d-Fold Partition Diamonds: Generating Functions and Partition Analysis

Dalen Dockery joint with Marie Jameson, James A. Sellers, and Samuel Wilson

Department of Mathematics
University of Tennessee, Knoxville

Seminar in Partitions, q-Series, and Related Topics 30 November 2023

Table of Contents

(1) Background and Motivation

(2) Partition Analysis
(3) The Main Theorem

4 Concluding Remarks

Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq a_{2} \geq \cdots \geq 0
$$

whose sum is n.

Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq a_{2} \geq \cdots \geq 0
$$

whose sum is n.

The counting function for partitions of n is $p(n)$, which has generating function

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose parts satisfy

Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose parts satisfy

They found that

$$
\sum_{n=0}^{\infty} d(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{3 n-1}}{1-q^{n}}
$$

where $d(n)$ counts the number of plane partition diamonds of n.

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq \cdots \geq 0
$$

with $n=a_{0}+a_{1}+a_{2}+\ldots$,

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq \cdots \geq 0
$$

with $n=a_{0}+a_{1}+a_{2}+\ldots$, and Schmidt type plane partition diamonds are defined analogously.

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq \cdots \geq 0
$$

with $n=a_{0}+a_{1}+a_{2}+\ldots$, and Schmidt type plane partition diamonds are defined analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{2}}
$$

Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence of integers

$$
a_{0} \geq b_{1} \geq a_{1} \geq b_{2} \geq \cdots \geq 0
$$

with $n=a_{0}+a_{1}+a_{2}+\ldots$, and Schmidt type plane partition diamonds are defined analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{2}}
$$

Theorem (Andrews-Paule-Riese 2001)

The generating function for Schmidt type plane partition diamonds is

$$
\prod_{n=1}^{\infty} \frac{1+q^{n}}{\left(1-q^{n}\right)^{3}}
$$

What if we add more nodes?

classical partitions:

What if we add more nodes?

classical partitions:

plane partition diamonds:

What if we add more nodes?

classical partitions:

plane partition diamonds:

d-fold partition diamonds:

d-Fold partition diamonds

Definition (d-fold partition diamonds)

A d-fold partition diamond of n is a partition of n whose parts satisfy

d-Fold partition diamonds

Definition (d-fold partition diamonds)

A d-fold partition diamond of n is a partition of n whose parts satisfy

Schmidt type d-fold partition diamonds are defined in the natural way.

d-Fold partition diamonds

Definition (d-fold partition diamonds)

A d-fold partition diamond of n is a partition of n whose parts satisfy

Schmidt type d-fold partition diamonds are defined in the natural way. We let $r_{d}(n)$ and $s_{d}(n)$ be the counting functions for d-fold partition diamonds of n and their Schmidt type counterpart, respectively.

Results

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}}
$$

and

$$
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
$$

Results

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}}
$$

and

$$
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
$$

Here $F_{d}\left(q_{0}, w\right)$ are polynomials defined recursively by $F_{1}\left(q_{0}, w\right):=1$ and

$$
F_{d}\left(q_{0}, w\right)=\frac{\left(1-q_{0} w^{d}\right) F_{d-1}\left(q_{0}, w\right)-w\left(1-q_{0}\right) F_{d-1}\left(q_{0} w, w\right)}{1-w}
$$

Results

Proposition (D.-Jameson-Sellers-Wilson)

We have

$$
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}}
$$

and

$$
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
$$

Here $F_{d}\left(q_{0}, w\right)$ are polynomials defined recursively by $F_{1}\left(q_{0}, w\right):=1$ and

$$
F_{d}\left(q_{0}, w\right)=\frac{\left(1-q_{0} w^{d}\right) F_{d-1}\left(q_{0}, w\right)-w\left(1-q_{0}\right) F_{d-1}\left(q_{0} w, w\right)}{1-w}
$$

The proof relies on MacMahon's partition analysis.

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
\end{gathered}
$$

Note that

$$
\begin{gathered}
F_{1}\left(q_{0}, w\right)=1 \\
F_{2}\left(q_{0}, w\right)=1+q_{0} w
\end{gathered}
$$

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
\end{gathered}
$$

Note that

$$
\begin{gathered}
F_{1}\left(q_{0}, w\right)=1 \\
F_{2}\left(q_{0}, w\right)=1+q_{0} w
\end{gathered}
$$

Thus

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\sum_{n=0}^{\infty} r_{1}(n) q^{n}
$$

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
\end{gathered}
$$

Note that

$$
\begin{gathered}
F_{1}\left(q_{0}, w\right)=1 \\
F_{2}\left(q_{0}, w\right)=1+q_{0} w
\end{gathered}
$$

Thus

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\sum_{n=0}^{\infty} r_{1}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
\end{gathered}
$$

Note that

$$
\begin{gathered}
F_{1}\left(q_{0}, w\right)=1 \\
F_{2}\left(q_{0}, w\right)=1+q_{0} w
\end{gathered}
$$

Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n) q^{n}= & \sum_{n=0}^{\infty} r_{1}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \\
& \sum_{n=0}^{\infty} s_{2}(n) q^{n}
\end{aligned}
$$

Corollaries

Proposition (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\sum_{n=0}^{\infty} r_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
\sum_{n=0}^{\infty} s_{d}(n) q^{n}=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}
\end{gathered}
$$

Note that

$$
\begin{gathered}
F_{1}\left(q_{0}, w\right)=1 \\
F_{2}\left(q_{0}, w\right)=1+q_{0} w
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p(n) q^{n}= \sum_{n=0}^{\infty} r_{1}(n) q^{n}= \\
& \prod_{n=1}^{\infty} \frac{1}{1-q^{n}} \\
& \sum_{n=0}^{\infty} s_{2}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{n}}{\left(1-q^{n}\right)^{3}}
\end{aligned}
$$

