Generating functions for fixed points of the Mullineux map

David Hemmer

Michigan Technological University

October 10, 2024

 QQ

Definition: A representation of a group G over a field F is a group homomorphism:

 ψ : $G \rightarrow GL_n(F)$.

Definition: A representation of a group G over a field F is a group homomorphism:

$$
\psi: G \to GL_n(F).
$$

G acts $V = F^n$ by invertible linear transformations.

Definition: A representation of a group G over a field F is a group homomorphism:

 ψ : $G \rightarrow GL_n(F)$.

G acts $V = F^n$ by invertible linear transformations.

Isomorphism of representations corresponds to change of bases.

Definition: A representation of a group G over a field F is a group homomorphism:

 ψ : $G \rightarrow GL_n(F)$.

G acts $V = F^n$ by invertible linear transformations.

Isomorphism of representations corresponds to change of bases.

 ψ is irreducible or simple if 0 and F^n are the only G-invariant subspaces.

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$
\psi:(1,2)\to\left(\begin{array}{cc}1&0\\-1&-1\end{array}\right),\qquad (2,3)\to\left(\begin{array}{cc}0&1\\1&0\end{array}\right)
$$

 $\leftarrow \equiv$ \rightarrow

 \leftarrow \Box ∢母 э

 QQ

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$
\psi: (1,2) \to \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \qquad (2,3) \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}
$$

$$
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

 $\leftarrow \equiv$ \rightarrow

 \leftarrow \Box ∢母 э

 QQ

A two-dimensional (irreducible?) representation of Σ_3

 $G = \Sigma_3$ and

$$
\psi: (1,2) \to \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \qquad (2,3) \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}
$$

$$
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

Moral: The characteristic of the field matters!

Isomorphism Classes of Irreducible Representations

Theorem

Let G be a finite group.

- \bullet The number of irreducible representations over $\mathbb C$ is the number of conjugacy classes of G. Every finite dimensional representation is a direct sum of irreducibles.
- **2** For F algebraically closed of characteristic p, the number of irreducible representations is the number of conjugacy classes of order not divisible by p. When $p \mid |G|$ there are representations that are not a direct sum of irreducibles.

Isomorphism Classes of Irreducible Representations

Theorem

Let G be a finite group.

- \bullet The number of irreducible representations over $\mathbb C$ is the number of conjugacy classes of G. Every finite dimensional representation is a direct sum of irreducibles.
- **2** For F algebraically closed of characteristic p, the number of irreducible representations is the number of conjugacy classes of order not divisible by p. When $p \mid |G|$ there are representations that are not a direct sum of irreducibles.

What does this mean for symmetric groups?

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

 \blacksquare

 299

Э× э

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

Say $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ is e-regular if $\forall i, \lambda_i \neq \lambda_{i+e-1}$

э

Partitions and Young diagrams

Example: Let $\lambda = (5, 5, 3, 3, 3, 1) \vdash 19$.

Say $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ is e-regular if $\forall i, \lambda_i \neq \lambda_{i+e-1}$

 λ is e-regular for $e > 4$.

目

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

$$
\mathsf{S}^\lambda \otimes \mathsf{sgn} \cong \mathsf{S}^{\lambda'}
$$

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

 $\mathsf{S}^\lambda \otimes \mathsf{sgn} \cong \mathsf{S}^{\lambda'}$

For char $F = p$ the irreducible $F\Sigma_n$ modules are:

 $\{D^{\lambda}=S^{\lambda}/$ rad $S^{\lambda}\mid\lambda\vdash n$ is p-regular $\}.$

Modules for the symmetric group Σ_n

Irreducible $\mathbb{C}\Sigma_n$ modules are Specht modules:

 $\{S^{\lambda} \mid \lambda \vdash n\}.$

 $\mathsf{S}^\lambda \otimes \mathsf{sgn} \cong \mathsf{S}^{\lambda'}$

For char $F = p$ the irreducible $F\Sigma_n$ modules are:

 $\{D^{\lambda}=S^{\lambda}/$ rad $S^{\lambda}\mid\lambda\vdash n$ is p-regular $\}.$

Mullineux Problem:

 $D^{\lambda} \otimes$ sgn $\cong D^{m(\lambda)}$.

