Berkovich and Uncu's Conjectures regarding partition inequalities

Damanvir Singh Binner IISER Mohali, India

Joint work with A. Rattan (SFU, Canada)

Specialty Seminar in Partition Theory, q-Series and Related Topics, Michigan Technological University. Nov. 4, 2021.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Notation

- Let π be a partition. We write $\pi = (1^{f_1}, 2^{f_2}, ...)$, where f_i is the number of times a part *i* occurs in π , also known as the frequency of *i*.
- Thus (4, 4, 2, 2, 1) is expressed as (1¹, 2², 4²).
- In this notation, it is clear that

$$|\pi|=\sum_{i\geq 1}if_i.$$

First Conjecture

- $C_{L,s,1}$ denotes the set of partitions where the smallest part is *s*, all parts are $\leq L + s$ and L + s 1 does not appear as a part.
- $C_{L,s,2}$ is the set of partitions with parts in $\{s+1, \ldots, L+s\}$.

Conjecture (Berkovich and Uncu (2019)) There exists an *M*, which only depends on *s*, such that

 $|\{\pi \in C_{L,s,1} : |\pi| = N\}| \ge |\{\pi \in C_{L,s,2} : |\pi| = N\}|$

for every $N \geq M$.

Second Conjecture

if L ≥ s + 1, C^{*}_{L,s,1} denotes the set of partitions where the smallest part is s, all parts are ≤ L + s, and L does not appear as a part.

Conjecture (Berkovich and Uncu (2019))

For positive integers $L \ge 3$ and s, there exists an M, which only depends on s, such that

 $|\{\pi \in C^*_{L,s,1} : |\pi| = N\}| \ge |\{\pi \in C_{L,s,2} : |\pi| = N\}|,$

for every $N \geq M$.

Third Conjecture

• The *q*-Pochhammer symbol is defined as

$$(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1}).$$

• The series $H_{L,s,k}(q)$ is defined as

$$H_{L,s,k}(q) = rac{q^s(1-q^k)}{(q^s;q)_{L+1}} - igg(rac{1}{(q^{s+1};q)_L}-1igg).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Berkovich and Uncu (2019)) For $k \ge s + 1$, $H_{L,s,k}(q)$ is eventually positive.

Theorem

For positive integers L, s and k, with $L \ge 3$ and $k \ge s + 1$, the coefficient of q^N in $H_{L,s,k}(q)$ is positive whenever $N \ge \Gamma(s)$, where $\Gamma(s)$ can be written explicitly in terms of s only.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- If $L \ge 3s + 3$ and $k \ge 2s + 2$, the bound is $O(s^5)$.
- If $L \ge 3s + 3$ and $k \le 2s + 1$, the bound is $O(s^{10})$.
- If $L \le 3s + 2$, the bound is $O((6s)^{(6s)^{18s}})$.

Fourth Conjecture

• The series $G_{L,1}(q)$ is defined as

$$G_{L,1}(q) = \sum_{\substack{\pi \in \mho, \ s(\pi)=1, \ l(\pi)-s(\pi) \leq L}} q^{|\pi|} - \sum_{\substack{\pi \in \mho, \ s(\pi)\geq 2, \ l(\pi)-s(\pi) \leq L}} q^{|\pi|},$$

where $s(\pi)$ and $l(\pi)$ denote the smallest and largest parts of π , respectively, and \mho denotes the set of partitions π with $|\pi| > 0$.

• The series $G_{L,2}(q)$ is defined as

$$G_{L,2}(q) = \sum_{\substack{\pi \in \mho, \ s(\pi) = 2, \ l(\pi) - s(\pi) \leq L}} q^{|\pi|} - \sum_{\substack{\pi \in \mho, \ s(\pi) \geq 3, \ l(\pi) - s(\pi) \leq L}} q^{|\pi|},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Berkovich and Uncu (2019)) For $L \ge 1$,

$$G_{L,1}(q) = rac{H_{L,1,L}(q)}{1-q^L} \succeq 0,$$

 $G_{L,2}(q) = rac{H_{L,2,L}(q)}{1-q^L}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Berkovich and Uncu (2019)) For L = 3, $G_{L,2}(q) + q^3 + q^9 + q^{15} \succeq 0$, for L = 4, $G_{L,2}(q) + q^3 + q^9 \succeq 0$, and for $L \ge 5$, $G_{L,2}(q) + q^3 \succeq 0$. Theorem (Berkovich and Uncu (2019)) For $L \ge 1$,

$$G_{L,1}(q) = rac{H_{L,1,L}(q)}{1-q^L} \succeq 0,$$

 $G_{L,2}(q) = rac{H_{L,2,L}(q)}{1-q^L}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjecture (Berkovich and Uncu (2019)) For L = 3, $G_{L,2}(q) + q^3 + q^9 + q^{15} \succeq 0$, for L = 4, $G_{L,2}(q) + q^3 + q^9 \succeq 0$, and for $L \ge 5$, $G_{L,2}(q) + q^3 \succeq 0$.

