \prod_{n=1}^{\infty} \frac{1+q^{3n-1}}{1-q^n},$$

where d(n) counts the number of plane partition diamonds of n.

The Main Theorem

Concluding Remarks

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

 $a_0 \geq b_1 \geq a_1 \geq b_2 \geq \cdots \geq 0$

with $n = a_0 + a_1 + a_2 + \dots$,

The Main Theorem

Concluding Remarks

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

 $a_0 \geq b_1 \geq a_1 \geq b_2 \geq \cdots \geq 0$

with $n = a_0 + a_1 + a_2 + \ldots$, and Schmidt type plane partition diamonds are defined analogously.

The Main Theorem

Concluding Remarks

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$a_0 \geq b_1 \geq a_1 \geq b_2 \geq \cdots \geq 0$$

with $n = a_0 + a_1 + a_2 + ...$, and Schmidt type plane partition diamonds are defined analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

ć

$$\prod_{n=1}^{\infty} \frac{1}{(1-q^n)^2}.$$

The Main Theorem

Concluding Remarks

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$a_0 \geq b_1 \geq a_1 \geq b_2 \geq \cdots \geq 0$$

with $n = a_0 + a_1 + a_2 + \ldots$, and Schmidt type plane partition diamonds are defined analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

$$\prod_{n=1}^{\infty}\frac{1}{(1-q^n)^2}.$$

Theorem (Andrews-Paule-Riese 2001)

The generating function for Schmidt type plane partition diamonds is

$$\prod_{n=1}^{\infty}\frac{1+q^n}{(1-q^n)^3}.$$

Partition Analysis

The Main Theorem

Concluding Remarks

What if we add more nodes?

classical partitions:

Partition Analysis

The Main Theorem

Concluding Remarks

What if we add more nodes?

classical partitions:

plane partition diamonds:

Partition Analysis

The Main Theorem

Concluding Remarks

What if we add more nodes?

classical partitions:

plane partition diamonds:

d-fold partition diamonds:

Dalen Dockery

The Main Theorem

Concluding Remarks

d-Fold partition diamonds

Definition (*d*-fold partition diamonds)

A *d*-fold partition diamond of n is a partition of n whose parts satisfy

The Main Theorem

Concluding Remarks

d-Fold partition diamonds

Definition (*d*-fold partition diamonds)

A *d*-fold partition diamond of n is a partition of n whose parts satisfy

Schmidt type *d*-fold partition diamonds are defined in the natural way.

The Main Theorem

Concluding Remarks

d-Fold partition diamonds

Definition (*d*-fold partition diamonds)

A *d*-fold partition diamond of n is a partition of n whose parts satisfy

Schmidt type *d*-fold partition diamonds are defined in the natural way. We let $r_d(n)$ and $s_d(n)$ be the counting functions for *d*-fold partition diamonds of *n* and their Schmidt type counterpart, respectively.

Results

Partition Analysis

The Main Theorem

Concluding Remarks

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} \frac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n}$$

and

$$\sum_{n=0}^{\infty} s_d(n)q^n = \prod_{n=1}^{\infty} \frac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Results

Partition Analysis

The Main Theorem

Concluding Remarks

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$\sum_{n=0}^{\infty} r_d(n)q^n = \prod_{n=1}^{\infty} \frac{F_d(q^{(n-1)(d+1)+1},q)}{1-q^n}$$

and

$$\sum_{n=0}^{\infty} s_d(n)q^n = \prod_{n=1}^{\infty} \frac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Here $F_d(q_0, w)$ are polynomials defined recursively by $F_1(q_0, w) \coloneqq 1$ and

$$egin{aligned} \mathsf{F}_d(q_0,w) &= rac{(1-q_0w^d)\mathsf{F}_{d-1}(q_0,w) - w(1-q_0)\mathsf{F}_{d-1}(q_0w,w)}{1-w}. \end{aligned}$$

Results

Partition Analysis

The Main Theorem

Concluding Remarks

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$\sum_{n=0}^{\infty} r_d(n)q^n = \prod_{n=1}^{\infty} \frac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n}$$

and

$$\sum_{n=0}^{\infty} s_d(n)q^n = \prod_{n=1}^{\infty} \frac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Here $F_d(q_0, w)$ are polynomials defined recursively by $F_1(q_0, w) \coloneqq 1$ and

$$egin{aligned} \mathsf{F}_d(q_0,w) &= rac{(1-q_0w^d)\mathsf{F}_{d-1}(q_0,w) - w(1-q_0)\mathsf{F}_{d-1}(q_0w,w)}{1-w}. \end{aligned}$$

The proof relies on MacMahon's partition analysis.

The Main Theorem

Concluding Remarks

Proposition (D.-Jameson-Sellers-Wilson)

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n} \ \sum_{n=0}^{\infty} s_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Note that

$$egin{aligned} &F_1(q_0,w)=1,\ &F_2(q_0,w)=1+q_0w. \end{aligned}$$

The Main Theorem

Concluding Remarks

Proposition (D.-Jameson-Sellers-Wilson)

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n} \ \sum_{n=0}^{\infty} s_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Note that

$$F_1(q_0, w) = 1,$$

 $F_2(q_0, w) = 1 + q_0 w.$

$$\sum_{n=0}^{\infty} p(n)q^n = \sum_{n=0}^{\infty} r_1(n)q^n$$

The Main Theorem

Concluding Remarks

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n} \ \sum_{n=0}^{\infty} s_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Note that

$$egin{aligned} &F_1(q_0,w)=1,\ &F_2(q_0,w)=1+q_0w. \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \sum_{n=0}^{\infty} r_1(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}$$

The Main Theorem

Concluding Remarks

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n} \ \sum_{n=0}^{\infty} s_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Note that

$$egin{aligned} &F_1(q_0,w)=1,\ &F_2(q_0,w)=1+q_0w. \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \sum_{n=0}^{\infty} r_1(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}$$

 $\sum_{n=0}^{\infty} s_2(n)q^n$

The Main Theorem

Concluding Remarks

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$\sum_{n=0}^{\infty} r_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n} \ \sum_{n=0}^{\infty} s_d(n) q^n = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}}.$$