What is the involution $m(\lambda)$?

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

Andrews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

Andrews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

Andrews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Ford-Kleshchev (1997): Mullineux was correct!

Mullineux Conjecture (1979): Conjectural algorithm for $m(\lambda)$. Verified some basic properties.

Andrews-Olsson (1991): Correct number of fixed points $\lambda = m(\lambda)$.

Kleshchev (1996): Algorithm for $m(\lambda)$, using very deep branching theorems.

Ford-Kleshchev (1997): Mullineux was correct!

Remark: Consider $e > 2$. Our work extends Andrews-Olsson and Bessenrodt-Olsson to arbitrary e odd (straightforward) and e even (different). There are representation theory interpretations for Hecke algebras at eth roots of unity.

.

$$
\lambda = (8,6,4,4,2,1,1,1) \vdash 27 \text{ and } e = 5:
$$

The e-rim contains 13 boxes spanning 8 rows.

 \leftarrow \Box

 QQ

э

 $\leftarrow \equiv$ \rightarrow

$$
\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5:
$$

 \rightarrow \rightarrow \equiv \rightarrow

Þ \mathcal{A} .

4日下

4 同 ト

÷,

$$
\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5.
$$

$$
\left(\begin{array}{ccc}13&7&5\\8&5&2\end{array}\right)
$$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

4 0 8

É

$$
\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5:
$$

$$
\left(\begin{array}{cccc}\n13 & 7 & 5 & 2\\
8 & 5 & 2 & 2\n\end{array}\right)
$$

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

4 0 8

É

$$
\lambda = (8, 6, 4, 4, 2, 1, 1, 1) \vdash 27 \text{ and } e = 5:
$$

 \leftarrow \Box

∢ ⊜⊺

 299

э

 \rightarrow \equiv \rightarrow

 \mathbf{b}

The Mullineux map

Given

$$
G(\lambda) = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_t \\ r_1 & r_2 & \cdots & r_t \end{array} \right)
$$

replace r_i with

$$
a_i-r_i+\epsilon_i
$$

where $\epsilon_i = 1$ if $e \nmid a_i$ and $\epsilon_i = 0$ else.

 \leftarrow \Box

∢ ⊜⊺

 \rightarrow \equiv \rightarrow

э

The Mullineux map

Given

$$
G(\lambda) = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_t \\ r_1 & r_2 & \cdots & r_t \end{array} \right)
$$

replace r_i with

$$
a_i-r_i+\epsilon_i
$$

where $\epsilon_i = 1$ if $e \nmid a_i$ and $\epsilon_i = 0$ else.

$$
\left(\begin{array}{rrrr} 13 & 7 & 5 & 2 \\ 8 & 5 & 3 & 2 \end{array}\right) \Rightarrow \left(\begin{array}{rrrr} 13 & 7 & 5 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)
$$

 \rightarrow \equiv \rightarrow

э

 \leftarrow \Box

∢ ⊜⊺

4日下

 $\left\{ \left. \left(\left. \Box \right. \right| \mathbb{R} \right) \times \left(\left. \mathbb{R} \right. \right| \right\}$, $\left\{ \left. \left. \mathbb{R} \right| \right\}$, $\left\{ \left. \mathbb{R} \right| \right\}$

 299

目

$$
\left(\begin{array}{cccc} 13 & 7 & 5 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)
$$

 η an

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

4日下

 299

造

4日下

4 同 ト

 \prec

医前头骨的

 299

造

 $m(8, 6, 4, 4, 2, 1, 1, 1) = (12, 6, 6, 1, 1, 1).$

€⊡

 $\leftarrow \equiv +$

э

 QQ

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the Mullineux map october 10, 2024 10/29

Counting Mullineux fixed points

■ Mullineux gave conditions on (a_1, a_2, \ldots, a_t) \vdash n and $\{r_1, r_2, \ldots, r_t\}$ to be a Mullineux symbol $G(\lambda)$.

