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Integer partitions

A partition of a natural number n is a non-increasing sequence of integers

>bh>aa>bh>a>-->0

whose sum is n.

ao by a by a
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00000000

Integer partitions

A partition of a natural number n is a non-increasing sequence of integers
a>h>a>bh>a>--->0

whose sum is n.

ao by a1 by a2

The counting function for partitions of n is p(n), which has generating function

o0 n_ o0 1
;p(")q _gil—qn‘
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Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose
parts satisfy

by bs bs
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Plane partition diamonds

Andrews, Paule, and Riese (2001) introduced plane partition diamonds, partitions whose
parts satisfy

by bs bs

bes
They found that
et n 0 1+ 3n—1
Zd(n)q _Jr:1t9
n=0

n=1 1- q”
where d(n) counts the number of plane partition diamonds of n.
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Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence
of integers

a>b>a>b>--->0
withn=a +a+a+...,
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Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence
of integers

ao>bh>a>b>--->0

with n = a9+ a1 + a2 + ..., and Schmidt type plane partition diamonds are defined
analogously.
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Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence
of integers

ao>bh>a>b>--->0

with n = a9+ a1 + a2 + ..., and Schmidt type plane partition diamonds are defined
analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

1
Ha=ap

n=1
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Schmidt type partitions

A (classical) Schmidt type partition of a natural number n is a non-increasing sequence
of integers

ao>bh>a>b>--->0

with n = a9+ a1 + a2 + ..., and Schmidt type plane partition diamonds are defined
analogously.

Theorem (Schmidt 1999)

The generating function for Schmidt type partitions is

o]

1
Ha=ap

n=1

Theorem (Andrews-Paule-Riese 2001)

The generating function for Schmidt type plane partition diamonds is

(e} 1+qn
H(l,qn)3'

n=1
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What if we add more nodes?

classical partitions:

ao by a by a
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What if we add more nodes?

classical partitions:

a0 by a by a2
O—+—O0—>—O0—+—0—>—0
plane partition diamonds:
b bs bs
ao a az as
by by be
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What if we add mdfe rncr>des?

classical partitions:

a0 by a by a2
O—+—O0—>—O0—+—0—>—0
plane partition diamonds:
b bs bs
ao a az as
by by be

d-fold partition diamonds:
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d-Fold partition diamonds
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d-Fold partition diamonds

Schmidt type d-fold partition diamonds are defined in the natural way.
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d-Fold partition diamonds

Schmidt type d-fold partition diamonds are defined in the natural way. We let ry(n) and
sq4(n) be the counting functions for d-fold partition diamonds of n and their Schmidt
type counterpart, respectively.
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Results

oo L Fy(gl e g
> r(n)e” = [P — 29
n=0 n=1 q
and
st n)q" *H( d+1
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Results

Proposition (D.-Jameson-Sellers-Wilson)

We have (r 1))
oo . 0o Fd(q n—1)(d+1 +17q)
> rtme = 0
n=0 n=1

and

oo

= Fa(q",1)
st q—H( ok d+1

n=

jing Remarks

Here F4(qo, w) are polynomials defined recursively by Fi(qo, w) :=1 and

Fd(qu w

)= (1— qow?)Fa—1(q0, w) — w(1 — o) Fy-1(qow, w)

1—w
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Results

Proposition (D.-Jameson-Sellers-Wilson)

We have (r 1))
oo . 0o Fd(q n—1)(d+1 +17q)
> rtme = 0
n=0 n=1

and

= =~ F 1)
st q—H( p il d+1

n=

jing Remarks

Here F4(qo, w) are polynomials defined recursively by Fi(qo, w) :=1 and

)= (1— qow?)Fa—1(q0, w) — w(1 — o) Fy-1(qow, w)