Note that

$$egin{aligned} &F_1(q_0,w)=1,\ &F_2(q_0,w)=1+q_0w. \end{aligned}$$

$$\sum_{n=0}^{\infty} p(n)q^n = \sum_{n=0}^{\infty} r_1(n)q^n = \prod_{n=1}^{\infty} rac{1}{1-q^n} \ \sum_{n=0}^{\infty} s_2(n)q^n = \prod_{n=1}^{\infty} rac{1+q^n}{(1-q^n)^3}.$$

Partition Analysis

The Main Theorem

Concluding Remarks

Table of Contents

Background and Motivation

2 Partition Analysis

3 The Main Theorem

4 Concluding Remarks

The Main Theorem

Concluding Remarks

The Ω_{\geq} operator

Definition

The operator Ω_{\geq} is defined by

$$\Omega \geq \sum_{s_1=-\infty}^{\infty} \cdots \sum_{s_r=-\infty}^{\infty} A_{s_1,\cdots,s_r} \lambda_1^{s_1} \cdots \lambda_r^{s_r} \coloneqq \sum_{s_1=0}^{\infty} \cdots \sum_{s_r=0}^{\infty} A_{s_1,\dots,s_r},$$

where the domain of the $A_{s_1,...,s_r}$ is the field of rational functions over \mathbb{C} in several complex variables and the λ_i are restricted to a neighborhood of the circle $|\lambda_i| = 1$. In addition, the $A_{s_1,...,s_r}$ are required to be such that any of the series involved is absolutely convergent within the domain of the definition of $A_{s_1,...,s_r}$.

The $\Omega_{>}$ operator

Partition Analysis

The Main Theorem

Concluding Remarks

Definition

The operator $\Omega_{>}$ is defined by

$$\Omega \geq \sum_{s_1=-\infty}^{\infty} \cdots \sum_{s_r=-\infty}^{\infty} A_{s_1,\cdots,s_r} \lambda_1^{s_1} \cdots \lambda_r^{s_r} \coloneqq \sum_{s_1=0}^{\infty} \cdots \sum_{s_r=0}^{\infty} A_{s_1,\dots,s_r},$$

where the domain of the $A_{s_1,...,s_r}$ is the field of rational functions over \mathbb{C} in several complex variables and the λ_i are restricted to a neighborhood of the circle $|\lambda_i| = 1$. In addition, the $A_{s_1,...,s_r}$ are required to be such that any of the series involved is absolutely convergent within the domain of the definition of $A_{s_1,...,s_r}$.

Elimination formulae make Ω_{\geq} a very powerful tool in computing generating functions.

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

() find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- apply appropriate elimination formulae;

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- apply appropriate elimination formulae;
- Substitute q for variables corresponding to summands (and 1 for the rest).

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- 2 apply appropriate elimination formulae;
- **§** substitute *q* for variables corresponding to summands (and 1 for the rest).

We use q_i to keep track of the "links" (the a_i 's) and w to keep track of the "inner" nodes (the $b_{j,k}$'s).

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- 2 apply appropriate elimination formulae;
- **§** substitute *q* for variables corresponding to summands (and 1 for the rest).

We use q_i to keep track of the "links" (the a_i 's) and w to keep track of the "inner" nodes (the $b_{j,k}$'s).

E.g., to find the generating function for classical partitions with at most three parts:

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- 2 apply appropriate elimination formulae;
- **§** substitute *q* for variables corresponding to summands (and 1 for the rest).

We use q_i to keep track of the "links" (the a_i 's) and w to keep track of the "inner" nodes (the $b_{j,k}$'s).

E.g., to find the generating function for classical partitions with at most three parts:

$$\stackrel{a_0}{\longrightarrow} \stackrel{\lambda_1}{\longrightarrow} \stackrel{b_1}{\longrightarrow} \stackrel{\mu_1}{\longrightarrow} \stackrel{a_1}{\longrightarrow} \stackrel{a_1}{\longrightarrow} \stackrel{a_2}{\longrightarrow} \stackrel{a_3}{\longrightarrow} \stackrel{a_4}{\longrightarrow} \stackrel{a_4}{\longrightarrow} \stackrel{a_5}{\longrightarrow} \stackrel{a_6}{\longrightarrow} \stackrel{a$$

Start with the crude form

$$\Omega \sum_{a_0,a_1,b_1 \ge 0} \lambda_1^{b_1 - a_0} \mu_1^{a_1 - b_1} q_0^{a_0} w^{b_1} q_1^{a_1} =$$

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- apply appropriate elimination formulae;
- **③** substitute *q* for variables corresponding to summands (and 1 for the rest).

We use q_i to keep track of the "links" (the a_i 's) and w to keep track of the "inner" nodes (the $b_{j,k}$'s).

E.g., to find the generating function for classical partitions with at most three parts:

$$\overset{a_0}{\longrightarrow} \overset{\lambda_1}{\longrightarrow} \overset{b_1}{\longrightarrow} \overset{\mu_1}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_1}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_2}{\longrightarrow} \overset{a_3}{\longrightarrow} \overset{a_4}{\longrightarrow} \overset{a_4}{\longrightarrow} \overset{a_4}{\longrightarrow} \overset{a_4}{\longrightarrow} \overset{a_5}{\longrightarrow} \overset{a_6}{\longrightarrow} \overset{a$$

Start with the crude form

$$\Omega \sum_{\substack{a_0,a_1,b_1 \ge 0}} \lambda_1^{b_1 - a_0} \mu_1^{a_1 - b_1} q_0^{a_0} w^{b_1} q_1^{a_1} = \Omega \sum_{\substack{a_0,a_1,b_1 \ge 0}} (\lambda_1 q_0)^{a_0} \left(\frac{\mu_1}{\lambda_1} w\right)^{b_1} \left(\frac{q_1}{\mu_1}\right)^{a_1}$$

The Main Theorem

Concluding Remarks

An example

To use partition analysis to obtain a generating function, one must

- () find the crude form of the generating function, its Ω_{\geq} expression with variables in place of each part;
- 2 apply appropriate elimination formulae;
- **③** substitute *q* for variables corresponding to summands (and 1 for the rest).

We use q_i to keep track of the "links" (the a_i 's) and w to keep track of the "inner" nodes (the $b_{j,k}$'s).

