Some Legendre theorems for partitions with early conditions by

Darlison Nyirenda
University of the Witwatersrand, South Africa

Online Talk
9 February, 2023

Outline

- Introduction
- Motivation
- Partitions with initial repetitions
- On Andrews' partitions with initial 2-repetitions
- Variations

Definition

A partition of n shall be taken as a representation
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m} \geq 1$ such
that $\sum_{i=1}^{m} \lambda_{i}=n$

- Multiplicity notation: $\left(\mu_{1}^{m_{1}}, \mu_{2}^{m_{2}}, \mu_{3}^{m_{3}}, \cdots, \mu_{\ell}^{m_{\ell}}\right)$ in which m_{i} denotes the multiplicity of the part μ_{i} and $\mu_{1}>\mu_{2}>\cdots>\mu_{\ell}$. If $m_{i}=1$ for all i, we have a partition into distinct parts.
- $d(n)$: the number of partitions of n into distinct parts. Let $d^{e}(n)\left(\right.$ resp. $\left.d^{\circ}(n)\right)$ be the number of $d(n)$-partitions with even (resp. odd) length.

It turns out (by A.M. Legendre) that proved

$$
d^{e}(n)-d^{\circ}(n)= \begin{cases}(-1)^{j}, & \text { if } n=j(3 j \pm 1) / 2, j \geq 0 ; \tag{1}\\ 0, & \text { otherwise. }\end{cases}
$$

Hence, any partition theorem in the shape of Theorem 1 shall be called a Legendre theorem.
Another class of interest is the class of partitions with initial repetitions. This class was introduced by George Andrews.

Definition

Let k be a positive integer. A partition of n with initial k-repetitions is one in which if j is repeated at least k times, every positive integer less than j is repeated at least k times (this means that all parts $>j$ have multiplicities stricly less than k)

For example, $\left(3^{3} 2^{4}, 1^{5}\right)$ is a partition with initial 3-repetitions. It is also a partition with initial 4-repetitions

Theorem (Andrews, 2009)

The number of partitions of n with initial k-repetitions is equal to the number of partitions in which each part appears not more than $2 k-1$ times.

Proof:
$\sum_{n=0}^{\infty} \frac{q^{k(1+2+3+\cdots+n)}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} \prod_{j=n+1}^{\infty}\left(1+q^{j}+\cdots+q^{(k-1) j}\right)$
is equal to

$$
\prod_{n=1}^{\infty} \frac{1-q^{2 k n}}{1-q^{n}}
$$

A bijective proof of this theorem was given by W. Keith.

Notation:

$f_{e}(n, m)$: the number of partitions of n with initial 2-repetitions with m different parts and an even number of distinct parts
$f_{o}(n, m)$: the number of partitions of n with initial
2-repetitions with m different parts and an odd number of distinct parts.
We have the following Legendre theorem.
Theorem (Andrews, 2009)

$$
f_{e}(n, m)-f_{o}(n, m)= \begin{cases}(-1)^{j}, & \text { if } m=j, n=\frac{j(j+1)}{2} \\ 0, & \text { otherwise }\end{cases}
$$

This theorem has a combinatorial proof.

A broader class called partitions with early conditions were studied.
Question: Can we find more of Legendre theorems in the category of partitions with early conditions.

Tools:

We assume that $q \in \mathbb{C}$ and $|q|<1$:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} z^{n} q^{n(n+1) / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1+z q^{n}\right)\left(1+z^{-1} q^{n-1}\right) \tag{2}
\end{equation*}
$$

where $z \neq 0$,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}=\prod_{n=1}^{\infty} \frac{1-q^{n}}{1+q^{n}} \tag{3}
\end{equation*}
$$

Main Results

- On Andrews partitions with initial 2-repetitions: The following factorisations hold:

Lemma

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{q^{2 n^{2}-n}}{(q ; q)_{2 n-1}}=(-q ; q)_{\infty} \sum_{n=1}^{\infty}(-1)^{n+1} q^{n^{2}}, \tag{4}\\
\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+n}}{(q ; q)_{2 n}}=(-q ; q)_{\infty} \sum_{n=0}^{\infty}(-1)^{n} q^{n^{2}} . \tag{5}
\end{gather*}
$$

PROOF:

$$
d(n)=d^{e}(n)-d^{\circ}(n)+2 d^{\circ}(n) \text { so that }
$$

$$
\sum_{n=0}^{\infty} d(n) q^{n}=\sum_{n=0}^{\infty}\left(d^{e}(n)-d^{o}(n)\right) q^{n}+2 \sum_{n=0}^{\infty} d^{o}(n) q^{n} .
$$

$$
2 \sum_{n=0}^{\infty} d^{o}(n) q^{\infty}=(-q ; q)_{\infty}-\sum_{n=0}^{\infty}\left(d^{e}(n)-d^{\circ}(n)\right) q^{n}
$$

$$
=(-q ; q)_{\infty}-(q ; q)_{\infty}
$$

$$
=(-q ; q)_{\infty}\left(1-\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}}\right)
$$

