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Introduction to Representation Theory

Definition: A representation of a group G over a field F is a group
homomorphism:

ψ : G → GLn(F ).

G acts V = F n by invertible linear transformations.

Isomorphism of representations corresponds to change of bases.

ψ is irreducible or simple if 0 and F n are the only G -invariant subspaces.
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A two-dimensional (irreducible?) representation of Σ3

G = Σ3 and

ψ : (1, 2) →
(

1 0
−1 −1

)
, (2, 3) →

(
0 1
1 0

)

(
1 0
−1 −1

)(
1
1

)
=

(
1
−2

)
(

0 1
1 0

)(
1
1

)
=

(
1
1

)

Moral: The characteristic of the field matters!
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Isomorphism Classes of Irreducible Representations

Theorem

Let G be a finite group.

1 The number of irreducible representations over C is the number of
conjugacy classes of G. Every finite dimensional representation is a
direct sum of irreducibles.

2 For F algebraically closed of characteristic p, the number of
irreducible representations is the number of conjugacy classes of order
not divisible by p. When p | |G | there are representations that are
not a direct sum of irreducibles.

What does this mean for symmetric groups?
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Partitions and Young diagrams

Example: Let λ = (5, 5, 3, 3, 3, 1) ⊢ 19.

λ = λ′ =

Say λ = (λ1, λ2, . . . , λr ) is e-regular if ∀i , λi ̸= λi+e−1

λ is e-regular for e ≥ 4.
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Modules for the symmetric group Σn

Irreducible CΣn modules are Specht modules:

{Sλ | λ ⊢ n}.

Sλ ⊗ sgn ∼= Sλ′

For char F = p the irreducible FΣn modules are:

{Dλ = Sλ/ radSλ | λ ⊢ n is p-regular}.

Mullineux Problem:
Dλ ⊗ sgn ∼= Dm(λ).

What is the involution m(λ)?
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History of Mullineux Problem

Mullineux Conjecture (1979): Conjectural algorithm for m(λ). Verified
some basic properties.

Andrews-Olsson (1991): Correct number of fixed points λ = m(λ).

Kleshchev (1996): Algorithm for m(λ), using very deep branching
theorems.

Ford-Kleshchev (1997): Mullineux was correct!

Remark: Consider e ≥ 2. Our work extends Andrews-Olsson and
Bessenrodt-Olsson to arbitrary e odd (straightforward) and e even
(different). There are representation theory interpretations for Hecke
algebras at eth roots of unity.
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The Mullineux symbol

λ = (8, 6, 4, 4, 2, 1, 1, 1) ⊢ 27 and e = 5:

The e-rim contains 13 boxes spanning 8 rows.(
13
8

)
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The Mullineux symbol

λ = (8, 6, 4, 4, 2, 1, 1, 1) ⊢ 27 and e = 5:

(
13 7
8 5

)
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The Mullineux symbol

λ = (8, 6, 4, 4, 2, 1, 1, 1) ⊢ 27 and e = 5:

(
13 7 5
8 5 2

)
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The Mullineux symbol

λ = (8, 6, 4, 4, 2, 1, 1, 1) ⊢ 27 and e = 5:

G (λ) =

(
13 7 5 2
8 5 3 2

)
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The Mullineux map

Given

G (λ) =

(
a1 a2 · · · at
r1 r2 · · · rt

)
replace ri with

ai − ri + ϵi

where ϵi = 1 if e ∤ ai and ϵi = 0 else.

(
13 7 5 2
8 5 3 2

)
⇒

(
13 7 5 2
6 3 2 1

)
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Reconstructing m(λ)

(
13 7 5 2
6 3 2 1

)
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Reconstructing m(λ)

(
13 7 5 2
6 3 2 1

)

m(8, 6, 4, 4, 2, 1, 1, 1) = (12, 6, 6, 1, 1, 1).
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Counting Mullineux fixed points

1 Mullineux gave conditions on (a1, a2, . . . , at) ⊢ n and {r1, r2, . . . , rt}
to be a Mullineux symbol G (λ).

2 Fixed points need ri roughly equal ai/2.

3 Translate (a1, a2, . . . , at) using bijection Andrews-Olsson (e odd) or
Bessenrodt (e even) to a set more easily enumerated.

