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Notation

e Let 7 be a partition. We write 7 = (17,2% .. .), where f; is
the number of times a part / occurs in 7, also known as the
frequency of /.

e Thus (4,4,2,2,1) is expressed as (1',22,42).

e In this notation, it is clear that

| =) if.

i>1



First Conjecture

e () .1 denotes the set of partitions where the smallest part is s,
all parts are < L + s and L + s — 1 does not appear as a part.

o C; so is the set of partitions with parts in {s+1,..., L+ s}.

Conjecture (Berkovich and Uncu (2019))
There exists an M, which only depends on s, such that

‘{7T S CL7571 : ‘ﬂ‘ = N}‘ > ‘{7? € CL’572 : ‘ﬂ" = N}‘

for every N > M.



Second Conjecture

o if L>s+1, (], denotes the set of partitions where the
smallest part is s, all parts are < L + s, and L does not appear
as a part.

Conjecture (Berkovich and Uncu (2019))

For positive integers L > 3 and s, there exists an M, which only
depends on s, such that

{me Clsp:lnl =N} =|re Csa|n| =N},

for every N > M.



Third Conjecture

e The g-Pochhammer symbol is defined as

(9)h=(1—-2a)(l—aq)---(1— aq”fl).

e The series H; s /(q) is defined as

_(1-4 1
Fits(a) = T <(qs“;q)L 1>'

Conjecture (Berkovich and Uncu (2019))
For k > s+ 1, Hi s «k(q) is eventually positive.



Our Main Result

Theorem

For positive integers L, s and k, with L > 3 and k > s+ 1, the
coefficient of gV in Hy s k(q) is positive whenever N > I (s), where
I'(s) can be written explicitly in terms of s only.

o If L >3s+3and k > 25+ 2, the bound is O(s°).
e If L >3s+43and k < 2s+1, the bound is O(s'°).

o If L <3542, the bound is O((65)®)),



Fourth Conjecture

e The series G; 1(q) is defined as

Galg)= Y, g™ - > g,

e, TeU,
s(m)=1, s(m)>2,
I(m)—s(m)<L I(m)—s(m)<L

where s(7) and /() denote the smallest and largest parts of
w, respectively, and U denotes the set of partitions 7 with
|| > 0.

e The series G; 2(q) is defined as

Gralg)= g™ - > g,

TeU, TeU,
s(m)=2, s(m)>3,
I(m)—s(m)<L I(m)—s(m)<L



Theorem (Berkovich and Uncu (2019))
For L > 1,

~ Hiii(g)

GLi(q) = - gL = 0,
Hio1(q
Gro(q) = 1_—‘§L)

Conjecture (Berkovich and Uncu (2019))
For L =3,
GL72(q) + q3 + q9 + q15 =0,
for L = 4,
Ga(q)+ > +4° =0,
and for L > 5,
Gia(q) +¢° = 0.



Theorem (Berkovich and Uncu (2019))
For L > 1,

~ Hiii(g)

GLi(q) = - gL = 0,
Hio1(q
Gro(q) = 1_—‘§L)

Conjecture (Berkovich and Uncu (2019))
For L =3,
GL72(q) + q3 + q9 + q15 =0,

for L = 4,
GLo(q) +q*+¢° =0,

and for L > 5,
Gra(q) +¢* = 0.

Proved (B-Rattan 2020)



Helping Results

Lemma (Sylvester (1882))

For natural numbers a and b such that gcd(a, b) = 1, the equation
ax + by = n has a solution (x, y), with x and y nonnegative
integers, whenever n > (a —1)(b —1).

Lemma
Let s and n be positive integers such that n > s+ 1. Then, the
equation

n=_(s4+1)Xsy1+ (s +2)Xsyo + -+ (25 + 1) Xos+1

has a solution (Xs41, Xs42, ..., Xost+1), where X; is a nonnegative
integer for all i.



Proofs

of Zang and Zeng

Zang and Zeng also gave proofs of the first three conjectures.

Their proofs are analytic for some cases and combinatorial for
other cases, whereas our methods are entirely combinatorial.
While their methods are somewhat more straightforward than
ours, they produce results that are asymptotic and therefore
do not give explicit bounds.