Counting Mullineux fixed points

- Mullineux gave conditions on (a_1, a_2, \ldots, a_t) \vdash n and $\{r_1, r_2, \ldots, r_t\}$ to be a Mullineux symbol $G(\lambda)$.
- **2** Fixed points need r_i roughly equal $a_i/2$.

Counting Mullineux fixed points

- Mullineux gave conditions on (a_1, a_2, \ldots, a_t) \vdash n and $\{r_1, r_2, \ldots, r_t\}$ to be a Mullineux symbol $G(\lambda)$.
- **2** Fixed points need r_i roughly equal $a_i/2$.
- **3** Translate (a_1, a_2, \ldots, a_t) using bijection Andrews-Olsson (e odd) or Bessenrodt (e even) to a set more easily enumerated.
Counting Mullineux fixed points

- Mullineux gave conditions on (a_1, a_2, \ldots, a_t) \vdash n and $\{r_1, r_2, \ldots, r_t\}$ to be a Mullineux symbol $G(\lambda)$.
- **2** Fixed points need r_i roughly equal $a_i/2$.
- **3** Translate (a_1, a_2, \ldots, a_t) using bijection Andrews-Olsson (e odd) or Bessenrodt (e even) to a set more easily enumerated.
- **4** Count fixed points or, for blockwise version, use e-bar quotients.

Theorem (Mullineux 1979)

An array $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \end{pmatrix}$ r_1 r_2 \cdots r_k $\bigg\}$ is the Mullineux symbol of an e-regular partition of $\mathsf{n}=\sum \mathsf{a}_\mathsf{i}$ if and only if: **1** 0 $\leq r_i - r_{i+1} \leq e$; **2** $r_i - r_{i+1} + \epsilon_{i+1} \le a_i - a_{i+1} \le r_i - r_{i+1} + \epsilon_{i+1} + e_i$ \bullet $r_i = r_{i+1} \rightarrow e \mid a_i$ \bullet r_i - r_{i+1} = e \rightarrow e \nmid a_i **5** 0 $\le a_k - r_k \le e$ **6** 1 $\leq r_k \leq e$ \bullet $r_k = e \rightarrow a_k - r_k > 0$.

イ何 トイヨ トイヨ トーヨー

Theorem (Mullineux 1979)

An array $\begin{pmatrix} a_1 & a_2 & \cdots & a_k \end{pmatrix}$ r_1 r_2 \cdots r_k $\bigg\}$ is the Mullineux symbol of an e-regular partition of $\mathsf{n}=\sum \mathsf{a}_\mathsf{i}$ if and only if: **1** 0 $\leq r_i - r_{i+1} \leq e$; **2** $r_i - r_{i+1} + \epsilon_{i+1} \le a_i - a_{i+1} \le r_i - r_{i+1} + \epsilon_{i+1} + e_i$ \bullet $r_i = r_{i+1} \rightarrow e \mid a_i$ \bullet r_i - r_{i+1} = e \rightarrow e \nmid a_i **5** 0 $\le a_k - r_k \le e$ **6** 1 $\leq r_k \leq e$ Ω $r_k = e \rightarrow a_k - r_k > 0$.

Remark: Given the top row (a_1, a_2, \ldots, a_k) , there is at most one corresponding partition fixed under the Mullineux map.

Idea: Count eligible partitions $\{(a_1, a_2, \ldots, a_k) \vdash n\}.$

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

(i) 2 | $a_i \Longleftrightarrow e \mid a_i$ (ii) $0 \le a_i - a_{i+1} \le 2e$ (iii) If $a_i = a_{i+1}$ then a_i is even. (iv) If $a_i - a_{i+1} = 2e$ then a_i is odd. (v) $a_k < 2e$.