E.g., to find the generating function for classical partitions with at most three parts:

Start with the crude form

$$egin{aligned} & \Omega \ & \geq \ & \sum_{a_0,a_1,b_1\geq 0} \lambda_1^{b_1-a_0} \mu_1^{a_1-b_1} q_0^{a_0} \, w^{b_1} q_1^{a_1} = \ & \Omega \ & \geq \ & \sum_{a_0,a_1,b_1\geq 0} (\lambda_1 q_0)^{a_0} \left(rac{\mu_1}{\lambda_1} w
ight)^{b_1} \left(rac{q_1}{\mu_1}
ight)^{a_1} \ & = \ & \Omega \ & rac{1}{\geq} rac{1}{(1-\lambda_1 q_0)(1-\lambda_1^{-1} \mu_1 w)(1-\mu_1^{-1} q_1)}. \end{aligned}$$

The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .
The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .

$$\begin{split} \Omega & \frac{1}{\geq} \frac{1}{(1 - \lambda x)(1 - \lambda^{-1}y)} = \frac{1}{(1 - x)(1 - xy)} \end{split} \tag{1} \\ \Omega & \frac{1}{\geq} \frac{1}{(1 - \lambda x_1)(1 - \lambda x_2)(1 - \lambda^{-1}y)} = \frac{1 - x_1 x_2 y}{(1 - x_1)(1 - x_2)(1 - x_1y)(1 - x_2y)}. \end{split}$$

t

Partition Analysis

The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .

$$\begin{split} & \bigcap_{\geq} \frac{1}{(1-\lambda x)(1-\lambda^{-1}y)} = \frac{1}{(1-x)(1-xy)} \\ & \\ & \Omega \frac{1}{\geq (1-\lambda x_1)(1-\lambda x_2)(1-\lambda^{-1}y)} = \frac{1-x_1x_2y}{(1-x_1)(1-x_2)(1-x_1y)(1-x_2y)}. \end{split}$$
(1)
Using (1),

$$\Omega \stackrel{\displaystyle \Omega}{\geq} rac{1}{(1-\lambda_1 q_0)(1-\lambda_1^{-1}\mu_1w)(1-\mu_1^{-1}q_1)}$$

ι

Partition Analysis

The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .

$$\begin{split} \Omega & \frac{1}{\frac{2}{2} (1 - \lambda x)(1 - \lambda^{-1}y)} = \frac{1}{(1 - x)(1 - xy)} \end{split} \tag{1} \\ \Omega & \frac{1}{\frac{1}{2} (1 - \lambda x_1)(1 - \lambda x_2)(1 - \lambda^{-1}y)} = \frac{1 - x_1 x_2 y}{(1 - x_1)(1 - x_2)(1 - x_1y)(1 - x_2y)}. \end{split}$$
Using (1),

$$\Omega \geq \frac{1}{(1-\lambda_1 q_0)(1-\lambda_1^{-1}\mu_1 w)(1-\mu_1^{-1}q_1)} = \Omega \geq \frac{1}{(1-q_0)(1-\mu_1 q_0 w)(1-\mu_1^{-1}q_1)}$$

t

Partition Analysis

The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .

$$\begin{split} & \bigcap_{\geq} \frac{1}{(1-\lambda x)(1-\lambda^{-1}y)} = \frac{1}{(1-x)(1-xy)} \\ & \Omega \\ & \sum_{\geq} \frac{1}{(1-\lambda x_1)(1-\lambda x_2)(1-\lambda^{-1}y)} = \frac{1-x_1x_2y}{(1-x_1)(1-x_2)(1-x_1y)(1-x_2y)}. \end{split}$$
(1)
Using (1),

$$egin{aligned} \Omega & rac{1}{(1-\lambda_1 q_0)(1-\lambda_1^{-1} \mu_1 w)(1-\mu_1^{-1} q_1)} &= \Omega & rac{1}{(1-q_0)(1-\mu_1 q_0 w)(1-\mu_1^{-1} q_1)} \ &= rac{1}{(1-q_0)(1-q_0 w)(1-q_0 q_1 w)}. \end{aligned}$$

ι

Partition Analysis

The Main Theorem

Concluding Remarks

Elimination identities

Now we need to eliminate λ_1 and μ_1 .

MacMahon (1906) provides several elimination identities, including

$$\begin{split} & \bigcap_{\geq} \frac{1}{(1-\lambda x)(1-\lambda^{-1}y)} = \frac{1}{(1-x)(1-xy)} \\ & \Omega \\ & \sum_{\geq} \frac{1}{(1-\lambda x_1)(1-\lambda x_2)(1-\lambda^{-1}y)} = \frac{1-x_1x_2y}{(1-x_1)(1-x_2)(1-x_1y)(1-x_2y)}. \end{split}$$
(1)
Using (1),

$$egin{aligned} \Omega & rac{1}{(1-\lambda_1 q_0)(1-\lambda_1^{-1} \mu_1 w)(1-\mu_1^{-1} q_1)} &= \Omega & rac{1}{\geq} rac{1}{(1-q_0)(1-\mu_1 q_0 w)(1-\mu_1^{-1} q_1)} & \ &= rac{1}{(1-q_0)(1-q_0 w)(1-q_0 q_1 w)}. \end{aligned}$$

Letting $q_0 = q_1 = w = q$, the generating function is

$$rac{1}{(1-q)(1-q^2)(1-q^3)}$$
 .

The Main Theorem

Concluding Remarks

Extending MacMahon's identities

We will need the following generalization of the previous identities.

Lemma (D.-Jameson-Sellers-Wilson)

For $d \ge 1$ and $j \in \mathbb{Z}$, we have

$$\begin{split} \Omega & \frac{\lambda^j}{(1-\lambda x_1)\cdots(1-\lambda x_d)(1-\lambda^{-1}y)} = \frac{1}{(1-y)} \left[\frac{1}{(1-x_1)\cdots(1-x_d)} \\ & -\frac{y^{j+1}}{(1-x_1y)\cdots(1-x_dy)} \right]. \end{split}$$

The Main Theorem

Concluding Remarks

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$\begin{split} \Omega & \frac{\lambda^{j}}{(1-\lambda x_{1})\cdots(1-\lambda x_{d})(1-\lambda^{-1}y)} = \frac{1}{(1-y)} \left[\frac{1}{(1-x_{1})\cdots(1-x_{d})} \\ & -\frac{y^{j+1}}{(1-x_{1}y)\cdots(1-x_{d}y)} \right]. \end{split}$$