4 Count fixed points or, for blockwise version, use e-bar quotients.
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Theorem (Mullineux 1979)

An array

(
a1 a2 · · · ak
r1 r2 · · · rk

)
is the Mullineux symbol of an e-regular

partition of n =
∑

ai if and only if:

1 0 ≤ ri − ri+1 ≤ e;

2 ri − ri+1 + ϵi+1 ≤ ai − ai+1 ≤ ri − ri+1 + ϵi+1 + e

3 ri = ri+1 → e | ai
4 ri − ri+1 = e → e ∤ ai
5 0 ≤ ak − rk < e

6 1 ≤ rk ≤ e

7 rk = e → ak − rk > 0.

Remark: Given the top row (a1, a2, . . . , ak), there is at most one
corresponding partition fixed under the Mullineux map.

Idea: Count eligible partitions {(a1, a2, . . . , ak) ⊢ n}.
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Definition

Define Me(n) to be the set of partitions (a1, a2, . . . , ak) ⊢ n satisfying:

(i) 2 | ai ⇐⇒ e | ai
(ii) 0 ≤ ai − ai+1 ≤ 2e

(iii) If ai = ai+1 then ai is even.

(iv) If ai − ai+1 = 2e then ai is odd.

(v) ak < 2e.

Then we have:

Theorem (Andrews-Olsson)

Let p be an odd prime. The number of partitions λ ⊢ n fixed by the
Mullineux map is equal to the cardinality of Mp(n).

True for any e.
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Andrews-Olsson 1991

For e odd and N = 2e, A = {1, 3, 5, . . . , e − 2, e + 2, . . . , 2e − 1}, we get
that Me(n) is P2(A; 2e, n).

The generating function for P1 is easy to describe.
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Partition generating functions

Let p(n) be the number of partitions of n and let

P(q) :=
∞∑
n=0

p(n)qn.

P(q) =
∞∏
i=1

1

1− qi

= (1 + q + q2 + · · · )(1 + q2 + q4 + · · · )(1 + q3 + q6 + · · · ) · · · .

(3, 3, 2, 1, 1)

or for partitions with distinct parts:

Pd(q) = (1 + q)(1 + q2)(1 + q3) · · · .
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Mullineux fixed points

Let mfe(n) be the number of e-regular partitions of n fixed by the
Mullineux map and let

MFe(q) =
∞∑
n=0

mfe(n)q
n.

Our first result determines this generating function.
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Theorem

(a) (Andrews-Olsson for odd primes) Let e be odd. Then mfe(n) is the
number of partitions of n into distinct odd parts not divisible by e.
Thus:

MFe(q) =
∏
k odd
e∤k

(1 + qk).

(b) Let e be even. Then mfe(n) is the number of partitions of n into
parts which are odd or odd multiples of e, and the odd parts are
distinct. Thus:

MFe(q) =
(1 + q)(1 + q3)(1 + q5) · · ·

(1− qe)(1− q3e)(1− q5e) · · ·
.

Check this agrees with e = 2 answer.
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A mysterious coincidence?

For e arbitrary:

MFe(−q) =
∞∑
n=0

(−1)nmfe(n)q
n =

∞∏
k=1

1 + qek

1 + qk
.

e = 4 OEIS Entry
e = 5 OEIS Entry
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Blocks of Group Algebras
The group algebra FG has primitive central idempotents

1 = e1 + e2 + · · ·+ er .

This lets one study the representation theory of FG by studying
individually the representation theory of block algebras eiFGei . In
particular the irreducible modules are partitioned into blocks, and each
indecomposable module is in a unique block.

For symmetric groups the blocks are determined combinatorially via
p-cores, equivalently residue sequences mod p.

So it is natural to ask partition the partitions into p-blocks and ask how
many Mullineux fixed points are in each block.
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e-blocks and e-cores

e = 5,w = 3, λ̃ = (3, 2)

If m(λ) = λ then λ̃ is self-conjugate.
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Blocks and residue sequences

Fact: Two partitions λ ⊢ n and µ ⊢ n are in the same e-block (have the
same e-core) if and only if their boxes have the same set of residues mod e.

