Generating functions for fixed points of the Mullineux map

David Hemmer

Michigan Technological University

October 10, 2024

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the N October 10, 2024 1/29

Definition: A representation of a group G over a field F is a group homomorphism:

 $\psi: G \to GL_n(F).$

Definition: A representation of a group G over a field F is a group homomorphism:

$$\psi: \mathbf{G} \to \mathbf{GL}_n(\mathbf{F}).$$

G acts $V = F^n$ by invertible linear transformations.

Definition: A representation of a group G over a field F is a group homomorphism:

 $\psi: G \to GL_n(F).$

G acts $V = F^n$ by invertible linear transformations.

Isomorphism of representations corresponds to change of bases.

Definition: A representation of a group G over a field F is a group homomorphism:

 $\psi: G \to GL_n(F).$

G acts $V = F^n$ by invertible linear transformations.

Isomorphism of representations corresponds to change of bases.

 ψ is irreducible or simple if 0 and F^n are the only G-invariant subspaces.

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$\psi: (1,2)
ightarrow egin{pmatrix} 1 & 0 \ -1 & -1 \ \end{pmatrix}, \qquad (2,3)
ightarrow egin{pmatrix} 0 & 1 \ 1 & 0 \ \end{pmatrix}$$

∃ ⇒

< 47 ▶

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$\psi: (1,2) \to \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \qquad (2,3) \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

∃ ⇒

< 47 ▶

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$\psi: (1,2) \to \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \qquad (2,3) \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Moral: The characteristic of the field matters!

Isomorphism Classes of Irreducible Representations

Theorem

Let G be a finite group.

- The number of irreducible representations over C is the number of conjugacy classes of G. Every finite dimensional representation is a direct sum of irreducibles.
- For F algebraically closed of characteristic p, the number of irreducible representations is the number of conjugacy classes of order not divisible by p. When p | |G| there are representations that are not a direct sum of irreducibles.

Isomorphism Classes of Irreducible Representations

Theorem

Let G be a finite group.

- The number of irreducible representations over C is the number of conjugacy classes of G. Every finite dimensional representation is a direct sum of irreducibles.
- For F algebraically closed of characteristic p, the number of irreducible representations is the number of conjugacy classes of order not divisible by p. When p | |G| there are representations that are not a direct sum of irreducibles.

What does this mean for symmetric groups?

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

3 N 3

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

Say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is e-regular if $\forall i, \lambda_i \neq \lambda_{i+e-1}$

< 行

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

Say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is e-regular if $\forall i, \lambda_i \neq \lambda_{i+e-1}$

 λ is *e*-regular for $e \geq 4$.

3

< 1 k

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

$$S^\lambda \otimes \operatorname{sgn} \cong S^{\lambda'}$$

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

 $S^\lambda \otimes \operatorname{sgn} \cong S^{\lambda'}$

For char F = p the irreducible $F\Sigma_n$ modules are:

 $\{D^{\lambda} = S^{\lambda} / \operatorname{rad} S^{\lambda} \mid \lambda \vdash n \text{ is p-regular}\}.$

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

 $S^\lambda \otimes \operatorname{sgn} \cong S^{\lambda'}$

For char F = p the irreducible $F\Sigma_n$ modules are:

 $\{D^{\lambda} = S^{\lambda} / \operatorname{rad} S^{\lambda} \mid \lambda \vdash n \text{ is } p\text{-regular}\}.$

Mullineux Problem:

 $D^{\lambda} \otimes \operatorname{sgn} \cong D^{m(\lambda)}.$

6/29

What is the involution $m(\lambda)$?

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

∃ ⇒

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

And rews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

And rews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

And rews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Ford-Kleshchev (1997): Mullineux was correct!

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

And rews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Ford-Kleshchev (1997): Mullineux was correct!

Remark: Consider $e \ge 2$. Our work extends Andrews-Olsson and Bessenrodt-Olsson to arbitrary e odd (straightforward) and e even (different). There are representation theory interpretations for Hecke algebras at eth roots of unity.

イロト 不得 トイヨト イヨト

$$\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27$$
 and $e = 5$:

The e-rim contains 13 boxes spanning 8 rows.