Table of Contents

(1) Background and Motivation

(2) Partition Analysis
(3) The Main Theorem
(4) Concluding Remarks

The Ω_{\geq}operator

Definition

The operator Ω_{\geq}is defined by

$$
\underset{\geq}{\Omega} \sum_{s_{1}=-\infty}^{\infty} \cdots \sum_{s_{r}=-\infty}^{\infty} A_{s_{1}, \cdots, s_{r}} \lambda_{1}^{s_{1}} \cdots \lambda_{r}^{s_{r}}:=\sum_{s_{1}=0}^{\infty} \cdots \sum_{s_{r}=0}^{\infty} A_{s_{1}, \ldots, s_{r}},
$$

where the domain of the $A_{s_{1}, \ldots, s_{r}}$ is the field of rational functions over \mathbb{C} in several complex variables and the λ_{i} are restricted to a neighborhood of the circle $\left|\lambda_{i}\right|=1$. In addition, the $A_{s_{1}, \ldots, s_{r}}$ are required to be such that any of the series involved is absolutely convergent within the domain of the definition of $A_{s_{1}, \cdots, s_{r}}$.

The Ω_{\geq}operator

Definition

The operator Ω_{\geq}is defined by

$$
\underset{\geq}{\Omega} \sum_{s_{1}=-\infty}^{\infty} \cdots \sum_{s_{r}=-\infty}^{\infty} A_{s_{1}, \cdots, s_{r}} \lambda_{1}^{s_{1}} \cdots \lambda_{r}^{s_{r}}:=\sum_{s_{1}=0}^{\infty} \cdots \sum_{s_{r}=0}^{\infty} A_{s_{1}, \ldots, s_{r}},
$$

where the domain of the $A_{s_{1}, \ldots, s_{r}}$ is the field of rational functions over \mathbb{C} in several complex variables and the λ_{i} are restricted to a neighborhood of the circle $\left|\lambda_{i}\right|=1$. In addition, the $A_{s_{1}, \ldots, s_{r}}$ are required to be such that any of the series involved is absolutely convergent within the domain of the definition of $A_{s_{1}, \cdots, s_{r}}$.

Elimination formulae make Ω_{\geq}a very powerful tool in computing generating functions.

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;
(2) apply appropriate elimination formulae;

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its $\Omega \geq$ expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its $\Omega \geq$ expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

We use q_{i} to keep track of the "links" (the a_{i} 's) and w to keep track of the "inner" nodes (the $b_{j, k}$'s).

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

We use q_{i} to keep track of the "links" (the a_{i} 's) and w to keep track of the "inner" nodes (the $b_{j, k}$'s).
E.g., to find the generating function for classical partitions with at most three parts:

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

We use q_{i} to keep track of the "links" (the a_{i} 's) and w to keep track of the "inner" nodes (the $b_{j, k}$'s).
E.g., to find the generating function for classical partitions with at most three parts:

Start with the crude form

$$
\stackrel{\Omega}{\geq} \sum_{a_{0}, a_{1}, b_{1} \geq 0} \lambda_{1}^{b_{1}-a_{0}} \mu_{1}^{a_{1}-b_{1}} q_{0}^{a_{0}} w^{b_{1}} q_{1}^{a_{1}}=
$$

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

We use q_{i} to keep track of the "links" (the a_{i} 's) and w to keep track of the "inner" nodes (the $b_{j, k}$'s).
E.g., to find the generating function for classical partitions with at most three parts:

Start with the crude form

$$
\underset{\geq}{\Omega} \sum_{a_{0}, a_{1}, b_{1} \geq 0} \lambda_{1}^{b_{1}-a_{0}} \mu_{1}^{a_{1}-b_{1}} q_{0}^{a_{0}} w^{b_{1}} q_{1}^{a_{1}}={\underset{\geq}{\Omega}}_{\sum_{a_{0}, a_{1}, b_{1} \geq 0}}\left(\lambda_{1} q_{0}\right)^{a_{0}}\left(\frac{\mu_{1}}{\lambda_{1}} w\right)^{b_{1}}\left(\frac{q_{1}}{\mu_{1}}\right)^{a_{1}}
$$

An example

To use partition analysis to obtain a generating function, one must
(1) find the crude form of the generating function, its Ω_{\geq}expression with variables in place of each part;
(2) apply appropriate elimination formulae;
(3) substitute q for variables corresponding to summands (and 1 for the rest).

We use q_{i} to keep track of the "links" (the a_{i} 's) and w to keep track of the "inner" nodes (the $b_{j, k}$'s).
E.g., to find the generating function for classical partitions with at most three parts:

Start with the crude form

$$
\begin{aligned}
&{\underset{\geq}{\Omega}}_{\Omega}^{a_{0}, a_{1}, b_{1} \geq 0} \\
& \lambda_{1}^{b_{1}-a_{0}} \mu_{1}^{a_{1}-b_{1}} q_{0}^{a_{0}} w^{b_{1}} q_{1}^{a_{1}}=\underset{\geq}{\Omega} \sum_{a_{0}, a_{1}, b_{1} \geq 0}\left(\lambda_{1} q_{0}\right)^{a_{0}}\left(\frac{\mu_{1}}{\lambda_{1}} w\right)^{b_{1}}\left(\frac{q_{1}}{\mu_{1}}\right)^{a_{1}} \\
&=\underset{\geq}{\Omega} \frac{1}{\left(1-\lambda_{1} q_{0}\right)\left(1-\lambda_{1}^{-1} \mu_{1} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)} .
\end{aligned}
$$

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.
MacMahon (1906) provides several elimination identities, including

$$
\begin{gather*}
\Omega \frac{1}{\geq(1-\lambda x)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-x)(1-x y)} \tag{1}\\
\stackrel{\Omega}{\geq} \frac{1}{\left(1-\lambda x_{1}\right)\left(1-\lambda x_{2}\right)\left(1-\lambda^{-1} y\right)}=\frac{1-x_{1} x_{2} y}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{2} y\right)} .
\end{gather*}
$$