0 1 2 3 0 1 2

3 0 1 2

2 3 0

1 2 3

0

0 1 2 3 0

3 0 1 2

2 3 0

1 2 3

0 1 2

Two different λ, µ ⊢ 18 with the same 4-core (3, 2, 1) and 4-weight 3.
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Table: Mullineux fixed points for e = 4 by weight

n w = 0 w = 1 w = 2 w = 3 w = 4 w = 5

0 1
1 1
2 0
3 1
4 1 1
5 1 1
6 1 0
7 1 1
8 0 1 3
9 0 1 3
10 2 1 0
11 0 1 3
12 1 0 3 4
13 1 0 3 4
14 1 2 3 0
15 2 0 3 4
16 0 1 0 4 9
17 0 1 0 4 9
18 1 1 6 4 0
19 1 2 0 4 9
20 0 0 3 0 9 12

The sequence {1, 1, 3, 4, 9, 12 . . .} counts cubic partitions.
The first column counts self-conjugate 4-cores.
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Fixed points in a block

Definition: Let e be even. Define fe(w) by:

∞∑
w=0

fe(w)qw :=
∞∏
k=1

1

(1− q2k)e/2
1

(1− q2k−1)

Let e be odd. Define ge(w) by:

∞∑
w=0

ge(w)qw :=
∞∏
k=1

1

(1− qk)(e−1)/2

fe(w) and ge(w) will count fixed points in a block with a self-conjugate
e-core and weight w .
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Theorem

(a) Suppose e is even. Then:

mfe,w (n) = fe(w)sce(n − ew).

(b) Suppose e is odd. Then mfe,w (n) is zero unless w is even in which
case

mfe,w (n) = g(
w

2
)sce(n − ew).
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Joint generating function

Garvan-Kim-Stanton (1990) gave a generating function for self-conjugate
e-cores. Thus we can obtain:

The generating function MFe(x , q) =
∑

n,w mfe,w (n)x
wqn is:

MFe(x , q) =


(−q,q2)∞(q2e ,q2e)

e/2
∞

(q2ex2,q2ex2)
e/2
∞ (qex ,q2ex2)∞

if e is even

(−q,q2)∞(q2e ,q2e)
e−1/2
∞

(q2ex2,q2ex2)
(e−1)/2
∞ (−qe ,q2e)∞

if e is odd
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Computing fe(w)
Given a partition λ with distinct parts, we form an abacus with runners
lying north to south labelled {0, 1, 2, . . . , q − 1}. The bead positions are
labelled as below:

0 1 · · · q − 2 q − 1
q q + 1 · · · 2q − 2 2q − 1
...

...
...

...

Place a bead on the abacus corresponding to each part of λ.

0 1 2 3 4 5

Figure: Abacus display for λ = (23, 21, 17, 13, 11, 9, 7) and q = 6.
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q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the
following:

Slide a bead one step up its runner to a vacant position, beads at
position zero disappear.

Remove a pair of beads in position a and q − a for
a = 1, 2, . . . , ⌊(q − 1)/2⌋.

Eventually we reach the abacus diagram of the q-bar core of λ.

David Hemmer (Michigan Technological University)Generating functions for fixed points of the Mullineux mapOctober 10, 2024 27 / 29



q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the
following:

Slide a bead one step up its runner to a vacant position, beads at
position zero disappear.

Remove a pair of beads in position a and q − a for
a = 1, 2, . . . , ⌊(q − 1)/2⌋.

Eventually we reach the abacus diagram of the q-bar core of λ.

David Hemmer (Michigan Technological University)Generating functions for fixed points of the Mullineux mapOctober 10, 2024 27 / 29



Computing the 4-bar core of λ = (19, 13, 11, 10, 8, 5, 4, 3)
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Final steps

Let e be even and suppose λ ⊢ n has e weight w and self-conjugate core
λ(e). Apply Bessenrodt’s bijection to get a pair {τ, eγ} where
τ = (c1, c2, . . . , ck) has distinct odd parts and γ has all odd parts. Verify
all the τ have the same 2e-bar core.

Calculate the 2e-bar quotient of τ. Since τ has distinct odd parts, its
2e-bar quotient is a tuple (ρ1, ρ2, · · · , ρe/2). Use this to get the formula
for fe(w).

Thank you!
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