→ ∃ →

< 行

$$\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5:$$

A D N A B N A B N A B N

$$\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27$$
 and $e = 5$:

$$\left(\begin{array}{ccc} 13 & 7 & 5 \\ 8 & 5 & 2 \end{array}\right)$$

A D N A B N A B N A B N

$$\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5:$$

$$\begin{pmatrix} 13 & 7 & 5 & 2 \\ 8 & 5 & 2 & 2 \end{pmatrix}$$

< 47 ▶

3. 3

$$\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27$$
 and $e = 5$:

< 47 ▶

A B A A B A

The Mullineux map

Given

$$G(\lambda) = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_t \\ r_1 & r_2 & \cdots & r_t \end{array}\right)$$

replace r_i with

$$a_i - r_i + \epsilon_i$$

where $\epsilon_i = 1$ if $e \nmid a_i$ and $\epsilon_i = 0$ else.

∃ ⇒

< 行

The Mullineux map

Given

$$G(\lambda) = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_t \\ r_1 & r_2 & \cdots & r_t \end{array}\right)$$

replace r_i with

$$a_i - r_i + \epsilon_i$$

where $\epsilon_i = 1$ if $e \nmid a_i$ and $\epsilon_i = 0$ else.

< 47 ▶

글 에 에 글 어

э

9/29

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the N October 10, 2024 10/29

イロト イポト イヨト イヨト

2

$$\left(\begin{array}{rrrrr} 13 & 7 & 5 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)$$

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the M October 10, 2024 10/29

・ロト ・四ト ・ヨト ・ヨト

2

イロト イヨト イヨト

イロト イポト イヨト イヨト

m(8, 6, 4, 4, 2, 1, 1, 1) = (12, 6, 6, 1, 1, 1).

→ ∃ →

< 1 k

э

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the N October 10, 2024 10 / 29

Counting Mullineux fixed points

Mullineux gave conditions on (a₁, a₂,..., a_t) ⊢ n and {r₁, r₂,..., r_t} to be a Mullineux symbol G(λ).

Counting Mullineux fixed points

- Mullineux gave conditions on (a₁, a₂,..., a_t) ⊢ n and {r₁, r₂,..., r_t} to be a Mullineux symbol G(λ).
- 2 Fixed points need r_i roughly equal $a_i/2$.

Counting Mullineux fixed points

- Mullineux gave conditions on (a₁, a₂,..., a_t) ⊢ n and {r₁, r₂,..., r_t} to be a Mullineux symbol G(λ).
- 2 Fixed points need r_i roughly equal $a_i/2$.
- Translate (a₁, a₂,..., a_t) using bijection Andrews-Olsson (e odd) or Bessenrodt (e even) to a set more easily enumerated.
Counting Mullineux fixed points

- Mullineux gave conditions on (a₁, a₂,..., a_t) ⊢ n and {r₁, r₂,..., r_t} to be a Mullineux symbol G(λ).
- 2 Fixed points need r_i roughly equal $a_i/2$.
- Translate (a₁, a₂,..., a_t) using bijection Andrews-Olsson (e odd) or Bessenrodt (e even) to a set more easily enumerated.
- **Ount fixed points or, for blockwise version, use** *e***-bar quotients.**

Theorem (Mullineux 1979)

An array $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ r_1 & r_2 & \cdots & r_k \end{pmatrix}$ is the Mullineux symbol of an e-regular partition of $n = \sum a_i$ if and only if: **1** $0 < r_i - r_{i+1} < e_i$ 2 $r_i - r_{i+1} + \epsilon_{i+1} \le a_i - a_{i+1} \le r_i - r_{i+1} + \epsilon_{i+1} + e_i$ $r_i = r_{i+1} \rightarrow e \mid a_i$ $I r_i - r_{i+1} = e \rightarrow e \nmid a_i$ **5** $0 < a_k - r_k < e$ **1** $< r_{k} < e$ $r_k = e \rightarrow a_k - r_k > 0.$

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Theorem (Mullineux 1979)

An array $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ r_1 & r_2 & \cdots & r_k \end{pmatrix}$ is the Mullineux symbol of an e-regular partition of $n = \sum a_i$ if and only if: **1** $0 < r_i - r_{i+1} < e_i$ 2 $r_i - r_{i+1} + \epsilon_{i+1} \le a_i - a_{i+1} \le r_i - r_{i+1} + \epsilon_{i+1} + e_i$ $r_i = r_{i+1} \rightarrow e \mid a_i$ $I r_i - r_{i+1} = e \rightarrow e \nmid a_i$ **5** $0 < a_k - r_k < e$ **1** $< r_{k} < e$ $I r_{\nu} = e \rightarrow a_{\nu} - r_{\nu} > 0.$

Remark: Given the top row (a_1, a_2, \ldots, a_k) , there is at most one corresponding partition fixed under the Mullineux map.