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.
MacMahon (1906) provides several elimination identities, including

$$
\begin{gather*}
\stackrel{\Omega}{\geq(1-\lambda x)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-x)(1-x y)} \tag{1}\\
\Omega \\
\Omega
\end{gather*} \frac{1}{\left(1-\lambda x_{1}\right)\left(1-\lambda x_{2}\right)\left(1-\lambda^{-1} y\right)}=\frac{1-x_{1} x_{2} y}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{2} y\right)} .
$$

Using (1),

$$
\stackrel{\Omega}{\geq} \frac{1}{\left(1-\lambda_{1} q_{0}\right)\left(1-\lambda_{1}^{-1} \mu_{1} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)}
$$

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.
MacMahon (1906) provides several elimination identities, including

$$
\begin{gather*}
\stackrel{\Omega}{\geq} \frac{1}{(1-\lambda x)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-x)(1-x y)} \tag{1}\\
\Omega \\
\Omega \\
\geq
\end{gather*} \frac{1}{\left(1-\lambda x_{1}\right)\left(1-\lambda x_{2}\right)\left(1-\lambda^{-1} y\right)}=\frac{1-x_{1} x_{2} y}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{2} y\right)} .
$$

Using (1),

$$
\underset{\geq}{\Omega} \frac{1}{\left(1-\lambda_{1} q_{0}\right)\left(1-\lambda_{1}^{-1} \mu_{1} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)}=\underset{\geq}{\Omega} \frac{1}{\left(1-q_{0}\right)\left(1-\mu_{1} q_{0} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)}
$$

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.
MacMahon (1906) provides several elimination identities, including

$$
\begin{gather*}
\stackrel{\Omega}{\geq} \frac{1}{(1-\lambda x)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-x)(1-x y)} \tag{1}\\
\Omega \\
\Omega \\
\geq
\end{gather*} \frac{1}{\left(1-\lambda x_{1}\right)\left(1-\lambda x_{2}\right)\left(1-\lambda^{-1} y\right)}=\frac{1-x_{1} x_{2} y}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{2} y\right)} .
$$

Using (1),

$$
\begin{aligned}
\stackrel{\Omega}{\geq\left(1-\lambda_{1} q_{0}\right)\left(1-\lambda_{1}^{-1} \mu_{1} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)} & =\underset{\geq}{\Omega} \frac{1}{\left(1-q_{0}\right)\left(1-\mu_{1} q_{0} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{0}\right)\left(1-q_{0} w\right)\left(1-q_{0} q_{1} w\right)} .
\end{aligned}
$$

Elimination identities

Now we need to eliminate λ_{1} and μ_{1}.
MacMahon (1906) provides several elimination identities, including

$$
\begin{gather*}
\stackrel{\Omega}{\geq} \frac{1}{(1-\lambda x)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-x)(1-x y)} \tag{1}\\
\Omega \\
\Omega \\
\geq
\end{gather*} \frac{1}{\left(1-\lambda x_{1}\right)\left(1-\lambda x_{2}\right)\left(1-\lambda^{-1} y\right)}=\frac{1-x_{1} x_{2} y}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{1} y\right)\left(1-x_{2} y\right)} .
$$

Using (1),

$$
\begin{aligned}
\stackrel{\Omega}{\geq} \frac{1}{\left(1-\lambda_{1} q_{0}\right)\left(1-\lambda_{1}^{-1} \mu_{1} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)} & =\stackrel{\Omega}{\geq} \frac{1}{\left(1-q_{0}\right)\left(1-\mu_{1} q_{0} w\right)\left(1-\mu_{1}^{-1} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{0}\right)\left(1-q_{0} w\right)\left(1-q_{0} q_{1} w\right)} .
\end{aligned}
$$

Letting $q_{0}=q_{1}=w=q$, the generating function is

$$
\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}
$$

Extending MacMahon's identities

We will need the following generalization of the previous identities.

Lemma (D.-Jameson-Sellers-Wilson)

For $d \geq 1$ and $j \in \mathbb{Z}$, we have

$$
\begin{array}{r}
\stackrel{\lambda^{j}}{\Omega} \frac{1}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-y)}\left[\frac{1}{\left(1-x_{1}\right) \cdots\left(1-x_{d}\right)}\right. \\
\left.-\frac{y^{j+1}}{\left(1-x_{1} y\right) \cdots\left(1-x_{d} y\right)}\right] .
\end{array}
$$

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\stackrel{\lambda^{j}}{\Omega} \frac{1}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-y)}\left[\frac{1}{\left(1-x_{1}\right) \cdots\left(1-x_{d}\right)}\right. \\
\left.-\frac{y^{j+1}}{\left(1-x_{1} y\right) \cdots\left(1-x_{d} y\right)}\right] .
\end{gathered}
$$

Proof (sketch). We have

$$
\underset{\geq}{\Omega} \frac{\lambda^{j}}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\underset{\geq}{\Omega} \sum_{a_{1}, \ldots, a_{d+1} \geq 0} \lambda^{j+a_{1}+\cdots+a_{d}-a_{d+1}} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{d+1}}
$$

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\stackrel{\lambda^{j}}{\geq} \frac{1}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-y)}\left[\frac{1}{\left(1-x_{1}\right) \cdots\left(1-x_{d}\right)}\right. \\
\left.-\frac{y^{j+1}}{\left(1-x_{1} y\right) \cdots\left(1-x_{d} y\right)}\right] .
\end{gathered}
$$

Proof (sketch). We have

$$
\begin{aligned}
\underset{\geq}{\Omega} \frac{\lambda^{j}}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)} & =\underset{\geq}{\Omega} \sum_{a_{1}, \ldots, a_{d+1} \geq 0} \lambda^{j+a_{1}+\cdots+a_{d}-a_{d+1}} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{d+1}} \\
& =\underset{\substack{\Omega}}{\substack{\begin{subarray}{c}{a_{1}, \ldots, a_{d} \geq 0 \\
0 \leq k \leq a_{1}+\cdots+a_{d}+j} }}\end{subarray}} \lambda^{k} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{1}+\cdots+a_{d}+j-k}
\end{aligned}
$$