Proved (B-Rattan 2020)

Helping Results

Lemma (Sylvester (1882))

For natural numbers a and b such that gcd(a, b) = 1, the equation ax + by = n has a solution (x, y), with x and y nonnegative integers, whenever $n \ge (a - 1)(b - 1)$.

Lemma

Let s and n be positive integers such that $n \ge s + 1$. Then, the equation

$$n = (s+1)X_{s+1} + (s+2)X_{s+2} + \dots + (2s+1)X_{2s+1}$$

has a solution $(X_{s+1}, X_{s+2}, \ldots, X_{2s+1})$, where X_i is a nonnegative integer for all *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proofs of Zang and Zeng

- Zang and Zeng also gave proofs of the first three conjectures.
- Their proofs are analytic for some cases and combinatorial for other cases, whereas our methods are entirely combinatorial.
- While their methods are somewhat more straightforward than ours, they produce results that are asymptotic and therefore do not give explicit bounds.
- In contrast, our methods produce explicit bounds on when *H*_{L,s,k}(q) has positive coefficients and also lead to a proof of the fourth conjecture.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of First Conjecture for $L \ge s + 3$

•
$$F(s) = (10s - 2)(15s - 3) + 8s;$$

•
$$\kappa(s) = (12s - 1)((s + 1) + (s + 2) + \cdots (F(s) - 1)) + 1.$$

Theorem If s and L are positive integers with $L \ge s + 3$ and $N \ge \kappa(s)$, then

 $|\{\pi \in C_{L,s,1} : |\pi| = N\}| \geq |\{\pi \in C_{L,s,2} : |\pi| = N\}|.$

Sketch of Proof: We construct an injective map

 $\phi: \{\pi \in C_{L,s,2}: |\pi| = N\} \to \{\pi \in C_{L,s,1}: |\pi| = N\}.$

Strategy

- Recall that C_{L,s,2} consists of partitions with all parts lying between s + 1 and L + s.
- Any $\pi \in C_{L,s,2}$ has the form

$$\pi = \left((s+1)^{f_{s+1}}, \dots, (L+s-1)^{f_{L+s-1}}, (L+s)^{f_{L+s}} \right).$$

- $C_{L,s,1}$ denotes the set of partitions where the smallest part is s, all parts are $\leq L + s$ and L + s 1 does not appear as a part.
- To map π to a partition in C_{L,s,1}, we need to remove all parts of L + s - 1 (if any) and add some parts of s, while ensuring that it still remains a partition of N.
- We consider several different cases depending on the frequency of L + s 1 in π , which we denote by f.

 Our strategy for ensuring that φ is injective is to construct the map in such a way that in different cases, the partitions in the image have different frequencies of s.

Case	Possible frequencies of s	
1(a)	Odd numbers other than 15	
1(b)	14	
2(a)	Multiples of 12	
2(b)(i)	15	
2(b)(ii)	20	
2(b)(iii)	2,4,6,8	

Table: The frequency of s in the image of a partition under the function ϕ in the different cases.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Case 1: Suppose that $f \geq 1$.

- Remove the f parts of L + s 1 and to compensate add back 2f 1 parts of s.
- Then we further need to add the number

$$(L+s-1)f - s(2f-1) = (L-s-1)f + s.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Case 1: Suppose that $f \geq 1$.

- Remove the f parts of L + s 1 and to compensate add back 2f 1 parts of s.
- Then we further need to add the number

$$(L+s-1)f-s(2f-1)=\underbrace{(L-s-1)}_{\geq 1}\underbrace{f}_{\geq 1}+s\geq s+1.$$

- By an application of the division algorithm, this number can be added by adding some parts of s + 1, s + 2, ..., 2s + 1.
- The frequency of s in the image is 2f 1 and thus f can be recovered from there.

- Case 2: Suppose that f = 0.
- Case 2(a): Suppose there exists m < F(s) with $f_m \ge 12s$. Let m_0 be the least such number. Then define

$$\phi(\pi) = \left(s^{12m_0}, (s+1)^{f_{s+1}}, \dots, m_0^{f_{m_0}-12s}, \dots\right).$$

- From the frequency of s in the image, we can recover m_0 .
- Case 2(b): Suppose that for every m < F(s), $f_m < 12s$. Then,

$$\pi = \left(\underbrace{(s+1)^{f_{s+1}}, \dots, (F(s)-1)^{f_{F(s)-1}}}_{low freq.}, \dots, \right).$$