Idea: Count eligible partitions $\{(a_1, a_2, \ldots, a_k) \vdash n\}$.

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

(i)
$$2 | a_i \iff e | a_i$$

(ii) $0 \le a_i - a_{i+1} \le 2e$
(iii) If $a_i = a_{i+1}$ then a_i is even.
(iv) If $a_i - a_{i+1} = 2e$ then a_i is odd.
(v) $a_k < 2e$.

(3)

< (17) × <

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

(i)
$$2 | a_i \iff e | a_i$$

(ii) $0 \le a_i - a_{i+1} \le 2e$
(iii) If $a_i = a_{i+1}$ then a_i is even.
(iv) If $a_i - a_{i+1} = 2e$ then a_i is odd.
(v) $a_k < 2e$.

Then we have:

Theorem (Andrews-Olsson)

Let p be an odd prime. The number of partitions $\lambda \vdash n$ fixed by the Mullineux map is equal to the cardinality of $\mathcal{M}_p(n)$.

くぼう くほう くほう しほ

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

(i)
$$2 | a_i \iff e | a_i$$

(ii) $0 \le a_i - a_{i+1} \le 2e$
(iii) If $a_i = a_{i+1}$ then a_i is even.
(iv) If $a_i - a_{i+1} = 2e$ then a_i is odd.
(v) $a_k < 2e$.

Then we have:

Theorem (Andrews-Olsson)

Let p be an odd prime. The number of partitions $\lambda \vdash n$ fixed by the Mullineux map is equal to the cardinality of $\mathcal{M}_p(n)$.

True for any e.

くぼう くほう くほう しほ

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_r\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is < N, the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

(1.1)
$$P_1(A; N, n) = P_2(A; N, n).$$

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_r\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is < N, the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

(1.1)
$$P_1(A; N, n) = P_2(A; N, n)$$

For *e* odd and N = 2e, $A = \{1, 3, 5, ..., e - 2, e + 2, ..., 2e - 1\}$, we get that $\mathcal{M}_e(n)$ is $P_2(A; 2e, n)$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_r\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is < N, the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

(1.1)
$$P_1(A; N, n) = P_2(A; N, n)$$

For e odd and N = 2e, $A = \{1, 3, 5, \dots, e - 2, e + 2, \dots, 2e - 1\}$, we get that $\mathcal{M}_e(n)$ is $P_2(A; 2e, n)$.

The generating function for P_1 is easy to describe.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Let p(n) be the number of partitions of n and let

$$P(q) := \sum_{n=0}^{\infty} p(n)q^n.$$

3 N 3

Let p(n) be the number of partitions of n and let

$$P(q) := \sum_{n=0}^{\infty} p(n)q^n.$$

$$P(q) = \prod_{i=1}^{\infty} \frac{1}{1-q^{i}}$$

= $(1+q+q^{2}+\cdots)(1+q^{2}+q^{4}+\cdots)(1+q^{3}+q^{6}+\cdots)\cdots$

3 N 3

Let p(n) be the number of partitions of n and let

$$P(q) := \sum_{n=0}^{\infty} p(n)q^n.$$

$$P(q) = \prod_{i=1}^{\infty} \frac{1}{1-q^{i}}$$

= $(1+q+q^{2}+\cdots)(1+q^{2}+q^{4}+\cdots)(1+q^{3}+q^{6}+\cdots)\cdots$
(3,3,2,1,1)

3 N 3

Let p(n) be the number of partitions of n and let

$$P(q):=\sum_{n=0}^{\infty}p(n)q^n.$$

$$P(q) = \prod_{i=1}^{\infty} \frac{1}{1-q^{i}}$$

= $(1+q+q^{2}+\cdots)(1+q^{2}+q^{4}+\cdots)(1+q^{3}+q^{6}+\cdots)\cdots$
(3,3,2,1,1)

or for partitions with distinct parts:

$$P_d(q) = (1+q)(1+q^2)(1+q^3)\cdots$$

Let $mf_e(n)$ be the number of *e*-regular partitions of *n* fixed by the Mullineux map and let

$$MF_e(q) = \sum_{n=0}^{\infty} mf_e(n)q^n.$$

Our first result determines this generating function.