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\stackrel{\lambda^{j}}{\geq} \frac{1}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-y)}\left[\frac{1}{\left(1-x_{1}\right) \cdots\left(1-x_{d}\right)}\right. \\
\left.-\frac{y^{j+1}}{\left(1-x_{1} y\right) \cdots\left(1-x_{d} y\right)}\right] .
\end{gathered}
$$

Proof (sketch). We have

$$
\begin{aligned}
\stackrel{\Omega}{\geq} \frac{\lambda^{j}}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)} & =\underset{\geq}{\Omega} \sum_{a_{1}, \ldots, a_{d+1} \geq 0} \lambda^{j+a_{1}+\cdots+a_{d}-a_{d+1}} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{d+1}} \\
& =\underset{\geq}{\Omega} \sum_{\substack{a_{1}, \ldots, a_{d} \geq 0 \\
0 \leq k \leq a_{1}+\cdots+a_{d}+j}} \lambda^{k} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{1}+\cdots+a_{d}+j-k} \\
& =\sum_{a_{1}, \ldots, a_{d} \geq 0} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} \sum_{k=0}^{a_{1}+\cdots+a_{d}+j} y^{k},
\end{aligned}
$$

00000000

Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

$$
\begin{gathered}
\stackrel{\lambda^{j}}{\Omega} \frac{1}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)}=\frac{1}{(1-y)}\left[\frac{1}{\left(1-x_{1}\right) \cdots\left(1-x_{d}\right)}\right. \\
\left.-\frac{y^{j+1}}{\left(1-x_{1} y\right) \cdots\left(1-x_{d} y\right)}\right] .
\end{gathered}
$$

Proof (sketch). We have

$$
\begin{aligned}
\stackrel{\Omega}{\geq} \frac{\lambda^{j}}{\left(1-\lambda x_{1}\right) \cdots\left(1-\lambda x_{d}\right)\left(1-\lambda^{-1} y\right)} & =\underset{\geq}{\Omega} \sum_{a_{1}, \ldots, a_{d+1} \geq 0} \lambda^{j+a_{1}+\cdots+a_{d}-a_{d+1}} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{d+1}} \\
& =\underset{\geq}{\Omega} \sum_{\substack{a_{1}, \ldots, a_{d} \geq 0 \\
0 \leq k \leq a_{1}+\cdots+a_{d}+j}} \lambda^{k} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} y^{a_{1}+\cdots+a_{d}+j-k} \\
& =\sum_{a_{1}, \ldots, a_{d} \geq 0} x_{1}^{a_{1}} \cdots x_{d}^{a_{d}} \sum_{k=0}^{a_{1}+\cdots+a_{d}+j} y^{k},
\end{aligned}
$$

and the result follows from finite geometric series.

Crude forms for d-fold partition diamonds

Set $D_{d, n}:=D_{d, n}\left(q_{0}, q_{1}, \ldots, q_{n} ; w\right)$ to be the generating function for d-fold partition diamonds of fixed length n.

Crude forms for d-fold partition diamonds

Set $D_{d, n}:=D_{d, n}\left(q_{0}, q_{1}, \ldots, q_{n} ; w\right)$ to be the generating function for d-fold partition diamonds of fixed length n. Label the edges on the left (resp. right) of the j th diamond $\lambda_{1, j}, \lambda_{2, j}, \ldots, \lambda_{d, j}\left(\right.$ resp. $\left.\mu_{1, j}, \mu_{2, j}, \ldots, \mu_{d, j}\right)$.

Crude forms for d-fold partition diamonds

Set $D_{d, n}:=D_{d, n}\left(q_{0}, q_{1}, \ldots, q_{n} ; w\right)$ to be the generating function for d-fold partition diamonds of fixed length n. Label the edges on the left (resp. right) of the j th diamond $\lambda_{1, j}, \lambda_{2, j}, \ldots, \lambda_{d, j}\left(\right.$ resp. $\left.\mu_{1, j}, \mu_{2, j}, \ldots, \mu_{d, j}\right)$.

For $d, n \geq 1$ and $1 \leq k \leq n$, define

$$
\begin{aligned}
h & :=h_{d} \\
f_{k} & :=\frac{1}{1-\lambda_{1,1} \cdots \lambda_{1, d} q_{0}} \\
g_{k, d} & :=\frac{1}{\left(1-\frac{\mu_{k, 1}}{\lambda_{k, 1}} w\right) \cdots\left(1-\frac{\mu_{k, d}}{\lambda_{k, d}} w\right) \cdot\left(1-\frac{\lambda_{k+1,1} \cdots \lambda_{k+1, d}}{\mu_{k, 1} \cdots \mu_{k, d}} q_{k+1}\right)} \\
g_{n, d} & :=\frac{1-\frac{\lambda_{n+1,1} \cdots \lambda_{n+1, d}}{\mu_{n, 1} \cdots \mu_{n, d}} q_{n+1}}{1-\frac{q_{n+1}}{\mu_{n, 1} \cdots \mu_{n, d}}}
\end{aligned}
$$

Crude forms for d-fold partition diamonds

Set $D_{d, n}:=D_{d, n}\left(q_{0}, q_{1}, \ldots, q_{n} ; w\right)$ to be the generating function for d-fold partition diamonds of fixed length n. Label the edges on the left (resp. right) of the j th diamond $\lambda_{1, j}, \lambda_{2, j}, \ldots, \lambda_{d, j}\left(\right.$ resp. $\left.\mu_{1, j}, \mu_{2, j}, \ldots, \mu_{d, j}\right)$.