어서 동시 그동

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

\n- (i)
$$
2 \mid a_i \iff e \mid a_i
$$
\n- (ii) $0 \le a_i - a_{i+1} \le 2e$
\n- (iii) If $a_i = a_{i+1}$ then a_i is even.
\n- (iv) If $a_i - a_{i+1} = 2e$ then a_i is odd.
\n- (v) $a_k < 2e$.
\n

Then we have:

Theorem (Andrews-Olsson)

Let p be an odd prime. The number of partitions $\lambda \vdash n$ fixed by the Mullineux map is equal to the cardinality of $\mathcal{M}_p(n)$.

(何) (ヨ) (ヨ)

G.

Definition

Define $\mathcal{M}_e(n)$ to be the set of partitions $(a_1, a_2, \ldots, a_k) \vdash n$ satisfying:

\n- (i)
$$
2 \mid a_i \iff e \mid a_i
$$
\n- (ii) $0 \le a_i - a_{i+1} \le 2e$
\n- (iii) If $a_i = a_{i+1}$ then a_i is even.
\n- (iv) If $a_i - a_{i+1} = 2e$ then a_i is odd.
\n- (v) $a_k < 2e$.
\n

Then we have:

Theorem (Andrews-Olsson)

Let p be an odd prime. The number of partitions $\lambda \vdash n$ fixed by the Mullineux map is equal to the cardinality of $\mathcal{M}_p(n)$.

True for any e.

(何) (ヨ) (ヨ)

G.

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_n\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is $\langle N, \rangle$ the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

$$
(1, 1) \tP_1(A; N, n) = P_2(A; N, n).
$$

イ何 ト イヨ ト イヨ トー

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_n\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is $\langle N, \rangle$ the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

$$
(1, 1) \t\t P_1(A; N, n) = P_2(A; N, n).
$$

For e odd and $N = 2e$, $A = \{1, 3, 5, \ldots, e-2, e+2, \ldots, 2e-1\}$, we get that $M_e(n)$ is $P_2(A; 2e, n)$.

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

Andrews-Olsson 1991

Theorem 2. Let $A = \{a_1, a_2, ..., a_n\}$ be a set of r distinct positive integers arranged in increasing order, and let N be an integer larger than a_r . Let $P_1(A; N, n)$ denote the number of partitions of n into distinct parts each of which is congruent to some a_i modulo N. Let $P_2(A; N, n)$ denote the number of partitions of n into parts each of which is congruent to 0 or to some a_i modulo N, in addition only parts divisible by N may be repeated, the smallest part is $\langle N, \rangle$ the difference between successive parts is at most N and strictly less than N if either part is divisible by N. Then for each $n \ge 0$,

$$
(1, 1) \t\t P_1(A; N, n) = P_2(A; N, n).
$$

For e odd and $N = 2e$, $A = \{1, 3, 5, \ldots, e-2, e+2, \ldots, 2e-1\}$, we get that $M_e(n)$ is $P_2(A; 2e, n)$.

The generating function for P_1 is easy to describe.

イタト イミト イヨト

Let $p(n)$ be the number of partitions of n and let

$$
P(q):=\sum_{n=0}^{\infty}p(n)q^n.
$$

э

Let $p(n)$ be the number of partitions of n and let

$$
P(q) := \sum_{n=0}^{\infty} p(n)q^n.
$$

$$
P(q) = \prod_{i=1}^{\infty} \frac{1}{1 - q^{i}}
$$

= $(1 + q + q^{2} + \cdots)(1 + q^{2} + q^{4} + \cdots)(1 + q^{3} + q^{6} + \cdots) \cdots$

э

Let $p(n)$ be the number of partitions of n and let

$$
P(q):=\sum_{n=0}^{\infty}p(n)q^n.
$$

$$
P(q) = \prod_{i=1}^{\infty} \frac{1}{1 - q^i}
$$

= $(1 + q + q^2 + \cdots)(1 + q^2 + q^4 + \cdots)(1 + q^3 + q^6 + \cdots) \cdots$
(3, 3, 2, 1, 1)