(a) (Andrews-Olsson for odd primes) Let e be odd. Then $mf_e(n)$ is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$\mathit{MF}_e(q) = \prod_{\substack{k \; odd \ e^{\dagger k}}} (1+q^k).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

(a) (Andrews-Olsson for odd primes) Let e be odd. Then mf_e(n) is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$\mathit{MF}_e(q) = \prod_{\substack{k \; odd \ e
e k}} (1+q^k).$$

 (b) Let e be even. Then mf_e(n) is the number of partitions of n into parts which are odd or odd multiples of e, and the odd parts are distinct. Thus:

$$MF_e(q) = rac{(1+q)(1+q^3)(1+q^5)\cdots}{(1-q^e)(1-q^{3e})(1-q^{5e})\cdots}$$

(a) (Andrews-Olsson for odd primes) Let e be odd. Then $mf_e(n)$ is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$\mathit{MF}_e(q) = \prod_{\substack{k \; odd \ e
eq k}} (1+q^k).$$

 (b) Let e be even. Then mf_e(n) is the number of partitions of n into parts which are odd or odd multiples of e, and the odd parts are distinct. Thus:

$$MF_e(q) = rac{(1+q)(1+q^3)(1+q^5)\cdots}{(1-q^e)(1-q^{3e})(1-q^{5e})\cdots}$$

Check this agrees with e = 2 answer.

A mysterious coincidence?

For *e* arbitrary:

$$MF_e(-q) = \sum_{n=0}^{\infty} (-1)^n mf_e(n) q^n = \prod_{k=1}^{\infty} \frac{1+q^{ek}}{1+q^k}.$$

э

▶ < ∃ >

< 47 ▶

A mysterious coincidence?

For *e* arbitrary:

$$MF_{e}(-q) = \sum_{n=0}^{\infty} (-1)^{n} mf_{e}(n) q^{n} = \prod_{k=1}^{\infty} \frac{1+q^{ek}}{1+q^{k}}.$$

e = 4 OEIS Entry e = 5 OEIS Entry

< ∃ →

э

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1=e_1+e_2+\cdots+e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_iFGe_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1=e_1+e_2+\cdots+e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_iFGe_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

For symmetric groups the blocks are determined combinatorially via p-cores, equivalently residue sequences mod p.

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1=e_1+e_2+\cdots+e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_iFGe_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

For symmetric groups the blocks are determined combinatorially via p-cores, equivalently residue sequences mod p.

e-blocks and e-cores

$$e=5,w=3, ilde{\lambda}=(3,2)$$

If $\mathit{m}(\lambda) = \lambda$ then $ilde{\lambda}$ is self-conjugate.

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the N October 10, 2024 20 / 29

문 🛌 🖻

Blocks and residue sequences

Fact: Two partitions $\lambda \vdash n$ and $\mu \vdash n$ are in the same *e*-block (have the same *e*-core) if and only if their boxes have the same set of residues mod *e*.

Blocks and residue sequences

Fact: Two partitions $\lambda \vdash n$ and $\mu \vdash n$ are in the same *e*-block (have the same *e*-core) if and only if their boxes have the same set of residues mod *e*.

Two different $\lambda, \mu \vdash 18$ with the same 4-core (3, 2, 1) and 4-weight 3.

п	<i>w</i> = 0	w = 1	w = 2	<i>w</i> = 3	<i>w</i> = 4	<i>w</i> = 5	
0	1						
1	1						
2	0						
3	1						
4	1	1					
5	1	1					
6	1	0					
7	1	1					
8	0	1	3				
9	0	1	3				
10	2	1	0				
11	0	1	3				
12	1	0	3	4			
13	1	0	3	4			
14	1	2	3	0			
15	2	0	3	4			
16	0	1	0	4	9		
17	0	1	0	4	9		
18	1	1	6	4	0		
19	1	2	0	4	9		
20	0	0	3	0	9	12	

Table: Mullineux fixed points for e = 4 by weight

The sequence $\{1, 1, 3, 4, 9, 12...\}$ counts *cubic partitions*.

The first column counts self-conjugate 4-cores.

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the N

October 10, 2024

イロト イボト イヨト イヨト

э

Fixed points in a block

Definition: Let *e* be even. Define $f_e(w)$ by:

$$\sum_{w=0}^{\infty} f_e(w) q^w := \prod_{k=1}^{\infty} \frac{1}{(1-q^{2k})^{e/2}} \frac{1}{(1-q^{2k-1})}$$

Let *e* be odd. Define $g_e(w)$ by:

$$\sum_{w=0}^{\infty} g_e(w) q^w := \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{(e-1)/2}}$$

э

< □ > < @ >

Fixed points in a block

Definition: Let *e* be even. Define $f_e(w)$ by:

$$\sum_{w=0}^{\infty} f_e(w) q^w := \prod_{k=1}^{\infty} \frac{1}{(1-q^{2k})^{e/2}} \frac{1}{(1-q^{2k-1})}$$

Let *e* be odd. Define $g_e(w)$ by:

$$\sum_{w=0}^{\infty} g_e(w) q^w := \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{(e-1)/2}}$$

 $f_e(w)$ and $g_e(w)$ will count fixed points in a block with a self-conjugate *e*-core and weight *w*.