For $d, n \geq 1$ and $1 \leq k \leq n$, define

$$
\begin{aligned}
h & :=h_{d}:=\frac{1}{1-\lambda_{1,1} \cdots \lambda_{1, d} q_{0}} \\
f_{k} & :=f_{k, d}:=\frac{1}{\left(1-\frac{\mu_{k, 1}}{\lambda_{k, 1}} w\right) \cdots\left(1-\frac{\mu_{k, d}}{\lambda_{k, d}} w\right) \cdot\left(1-\frac{\lambda_{k+1,1} \cdots \lambda_{k+1, d}}{\mu_{k, 1} \cdots \mu_{k, d}} q_{k+1}\right)} \\
g_{n} & :=g_{n, d}
\end{aligned}
$$

Fact:

$$
D_{d, n}=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n} \cdot g_{n} .
$$

The crude forms (continued)

For $\rho \geq 0$ we will need $D_{d, n}^{(\rho)}:=D_{d, n}^{(\rho)}\left(q_{0}, q_{1}, \cdots, q_{n} ; w\right)$, which is defined to be the generating function for d-fold partition diamonds of fixed length n, with $a_{n} \geq \rho$.

The crude forms (continued)

For $\rho \geq 0$ we will need $D_{d, n}^{(\rho)}:=D_{d, n}^{(\rho)}\left(q_{0}, q_{1}, \cdots, q_{n} ; w\right)$, which is defined to be the generating function for d-fold partition diamonds of fixed length n, with $a_{n} \geq \rho$. Another fact:

$$
D_{d, n}^{(\rho)}=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n} \cdot g_{n}\left(\frac{q_{n}}{\mu_{n, 1} \cdots \mu_{n, d}}\right)^{\rho} .
$$

The crude forms (continued)

For $\rho \geq 0$ we will need $D_{d, n}^{(\rho)}:=D_{d, n}^{(\rho)}\left(q_{0}, q_{1}, \cdots, q_{n} ; w\right)$, which is defined to be the generating function for d-fold partition diamonds of fixed length n, with $a_{n} \geq \rho$.

Another fact:

$$
D_{d, n}^{(\rho)}=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n} \cdot g_{n}\left(\frac{q_{n}}{\mu_{n, 1} \cdots \mu_{n, d}}\right)^{\rho} .
$$

These are connected via

$$
D_{d, n}^{(\rho)}=\left(q_{0} \cdots q_{n}\right)^{\rho} w^{d n \rho} D_{d, n}
$$

The crude forms (continued)

For $\rho \geq 0$ we will need $D_{d, n}^{(\rho)}:=D_{d, n}^{(\rho)}\left(q_{0}, q_{1}, \cdots, q_{n} ; w\right)$, which is defined to be the generating function for d-fold partition diamonds of fixed length n, with $a_{n} \geq \rho$.

Another fact:

$$
D_{d, n}^{(\rho)}=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n} \cdot g_{n}\left(\frac{q_{n}}{\mu_{n, 1} \cdots \mu_{n, d}}\right)^{\rho} .
$$

These are connected via

$$
D_{d, n}^{(\rho)}=\left(q_{0} \cdots q_{n}\right)^{\rho} w^{d n \rho} D_{d, n}
$$

This can be shown algebraically, or combinatorially via a bijection between the sets of partitions.

Table of Contents

(1) Background and Motivation

(2) Partition Analysis
(3) The Main Theorem
(4) Concluding Remarks

Theorem

Theorem (D.-Jameson-Sellers-Wilson)

For $d \geq 1$ and $n \geq 1$,

$$
D_{d, n}\left(q_{0}, \ldots, q_{n} ; w\right)=\left(\prod_{k=0}^{n-1} \frac{F_{d}\left(Q_{k} w^{d k}, w\right)}{\left(1-Q_{k} w^{d k}\right) \cdots\left(1-Q_{k} w^{d k+d}\right)}\right) \frac{1}{1-Q_{n} w^{d n}}
$$

where F_{d} is as previously defined and $Q_{k}:=q_{0} q_{1} \cdots q_{k}$.

Theorem

Theorem (D.-Jameson-Sellers-Wilson)

For $d \geq 1$ and $n \geq 1$,

$$
D_{d, n}\left(q_{0}, \ldots, q_{n} ; w\right)=\left(\prod_{k=0}^{n-1} \frac{F_{d}\left(Q_{k} w^{d k}, w\right)}{\left(1-Q_{k} w^{d k}\right) \cdots\left(1-Q_{k} w^{d k+d}\right)}\right) \frac{1}{1-Q_{n} w^{d n}}
$$

where F_{d} is as previously defined and $Q_{k}:=q_{0} q_{1} \cdots q_{k}$.
Note that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} r_{d}(n) q^{n}=\lim _{n \rightarrow \infty} D_{d, n}(q, \cdots, q ; q)=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{(n-1)(d+1)+1}, q\right)}{1-q^{n}} \\
& \sum_{n=0}^{\infty} s_{d}(n) q^{n}=\lim _{n \rightarrow \infty} D_{d, n}(q, \cdots, q, 1)=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}\right), 1}{\left(1-q^{n}\right)^{d+1}}
\end{aligned}
$$

Proof outline

Here we sketch the proof, by:
(1) treating the case $d=1, n=1$ (i.e., $D_{1,1}$)

Proof outline

Here we sketch the proof, by:
(1) treating the case $d=1, n=1$ (i.e., $D_{1,1}$)
(2) for $n=1$ fixed, inductively proving the result for $D_{d, 1}$

Proof outline

Here we sketch the proof, by:
(1) treating the case $d=1, n=1$ (i.e., $D_{1,1}$)
(2) for $n=1$ fixed, inductively proving the result for $D_{d, 1}$
(3) for arbitrary d, inducting on n starting from $D_{d, 1}$

The base case $D_{1,1}$

- We must show

$$
D_{1,1}\left(q_{0}, q_{1} ; w\right)=\frac{1}{\left(1-q_{0}\right)\left(1-q_{0} w\right)\left(1-q_{0} q_{1} w\right)} .
$$

The base case $D_{1,1}$

- We must show

$$
D_{1,1}\left(q_{0}, q_{1} ; w\right)=\frac{1}{\left(1-q_{0}\right)\left(1-q_{0} w\right)\left(1-q_{0} q_{1} w\right)} .
$$

- But a 1 -fold partition diamond of length 1 is classical partition with at most three parts.
- This was exactly the conclusion of the previous example.