- Case 2: Suppose that f = 0.
- Case 2(a): Suppose there exists m < F(s) with $f_m \ge 12s$. Let m_0 be the least such number. Then define

$$\phi(\pi) = \left(s^{12m_0}, (s+1)^{f_{s+1}}, \dots, m_0^{f_{m_0}-12s}, \dots\right).$$

- From the frequency of s in the image, we can recover m_0 .
- Case 2(b): Suppose that for every m < F(s), $f_m < 12s$. Then,

$$\pi = \left(\underbrace{(s+1)^{f_{s+1}}, \ldots, (F(s)-1)^{f_{F(s)-1}}}_{\textit{low freq.}}, \ldots,
ight).$$

• Since $N \ge \kappa(s)$, there must exist an $h \ge F(s)$ such that $f_h > 0$. Let l be the least such number.

• Thus, we can write π as

$$\pi = \left((s+1)^{f_{s+1}}, \dots, (F(s)-1)^{f_{F(s)-1}}, \dots, I^{f_l}, \dots \right).$$

• Since $l \ge F(s)$, so $l - 8s \ge (10s - 2)(15s - 3)$, which is the Frobenius number of 10s - 1 and 15s - 2. Thus,

$$I - 8s = (10s - 1)x_I + (15s - 2)y_I.$$

• If we define

$$\phi(\pi) = \left(s^8, \dots, (10s-1)^{x_l + f_{10s-1}}, \dots, (15s-2)^{y_l + f_{15s-2}}, \dots, (F(s)-1)^{f_{F(s)-1}}, I^{f_{l-1}}, \dots\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Thus, we can write π as

$$\pi = \left((s+1)^{f_{s+1}}, \ldots, (F(s)-1)^{f_{F(s)-1}}, \ldots, I^{f_l}, \ldots \right).$$

• Since $l \ge F(s)$, so $l - 8s \ge (10s - 2)(15s - 3)$, which is the Frobenius number of 10s - 1 and 15s - 2. Thus,

$$I - 8s = (10s - 1)x_I + (15s - 2)y_I.$$

• If we define

$$\phi(\pi) = \left(s^8, \dots, (10s-1)^{x_l}, \dots, (15s-2)^{y_l}, \dots, (F(s)-1)^{f_{F(s)-1}}, I^{f_l-1}, \dots\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Case 2(b)(i): If $f_{5s+1} \ge 1$ and $f_{10s-1} \ge 1$, then define

$$\phi(\pi) = \left(s^{15}, \dots, (5s+1)^{f_{5s+1}-1}, \dots, (10s-1)^{f_{10s-1}-1}, \dots\right).$$

• Case 2(b)(ii): If $f_{5s+2} \ge 1$ and $f_{15s-2} \ge 1$, then define

$$\phi(\pi) = \left(s^{20}, \ldots, (5s+2)^{f_{5s+2}-1}, \ldots, (15s-2)^{f_{15s-2}-1}, \ldots\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Case 2(b)(iii): If f_{5s+1} = 0 or f_{10s-1} = 0 and f_{5s+2} = 0 or f_{15s-2} = 0. Then, at least one of the following statements is true:
- \star T_1 : $f_{5s+1} = 0$ and $f_{5s+2} = 0$;
- ****** T_2 : $f_{5s+1} = 0$ and $f_{15s-2} = 0$;
- * * * T_3 : $f_{10s-1} = 0$ and $f_{5s+2} = 0$;
- * * ** T_4 : $f_{10s-1} = 0$ and $f_{15s-2} = 0$.

Suppose T_4 is true.

• Using Frobenius numbers,

$$l - 8s = (10s - 1)x_l + (15s - 2)y_l$$

• Define

$$\phi(\pi) = \left(s^{8}, (s+1)^{f_{s+1}}, \dots, (10s-1)^{x_{l}}, \dots, (15s-2)^{y_{l}}, \dots, (F(s)-1)^{f_{F(s)-1}}, \dots, I^{f_{l}-1}, \dots\right).$$

- From x_l and y_l , we can recover l.
- This completes the proof of the first conjecture in the given case L ≥ s + 3.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof for $L \leq s + 2$

Allowed interval:

 $\{s+1, s+2, \cdots, L+s\} \subset \{s+1, s+2, \cdots, 2s+2\}.$

•
$$S_s = (s+1) + (s+2) + \cdots + (2s+2);$$

- $P_s = (s+1)(s+2)\cdots(2s+2);$
- $Q_s = (P_s^2 1)(s + 2) + 2;$
- $\gamma(s) = S_s \left(P_s^{Q_s} + (Q_s 4) P_s \right).$

Theorem

If s and L are positive integers with $L \ge s + 3$ and $N \ge \gamma(s)$, then

 $|\{\pi \in C_{L,s,1} : |\pi| = N\}| \ge |\{\pi \in C_{L,s,2} : |\pi| = N\}|.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Sketch of Proof