Proof (sketch). We have

$$\Omega \geq \frac{\lambda^j}{(1-\lambda x_1)\cdots(1-\lambda x_d)(1-\lambda^{-1}y)} = \Omega \sum_{a_1,\dots,a_{d+1}\geq 0} \lambda^{j+a_1+\dots+a_d-a_{d+1}} x_1^{a_1}\cdots x_d^{a_d} y^{a_{d+1}}$$

The Main Theorem

Concluding Remarks

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$\begin{split} \Omega & \frac{\lambda^{j}}{(1-\lambda x_{1})\cdots(1-\lambda x_{d})(1-\lambda^{-1}y)} = \frac{1}{(1-y)} \left[\frac{1}{(1-x_{1})\cdots(1-x_{d})} \\ & -\frac{y^{j+1}}{(1-x_{1}y)\cdots(1-x_{d}y)} \right]. \end{split}$$

Proof (sketch). We have

$$\begin{split} \Omega & \underset{\geq}{\Omega} \frac{\lambda^{j}}{(1-\lambda x_{1})\cdots(1-\lambda x_{d})(1-\lambda^{-1}y)} = \underset{a_{1},\dots,a_{d+1}\geq 0}{\Omega} \sum_{a_{1},\dots,a_{d+1}\geq 0} \lambda^{j+a_{1}+\dots+a_{d}-a_{d+1}} x_{1}^{a_{1}}\cdots x_{d}^{a_{d}}y^{a_{d+1}} \\ & = \underset{\substack{\geq}{\Omega}}{\sum_{a_{1},\dots,a_{d}\geq 0 \\ 0 \leq k \leq a_{1}+\dots+a_{d}+j}} \lambda^{k} x_{1}^{a_{1}}\cdots x_{d}^{a_{d}}y^{a_{1}+\dots+a_{d}+j-k} \end{split}$$

The Main Theorem

Concluding Remarks

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$\begin{split} \Omega & \frac{\lambda^j}{(1-\lambda x_1)\cdots(1-\lambda x_d)(1-\lambda^{-1}y)} = \frac{1}{(1-y)} \left[\frac{1}{(1-x_1)\cdots(1-x_d)} \\ & -\frac{y^{j+1}}{(1-x_1y)\cdots(1-x_dy)} \right]. \end{split}$$

Proof (sketch). We have

$$\begin{split} \Omega & \frac{\lambda^j}{(1-\lambda x_1)\cdots(1-\lambda x_d)(1-\lambda^{-1}y)} = \Omega \sum_{\substack{a_1,\dots,a_{d+1}\geq 0\\ 0\leq k\leq a_1+\dots+a_d+j}} \lambda^{j+a_1+\dots+a_d-a_{d+1}} x_1^{a_1}\cdots x_d^{a_d} y^{a_{d+1}} \\ & = \Omega \sum_{\substack{a_1,\dots,a_d\geq 0\\ 0\leq k\leq a_1+\dots+a_d+j}} \lambda^k x_1^{a_1}\cdots x_d^{a_d} y^{a_1+\dots+a_d+j-k} \\ & = \sum_{\substack{a_1,\dots,a_d\geq 0\\ 0\leq k\leq a_1+\dots+a_d+j}} x_1^{a_1}\cdots x_d^{a_d} \sum_{k=0}^{a_1+\dots+a_d+j} y^k, \end{split}$$

The Main Theorem

Concluding Remarks

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$\begin{split} \Omega & \frac{\lambda^j}{(1-\lambda x_1)\cdots(1-\lambda x_d)(1-\lambda^{-1}y)} = \frac{1}{(1-y)} \left[\frac{1}{(1-x_1)\cdots(1-x_d)} \\ & -\frac{y^{j+1}}{(1-x_1y)\cdots(1-x_dy)} \right]. \end{split}$$

Proof (sketch). We have

$$\begin{split} \Omega & \frac{\lambda^{j}}{(1-\lambda x_{1})\cdots(1-\lambda x_{d})(1-\lambda^{-1}y)} = \Omega \sum_{a_{1},\dots,a_{d+1}\geq 0} \lambda^{j+a_{1}+\dots+a_{d}-a_{d+1}} x_{1}^{a_{1}}\cdots x_{d}^{a_{d}} y^{a_{d+1}} \\ &= \Omega \sum_{\substack{\geq \\ 0 \leq k \leq a_{1}+\dots+a_{d}+j}} \lambda^{k} x_{1}^{a_{1}}\cdots x_{d}^{a_{d}} y^{a_{1}+\dots+a_{d}+j-k} \\ &= \sum_{a_{1},\dots,a_{d}\geq 0} x_{1}^{a_{1}}\cdots x_{d}^{a_{d}} \sum_{k=0}^{a_{1}+\dots+a_{d}+j} y^{k}, \end{split}$$

and the result follows from finite geometric series. \Box

Dalen Dockery

The Main Theorem

Concluding Remarks

Crude forms for *d*-fold partition diamonds

Set $D_{d,n} := D_{d,n}(q_0, q_1, \dots, q_n; w)$ to be the generating function for *d*-fold partition diamonds of fixed length *n*.

The Main Theorem

Concluding Remarks

Crude forms for *d*-fold partition diamonds

Set $D_{d,n} := D_{d,n}(q_0, q_1, \ldots, q_n; w)$ to be the generating function for *d*-fold partition diamonds of fixed length *n*. Label the edges on the left (resp. right) of the *j*th diamond $\lambda_{1,j}, \lambda_{2,j}, \ldots, \lambda_{d,j}$ (resp. $\mu_{1,j}, \mu_{2,j}, \ldots, \mu_{d,j}$).

The Main Theorem

Concluding Remarks

Crude forms for *d*-fold partition diamonds

Set $D_{d,n} := D_{d,n}(q_0, q_1, \ldots, q_n; w)$ to be the generating function for *d*-fold partition diamonds of fixed length *n*. Label the edges on the left (resp. right) of the *j*th diamond $\lambda_{1,j}, \lambda_{2,j}, \ldots, \lambda_{d,j}$ (resp. $\mu_{1,j}, \mu_{2,j}, \ldots, \mu_{d,j}$).