Induction on d

- Now we want to show for $d \geq 1$ that

$$
D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{F_{d}\left(q_{0}, w\right)}{\left(1-q_{0}\right)\left(1-q_{0} w\right) \cdots\left(1-q_{0} w^{d}\right) \cdot\left(1-q_{0} q_{1} w^{d}\right)}
$$

Induction on d

- Now we want to show for $d \geq 1$ that

$$
D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{F_{d}\left(q_{0}, w\right)}{\left(1-q_{0}\right)\left(1-q_{0} w\right) \cdots\left(1-q_{0} w^{d}\right) \cdot\left(1-q_{0} q_{1} w^{d}\right)}
$$

- Suppose the result holds for $d-1$. Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right)= & \underset{\geq}{\Omega} \frac{1}{\left(1-\lambda_{1} \cdots \lambda_{d} q_{0}\right) \cdot\left(1-\lambda_{1}^{-1} \mu_{1} w\right) \cdots\left(1-\lambda_{d}^{-1} \mu_{d} w\right)} \\
& \cdot \frac{1}{\left(1-\mu_{1}^{-1} \cdots \mu_{d}^{-1} q_{1}\right)}
\end{aligned}
$$

Induction on d

- Now we want to show for $d \geq 1$ that

$$
D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{F_{d}\left(q_{0}, w\right)}{\left(1-q_{0}\right)\left(1-q_{0} w\right) \cdots\left(1-q_{0} w^{d}\right) \cdot\left(1-q_{0} q_{1} w^{d}\right)}
$$

- Suppose the result holds for $d-1$. Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right)= & \underset{\geq}{\Omega} \frac{1}{\left(1-\lambda_{1} \cdots \lambda_{d} q_{0}\right) \cdot\left(1-\lambda_{1}^{-1} \mu_{1} w\right) \cdots\left(1-\lambda_{d}^{-1} \mu_{d} w\right)} \\
& \cdot \frac{1}{\left(1-\mu_{1}^{-1} \cdots \mu_{d}^{-1} q_{1}\right)} \\
= & \underset{\geq}{\Omega} \frac{D_{d-1,1}\left(\lambda_{d} q_{0}, \mu_{d}^{-1} q_{1} ; w\right)}{1-\lambda_{d}^{-1} \mu_{d} w}
\end{aligned}
$$

Induction on d

- Now we want to show for $d \geq 1$ that

$$
D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{F_{d}\left(q_{0}, w\right)}{\left(1-q_{0}\right)\left(1-q_{0} w\right) \cdots\left(1-q_{0} w^{d}\right) \cdot\left(1-q_{0} q_{1} w^{d}\right)}
$$

- Suppose the result holds for $d-1$. Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right)= & \underset{\geq}{\Omega} \frac{1}{\left(1-\lambda_{1} \cdots \lambda_{d} q_{0}\right) \cdot\left(1-\lambda_{1}^{-1} \mu_{1} w\right) \cdots\left(1-\lambda_{d}^{-1} \mu_{d} w\right)} \\
& \cdot \frac{1}{\left(1-\mu_{1}^{-1} \cdots \mu_{d}^{-1} q_{1}\right)} \\
= & \underset{\geq}{\Omega} \frac{D_{d-1,1}\left(\lambda_{d} q_{0}, \mu_{d}^{-1} q_{1} ; w\right)}{1-\lambda_{d}^{-1} \mu_{d} w} \\
= & \underset{\geq}{\Omega} \frac{F_{d-1}\left(\lambda_{d} q_{0}, w\right)}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\frac{\lambda_{d}}{\mu_{d}} q_{0} q_{1} w^{d-1}\right)\left(1-\frac{\mu_{d}}{\lambda_{d}} w\right)}
\end{aligned}
$$

Induction on d

- Now we want to show for $d \geq 1$ that

$$
D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{F_{d}\left(q_{0}, w\right)}{\left(1-q_{0}\right)\left(1-q_{0} w\right) \cdots\left(1-q_{0} w^{d}\right) \cdot\left(1-q_{0} q_{1} w^{d}\right)}
$$

- Suppose the result holds for $d-1$. Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right)= & \Omega \frac{1}{\geq} \frac{1}{\left(1-\lambda_{1} \cdots \lambda_{d} q_{0}\right) \cdot\left(1-\lambda_{1}^{-1} \mu_{1} w\right) \cdots\left(1-\lambda_{d}^{-1} \mu_{d} w\right)} \\
& \cdot \frac{1}{\left(1-\mu_{1}^{-1} \cdots \mu_{d}^{-1} q_{1}\right)} \\
= & \underset{\geq}{\Omega} \frac{D_{d-1,1}\left(\lambda_{d} q_{0}, \mu_{d}^{-1} q_{1} ; w\right)}{1-\lambda_{d}^{-1} \mu_{d} w} \\
= & \underset{\geq}{\Omega} \frac{F_{d-1}\left(\lambda_{d} q_{0}, w\right)}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\frac{\lambda_{d}}{\mu_{d}} q_{0} q_{1} w^{d-1}\right)\left(1-\frac{\mu_{d}}{\lambda_{d}} w\right)} \\
= & \frac{1}{1-q_{0} q_{1} w^{d}} \Omega \frac{F_{d-1}\left(\lambda_{d} q_{0}, w\right)}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\lambda_{d}^{-1} w\right)}
\end{aligned}
$$

by eliminating μ_{d}.