Fd(quW 1—w

The proof relies on MacMahon's partition analysis.
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Corollaries

oo . oo F, q(n—l)(d+l)+l’ q
> reyg” = [[
n=0 n=1 q

oo

= F. 1)
st n)q" —H( d(q d+1

Note that
Fi(qo,w) =1,
Fa(qo,w) =14 qow.
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Corollaries

oo . oo F, q(n—l)(d+l)+l’ q
> reyg” = [[
n=0 n=1 q

oo

= F. 1)
st n)q" —H( d(q d+1

Note that
Fi(qo,w) =1,
Fa(qo,w) =14 qow.
Thus
> p(n)g" => n(n)q"
n=0 n=0
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Corollaries

oo . oo F, q(n—l)(d+l)+l’ q
> reyg” = [[
n=0 n=1 q

oo

= F. 1)
st n)q" —H( d(q d+1

Note that
Fi(qo,w) =1,
Fa(qo,w) =14 qow.
Thus
oo N oo ; oo 1
;p(n)q = ;rl(n)q = nl:[l >
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Corollaries

oo . oo F, q(n—l)(d+l)+l’ q
> reyg” = [[
n=0 n=1 q

oo

= F. 1)
st n)q" —H( d(q d+1

Note that
Fi(qo,w) =1,
Fa(qo,w) =14 qow.
Thus
oo N oo ; oo 1
> b’ =3 nle =T 1
n=0 n=0 n=1
> ()
n=0
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Corollaries

o . 0 Fy q(nfl)(d+1)+1’q
> e’ = [ P
n=0 n=1 q

oo

= F. 1)
st n)q" —H( d(q d+1

jing Remarks

Note that

Thus

Dalen Dockery

F1(‘707 W) = 17
Fa(qo, w) =1+ qow.

oo . oo . oo 1
;p(")q —;rl(n)q —nl:[ll_q
oo . oo 1+q,,
,,Z:()52(n)q _gi(l—q")y
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The 2> operator

Definition
The operator Q2> is defined by

P

where the domain of the As, .., is the field of rational functions over C in several
complex variables and the \; are restricted to a neighborhood of the circle |A\j| = 1. In
addition, the A,,... s, are required to be such that any of the series involved is absolutely
convergent within the domain of the definition of A, ...

Mg

s1 Sr .
517 )‘ "')‘rr E E Ash Sry

—oo s1=0 Sp=

\V:O

sSr
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The 2> operator

Definition

The operator Q2> is defined by

P

where the domain of the As, .., is the field of rational functions over C in several
complex variables and the \; are restricted to a neighborhood of the circle |A\j| = 1. In
addition, the A,,... s, are required to be such that any of the series involved is absolutely
convergent within the domain of the definition of A, ...

Mg

\V:O

s1 Sr .
517 >‘ "')‘rr § E A511 +»Sr)

—00 s1=0 Sp=

sSr

Elimination formulae make Q> a very powerful tool in computing generating functions.
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An example

To use partition analysis to obtain a generating function, one must

@ find the crude form of the generating function, its Q> expression with variables in
place of each part;
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An example

To use partition analysis to obtain a generating function, one must

@ find the crude form of the generating function, its Q> expression with variables in
place of each part;

@ apply appropriate elimination formulae;
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An example

To use partition analysis to obtain a generating function, one must

@ find the crude form of the generating function, its Q> expression with variables in
place of each part;

@ apply appropriate elimination formulae;

© substitute g for variables corresponding to summands (and 1 for the rest).
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An example

To use partition analysis to obtain a generating function, one must
@ find the crude form of the generating function, its Q> expression with variables in
place of each part;
@ apply appropriate elimination formulae;
© substitute g for variables corresponding to summands (and 1 for the rest).

We use g; to keep track of the “links” (the a;'s) and w to keep track of the “inner”

nodes (the bj «'s).
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An example

To use partition analysis to obtain a generating function, one must

@ find the crude form of the generating function, its Q> expression with variables in
place of each part;

@ apply appropriate elimination formulae;
© substitute g for variables corresponding to summands (and 1 for the rest).

We use g; to keep track of the “links” (the a;'s) and w to keep track of the “inner”

nodes (the bj «'s).
E.g., to find the generating function for classical partitions with at most three parts:

ao A by m ai
O——0O0—>—=0
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An example

To use partition analysis to obtain a generating function, one must

@ find the crude form of the generating function, its Q> expression with variables in
place of each part;

@ apply appropriate elimination formulae;
© substitute g for variables corresponding to summands (and 1 for the rest).