$$
=(-q ; q)_{\infty}\left(1-\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}\right)(\text { by (3)) }
$$

$$
=2(-q ; q)_{\infty} \sum_{n=1}^{\infty}(-1)^{n+1} q^{n^{2}}
$$

It is not difficult to see that

$$
\sum_{n=0}^{\infty} d^{o}(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{n(2 n-1)}}{(q ; q)_{2 n-1}}
$$

from which (4) follows. For (5), we have
$\begin{aligned} \sum_{n=0}^{\infty} d^{e}(n) q^{n} & =\sum_{n=0}^{\infty} d(n) q^{n}-\sum_{n=0}^{\infty} d_{o}(n) q^{n} \\ & =(-q ; q)_{\infty}+(-q ; q)_{\infty} \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}}(\text { by }(4))\end{aligned}$

$$
=(-q ; q)_{\infty} \sum_{n=0}^{\infty}(-1)^{n} q^{n^{2}}
$$

It can easily be shown that

$$
\sum_{n=0}^{\infty} d^{e}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{n(2 n+1)}}{(q ; q)_{2 n}}
$$

and so (5) follows.

We have the following theorem.

Theorem

Let $b^{e}(n)$ be the number of partitions of n with initial 2-repetitions in which either all parts are distinct or the largest repeated part is even. Similarly, let $b^{\circ}(n)$ denote the number of partitions of n with initial 2-repetitions in which at least one part is repeated and the largest repeated part is odd. Then

$$
b^{e}(n)-b^{o}(n)= \begin{cases}1, & \text { if } n=\frac{j(j+1)}{2}, j \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

PROOF:

Note that

$$
\begin{aligned}
\sum_{n=0}^{\infty} b^{e}(n) q^{n} & =(-q ; q)_{\infty}+ \\
& +\sum_{m=1}^{\infty} \frac{q^{2(1+2+3+\ldots+2 m)}}{(q ; q)_{2 m}} \prod_{j=2 m+1}^{\infty}\left(1+q^{j}\right) \\
& =\sum_{m=0}^{\infty} \frac{q^{2(1+2+3+\ldots+2 m)}}{(q ; q)_{2 m}} \prod_{j=2 m+1}^{\infty}\left(1+q^{j}\right) \\
& =\sum_{m=0}^{\infty} \frac{q^{2 m(2 m+1)}}{(q ; q)_{2 m}} \prod_{j=2 m+1}^{\infty} \frac{\left(1-q^{2 j}\right)}{\left(1-q^{j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{m=0}^{\infty} \frac{q^{2 m(2 m+1)}}{(q ; q)_{2 m}\left(q^{2 m+1} ; q\right)_{\infty}} \prod_{j=2 m+1}^{\infty}\left(1-q^{2 j}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{m=0}^{\infty} q^{2 m(2 m+1)} \frac{\prod_{j=1}^{\infty}\left(1-q^{2 j}\right)}{\prod_{j=1}^{2 m}\left(1-q^{2 j}\right)} \\
& =\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{m=0}^{\infty} \frac{q^{2 m(2 m+1)}}{\left(q^{2} ; q^{2}\right)_{2 m}}
\end{aligned}
$$

and

$$
\sum_{n=0}^{\infty} b^{o}(n) q^{n}=\sum_{m=1}^{\infty} \frac{\left.q^{2(1+2+3+\ldots+2 m-1}\right)}{(q ; q)_{2 m-1}} \prod_{j=2 m}^{\infty}\left(1+q^{j}\right)
$$

$$
\begin{aligned}
& =\sum_{m=1}^{\infty} \frac{q^{2(1+2+3+\ldots+2 m-1)}}{(q ; q)_{2 m-1}} \prod_{j=2 m}^{\infty} \frac{1-q^{2 j}}{1-q^{j}} \\
& =\sum_{m=1}^{\infty} \frac{q^{2 m(2 m-1)}}{(q ; q)_{2 m-1}\left(q^{2 m} ; q\right)_{\infty}} \prod_{j=2 m}^{\infty}\left(1-q^{2 j}\right) \\
& =\frac{1}{(q ; q)_{\infty}} \sum_{m=1}^{\infty} q^{2 m(2 m-1)} \frac{\prod_{j=1}^{\infty}\left(1-q^{2 j}\right)}{\prod_{j=1}^{2 m-1}\left(1-q^{2 j}\right)}
\end{aligned}
$$

$$
=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{m=1}^{\infty} \frac{q^{2 m(2 m-1)}}{\left(q^{2} ; q^{2}\right)_{2 m-1}}
$$

Thus

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(b^{e}(n)-b^{o}(n)\right) q^{n}= \\
& =\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{(q ; q)_{\infty}}\left(\sum_{n=0}^{\infty} \frac{q^{2 n(2 n+1)}}{\left(q^{2} ; q^{2}\right)_{2 n}}-\sum_{n=1}^{\infty} \frac{q^{2 n(2 n-1)}}{\left(q^{2} ; q^{2}\right)_{2 n-1}}\right) \\
& =\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}}\left(\sum_{n=0}^{\infty}(-1)^{n} q^{2 n^{2}}-\sum_{n=1}^{\infty}(-1)^{n+1} q^{2 n^{2}}\right)
\end{aligned}
$$