Induction on d (continued)

- Set

$$
F_{d-1}\left(q_{0}, w\right)=\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}
$$

Induction on d (continued)

- Set

$$
F_{d-1}\left(q_{0}, w\right)=\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}
$$

Then
$D_{d, 1}\left(q_{0}, q_{1} ; w\right)=\frac{\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}}{1-q_{0} q_{1} w^{d}} \Omega \frac{\lambda_{d}^{i}}{\geq} \frac{\lambda_{d}}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\lambda_{d}^{-1} w\right)}$

Induction on d (continued)

- Set

$$
F_{d-1}\left(q_{0}, w\right)=\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}
$$

Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right) & =\frac{\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}}{1-q_{0} q_{1} w^{d}} \Omega \frac{\lambda_{d}^{i}}{\geq} \frac{\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\lambda_{d}^{-1} w\right)} \\
& =\frac{\left.q_{0}\right) \cdots\left(1-q_{0} w^{d}\right)\left(1-q_{0} q_{1} w^{d}\right)}{\left(1-q_{0}\right)}\left[\frac{1-q_{0} w^{d}}{1-w}-\frac{w^{i+1}\left(1-q_{0}\right)}{1-w}\right]
\end{aligned}
$$

by applying our lemma.

Induction on d (continued)

- Set

$$
F_{d-1}\left(q_{0}, w\right)=\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}
$$

Then

$$
\begin{aligned}
D_{d, 1}\left(q_{0}, q_{1} ; w\right) & =\frac{\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}}{1-q_{0} q_{1} w^{d}} \frac{\lambda_{d}^{i}}{\geq} \frac{\lambda_{d}}{\left(1-\lambda_{d} q_{0}\right) \cdots\left(1-\lambda_{d} q_{0} w^{d-1}\right)\left(1-\lambda_{d}^{-1} w\right)} \\
& =\frac{\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}}{\left(1-q_{0}\right) \cdots\left(1-q_{0} w^{d}\right)\left(1-q_{0} q_{1} w^{d}\right)}\left[\frac{1-q_{0} w^{d}}{1-w}-\frac{w^{i+1}\left(1-q_{0}\right)}{1-w}\right]
\end{aligned}
$$

by applying our lemma. So we have shown the numerator is

$$
\sum_{i=0}^{n} a_{i}(w) q_{0}^{i}\left[\frac{1-q_{0} w^{d}}{1-w}-\frac{w^{i+1}\left(1-q_{0}\right)}{1-w}\right]
$$

which simplifies to $F_{d}\left(q_{0}, w\right)$.

Induction on n (sketch)

- We want to show

$$
D_{d, n+1}\left(q_{0}, \ldots, q_{n} ; w\right)=\frac{F_{d}\left(Q_{n} w^{d n}, w\right) D_{n}\left(q_{0}, \cdots, q_{n} ; w\right)}{\left(1-Q_{n} w^{d n+1}\right) \cdots\left(1-Q_{n} w^{d n+d}\right)\left(1-Q_{n+1} w^{d n+d}\right)}
$$

Induction on n (sketch)

- We want to show

$$
D_{d, n+1}\left(q_{0}, \ldots, q_{n} ; w\right)=\frac{F_{d}\left(Q_{n} w^{d n}, w\right) D_{n}\left(q_{0}, \cdots, q_{n} ; w\right)}{\left(1-Q_{n} w^{d n+1}\right) \cdots\left(1-Q_{n} w^{d n+d}\right)\left(1-Q_{n+1} w^{d n+d}\right)}
$$

- Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for n, and note

$$
D_{d, n+1}==\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n+1} \cdot g_{n+1}
$$

Induction on n (sketch)

- We want to show

$$
D_{d, n+1}\left(q_{0}, \ldots, q_{n} ; w\right)=\frac{F_{d}\left(Q_{n} w^{d n}, w\right) D_{n}\left(q_{0}, \cdots, q_{n} ; w\right)}{\left(1-Q_{n} w^{d n+1}\right) \cdots\left(1-Q_{n} w^{d n+d}\right)\left(1-Q_{n+1} w^{d n+d}\right)}
$$

- Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for n, and note

$$
\begin{aligned}
& D_{d, n+1}==\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n+1} \cdot g_{n+1} \\
&=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n-1} \frac{1}{\left(1-\frac{\mu_{n, 1}}{\lambda_{n, 1}} w\right) \cdots\left(1-\frac{\mu_{n, d}}{\lambda_{n, d}} w\right)} \cdot \frac{1}{\left(1-\frac{\lambda_{n+1,1} \cdots \lambda_{n+1, d}}{\mu_{n, 1} \cdots \mu_{n, d}} q_{n}\right)} \\
& \cdot \frac{1}{\left(1-\frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots\left(1-\frac{\mu_{n+1, d}}{\lambda_{n+1, d}} w\right)} \cdot \frac{1}{\left(1-\frac{1}{\mu_{n+1,1} \cdots \mu_{n+1, d}} q_{n+1}\right)}
\end{aligned}
$$

Induction on n (sketch)

- We want to show

$$
D_{d, n+1}\left(q_{0}, \ldots, q_{n} ; w\right)=\frac{F_{d}\left(Q_{n} w^{d n}, w\right) D_{n}\left(q_{0}, \cdots, q_{n} ; w\right)}{\left(1-Q_{n} w^{d n+1}\right) \cdots\left(1-Q_{n} w^{d n+d}\right)\left(1-Q_{n+1} w^{d n+d}\right)}
$$

- Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for n, and note

$$
\begin{aligned}
& D_{d, n+1}==\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n+1} \cdot g_{n+1} \\
&=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n-1} \frac{1}{\left(1-\frac{\mu_{n, 1}}{\lambda_{n, 1}} w\right) \cdots\left(1-\frac{\mu_{n, d}}{\lambda_{n, d}} w\right)} \cdot \frac{1}{\left(1-\frac{\lambda_{n+1,1} \cdots \lambda_{n+1, d}}{\mu_{n, 1} \cdots \mu_{n, d}} q_{n}\right)} \\
& \cdot \frac{1}{\left(1-\frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots\left(1-\frac{\mu_{n+1, d}}{\lambda_{n+1, d}} w\right)} \cdot \frac{1}{\left(1-\frac{1}{\mu_{n+1,1} \cdots \mu_{n+1, d}} q_{n+1}\right)}
\end{aligned}
$$

- Use the case $D_{d, 1}$ on the last $d+2$ terms (in red), obtaining an expression involving $D_{d, n}^{(\rho)}$.