For $d, n \geq 1$ and $1 \leq k \leq n$, define

$$\begin{split} h &\coloneqq h_d \coloneqq \frac{1}{1 - \lambda_{1,1} \cdots \lambda_{1,d} q_0} \\ f_k &\coloneqq f_{k,d} \coloneqq \frac{1}{\left(1 - \frac{\mu_{k,1}}{\lambda_{k,1}} w\right) \cdots \left(1 - \frac{\mu_{k,d}}{\lambda_{k,d}} w\right) \cdot \left(1 - \frac{\lambda_{k+1,1} \cdots \lambda_{k+1,d}}{\mu_{k,1} \cdots \mu_{k,d}} q_{k+1}\right)} \\ g_n &\coloneqq g_{n,d} \coloneqq \frac{1 - \frac{\lambda_{n+1,1} \cdots \lambda_{n+1,d}}{\mu_{n,1} \cdots \mu_{n,d}} q_{n+1}}{1 - \frac{q_{n+1}}{\mu_{n,1} \cdots \mu_{n,d}}} \end{split}$$

The Main Theorem

Concluding Remarks

Crude forms for *d*-fold partition diamonds

Set $D_{d,n} := D_{d,n}(q_0, q_1, \ldots, q_n; w)$ to be the generating function for *d*-fold partition diamonds of fixed length *n*. Label the edges on the left (resp. right) of the *j*th diamond $\lambda_{1,j}, \lambda_{2,j}, \ldots, \lambda_{d,j}$ (resp. $\mu_{1,j}, \mu_{2,j}, \ldots, \mu_{d,j}$).

For $d, n \geq 1$ and $1 \leq k \leq n$, define

$$\begin{split} h &\coloneqq h_d \coloneqq \frac{1}{1 - \lambda_{1,1} \cdots \lambda_{1,d} q_0} \\ f_k &\coloneqq f_{k,d} \coloneqq \frac{1}{\left(1 - \frac{\mu_{k,1}}{\lambda_{k,1}} w\right) \cdots \left(1 - \frac{\mu_{k,d}}{\lambda_{k,d}} w\right) \cdot \left(1 - \frac{\lambda_{k+1,1} \cdots \lambda_{k+1,d}}{\mu_{k,1} \cdots \mu_{k,d}} q_{k+1}\right)} \\ g_n &\coloneqq g_{n,d} \coloneqq \frac{1 - \frac{\lambda_{n+1,1} \cdots \lambda_{n+1,d}}{\mu_{n,1} \cdots \mu_{n,d}} q_{n+1}}{1 - \frac{q_{n+1}}{\mu_{n,1} \cdots \mu_{n,d}}} \end{split}$$

Fact:

$$D_{d,n} = \underset{\geq}{\Omega} h \cdot f_1 \cdots f_n \cdot g_n.$$

The Main Theorem

Concluding Remarks

The crude forms (continued)

For $\rho \ge 0$ we will need $D_{d,n}^{(\rho)} := D_{d,n}^{(\rho)}(q_0, q_1, \cdots, q_n; w)$, which is defined to be the generating function for *d*-fold partition diamonds of fixed length *n*, with $a_n \ge \rho$.

The Main Theorem

Concluding Remarks

The crude forms (continued)

For $\rho \ge 0$ we will need $D_{d,n}^{(\rho)} := D_{d,n}^{(\rho)}(q_0, q_1, \cdots, q_n; w)$, which is defined to be the generating function for *d*-fold partition diamonds of fixed length *n*, with $a_n \ge \rho$.

Another fact:

$$D_{d,n}^{(\rho)} = \mathop{\Omega}_{\geq} h \cdot f_1 \cdots f_n \cdot g_n \left(\frac{q_n}{\mu_{n,1} \cdots \mu_{n,d}} \right)^{
ho}.$$

The Main Theorem

Concluding Remarks

The crude forms (continued)

For $\rho \ge 0$ we will need $D_{d,n}^{(\rho)} := D_{d,n}^{(\rho)}(q_0, q_1, \cdots, q_n; w)$, which is defined to be the generating function for *d*-fold partition diamonds of fixed length *n*, with $a_n \ge \rho$.

Another fact:

$$D_{d,n}^{(\rho)} = \underset{\geq}{\Omega} h \cdot f_1 \cdots f_n \cdot g_n \left(\frac{q_n}{\mu_{n,1} \cdots \mu_{n,d}} \right)^{\rho}.$$

These are connected via

$$D_{d,n}^{(\rho)} = (q_0 \cdots q_n)^{\rho} w^{dn\rho} D_{d,n}.$$

The Main Theorem

Concluding Remarks

The crude forms (continued)

For $\rho \ge 0$ we will need $D_{d,n}^{(\rho)} := D_{d,n}^{(\rho)}(q_0, q_1, \cdots, q_n; w)$, which is defined to be the generating function for *d*-fold partition diamonds of fixed length *n*, with $a_n \ge \rho$.

Another fact:

$$D_{d,n}^{(\rho)} = \underset{\geq}{\Omega} h \cdot f_1 \cdots f_n \cdot g_n \left(\frac{q_n}{\mu_{n,1} \cdots \mu_{n,d}} \right)^{\rho}.$$

These are connected via

$$D_{d,n}^{(\rho)} = (q_0 \cdots q_n)^{\rho} w^{dn\rho} D_{d,n}.$$

This can be shown algebraically, or combinatorially via a bijection between the sets of partitions.

The Main Theorem

Concluding Remarks

Table of Contents

Background and Motivation

2 Partition Analysis

4 Concluding Remarks

Theorem

Partition Analysis

The Main Theorem ○●○○○○○

Concluding Remarks

Theorem (D.-Jameson-Sellers-Wilson)

For $d \ge 1$ and $n \ge 1$,

$$\mathcal{D}_{d,n}(q_0,\ldots,q_n;w) = \left(\prod_{k=0}^{n-1}rac{F_d(Q_kw^{dk},w)}{(1-Q_kw^{dk})\cdots(1-Q_kw^{dk+d})}
ight)rac{1}{1-Q_nw^{dn}}$$

where F_d is as previously defined and $Q_k \coloneqq q_0 q_1 \cdots q_k$.

