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Definition

A partition of n shall be taken as a representation
λ = (λ1, λ2, . . . , λm) where λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 1 such

that
m∑
i=1

λi = n

• Multiplicity notation: (µm1

1 , µ
m2

2 , µ
m3

3 , · · · , µ
m`

` ) in which
mi denotes the multiplicity of the part µi and
µ1 > µ2 > · · · > µ`. If mi = 1 for all i , we have a
partition into distinct parts.
• d(n) : the number of partitions of n into distinct parts.
Let d e(n) (resp. do(n)) be the number of d(n)-partitions
with even (resp. odd) length.
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It turns out (by A.M. Legendre) that proved

d e(n)−do(n) =

{
(−1)j , if n = j(3j ± 1)/2, j ≥ 0;

0, otherwise.
(1)

Hence, any partition theorem in the shape of Theorem 1
shall be called a Legendre theorem.
Another class of interest is the class of partitions with
initial repetitions. This class was introduced by George
Andrews.
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Definition

Let k be a positive integer. A partition of n with initial
k-repetitions is one in which if j is repeated at least k
times, every positive integer less than j is repeated at least
k times (this means that all parts > j have multiplicities
stricly less than k)

For example, (3324, 15) is a partition with initial
3-repetitions. It is also a partition with initial 4-repetitions
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Theorem (Andrews, 2009)

The number of partitions of n with initial k-repetitions is
equal to the number of partitions in which each part
appears not more than 2k − 1 times.

Proof:
∞∑
n=0

qk(1+2+3+···+n)

(1− q)(1− q2) · · · (1− qn)

∞∏
j=n+1

(1+qj +· · ·+q(k−1)j)

is equal to
∞∏
n=1

1− q2kn

1− qn
.

A bijective proof of this theorem was given by W. Keith.
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Notation:
fe(n,m): the number of partitions of n with initial
2-repetitions with m different parts and an even number
of distinct parts
fo(n,m): the number of partitions of n with initial
2-repetitions with m different parts and an odd number of
distinct parts.
We have the following Legendre theorem.

Theorem (Andrews, 2009)

fe(n,m)− fo(n,m) =

{
(−1)j , if m = j, n = j(j+1)

2 ;

0, otherwise.

This theorem has a combinatorial proof.
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A broader class called partitions with early conditions were
studied.
Question: Can we find more of Legendre theorems in the
category of partitions with early conditions.
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Tools:
We assume that q ∈ C and |q| < 1:

∞∑
n=−∞

znqn(n+1)/2 =
∞∏
n=1

(1−qn)(1+zqn)(1+z−1qn−1) (2)

where z 6= 0,

∞∑
n=−∞

(−1)nqn
2

=
∞∏
n=1

1− qn

1 + qn
. (3)
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Main Results

• On Andrews partitions with initial 2-repetitions:
The following factorisations hold:

Lemma
∞∑
n=1

q2n
2−n

(q; q)2n−1
= (−q; q)∞

∞∑
n=1

(−1)n+1qn
2

, (4)

∞∑
n=0

q2n
2+n

(q; q)2n
= (−q; q)∞

∞∑
n=0

(−1)nqn
2

. (5)
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PROOF:
d(n) = d e(n)− do(n) + 2do(n) so that

∞∑
n=0

d(n)qn =
∞∑
n=0

(d e(n)− do(n))qn + 2
∞∑
n=0

do(n)qn.

2
∞∑
n=0

do(n)q∞ = (−q; q)∞ −
∞∑
n=0

(d e(n)− do(n))qn

= (−q; q)∞ − (q; q)∞

= (−q; q)∞

(
1− (q; q)∞

(−q; q)∞

)
= (−q; q)∞

(
1−

∞∑
n=−∞

(−1)nqn
2

)
(by (3))
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= 2(−q; q)∞

∞∑
n=1

(−1)n+1qn
2

.

It is not difficult to see that
∞∑
n=0

do(n)qn =
∞∑
n=1

qn(2n−1)

(q; q)2n−1

from which (4) follows. For (5), we have
∞∑
n=0

d e(n)qn =
∞∑
n=0

d(n)qn −
∞∑
n=0

do(n)qn

= (−q; q)∞ + (−q; q)∞

∞∑
n=1

(−1)nqn
2

(by (4))
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= (−q; q)∞

∞∑
n=0

(−1)nqn
2

It can easily be shown that

∞∑
n=0

d e(n)qn =
∞∑
n=0

qn(2n+1)

(q; q)2n

and so (5) follows.
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We have the following theorem.