We use g; to keep track of the “links” (the a;'s) and w to keep track of the “inner”

nodes (the bj «'s).
E.g., to find the generating function for classical partitions with at most three parts:

ao A by m ai
O——0O0—>—=0

Start with the crude form

bi—ag a1—by _jao b1 a1 __
8 § AL My oW q =

" ag,a1,01 >0
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An example

To use partition analysis to obtain a generating function, one must
@ find the crude form of the generating function, its Q> expression with variables in
place of each part;
@ apply appropriate elimination formulae;
© substitute g for variables corresponding to summands (and 1 for the rest).

We use g; to keep track of the “links” (the a;'s) and w to keep track of the “inner”

nodes (the bj «'s).

E.g., to find the generating function for classical partitions with at most three parts:

ao A by m ai
Start with the crude form
FLI by a ay
Q )\bl—ao aj—by angl a_Q A (K 41
> Z 1 My 9o 91 ¥ (M1qo) N 1
ag,a1,b1 >0 ag,a1, b1 >0

Dalen Dockery d-Fold Partition Diamonds 12/28



and Motivation Partition Analysis The Main Theorem ng Remarks
[e]e] lele]elele) ¢ )

An example

To use partition analysis to obtain a generating function, one must
@ find the crude form of the generating function, its Q> expression with variables in
place of each part;
@ apply appropriate elimination formulae;
© substitute g for variables corresponding to summands (and 1 for the rest).
We use g; to keep track of the “links” (the a;'s) and w to keep track of the
nodes (the bj «'s).

- "
inner

E.g., to find the generating function for classical partitions with at most three parts:

ao A by m ai
Start with the crude form
by a1
0 ¥ ettt =g Y o (o) ()
" ag,a1,01 >0 " ag,a1,01 >0 ! i
1
= et “ )
= (1= @)L= A ) (L — ;")
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Elimination identities

Now we need to eliminate A1 and p1.
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Elimination identities
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Now we need to eliminate A1 and p1.

MacMahon (1906) provides several elimination identities, including

Q 1 _ 1
> (1-=2)(1-A"1y)  (1-x)(1-xy)
1 1 — xixoy

Q =
=

=)@ - )T -A1y) (=) —e)(d —ay)(d —xy)
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Elimination identities

Now we need to eliminate A1 and p1.

MacMahon (1906) provides several elimination identities, including

1 B 1
WA - 00— %) )
1 1 — xixy

I —A )~ G- =) ) — )

1
(1= Xqo)(1 = AT uaw)(1 — iy ' an)
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Elimination identities

Now we need to eliminate A1 and p1.

MacMahon (1906) provides several elimination identities, including

1 B 1
WA - 00— %) )
1 1 — xixy

I —A )~ G- =) ) — )

1 1
-Q
(1= Aqo)(L = AT mw)(L = pitar) = (1= qo)(1 — paqow)(L — py 'an)
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Elimination identities

Now we need to eliminate A1 and p1.

MacMahon (1906) provides several elimination identities, including

1 1
W)~ A= =) M)
Q 1 _ 1 — xixy
2 A=A = b A=A Yy) — (=)@ = )1 —xy)( —xy)
Using (1),
Q L -Q 1
> (1= Mqo)(1 = A7 aw)(X = prtqr) = (1= qo)(1 — mqow)(1 — oy )

1
T 1)@ — qw)(T - qqw)’
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Elimination identities

Now we need to eliminate A1 and p1.

MacMahon (1906) provides several elimination identities, including

1 1
W)~ A= =) M)
Q 1 _ 1 — xixy
2 A=A = b A=A Yy) — (=)@ = )1 —xy)( —xy)
Using (1),
Q L -Q 1
> (1= Mqo)(1 = A7 aw)(X = prtqr) = (1= qo)(1 — mqow)(1 — oy )

1
(1= qo)(1 — qow)(1 — qoqiw)
Letting go = g1 = w = g, the generating function is

1
1-q)(1-¢*)(1-¢%)
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Extendmg MacMahon's |dent|t|es

We will need the following generalization of the previous identities.