(by (4) and (5))

$$
=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}}\left(\sum_{n=-\infty}^{\infty}(-1)^{n} q^{2 n^{2}}\right)
$$

$$
=\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}} \text { (by (3)) }
$$

$$
=\frac{\left(q^{4} ; q^{4}\right)_{\infty}(-q ; q)_{\infty}}{\left(-q^{2} ; q^{2}\right)_{\infty}}
$$

$$
=\left(q^{4} ; q^{4}\right)_{\infty}\left(-q ; q^{4}\right)_{\infty}\left(-q^{3} ; q^{4}\right)_{\infty}
$$

$$
=\sum_{n=0}^{\infty} q^{2 n^{2}+n}(\text { by }(2))
$$

$$
=\sum_{n=0}^{\infty} q^{n(n+1) / 2}
$$

In the following section we demonstrate how to give partition theoretic interpretation of numerous identities of Rogers-Ramanujan identities due to Lucy J. Slater (1952). We use the following identity for demonstration. The interpretation is given in terms of a Legendre theorem.
$\left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}}{(q ; q)_{2 n+1}}=\prod_{n=1}^{\infty}\left(1-q^{8 n}\right)\left(1+q^{8 n-1}\right)\left(1+q^{8 n-7}\right)$

For more examples, see the article on arxiv.org (Legendre Theorems for partitions with initial repetitions, D. Nyirenda \& B. Mugwangwavari). Let $c_{2}(n)$ denote the number of partitions of n in which either
(a) even parts are distinct and the only odd part is 1 or
(b) there exists $j \geq 1$ such that an even part $2 j$ appears twice, all positive even integers $<2 j$ appear twice, any even part $>2 j$ is distinct and the largest odd part is at most $2 j+1$.
Furthermore, let $c_{2, e}(n)$ (resp. $c_{2, o}(n)$) be $c_{2}(n)$-partitions with an even (resp. odd) number of distinct even parts.

Then we have the following.
Theorem
For all $n \geq 0$,

$$
c_{2, e}(n)-c_{2, o}(n)= \begin{cases}1, & n=4 j^{2}+3 j, j \in \mathbb{Z} \\ 0, & \text { otherwise }\end{cases}
$$

PROOF:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c_{2}(n) q^{n} \\
& =\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{1-q} \\
& +\sum_{n=1}^{\infty} \frac{q^{2+2+4+4+\cdots+2 n+2 n}}{(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 n+1}\right)}\left(-q^{2 n+2} ; q^{2}\right)_{\infty} \\
& =\sum_{n=0}^{\infty} \frac{q^{2+2+4+4+\cdots+2 n+2 n}}{(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 n+1}\right)}\left(-q^{2 n+2} ; q^{2}\right)_{\infty},
\end{aligned}
$$

So we have

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left(c_{2, e}(n)-c_{2, o}(n)\right) q^{n} \\
& =\sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}\left(q^{2 n+2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n+1}\left(q^{2} ; q^{2}\right)_{n}} \\
& =\left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}}{\left(q ; q^{2}\right)_{n+1}\left(q^{2} ; q^{2}\right)_{n}} \\
& =\left(q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n(n+1)}}{(q ; q)_{2 n+1}}(\text { by } \quad(6) \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& =\prod_{n=1}^{\infty}\left(1+q^{8 n-1}\right)\left(1+q^{8 n-7}\right)\left(1-q^{8 n}\right) \\
& =\sum_{n=-\infty}^{\infty} q^{4 n^{2}+3 n} .
\end{aligned}
$$

Example

Consider $n=10$.
The $c_{2}(10)$-partitions are:

$$
\begin{gathered}
(10),(8,2),\left(8,1^{2}\right),(6,4),\left(6,2,1^{2}\right),\left(6,1^{4}\right),\left(5^{2}\right),\left(4,2,1^{4}\right), \\
\left(4,1^{6}\right),\left(2,1^{8}\right),\left(1^{10}\right) .
\end{gathered}
$$

From the above, note that $c_{2, e}(10)$-partitions are:
$(8,2),\left(5^{2}\right),\left(1^{10}\right),(6,4),\left(6,2,1^{2}\right),\left(4,2,1^{4}\right)$ and
$c_{2, o}(10)$-partitions are: $(10),\left(8,1^{2}\right),\left(6,1^{4}\right),\left(4,1^{6}\right),\left(2,1^{8}\right)$.
Thus,

$$
c_{2, e}(10)-c_{2, o}(10)=1
$$

This agrees with the theorem because $10=4(-2)^{2}+3(-2)$.

References

圁 G. E. Andrews, Partitions with initial repetitions, Acta Math. Sin. Engl. Ser. 25(9), 1437 - 1442 (2009)
: G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1984
: A. M. Legendre, Theorie des Nombres, vol. II, 3rd. ed., 1830 (Reprinted: Blanchard, Paris, 1955)
: L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54, 147 - 167 (1952)

THANK YOU!