э

Let $p(n)$ be the number of partitions of n and let

$$
P(q) := \sum_{n=0}^{\infty} p(n)q^n.
$$

$$
P(q) = \prod_{i=1}^{\infty} \frac{1}{1 - q^{i}}
$$

= $(1 + q + q^{2} + \cdots)(1 + q^{2} + q^{4} + \cdots)(1 + q^{3} + q^{6} + \cdots) \cdots$
(3, 3, 2, 1, 1)

or for partitions with distinct parts:

$$
P_d(q) = (1+q)(1+q^2)(1+q^3)\cdots.
$$

Let $mf_e(n)$ be the number of e-regular partitions of *n* fixed by the Mullineux map and let

$$
MF_e(q)=\sum_{n=0}^{\infty} mf_e(n)q^n.
$$

Our first result determines this generating function.

(a) (Andrews-Olsson for odd primes) Let e be odd. Then $mf_e(n)$ is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$
\mathsf{MF}_e(q) = \prod_{\substack{k \text{ odd}\\ e \nmid k}} (1 + q^k).
$$

ヨメ メヨメ

 \blacksquare

э

(a) (Andrews-Olsson for odd primes) Let e be odd. Then $m_f(n)$ is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$
\mathsf{MF}_e(q) = \prod_{\substack{k \text{ odd}\\ e \nmid k}} (1 + q^k).
$$

(b) Let e be even. Then $mf_e(n)$ is the number of partitions of n into parts which are odd or odd multiples of e, and the odd parts are distinct. Thus:

$$
\mathsf{MF}_\mathsf{e}(q) = \frac{(1+q)(1+q^3)(1+q^5)\cdots}{(1-q^{\mathsf{e}})(1-q^{3\mathsf{e}})(1-q^{5\mathsf{e}})\cdots}.
$$

 200

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the Mullineum Mullineum 10, 2024 17/29

(a) (Andrews-Olsson for odd primes) Let e be odd. Then $m_f(n)$ is the number of partitions of n into distinct odd parts not divisible by e. Thus:

$$
\mathsf{MF}_e(q) = \prod_{\substack{k \text{ odd}\\ e \nmid k}} (1 + q^k).
$$

(b) Let e be even. Then $mf_e(n)$ is the number of partitions of n into parts which are odd or odd multiples of e, and the odd parts are distinct. Thus:

$$
\mathsf{MF}_e(q) = \frac{(1+q)(1+q^3)(1+q^5)\cdots}{(1-q^e)(1-q^{3e})(1-q^{5e})\cdots}.
$$

 200

Check this agrees with $e = 2$ answer.

A mysterious coincidence?

For e arbitrary:

$$
MF_e(-q) = \sum_{n=0}^{\infty} (-1)^n m f_e(n) q^n = \prod_{k=1}^{\infty} \frac{1 + q^{ek}}{1 + q^k}.
$$

 $\mathbf{A} \rightarrow \mathbf{B}$

Þ \mathcal{A} .

4日下

4 同 ト

重

A mysterious coincidence?

For e arbitrary:

$$
MF_e(-q) = \sum_{n=0}^{\infty} (-1)^n m f_e(n) q^n = \prod_{k=1}^{\infty} \frac{1 + q^{ek}}{1 + q^k}.
$$

 $e = 4$ OEIS Entry $e = 5$ OEIS Entry

 QQ

目

 \rightarrow \equiv \rightarrow

 \sim

 \leftarrow \Box

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1 = e_1 + e_2 + \cdots + e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_i FG e_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1 = e_1 + e_2 + \cdots + e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_i FG e_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

For symmetric groups the blocks are determined combinatorially via p -cores, equivalently residue sequences mod p .

Blocks of Group Algebras

The group algebra FG has primitive central idempotents

 $1 = e_1 + e_2 + \cdots + e_r.$

This lets one study the representation theory of FG by studying individually the representation theory of block algebras e_i FG e_i . In particular the irreducible modules are partitioned into blocks, and each indecomposable module is in a unique block.