Theorem

Let be(n) be the number of partitions of n with initial
2-repetitions in which either all parts are distinct or the
largest repeated part is even. Similarly, let bo(n) denote
the number of partitions of n with initial 2-repetitions in
which at least one part is repeated and the largest
repeated part is odd. Then

be(n)− bo(n) =

{
1, if n = j(j+1)

2 , j ≥ 0;

0 otherwise.
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PROOF:
Note that

∞∑
n=0

be(n)qn = (−q; q)∞+

+
∞∑

m=1

q2(1+2+3+...+2m)

(q; q)2m

∞∏
j=2m+1

(1 + qj)

=
∞∑

m=0

q2(1+2+3+...+2m)

(q; q)2m

∞∏
j=2m+1

(1 + qj)

=
∞∑

m=0

q2m(2m+1)

(q; q)2m

∞∏
j=2m+1

(1− q2j)

(1− qj)
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=
∞∑

m=0

q2m(2m+1)

(q; q)2m(q2m+1; q)∞

∞∏
j=2m+1

(1− q2j)

=
1

(q; q)∞

∞∑
m=0

q2m(2m+1)

∏∞
j=1(1− q2j)∏2m
j=1(1− q2j)

=
(q2; q2)∞
(q; q)∞

∞∑
m=0

q2m(2m+1)

(q2; q2)2m

and
∞∑
n=0

bo(n)qn =
∞∑

m=1

q2(1+2+3+...+2m−1)

(q; q)2m−1

∞∏
j=2m

(1 + qj)
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=
∞∑

m=1

q2(1+2+3+...+2m−1)

(q; q)2m−1

∞∏
j=2m

1− q2j

1− qj

=
∞∑

m=1

q2m(2m−1)

(q; q)2m−1(q2m; q)∞

∞∏
j=2m

(1− q2j)

=
1

(q; q)∞

∞∑
m=1

q2m(2m−1)
∏∞

j=1(1− q2j)∏2m−1
j=1 (1− q2j)
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=
(q2; q2)∞
(q; q)∞

∞∑
m=1

q2m(2m−1)

(q2; q2)2m−1
.

Thus
∞∑
n=0

(be(n)− bo(n))qn =

=
(q2; q2)∞
(q; q)∞

( ∞∑
n=0

q2n(2n+1)

(q2; q2)2n
−
∞∑
n=1

q2n(2n−1)

(q2; q2)2n−1

)

=
(q4; q4)∞
(q; q)∞

( ∞∑
n=0

(−1)nq2n
2 −

∞∑
n=1

(−1)n+1q2n
2

)
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(by (4) and (5))

=
(q4; q4)∞
(q; q)∞

( ∞∑
n=−∞

(−1)nq2n
2

)

=
(q4; q4)∞
(q; q)∞

(q2; q2)∞
(−q2; q2)∞

(by (3))

=
(q4; q4)∞(−q; q)∞

(−q2; q2)∞
= (q4; q4)∞(−q; q4)∞(−q3; q4)∞

=
∞∑
n=0

q2n
2+n (by (2))
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=
∞∑
n=0

qn(n+1)/2.

In the following section we demonstrate how to give
partition theoretic interpretation of numerous identities of
Rogers-Ramanujan identities due to Lucy J. Slater (1952).
We use the following identity for demonstration. The
interpretation is given in terms of a Legendre theorem.

(q2; q2)∞

∞∑
n=0

q2n(n+1)

(q; q)2n+1
=
∞∏
n=1

(1−q8n)(1+q8n−1)(1+q8n−7)

(6)
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For more examples, see the article on arxiv.org (Legendre
Theorems for partitions with initial repetitions, D.
Nyirenda & B. Mugwangwavari). Let c2(n) denote the
number of partitions of n in which either

(a) even parts are distinct and the only odd part is 1
or

(b) there exists j ≥ 1 such that an even part 2j appears
twice, all positive even integers < 2j appear twice, any
even part > 2j is distinct and the largest odd part is at
most 2j + 1.

Furthermore, let c2,e(n) (resp. c2,o(n)) be c2(n)-partitions
with an even (resp. odd) number of distinct even parts.
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Then we have the following.

Theorem

For all n ≥ 0,

c2,e(n)− c2,o(n) =

{
1, n = 4j2 + 3j , j ∈ Z;

0, otherwise.
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PROOF:

∞∑
n=0

c2(n)qn

=
(−q2; q2)∞

1− q

+
∞∑
n=1

q2+2+4+4+···+2n+2n

(1− q)(1− q3) . . . (1− q2n+1)
(−q2n+2; q2)∞

=
∞∑
n=0

q2+2+4+4+···+2n+2n

(1− q)(1− q3) . . . (1− q2n+1)
(−q2n+2; q2)∞,

So we have
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∞∑
n=0

(c2,e(n)− c2,o(n))qn

=
∞∑
n=0

q2n(n+1)(q2n+2; q2)∞
(q; q2)n+1

=
∞∑
n=0

q2n(n+1)(q2; q2)∞
(q; q2)n+1(q2; q2)n

= (q2; q2)∞

∞∑
n=0

q2n(n+1)

(q; q2)n+1(q2; q2)n

= (q2; q2)∞

∞∑
n=0

q2n(n+1)

(q; q)2n+1
(by (6))
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=
∞∏
n=1

(
1 + q8n−1

) (
1 + q8n−7

) (
1− q8n

)
=

∞∑
n=−∞

q4n
2+3n.
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Example

Consider n = 10.

The c2(10)-partitions are:

(10), (8, 2), (8, 12), (6, 4), (6, 2, 12), (6, 14), (52), (4, 2, 14),

(4, 16), (2, 18), (110).

From the above, note that c2,e(10)-partitions are:
(8, 2), (52), (110), (6, 4), (6, 2, 12), (4, 2, 14) and
c2,o(10)-partitions are: (10), (8, 12), (6, 14), (4, 16), (2, 18).
Thus,

c2,e(10)− c2,o(10) = 1.

This agrees with the theorem because
10 = 4(−2)2 + 3(−2).
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THANK YOU!
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