Theorem

Partition Analysis

The Main Theorem ○●○○○○○

Concluding Remarks

Theorem (D.-Jameson-Sellers-Wilson)

For $d \ge 1$ and $n \ge 1$,

$$D_{d,n}(q_0,\ldots,q_n;w) = \left(\prod_{k=0}^{n-1}rac{F_d(Q_kw^{dk},w)}{(1-Q_kw^{dk})\cdots(1-Q_kw^{dk+d})}
ight)rac{1}{1-Q_nw^{dn}},$$

where F_d is as previously defined and $Q_k := q_0 q_1 \cdots q_k$.

Note that

$$\sum_{n=0}^{\infty} r_d(n)q^n = \lim_{n \to \infty} D_{d,n}(q, \cdots, q; q) = \prod_{n=1}^{\infty} \frac{F_d(q^{(n-1)(d+1)+1}, q)}{1-q^n}$$
$$\sum_{n=0}^{\infty} s_d(n)q^n = \lim_{n \to \infty} D_{d,n}(q, \cdots, q, 1) = \prod_{n=1}^{\infty} \frac{F_d(q^n), 1}{(1-q^n)^{d+1}}.$$

The Main Theorem

Concluding Remarks

Here we sketch the proof, by:

1 treating the case
$$d = 1, n = 1$$
 (i.e., $D_{1,1}$)

The Main Theorem

Concluding Remarks

Here we sketch the proof, by:

- 1 treating the case d = 1, n = 1 (i.e., $D_{1,1}$)
- 2 for n = 1 fixed, inductively proving the result for $D_{d,1}$

The Main Theorem

Concluding Remarks 0000

Here we sketch the proof, by:

- 1 treating the case d = 1, n = 1 (i.e., $D_{1,1}$)
- 2) for n = 1 fixed, inductively proving the result for $D_{d,1}$
- **(3)** for arbitrary d, inducting on n starting from $D_{d,1}$

Background and Motivation

Partition Analysis

The Main Theorem

Concluding Remarks

The base case $D_{1,1}$

• We must show

$$D_{1,1}(q_0,q_1;w) = rac{1}{(1-q_0)(1-q_0w)(1-q_0q_1w)}.$$

The Main Theorem

Concluding Remarks

The base case $D_{1,1}$

We must show

$$D_{1,1}(q_0,q_1;w) = rac{1}{(1-q_0)(1-q_0w)(1-q_0q_1w)}.$$

- But a 1-fold partition diamond of length 1 is classical partition with at most three parts.
- This was exactly the conclusion of the previous example.

The Main Theorem 0000●00

Concluding Remarks

Induction on d

• Now we want to show for $d \ge 1$ that

$$D_{d,1}(q_0,q_1;w) = rac{F_d(q_0,w)}{(1-q_0w)\cdots(1-q_0w^d)\cdot(1-q_0q_1w^d)}$$

The Main Theorem 0000●00

Concluding Remarks

Induction on d

• Now we want to show for $d \ge 1$ that

$$D_{d,1}(q_0,q_1;w) = rac{F_d(q_0,w)}{(1-q_0w)\cdots(1-q_0w^d)\cdot(1-q_0q_1w^d)}$$

• Suppose the result holds for d - 1. Then

$$egin{aligned} D_{d,1}(q_0,q_1;w) &= \Omega \, rac{1}{\geq \, (1-\lambda_1\cdots\lambda_d\,q_0)\cdot \left(1-\lambda_1^{-1}\mu_1w
ight)\cdots \left(1-\lambda_d^{-1}\mu_dw
ight)} \ &\cdot rac{1}{\left(1-\mu_1^{-1}\cdots\mu_d^{-1}q_1
ight)} \end{aligned}$$

The Main Theorem 0000●00

Concluding Remarks

Induction on d

• Now we want to show for $d \ge 1$ that

$$D_{d,1}(q_0,q_1;w) = rac{F_d(q_0,w)}{(1-q_0w)\cdots(1-q_0w^d)\cdot(1-q_0q_1w^d)}$$

• Suppose the result holds for d - 1. Then

$$egin{aligned} D_{d,1}(q_0,q_1;w) &= \Omega & rac{1}{2} \ rac{1}{(1-\lambda_1\cdots\lambda_d \ q_0)\cdot ig(1-\lambda_1^{-1}\mu_1wig)\cdotsig(1-\lambda_d^{-1}\mu_dwig)} \ &\cdot rac{1}{(1-\mu_1^{-1}\cdots\mu_d^{-1}q_1)} \ &= \Omega & rac{D_{d-1,1}(\lambda_d q_0,\mu_d^{-1}q_1;w)}{1-\lambda_d^{-1}\mu_dw} \end{aligned}$$

The Main Theorem 0000●00

Concluding Remarks

Induction on d

• Now we want to show for $d \ge 1$ that

$$D_{d,1}(q_0,q_1;w) = rac{F_d(q_0,w)}{(1-q_0w)\cdots(1-q_0w^d)\cdot(1-q_0q_1w^d)}$$

• Suppose the result holds for d - 1. Then

$$\begin{split} D_{d,1}(q_0, q_1; w) &= \Omega \frac{1}{\geq (1 - \lambda_1 \cdots \lambda_d \, q_0) \cdot (1 - \lambda_1^{-1} \mu_1 w) \cdots (1 - \lambda_d^{-1} \mu_d w)} \\ &\cdot \frac{1}{(1 - \mu_1^{-1} \cdots \mu_d^{-1} q_1)} \\ &= \Omega \frac{D_{d-1,1}(\lambda_d q_0, \mu_d^{-1} q_1; w)}{1 - \lambda_d^{-1} \mu_d w} \\ &= \Omega \frac{F_{d-1}(\lambda_d q_0, w)}{(1 - \lambda_d q_0) \cdots (1 - \lambda_d q_0 w^{d-1})(1 - \frac{\lambda_d}{\mu_d} q_0 q_1 w^{d-1})(1 - \frac{\mu_d}{\lambda_d} w)} \end{split}$$

The Main Theorem

Concluding Remarks

Induction on d

• Now we want to show for $d \ge 1$ that

$$D_{d,1}(q_0,q_1;w) = rac{F_d(q_0,w)}{(1-q_0w)\cdots(1-q_0w^d)\cdot(1-q_0q_1w^d)}$$