Lemma (D.-Jameson-Sellers-Wilson)
Ford > 1 and j € Z, we have
o N 1 { 1
>(1=da) - (I=-da)(1-Ay)  (1-y) [A-xx) - (1-x)
yitt
7(1—X1y)-~~(1—><dy)} '
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Extending MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

o N _ 1 { 1
ST—) @A) (T A ly) - (@T—y) [T=x) (T x)
yitt
(1—xy) - (1—xay)|

Proof (sketch). We have

N i _
Q -Q )\J+31+"‘+3d Ad+1 4,21 |, 43\, 3d+1
> (1*AXl)“-(l*AXd)(l*)\_ly) > Z % XdaY
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Extendmg MacMahon's identities

Lemma (D.-Jameson-Sellers-Wilson)

o N _ 1 { 1

ST—) @A) (T A ly) - (@T—y) [T=x) (T x)
yitt
C(T=xay) (1= xay)

Proof (sketch). We have

N ; _
Q -Q )\J+31+"‘+3d Ad+1 4,21 |, 43\, 3d+1
> (1*AXl)“-(l*AXd)(l*)\_ly) > Z % XdaY

— §>2 E A Xlal . _dey31+ +ag+J

ag,...,aq>0
0< k<ay+-+ag+j
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Extendmg MacMahon's |dent|t|es

Lemma (D.-Jameson-Sellers-Wilson)

o N _ 1 { 1

ST—) @A) (T A ly) - (@T—y) [T=x) (T x)
yitt
C(T=xay) (1= xay)

Proof (sketch). We have

N ; _
Q -Q )\J+31+"‘+3d Ad+1 4,21 |, 43\, 3d+1
> (1*AXl)“-(l*AXd)(l*)\_ly) > Z % XdaY

k_a ag  ai+---tag+j—k
-Q S Nt xaayattag
> @y

ag,...,aq>0
0< k<ay+-+ag+j

ay+--tag+j

_ E ay aq E k
= Xl e Xd Yy,
. k=0

a,...,ag >0
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Extendmg MacMahon's |dent|t|es

Lemma (D.-Jameson-Sellers-Wilson)

o N _ 1 { 1

ST—) @A) (T A ly) - (@T—y) [T=x) (T x)
yitt
C(T=xay) (1= xay)

Proof (sketch). We have

N ; _
Q -Q )\J+31+"‘+3d Ad+1 4,21 |, 43\, 3d+1
> (1*AXl)“-(l*AXd)(l*)\_ly) > Z % XdaY

k_a ag  ai+---tag+j—k
-Q S Nt xaayattag
> @y

ag,...,aq>0
0< k<ay+-+ag+j

ay+--tag+j
_ ay aq k
D I T D D
ar,...,aq>0 k=0

and the result follows from finite geometric series. [
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Crude forms for d-fold partition driramrcr)nds

Set Dg,n == Da,n(qo, g1, .., gn; w) to be the generating function for d-fold partition
diamonds of fixed length n.
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Crude forms for d-fold partition dlamonds

Set Dg,n == Da,n(qo, g1, .., gn; w) to be the generating function for d-fold partition
diamonds of fixed length n. Label the edges on the left (resp. right) of the jth diamond
)\1,j7 )\z,j, ey Adyj (resp. M1,y 2,5y« - Hud,j)-
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Crude forms for d-fold partition dlamonds

Set Dg,n == Da,n(qo, g1, .., gn; w) to be the generating function for d-fold partition
diamonds of fixed length n. Label the edges on the left (resp. right) of the jth diamond
)\1,j7 )\z,j, ey Adyj (resp. M1,y 2,5y« - Hud,j)-

For d,n>1and 1 < k < n, define
1

h = hd = m
fi = fi,g = PP e 1 EYS Y
( *T:IW) (1*Ade)'(17WQk+l)
En = Bnd = 1= w1

Hn, 1 Hn,d
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Crude forms for d-fold partition dlamonds

Set Dg,n == Da,n(qo, g1, .., gn; w) to be the generating function for d-fold partition
diamonds of fixed length n. Label the edges on the left (resp. right) of the jth diamond
)\1,j7 )\z,j, ey Adyj (resp. M1,y 2,5y« - Hud,j)-

For d,n>1and 1 < k < n, define
1

h = hd = m
fi = fi,g = PP e 1 EYS Y
( *T:IW) (1*Ade)'(17WQk+l)
En = Bnd = 1= w1

Hn, 1 Hn,d

Fact:
Dd,n:gh‘ﬂ"'ﬁ/‘gn-
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The crude forms (continued)

For p > 0 we will need D((jf’g = Dg’fg(qo, g1, , qn; w), which is defined to be the
generating function for d-fold partition diamonds of fixed length n, with a, > p.
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The crude forms (continued)

For p > 0 we will need D((jf’g = Dg’fg(qo, g1, , qn; w), which is defined to be the
generating function for d-fold partition diamonds of fixed length n, with a, > p.
Another fact: ,
) —Qh-fif g [ — 9
de_gh ﬂ fn & (Nn,l“’ﬂn,d) '
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The crude forms (continued)

For p > 0 we will need D((jf’g = Dg’fg(qo, g1, , qn; w), which is defined to be the
generating function for d-fold partition diamonds of fixed length n, with a, > p.