In contrast, our methods produce explicit bounds on when

Hi s k(q) has positive coefficients and also lead to a proof of
the fourth conjecture.



Proof of First Conjecture for L > s+ 3

e F(s) =(10s — 2)(15s — 3) + 8s;
o K(s) = (125—1)<(s+1)+(s+2)+---(F(s)—1)) +1.

Theorem
If s and L are positive integers with L > s+ 3 and N > k(s), then

|{7T S CL,571 : |7T| = N}| > |{7T S CL,572 : |7T‘ = N}|

Sketch of Proof: We construct an injective map

p:{re Csp:|m|=N} - {me Cs1:|n|= N}



Strategy

e Recall that C; ;> consists of partitions with all parts lying
between s+ 1 and L +s.

o Any m € CL,572 has the form
T = ((S—i— 1)'(5“,...,(L—|— s ]_)st_l’ (L+5)fL+5> .

e () 51 denotes the set of partitions where the smallest part is s,
all parts are < L+ s and L + s — 1 does not appear as a part.

e To map 7 to a partition in C; 51, we need to remove all parts
of L+ s —1 (if any) and add some parts of s, while ensuring
that it still remains a partition of N.

e We consider several different cases depending on the
frequency of L + s — 1 in w, which we denote by f.



e QOur strategy for ensuring that ¢ is injective is to construct the
map in such a way that in different cases, the partitions in the
image have different frequencies of s.

Case Possible frequencies of s
1(a) | Odd numbers other than 15
1(b) 14
2(a) Multiples of 12
2(b)(i) 15
2(b)(ii) 20
2(b)(iii) 2,468

Table: The frequency of s in the image of a partition under the function
¢ in the different cases.



Case 1: Suppose that f > 1.

e Remove the f parts of L +s — 1 and to compensate add back
2f — 1 parts of s.

e Then we further need to add the number

(L+s—1)f —s(2f —1)=(L—s—1)f +s.



Case 1: Suppose that f > 1.

e Remove the f parts of L +s — 1 and to compensate add back
2f — 1 parts of s.

o Then we further need to add the number
(L+s—1)f—s(2f—-1)=(L—s—-1)_ f + s > s+ 1

N——_—
>1 21

e By an application of the division algorithm, this number can
be added by adding some parts of s +1,s+2,...,25 + 1.

e The frequency of s in the image is 2f — 1 and thus f can be
recovered from there.



Case 2: Suppose that f = 0.

Case 2(a): Suppose there exists m < F(s) with f,, > 12s. Let
mo be the least such number. Then define

olm) = (52, (s + 1), mgo 1),

From the frequency of s in the image, we can recover my.
Case 2(b): Suppose that for every m < F(s), f, < 12s. Then,

low freq.



Case 2: Suppose that f = 0.

Case 2(a): Suppose there exists m < F(s) with f,, > 12s. Let
mo be the least such number. Then define

olm) = (52, (s + 1), mgo 1),

From the frequency of s in the image, we can recover my.

Case 2(b): Suppose that for every m < F(s), f, < 12s. Then,

low freq.

Since N > k(s), there must exist an h > F(s) such that
fn > 0. Let / be the least such number.



e Thus, we can write 7 as
m= ((s—&—l)fsﬂ,...?(F(s)— 1)fF<s>—1,...,/f/,...).

e Since | > F(s), so | —8s > (10s — 2)(15s — 3), which is the
Frobenius number of 10s — 1 and 15s — 2. Thus,

| —8s = (10s — 1)x; + (155 — 2)y;.
o If we define
() = <58, ..., (10s — l)X“LﬂUS*l’ or, (155 — 2)y/+f15572,

L (F(s) — D)o (i1 )



e Thus, we can write 7 as
m= ((s—&—l)fsﬂ,...?(F(s)— 1)fF<s>—1,...,/f/,...).

e Since | > F(s), so | —8s > (10s — 2)(15s — 3), which is the
Frobenius number of 10s — 1 and 15s — 2. Thus,

| —8s = (10s — 1)x; + (155 — 2)y;.

o If we define



e Case 2(b)(i): If fss41 > 1 and fips—1 > 1, then define

o(r) = (515, o (Bs + 1)BenL (105 — 1)fies-17L ) .
e Case 2(b)(ii): If fss12 > 1 and fi5s_» > 1, then define

o(m) = (520, ooy (Bs 4 2)Bsret (155 — 2)fiss2l ) .

o Case 2(b)(iii): If fs5s410 =0 or figs—1 = 0 and fss10 = 0 or
fiss_o = 0. Then, at least one of the following statements is
true:

° x T1: fssy1 =0 and fss40 = 0;
® kk T22 7[55+1 =0 and f15572 =0;
e xx*x T3: figs—1 =0 and fss4 0 =0;

® k% %k T4Z f105,1 =0 and f155,2 =0.