• Suppose the result holds for d-1. Then

$$\begin{split} D_{d,1}(q_0, q_1; w) &= \Omega \frac{1}{\geq (1 - \lambda_1 \cdots \lambda_d q_0) \cdot (1 - \lambda_1^{-1} \mu_1 w) \cdots (1 - \lambda_d^{-1} \mu_d w)} \\ &\cdot \frac{1}{(1 - \mu_1^{-1} \cdots \mu_d^{-1} q_1)} \\ &= \Omega \frac{D_{d-1,1}(\lambda_d q_0, \mu_d^{-1} q_1; w)}{1 - \lambda_d^{-1} \mu_d w} \\ &= \Omega \frac{F_{d-1}(\lambda_d q_0, w)}{(1 - \lambda_d q_0) \cdots (1 - \lambda_d q_0 w^{d-1})(1 - \frac{\lambda_d}{\mu_d} q_0 q_1 w^{d-1})(1 - \frac{\mu_d}{\lambda_d} w)} \\ &= \frac{1}{1 - q_0 q_1 w^d} \Omega \frac{F_{d-1}(\lambda_d q_0, w)}{(1 - \lambda_d q_0) \cdots (1 - \lambda_d q_0 w^{d-1})(1 - \lambda_d^{-1} w)} \end{split}$$

by eliminating μ_d .

Dalen Dockery

Background and Motivation

Partition Analysis

The Main Theorem

Concluding Remarks

Induction on *d* (continued)

Set

$$F_{d-1}(q_0, w) = \sum_{i=0}^n a_i(w)q_0^i.$$

The Main Theorem 00000●0

Concluding Remarks

Induction on *d* (continued)

Set

$$F_{d-1}(q_0, w) = \sum_{i=0}^n a_i(w) q_0^i.$$

Then

$$D_{d,1}(q_0,q_1;w) = rac{\sum\limits_{i=0}^n a_i(w) q_0^i}{1-q_0 q_1 w^d} \mathop{\Omega}_{\geq} rac{\lambda_d^i}{(1-\lambda_d q_0) \cdots (1-\lambda_d q_0 w^{d-1})(1-\lambda_d^{-1} w)}$$

The Main Theorem 00000●0

Concluding Remarks

Induction on *d* (continued)

Set

$$F_{d-1}(q_0, w) = \sum_{i=0}^n a_i(w) q_0^i.$$

Then

$$egin{aligned} D_{d,1}(q_0,q_1;w) &= rac{\sum\limits_{i=0}^n a_i(w) q_0^i}{1-q_0 q_1 w^d} \mathop{\Omega}_{\geq} rac{\lambda_d^i}{(1-\lambda_d q_0) \cdots (1-\lambda_d q_0 w^{d-1})(1-\lambda_d^{-1}w)} \ &= rac{\sum\limits_{i=0}^n a_i(w) q_0^i}{(1-q_0) \cdots (1-q_0 w^d)(1-q_0 q_1 w^d)} \left[rac{1-q_0 w^d}{1-w} - rac{w^{i+1}(1-q_0)}{1-w}
ight], \end{aligned}$$

by applying our lemma.

The Main Theorem

Concluding Remarks

Induction on *d* (continued)

Set

$$F_{d-1}(q_0, w) = \sum_{i=0}^n a_i(w) q_0^i.$$

Then

$$egin{aligned} D_{d,1}(q_0,q_1;w) &= rac{\sum\limits_{i=0}^n a_i(w) q_0^i}{1-q_0 q_1 w^d} \, \Omega \, rac{\lambda_d^i}{(1-\lambda_d q_0) \cdots (1-\lambda_d q_0 w^{d-1})(1-\lambda_d^{-1} w)} \ &= rac{\sum\limits_{i=0}^n a_i(w) q_0^i}{(1-q_0) \cdots (1-q_0 w^d)(1-q_0 q_1 w^d)} \left[rac{1-q_0 w^d}{1-w} - rac{w^{i+1}(1-q_0)}{1-w}
ight], \end{aligned}$$

by applying our lemma. So we have shown the numerator is

$$\sum_{i=0}^n a_i(w) q_0^i \left[rac{1-q_0 w^d}{1-w} - rac{w^{i+1}(1-q_0)}{1-w}
ight],$$

which simplifies to $F_d(q_0, w)$.

The Main Theorem 000000●

Concluding Remarks

Induction on *n* (sketch)

• We want to show

$$D_{d,n+1}(q_0,\ldots,q_n;w) = \frac{F_d(Q_nw^{dn},w)D_n(q_0,\cdots,q_n;w)}{(1-Q_nw^{dn+1})\cdots(1-Q_nw^{dn+d})(1-Q_{n+1}w^{dn+d})}.$$
The Main Theorem 000000●

Concluding Remarks

Induction on *n* (sketch)

• We want to show

$$D_{d,n+1}(q_0,\ldots,q_n;w) = \frac{F_d(Q_nw^{dn},w)D_n(q_0,\cdots,q_n;w)}{(1-Q_nw^{dn+1})\cdots(1-Q_nw^{dn+d})(1-Q_{n+1}w^{dn+d})}.$$

• Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for *n*, and note

$$D_{d,n+1} == \underset{\geq}{\Omega} h \cdot f_1 \cdots f_{n+1} \cdot g_{n+1}$$

The Main Theorem 000000●

Concluding Remarks

Induction on *n* (sketch)

• We want to show

$$D_{d,n+1}(q_0,\ldots,q_n;w) = \frac{F_d(Q_nw^{dn},w)D_n(q_0,\cdots,q_n;w)}{(1-Q_nw^{dn+1})\cdots(1-Q_nw^{dn+d})(1-Q_{n+1}w^{dn+d})}.$$

• Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for *n*, and note

$$\begin{split} D_{d,n+1} &== \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n+1} \cdot g_{n+1} \\ &= \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n-1} \frac{1}{\left(1 - \frac{\mu_{n,1}}{\lambda_{n,1}} w\right) \cdots \left(1 - \frac{\mu_{n,d}}{\lambda_{n,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{\lambda_{n+1,1} \cdots \lambda_{n+1,d}}{\mu_{n,1} \cdots \mu_{n,d}} q_n\right)} \\ &\cdot \frac{1}{\left(1 - \frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots \left(1 - \frac{\mu_{n+1,d}}{\lambda_{n+1,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{1}{\mu_{n+1,1} \cdots \mu_{n+1,d}} q_{n+1}\right)} \end{split}$$

The Main Theorem

Concluding Remarks

Induction on *n* (sketch)