(a) Suppose e is even. Then:

$$mf_{e,w}(n) = f_e(w)sc_e(n-ew).$$

(b) Suppose e is odd. Then mf_{e,w}(n) is zero unless w is even in which case

$$mf_{e,w}(n) = g(\frac{w}{2})sc_e(n-ew).$$

A B A A B A

æ

Joint generating function

Garvan-Kim-Stanton (1990) gave a generating function for self-conjugate e-cores. Thus we can obtain:

Joint generating function

Garvan-Kim-Stanton (1990) gave a generating function for self-conjugate *e*-cores. Thus we can obtain:

The generating function $MF_e(x,q) = \sum_{n,w} mf_{e,w}(n)x^wq^n$ is:

$$MF_{e}(x,q) = \begin{cases} \frac{(-q,q^{2})_{\infty}(q^{2e},q^{2e})_{\infty}^{e/2}}{(q^{2e}x^{2},q^{2e}x^{2})_{\infty}^{e/2}(q^{e}x,q^{2e}x^{2})_{\infty}} & \text{if } e \text{ is even} \\ \frac{(-q,q^{2})_{\infty}(q^{2e},q^{2e})_{\infty}^{e-1/2}}{(q^{2e}x^{2},q^{2e}x^{2})_{\infty}^{(e-1)/2}(-q^{e},q^{2e})_{\infty}} & \text{if } e \text{ is odd} \end{cases}$$

Computing $f_e(w)$

Given a partition λ with distinct parts, we form an abacus with runners lying north to south labelled $\{0, 1, 2, \ldots, q-1\}$. The bead positions are labelled as below:

Place a bead on the abacus corresponding to each part of λ .

0	1	2	3	4	5
۰	۰	۰	۰	۰	۰
۰	0	8	0	0	0
•	0	¢	e	0	0
۰	•	۰	0	۰	0

Figure: Abacus display for $\lambda = (23, 21, 17, 13, 11, 9, 7)$ and q = 6.

q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the following:

- Slide a bead one step up its runner to a vacant position, beads at position zero disappear.
- Remove a pair of beads in position a and q a for $a = 1, 2, ..., \lfloor (q 1)/2 \rfloor$.

q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the following:

- Slide a bead one step up its runner to a vacant position, beads at position zero disappear.
- Remove a pair of beads in position a and q a for $a = 1, 2, ..., \lfloor (q 1)/2 \rfloor$.

Eventually we reach the abacus diagram of the q-bar core of λ .

Computing the 4-bar core of $\lambda = (19, 13, 11, 10, 8, 5, 4, 3)$

э

< 47 ▶

Computing the 4-bar core of $\lambda = (19, 13, 11, 10, 8, 5, 4, 3)$

э

< 1 k

- 4 E N

э

< 47 ▶

3

< 1 k

					I				

< 3 >

э

< 3 >

э

	•								

э

э

David Hemmer (Michigan Technological Un	Generating functions for fixed points of the M	October 10, 2024 28 / 2
---	--	-------------------------

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

David Hemmer (Michigan Technological Uni	Generating functions for fixed points of the M	October 10, 2024	28 / 29
--	--	------------------	---------

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Final steps

Let *e* be even and suppose $\lambda \vdash n$ has *e* weight *w* and self-conjugate core $\lambda_{(e)}$. Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2*e*-bar core.

Final steps

Let *e* be even and suppose $\lambda \vdash n$ has *e* weight *w* and self-conjugate core $\lambda_{(e)}$. Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2*e*-bar core.

Calculate the 2*e*-bar quotient of τ . Since τ has distinct odd parts, its 2*e*-bar quotient is a tuple $(\rho^1, \rho^2, \cdots, \rho^{e/2})$. Use this to get the formula for $f_e(w)$.

Final steps

Let *e* be even and suppose $\lambda \vdash n$ has *e* weight *w* and self-conjugate core $\lambda_{(e)}$. Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2*e*-bar core.

Calculate the 2*e*-bar quotient of τ . Since τ has distinct odd parts, its 2*e*-bar quotient is a tuple $(\rho^1, \rho^2, \dots, \rho^{e/2})$. Use this to get the formula for $f_e(w)$.

Thank you!