Set $f = f_{L+s-1}$, so a partition in the domain has the form

$$\pi = ((s+1)^{f_{s+1}}, \dots, (L+s-1)^{f}, (L+s)^{f_{L+s}}).$$

Case 1: Suppose f = 0. Since $N \ge \gamma(s)$ is large enough, there is an *m* such that $s + 1 \le m \le L + s$ and $f_m \ge s$. Let m_0 be the least such number. Then define

$$\psi(\pi) = (s^{m_0}, (s+1)^{f_{s+1}}, \dots, m_0^{f_{m_0}-s}, \dots).$$

The frequency of s in a partition in its image is in the set

$$U_1 = \{s + 1, \dots, L + s\} \subset \{s + 1, \dots, 2s + 2\}$$

Case 2: Suppose that $f \neq 0$ in π .

Creating Gaps

Case 2(a): Suppose π has $f \ge P_s^2$. First suppose $P_s^2 \le f < P_s^3$. Then, we use

 $(L+s-1)f = s(f-P_s) + (s+1)x_f + (s+2)y_f.$

Next suppose $P_s^3 \leq f < P_s^4$. Then, we use

 $(L+s-1)f = s(f) + (s+1)x_f + (s+2)y_f.$

Next suppose $P_s^4 \leq f < P_s^5$. Then, we use

 $(L+s-1)f = s(f+P_s) + (s+1)x_f + (s+2)y_f.$

Allowed because the difference

$$(L+s-1)f - s(f+P_s) = (L-1)f - sP_s$$

is still a large number for $P_s^4 \leq f < P_s^5$.

The Gaps

Values of f	Possible frequencies of s in $\psi(\pi)$	Gaps created
$[P_s^2, P_s^3)$	$[P_s^2 - P_s, P_s^3 - P_s)$	-
$[P_{s}^{3}, P_{s}^{4})$	$[P_{s}^{3}, P_{s}^{4})$	$[P_s^3 - P_s, P_s^3)$
$[P_{s}^{4}, P_{s}^{5})$	$[P_s^4 + P_s, P_s^5 + P_s)$	$[P_s^4, P_s^4 + P_s)$
$[P_s^5, P_s^6)$	$[P_s^5 + 2P_s, P_s^6 + 2P_s)$	$[P_s^5 + P_s, P_s^5 + 2P_s)$

Table: The gaps created by suitably choosing frequencies of s in the image.

Thus the gaps are: $[(P_s^n + (n-4)P_s), (P_s^n + (n-3)P_s)) \forall n \ge 3$. We will only require the gaps $P_s^n + (n-4)P_s$ for our purpose.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Case 2(b): Suppose that $1 < f < P_s^2$ in π . For any $0 < i < P_s^2$ and $1 \le h \le L$, set

$$m_{i,h} = P_s^{(i-1)L+(h+2)} + ((i-1)L+(h-2))P_s$$

Since $N \ge \gamma(s)$ is large enough, there exists an h such that $1 \le h \le L$ and

 $f_{s+h} \geq m_{f,h}$.

Let p be the least integer $1 \le h \le L$ for which this equation is satisfied. Then, $f_{s+p} \ge m_{f,p}$. Notice that $m_{f,p}$ is divisible by P_s , and thus also by (s + p); hence, we can define $j_{f,p}$ by

$$j_{f,p} = \frac{sm_{f,p}}{s+p}$$

Note that $f_{s+p} \ge j_{f,p}$. Our idea is to remove $j_{f,p}$ parts of s + p and compensate by adding $m_{f,p}$ parts of s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We remove all the f parts of L + s - 1 and compensate in the following way:

- If f is even, we add L + s 2 and L + s both with a frequency of $\frac{f}{2}$.
- If $f \ge 3$ is odd, we add L + s 3, L + s 2 and L + s with a frequency of 1, $\frac{f-3}{2}$ and $\frac{f+1}{2}$ respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

- Andrews, G., Beck, M. and Robbins, N., 2015. Partitions with fixed differences between largest and smallest parts. Proceedings of the American mathematical society, 143(10), pp.4283-4289.
- Binner, D.S. and Rattan, A., 2021. On Conjectures Concerning the Smallest Part and Missing Parts of Integer Partitions. Annals of Combinatorics, 25:697–728.
- Berkovich, A. and Uncu, A.K., 2019. Some elementary partition inequalities and their implications. Annals of Combinatorics, 23(2), pp.263-284.
- Zang, W.J. and Zeng, J., 2020. Gap between the largest and smallest parts of partitions and Berkovich and Uncu's conjectures. arXiv, pp.arXiv-2004.

THANK YOU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●