For symmetric groups the blocks are determined combinatorially via p -cores, equivalently residue sequences mod p .

e-blocks and e-cores

$$
e=5, w=3, \tilde{\lambda}=(3,2)
$$

 \leftarrow \Box

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the Mullineux Mullineux 20 / 29

 \rightarrow \equiv \rightarrow

重

Blocks and residue sequences

Fact: Two partitions $\lambda \vdash n$ and $\mu \vdash n$ are in the same e-block (have the same e-core) if and only if their boxes have the same set of residues mod e.

 Ω

Blocks and residue sequences

Fact: Two partitions $\lambda \vdash n$ and $\mu \vdash n$ are in the same e-block (have the same e-core) if and only if their boxes have the same set of residues mod e.

Two different $\lambda, \mu \vdash 18$ with the same 4-core (3, 2, 1) and 4-weight 3.

\sqrt{n}	$w = 0$	$w=1$	$w = 2$	$w = 3$	$w = 4$	$w = 5$
0	$\,1$					
$\mathbf 1$	$\mathbf 1$					
$\frac{2}{3}$	$\pmb{0}$					
	$\mathbf{1}$					
$\overline{\mathbf{4}}$	$\mathbf{1}$	$\,1$				
5	$\mathbf{1}$	$\mathbf{1}$				
6	$\mathbf{1}$	0				
$\overline{7}$	$\mathbf{1}$	$\mathbf{1}$				
8	$\pmb{0}$	$\mathbf{1}$	3			
9	$\mathbf 0$	$\mathbf 1$	3			
10	$\overline{\mathbf{c}}$	$\mathbf{1}$				
11	$\pmb{0}$	$\mathbf 1$	$\frac{0}{3}$			
12	$\mathbf{1}$	$\mathbf 0$	$\frac{3}{3}$	4		
13	$\mathbf{1}$	$\pmb{0}$		$\overline{\mathbf{r}}$		
14	$\mathbf{1}$	$\overline{\mathbf{c}}$	$\frac{3}{3}$	0		
15	$\overline{\mathbf{c}}$	$\mathbf 0$		4		
16	$\mathbf 0$	$\mathbf 1$	$\mathbf{0}$	4	9	
17	0	$\mathbf{1}$	$\mathbf{0}$	$\overline{\mathbf{r}}$	9	
18	$\mathbf{1}$	$\mathbf{1}$	6	4	0	
19	$\mathbf{1}$	$\overline{\mathbf{c}}$	$\mathbf{0}$	4	9	
20	$\mathbf{0}$	$\mathbf{0}$	3	0	9	12

Table: Mullineux fixed points for $e = 4$ by weight

The sequence $\{1, 1, 3, 4, 9, 12\ldots\}$ counts *cubic partitions*.

The first column counts self-conjugate 4-cores.

David Hemmer (Michigan Technological UnivGenerating functions for fixed points of the Mullineux Mullineux map $22/29$

イロメ イ母メ イヨメ イヨメー

÷.

Fixed points in a block

Definition: Let *e* be even. Define $f_e(w)$ by:

$$
\sum_{w=0}^{\infty} f_e(w) q^w \ := \ \prod_{k=1}^{\infty} \frac{1}{(1-q^{2k})^{e/2}} \frac{1}{(1-q^{2k-1})}
$$

Let e be odd. Define $g_e(w)$ by:

$$
\sum_{w=0}^{\infty} g_e(w) q^w \ := \ \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{(e-1)/2}}
$$

 -111 ∢ ⁄5∄. 医单头 人 目

Fixed points in a block

Definition: Let *e* be even. Define $f_e(w)$ by:

$$
\sum_{w=0}^{\infty} f_e(w) q^w \ := \ \prod_{k=1}^{\infty} \frac{1}{(1-q^{2k})^{e/2}} \frac{1}{(1-q^{2k-1})}
$$

Let e be odd. Define $g_e(w)$ by:

$$
\sum_{w=0}^{\infty} g_e(w) q^w \ := \ \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{(e-1)/2}}
$$

 $f_e(w)$ and $g_e(w)$ will count fixed points in a block with a self-conjugate e-core and weight w.