Suppose Ty is true.



Using Frobenius numbers,

| —8s = (10s — 1)x; + (155 — 2)y;.

Define
o(m) = <58, (s+1)%1, ..., (10s — 1), ..., (155 — 2)",
L (F(s) - 1)fF<s>—1,...,/ff*1,...).
From x; and y;, we can recover /.

This completes the proof of the first conjecture in the given
case L > s+ 3.



Proof for L < s+ 2
Allowed interval:
{s+1,s+2,--- ,L+s}C{s+1,s+2,---,25+2}.
o Ss=(s+1)+(s+2)+ -+ (25+2);
o Pi=(s+1)(s+2)---(2s+2);
Qs=(P2—1)(s+2)+2
1(s) = e (P& +(Q: = 4) Py).

Theorem
If s and L are positive integers with L > s+ 3 and N > ~(s), then

|{7T€CL51 |7T| N}|>|{7T€CL52 |7T‘ N}|



Sketch of Proof

Set f = fi 151, so a partition in the domain has the form
T = ((S—|— 1)'(5+1,...,(L—|—S— 1)F,(L+S)f“5),

Case 1: Suppose f = 0. Since N > ~(s) is large enough, there is
an msuchthats+1<m< L+ sand f,, > s. Let mg be the
least such number. Then define

P(m) = (s™, (s + 1)1, ... omm° ).
The frequency of s in a partition in its image is in the set
Ui={s+1,...,L+s}C{s+1,...,2s+2}.

Case 2: Suppose that f # 0 in 7.



Creating Gaps

Case 2(a): Suppose 7 has f > P2. First suppose P2 < f < P2,
Then, we use

(L+s—1)f =s(f — Ps) + (s + 1)xr + (s + 2)yr.
Next suppose P> < f < PZ. Then, we use
(L+s—1)f =s(f) +(s+ 1)xr + (s + 2)yr.
Next suppose P? < f < P2. Then, we use
(L+s—1)f =s(f+ Ps)+ (s + 1)xr + (s + 2)yr.
Allowed because the difference
(L+s—1)f —s(f+Ps)=(L—1)f — sPs

is still a large number for P? < f < P2.



The Gaps

Values of f | Possible frequencies of s in () Gaps created
['D527P§) [’DSZ_PSa'Dg_'Ds) —
['D§7P§) [Pgapg) [PS_P&PS)
[P¢, P2) [P + Ps, P + Ps) [P¢, P + Ps)
[P2, P2) [P + 2P, P + 2P;) [P + P, P2 +2P;)

Table: The gaps created by suitably choosing frequencies of s in the

image.

Thus the gaps are: [(P! + (n—4)Ps), (P! 4 (n—3)Ps)) ¥n > 3.
We will only require the gaps P! + (n — 4)P;s for our purpose.




Case 2(b): Suppose that 1 < f < PZin . Forany 0 < i < P2 and
1< h<IL, set

mip = PYIE2) (G 1)L+ (h—2))Ps.

Since N > 7(s) is large enough, there exists an h such that
1<h<Land
forh = Mr p.

Let p be the least integer 1 < h < L for which this equation is
satisfied. Then, £, > myr ,. Notice that my , is divisible by Ps,
and thus also by (s + p); hence, we can define j¢ , by

sMf.p
s+p

Jfp =

Note that £, > jr ,. Our idea is to remove jr , parts of s + p and
compensate by adding my , parts of s.



Adjusting L + s — 1 terms

We remove all the f parts of L + s — 1 and compensate in the
following way:

e If f is even, we add L+ s —2 and L + s both with a frequency
of g

e Iff >3isodd,weadd L +s—3, L+s—2and L+ s with a
frequency of 1, /52 and “ respectively.
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