• We want to show

$$D_{d,n+1}(q_0,\ldots,q_n;w) = \frac{F_d(Q_n w^{dn},w)D_n(q_0,\cdots,q_n;w)}{(1-Q_n w^{dn+1})\cdots(1-Q_n w^{dn+d})(1-Q_{n+1} w^{dn+d})}.$$

• Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for *n*, and note

$$\begin{split} D_{d,n+1} &== \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n+1} \cdot g_{n+1} \\ &= \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n-1} \frac{1}{\left(1 - \frac{\mu_{n,1}}{\lambda_{n,1}} w\right) \cdots \left(1 - \frac{\mu_{n,d}}{\lambda_{n,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{\lambda_{n+1,1} \cdots \lambda_{n+1,d}}{\mu_{n,1} \cdots \mu_{n,d}} q_n\right)} \\ &\cdot \frac{1}{\left(1 - \frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots \left(1 - \frac{\mu_{n+1,d}}{\lambda_{n+1,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{1}{\mu_{n+1,1} \cdots \mu_{n+1,d}} q_{n+1}\right)} \end{split}$$

Use the case D_{d,1} on the last d + 2 terms (in red), obtaining an expression involving D^(ρ)_{d,n}.

The Main Theorem

Concluding Remarks

Induction on *n* (sketch)

• We want to show

$$D_{d,n+1}(q_0,\ldots,q_n;w) = \frac{F_d(Q_n w^{dn},w)D_n(q_0,\cdots,q_n;w)}{(1-Q_n w^{dn+1})\cdots(1-Q_n w^{dn+d})(1-Q_{n+1} w^{dn+d})}.$$

• Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for *n*, and note

$$\begin{split} D_{d,n+1} &== \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n+1} \cdot g_{n+1} \\ &= \underbrace{\Omega}_{\geq} h \cdot f_1 \cdots f_{n-1} \frac{1}{\left(1 - \frac{\mu_{n,1}}{\lambda_{n,1}} w\right) \cdots \left(1 - \frac{\mu_{n,d}}{\lambda_{n,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{\lambda_{n+1,1} \cdots \lambda_{n+1,d}}{\mu_{n,1} \cdots \mu_{n,d}} q_n\right)} \\ &\cdot \frac{1}{\left(1 - \frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots \left(1 - \frac{\mu_{n+1,d}}{\lambda_{n+1,d}} w\right)} \cdot \frac{1}{\left(1 - \frac{1}{\mu_{n+1,1} \cdots \mu_{n+1,d}} q_{n+1}\right)} \end{split}$$

- Use the case D_{d,1} on the last d + 2 terms (in red), obtaining an expression involving D^(ρ)_{d,n}.
- Apply the relationship between $D_{d,n}$ and $D_{d,n}^{(\rho)}$ and simplify.

Dalen Dockery

The Main Theorem

Concluding Remarks ●000

Table of Contents

Background and Motivation

2 Partition Analysis

3 The Main Theorem

4 Concluding Remarks

The Main Theorem

Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_d are defined for non-negative integers d by $A_0(q) = 1$ and for $d \ge 1$,

$$A_d(q) = (1 + (d-1)q)A_{d-1}(q) + q(1-q)A_{d-1}'(q).$$

The Main Theorem

Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_d are defined for non-negative integers d by $A_0(q) = 1$ and for $d \ge 1$,

$$A_d(q) = (1 + (d-1)q)A_{d-1}(q) + q(1-q)A_{d-1}'(q).$$

One quickly verifies that $F_d(q, 1) = A_d(q)$ for all $d \ge 1$.

The Main Theorem

Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_d are defined for non-negative integers d by $A_0(q) = 1$ and for $d \ge 1$,

$$A_d(q) = (1 + (d-1)q)A_{d-1}(q) + q(1-q)A_{d-1}'(q).$$

One quickly verifies that $F_d(q,1) = A_d(q)$ for all $d \ge 1$.

Euler (1768) showed

$$rac{A_d(q)}{(1-q)^{d+1}} = \sum_{j=0}^\infty (j+1)^d q^j.$$

The Main Theorem

Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_d are defined for non-negative integers d by $A_0(q) = 1$ and for $d \ge 1$,

$$A_d(q) = (1 + (d-1)q)A_{d-1}(q) + q(1-q)A_{d-1}'(q).$$

One quickly verifies that $F_d(q,1) = A_d(q)$ for all $d \ge 1$.

Euler (1768) showed

$$\frac{A_d(q)}{(1-q)^{d+1}} = \sum_{j=0}^{\infty} (j+1)^d q^j.$$

Thus

$$\sum_{n=0}^{\infty} s_d(n) = \prod_{n=1}^{\infty} \frac{F_d(q^n, 1)}{(1-q^n)^{d+1}} = \prod_{n=1}^{\infty} \frac{A_d(q^n)}{(1-q^n)^{d+1}}$$

The Main Theorem

Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_d are defined for non-negative integers d by $A_0(q) = 1$ and for $d \ge 1$,

$$A_d(q) = (1 + (d-1)q)A_{d-1}(q) + q(1-q)A_{d-1}'(q).$$

One quickly verifies that $F_d(q,1) = A_d(q)$ for all $d \ge 1$.

Euler (1768) showed

$$\frac{A_d(q)}{(1-q)^{d+1}} = \sum_{j=0}^{\infty} (j+1)^d q^j.$$

Thus

$$\sum_{n=0}^{\infty} s_d(n) = \prod_{n=1}^{\infty} rac{F_d(q^n, 1)}{(1-q^n)^{d+1}} = \prod_{n=1}^{\infty} rac{A_d(q^n)}{(1-q^n)^{d+1}} \ = \prod_{n=1}^{\infty} \left(\sum_{j=0}^{\infty} (j+1)^d q^{jn}
ight).$$

Dalen Dockery

The Main Theorem

Concluding Remarks

Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for $s_d(n)$, such as the infinite family

$$s_d(2n+1)\equiv 0 \pmod{2^d}$$

for all $d \ge 1$ and all $n \ge 0$.

The Main Theorem

Concluding Remarks

Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for $s_d(n)$, such as the infinite family

$$s_d(2n+1)\equiv 0 \pmod{2^d}$$

for all $d \ge 1$ and all $n \ge 0$.

Much more on congruences next week!

The Main Theorem

Thank you! Questions?