Another fact: ,
O —Qh-fie f. G
an_gh -t g,,( un,d) .
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The crude forms (continued)

For p > 0 we will need D((jf’g = Dg’fg(qo, g1, , qn; w), which is defined to be the
generating function for d-fold partition diamonds of fixed length n, with a, > p.

Another fact: ,
)

DY) = (qo- - )’ w* Dy .

This can be shown algebraically, or combinatorially via a bijection between the sets of

partitions.
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Theorem

Ford>1andn>1,

) Fa(Q w, w) 1
Pl oot ) = (H (1- kajk) : (1 = Quwdktd) | 1 — Quwdn’

where Fy is as previously defined and Qx ‘= qoq1 - - - qk-
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Theorem

Theorem (D.-Jameson-Sellers-Wilson)
Ford>1andn>1,

n—1
) Fa(Q de,w) 1
Dd,n(q07 < ey qn; W) = (kH (1 — kajk) k(l — Qdek+d) 1_ Qan"’
=0

where Fy is as previously defined and Qx ‘= qoq1 - - - qk-

Note that
= n_ oy v o T Falg" D )
> ra(n)g" = lim Da.n(q,--,q:9) = 11 T
n=0 n=1
= n__ — - Fd(qn)7 1
;saf(n)q = lim Dan(q,--,q,1) = 1:[1 A= gt
d-Fold Partition Diamonds 19/28
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Proof outline

Here we sketch the proof, by:
@ treating thecase d =1,n=1 (i.e., D11)
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Proof outline

Here we sketch the proof, by:
@ treating thecase d =1,n=1 (i.e., D11)
@ for n =1 fixed, inductively proving the result for Dg 1
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[e]o] le]e]ele)

Proof outline

ng Remarks

Here we sketch the proof, by:
@ treating thecase d =1,n=1 (i.e., D11)
@ for n =1 fixed, inductively proving the result for Dg 1
© for arbitrary d, inducting on n starting from Dy 1
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The base case D ;

@ We must show
1
1—qo)(1 - qow)(1 — qoquw)’

D1,1(Q07 qi, W) = (
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[e]e]e] Jelele] [ )

The base case D ;

@ We must show

1
1—qo)(1— qow)(1 — qoqiw)’

D1,1(Q07 qi, W) = (

@ But a 1-fold partition diamond of length 1 is classical partition with at most three
parts.

@ This was exactly the conclusion of the previous example.
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Induction on d

ng Remarks

@ Now we want to show for d > 1 that
Fd(CIO: W)

Da1(d0, @1 W) = T =0T~ qow) — (1 — qow?) - (1 — o)
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Induction on d

@ Now we want to show for d > 1 that

_ Fa(qo, w)
(1= qo)(1 —qow)--- (1~ qow?) - (1 — qoqrw?)

Dq.1(qo, g1; w)

@ Suppose the result holds for d — 1. Then

1
Da.1(qo, qu; w) = Q - -
> (17)\1~~-/\dq0)~ (17)\1 1,LL1W)~--(17Ad1/LdW)

1
(L—pitpgtar)
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000 [e] 0000@00

Induction on d

@ Now we want to show for d > 1 that

_ Fa(qo, w)
(1= qo)(1 —qow)--- (1~ qow?) - (1 — qoqrw?)