Induction on n (sketch)

- We want to show

$$
D_{d, n+1}\left(q_{0}, \ldots, q_{n} ; w\right)=\frac{F_{d}\left(Q_{n} w^{d n}, w\right) D_{n}\left(q_{0}, \cdots, q_{n} ; w\right)}{\left(1-Q_{n} w^{d n+1}\right) \cdots\left(1-Q_{n} w^{d n+d}\right)\left(1-Q_{n+1} w^{d n+d}\right)}
$$

- Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds for n, and note

$$
\begin{aligned}
& D_{d, n+1}==\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n+1} \cdot g_{n+1} \\
&=\underset{\geq}{\Omega} h \cdot f_{1} \cdots f_{n-1} \frac{1}{\left(1-\frac{\mu_{n, 1}}{\lambda_{n, 1}} w\right) \cdots\left(1-\frac{\mu_{n, d}}{\lambda_{n, d}} w\right)} \cdot \frac{1}{\left(1-\frac{\lambda_{n+1,1} \cdots \lambda_{n+1, d}}{\mu_{n, 1} \cdots \mu_{n, d}} q_{n}\right)} \\
& \cdot \frac{1}{\left(1-\frac{\mu_{n+1,1}}{\lambda_{n+1,1}} w\right) \cdots\left(1-\frac{\mu_{n+1, d}}{\lambda_{n+1, d}} w\right)} \cdot \frac{1}{\left(1-\frac{1}{\mu_{n+1,1} \cdots \mu_{n+1, d}} q_{n+1}\right)}
\end{aligned}
$$

- Use the case $D_{d, 1}$ on the last $d+2$ terms (in red), obtaining an expression involving $D_{d, n}^{(\rho)}$.
- Apply the relationship between $D_{d, n}$ and $D_{d, n}^{(\rho)}$ and simplify.

Table of Contents

(1) Background and Motivation

(2) Partition Analysis
(3) The Main Theorem
(4) Concluding Remarks

Eulerian polynomials

The Eulerian polynomials A_{d} are defined for non-negative integers d by $A_{0}(q)=1$ and for $d \geq 1$,

$$
A_{d}(q)=(1+(d-1) q) A_{d-1}(q)+q(1-q) A_{d-1}^{\prime}(q)
$$

Eulerian polynomials

The Eulerian polynomials A_{d} are defined for non-negative integers d by $A_{0}(q)=1$ and for $d \geq 1$,

$$
A_{d}(q)=(1+(d-1) q) A_{d-1}(q)+q(1-q) A_{d-1}^{\prime}(q)
$$

One quickly verifies that $F_{d}(q, 1)=A_{d}(q)$ for all $d \geq 1$.

Eulerian polynomials

The Eulerian polynomials A_{d} are defined for non-negative integers d by $A_{0}(q)=1$ and for $d \geq 1$,

$$
A_{d}(q)=(1+(d-1) q) A_{d-1}(q)+q(1-q) A_{d-1}^{\prime}(q)
$$

One quickly verifies that $F_{d}(q, 1)=A_{d}(q)$ for all $d \geq 1$.
Euler (1768) showed

$$
\frac{A_{d}(q)}{(1-q)^{d+1}}=\sum_{j=0}^{\infty}(j+1)^{d} q^{j}
$$

Eulerian polynomials

The Eulerian polynomials A_{d} are defined for non-negative integers d by $A_{0}(q)=1$ and for $d \geq 1$,

$$
A_{d}(q)=(1+(d-1) q) A_{d-1}(q)+q(1-q) A_{d-1}^{\prime}(q)
$$

One quickly verifies that $F_{d}(q, 1)=A_{d}(q)$ for all $d \geq 1$.
Euler (1768) showed

$$
\frac{A_{d}(q)}{(1-q)^{d+1}}=\sum_{j=0}^{\infty}(j+1)^{d} q^{j}
$$

Thus

$$
\sum_{n=0}^{\infty} s_{d}(n)=\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}=\prod_{n=1}^{\infty} \frac{A_{d}\left(q^{n}\right)}{\left(1-q^{n}\right)^{d+1}}
$$

Eulerian polynomials

The Eulerian polynomials A_{d} are defined for non-negative integers d by $A_{0}(q)=1$ and for $d \geq 1$,

$$
A_{d}(q)=(1+(d-1) q) A_{d-1}(q)+q(1-q) A_{d-1}^{\prime}(q)
$$

One quickly verifies that $F_{d}(q, 1)=A_{d}(q)$ for all $d \geq 1$.
Euler (1768) showed

$$
\frac{A_{d}(q)}{(1-q)^{d+1}}=\sum_{j=0}^{\infty}(j+1)^{d} q^{j}
$$

Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} s_{d}(n) & =\prod_{n=1}^{\infty} \frac{F_{d}\left(q^{n}, 1\right)}{\left(1-q^{n}\right)^{d+1}}=\prod_{n=1}^{\infty} \frac{A_{d}\left(q^{n}\right)}{\left(1-q^{n}\right)^{d+1}} \\
& =\prod_{n=1}^{\infty}\left(\sum_{j=0}^{\infty}(j+1)^{d} q^{j n}\right)
\end{aligned}
$$

Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for $s_{d}(n)$, such as the infinite family

$$
s_{d}(2 n+1) \equiv 0 \quad\left(\bmod 2^{d}\right)
$$

for all $d \geq 1$ and all $n \geq 0$.

Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for $s_{d}(n)$, such as the infinite family

$$
s_{d}(2 n+1) \equiv 0 \quad\left(\bmod 2^{d}\right)
$$

for all $d \geq 1$ and all $n \geq 0$.
Much more on congruences next week!

Thank you! Questions?