Dq.1(qo, g1; w)

@ Suppose the result holds for d — 1. Then

1
Da.1(qo, qu; w) = Q - -
> (17)\1~~-/\dq0)~ (17)\1 1,LL1W)~--(17Ad1/LdW)

1
(T—ptpgtan)
Dy—1,1(Xaqo, 1ty qu; w)

1-— A;ludw

=Q
>
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[e]e]e]e] Tele]

Induction on d

@ Now we want to show for d > 1 that

Fa(qo, w)
1—qo)(1—qow) - (1—qow?) - (1 — qoqiw)

Da,1(qo, q1; w) = (

@ Suppose the result holds for d — 1. Then

1
Da.1(qo, qu; w) = Q - -
> (17)\1~~-/\dq0)~ (17)\1 1,LL1W)~--(17Ad1/LdW)

1
(T—ptpgtan)
Dy—1,1(Xaqo, 1ty qu; w)

1-— A;ludw

v

Fa-1(Adqo, w)
(1= Adq0) -+~ (L = Agqow?1)(L — 3¢ qoqrwd1)(1 — 44w)

Il
v

Dalen Dockery d-Fold Partition Diamonds 22/28



The Main Theorem ng Remarks
[e]e]e]e] Tele]

Induction on d

@ Now we want to show for d > 1 that

Fa(qo, w)
1—qo)(1—qow) - (1—qow?) - (1 — qoqiw)

Da,1(qo, q1; w) = (

@ Suppose the result holds for d — 1. Then

1
Da.1(qo, qu; w) = Q - -
> (17)\1~~-/\dq0)~ (17)\1 1,LL1W)~--(17Ad1/LdW)

1
(T—ptpgtan)
Dy—1,1(Xaqo, 1ty qu; w)

1-— A;ludw

v

Fa—1(Aaqo, w)
(1= Adq0) -+~ (L = Agqow?1)(L — 3¢ qoqrwd1)(1 — 44w)
_ 1 Q Fa—1(Aaqo, w)
1-— qoq1Wd > (1 — )\dqo) cee (1 — Adqowdfl)(l — )\le)

Il
v

by eliminating 4.
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Induction on d (continued)

@ Set

n

Fa—1(qo, w) = Z ai(W)CI(i)-

i=0
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Induction on d (continued)

@ Set

n

Fa—1(qo, w) = Z ai(W)CI(i)-

i=0
Then
> ai(w)ao N
i=0 Q d
1= qoqiw? > (1 - Agqo) -+ (1 — Agqow?1)(1 — A 'w)

Dd1(qo, g1; w) =
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Induction on d (continued)

@ Set .,
Fa—1(qo, w) = Z ai(w)qg.
=0
Then
> ai(w)ao ;
Dy 1(qo, q1; w) = =2 Q Ad -
7 1= qoqw? > (1 - Xgqo) -~ (1 — Agqow?1)(1 — Az w)
> ai(w)ap

0

ng Remarks

1—w
by applying our lemma.

Dalen Dockery

d-Fold Partition Diamonds 23 /28
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Induction on d (continued)

@ Set .,
Fa—1(qo, w) = Z ai(w)qg.
=0
Then
> ai(w)ao ;
Dy 1(qo, q1; w) = =2 Q Ad -
7 1= qoqw? > (1 - Xgqo) -~ (1 — Agqow?1)(1 — Az w)
> ai(w)ap

ng Remarks

1—w
by applying our lemma. So we have shown the numerator is

n

> ailwyah |1t (@],

. 1—w 1—w
i=0

which simplifies to F4(qo, w)

Dalen Dockery

d-Fold Partition Diamonds 23/28
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Induction on n (sketch

@ We want to show

Fd(Q"de7 W)D"(q07 co 5 dn, W)
1— andn+l) . (1 _ andn+d)(1 _ Qn+1Wd"+d).

Dd,n+1(q07 <.y Qdn; W) = (
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Induction on n (sketch)

@ We want to show

Fd(Q"de7 W)D"(q07 co 5 dn, W)
_ andn+l) . (1 _ andn+d)(1 _ Qn+1Wd"+d).

Dd,n+1(q07 <.y Qdn; W) = (1
@ Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds

for n, and note

Dy i1 == §>2 h-fi - fop1- g1
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Induction on n (sketch

@ We want to show

Fd(Q"de7 W)D"(q07 co 5 dn, W)
_ andn+l) . (1 _ andn+d)(1 _ Qn+1Wd"+d).

Dd,n+1(q07 <.y Qdn; W) = (1

@ Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds
for n, and note

Dy n+1 =:§>2h~f1--'fn+1'gn+1
1 1
N . Ant11e A1,
(1 fmw) (1= few) (120

1 1

s Hntl,d 1
1 — KBettdl ) oo (1 — Entld 1—-—r
( Ant1,1 Antl,d lmi11fini1a A1

=Qh-fi-fo1
>
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000000

Induction on n (sketch)

@ We want to show

. Fd(Q"devw)D"(qov”' 7q";W)
Dg,ni1(qos - -, gnsw) = = Qw1 - (1= Quwaa)(1 — Qurrwaa)’

@ Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds
for n, and note

Dy i1 == §>2 h-fi - fop1- g1

=Qh-fi-fo1 1 1
>

(]_ — %W) (]_ — ‘;:Z W) <1 A1 Ani1d CIn)

Hn,1°"Hn,d

1
(1= fmw) (- dmew) (- )

Hn+1,1°"Hntl,d

@ Use the case Dg,1 on the last d + 2 terms (in red), obtaining an expression
involving D((f,),.

Dalen Dockery
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Induction on n (sketch

@ We want to show

Fd(Q"de7 W)D"(q07 co 5 dn, W)
_ andn+l) . (1 _ andn+d)(1 _ Qn+1Wd"+d).

Dd,n+1(q07 <.y Qdn; W) = (1

@ Follow the proof of Andrews-Paule-Riese 2001. Suppose that the conclusion holds
for n, and note

Dy n+1 =:§>2h~f1--'fn+1'gn+1
1 1
N . Ant11e A1,
(1 fmw) (1= few) (120

1 1

s Hntl,d 1
1 — KBettdl ) oo (1 — Entld 1—-—r
( Ant1,1 Antl,d lmi11fini1a A1

=Qh-fi-fo1
>

@ Use the case Dg,1 on the last d + 2 terms (in red), obtaining an expression
involving D((f,),.

@ Apply the relationship between Dy, and DY) and simplify.
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Eulerian polynomials

The Eulerian polynomials Ag are defined for non-negative integers d by Ao(q) =1 and
ford > 1,

Ad(@) = (1+ (d — 1)q)A¢-1(q) + a(1 — 9)AY_1(q).
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Eulerian polynomials

The Eulerian polynomials Ag are defined for non-negative integers d by Ao(q) =1 and
ford > 1,

Ad(@) = (1+ (d — 1)q)A¢-1(q) + a(1 — 9)AY_1(q).

One quickly verifies that Fgq(q,1) = A4(q) for all d > 1.
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Eulerian polynomials

The Eulerian polynomials Ag are defined for non-negative integers d by Ao(q) =1 and
ford > 1,

Ad(@) = (1+ (d — 1)q)A¢-1(q) + a(1 — 9)AY_1(q).

One quickly verifies that Fgq(q,1) = A4(q) for all d > 1.
Euler (1768) showed

)d+1 Z(J +1)°
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Eulerian polynomials

The Eulerian polynomials Ag are defined for non-negative integers d by Ao(q) =1 and
ford > 1,

Ad(@) = (1+ (d — 1)q)A¢-1(q) + a(1 — 9)AY_1(q).

One quickly verifies that Fgq(q,1) = A4(q) for all d > 1.
Euler (1768) showed

( )d+1 Z(J + 1
Thus
= = Fa(q",1 °r Adg"
;5" = E T )dil = g 1- (qqn)c)iJrl
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Eulerian polynomials

The Eulerian polynomials Ag are defined for non-negative integers d by Ao(q) =1 and
ford > 1,

Ad(@) = (1+ (d — 1)q)A¢-1(q) + a(1 — 9)AY_1(q).

One quickly verifies that Fgq(q,1) = A4(q) for all d > 1.
Euler (1768) showed

( )d+1 Z(J + 1

Thus

<= R T Ade)
HZ:OSC’(”) - E (1 _ qn)d+1 - g (]_ — q")dJrl

(oo}

- U <ig + 1)%{”) .
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Schmidt type simplification

This simplified generating function allows us to prove a wide variety of congruences for
s4(n), such as the infinite family

s¢(2n4+1)=0 (mod 29)

for all d > 1 and all n > 0.
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Schmidt type simplification

Theorem

Concluding Remarks
00e0

This simplified generating function allows us to prove a wide variety of congruences for

s4(n), such as the infinite family
s¢(2n4+1)=0 (mod 29)
for all d > 1 and all n > 0.

Much more on congruences next week!
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Thank you! Questions?
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