(a) Suppose e is even. Then:

$$
m f_{e,w}(n) = f_e(w) s c_e(n - ew).
$$

(b) Suppose e is odd. Then $mf_{e,w}(n)$ is zero unless w is even in which case

$$
m f_{e,w}(n) = g(\frac{w}{2}) s c_e(n - ew).
$$

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A} \times \mathbf{A}$

 \leftarrow \Box

造

Joint generating function

Garvan-Kim-Stanton (1990) gave a generating function for self-conjugate e-cores. Thus we can obtain:

 Ω

Joint generating function

Garvan-Kim-Stanton (1990) gave a generating function for self-conjugate e-cores. Thus we can obtain:

The generating function $\mathit{MF}_e(x,q)=\sum_{n,w} \mathit{mf}_{e,w}(n)x^w q^n$ is:

$$
MF_e(x,q) = \begin{cases} \frac{(-q,q^2)_{\infty}(q^{2e},q^{2e})_{\infty}^{e/2}}{(q^{2e}x^2,q^{2e}x^2)_{\infty}^{e/2}(q^{e}x,q^{2e}x^2)_{\infty}} & \text{if } e \text{ is even} \\ \frac{(-q,q^2)_{\infty}(q^{2e},q^{2e})_{\infty}^{e-1/2}}{(q^{2e}x^2,q^{2e}x^2)_{\infty}^{(e-1)/2}(-q^{e},q^{2e})_{\infty}} & \text{if } e \text{ is odd} \end{cases}
$$

Computing $f_e(w)$

Given a partition λ with distinct parts, we form an abacus with runners lying north to south labelled $\{0, 1, 2, \ldots, q-1\}$. The bead positions are labelled as below:

Place a bead on the abacus corresponding to each part of λ .

Figure: Abacus display for $\lambda = (23, 21, 17, 13, 11, 9, 7)$ and $q = 6$.

q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the following:

- Slide a bead one step up its runner to a vacant position, beads at position zero disappear.
- Remove a pair of beads in position a and $q a$ for $a = 1, 2, \ldots, |(q-1)/2|$.

q-bar cores

On the abacus display of a bar partition (i.e. distinct parts) we can do the following:

- Slide a bead one step up its runner to a vacant position, beads at position zero disappear.
- Remove a pair of beads in position a and $q a$ for $a = 1, 2, \ldots$, $|(q - 1)/2|$.

Eventually we reach the abacus diagram of the q-bar core of λ .

Computing the 4-bar core of $\lambda = (19, 13, 11, 10, 8, 5, 4, 3)$

 -111 ∢ ⊜⊺ 不重 的人 目

Computing the 4-bar core of $\lambda = (19, 13, 11, 10, 8, 5, 4, 3)$

 -111 ∢母 不重 的人 目

 -111 ∢ ⊜⊺ Box 11 目

 \Rightarrow \rightarrow 目

 -111 ∢ ⊜⊺

 -111

 QQ

 -111

 QQ

 \blacksquare

 QQ

 \blacksquare

 QQ

 -111

э

 Ω

 \blacksquare

 \blacksquare

 QQ

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

 \equiv

 Ω

イロメ イ押 レイモ レイモド

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Final steps

Let e be even and suppose $\lambda \vdash n$ has e weight w and self-conjugate core $\lambda_{(\bm{e})}.$ Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2e-bar core.

 200

Final steps

Let e be even and suppose $\lambda \vdash n$ has e weight w and self-conjugate core $\lambda_{(\bm{e})}.$ Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2e-bar core.

Calculate the 2e-bar quotient of τ . Since τ has distinct odd parts, its 2e-bar quotient is a tuple $(\rho^1,\rho^2,\cdots,\rho^{\mathsf{e}/2})$. Use this to get the formula for $f_{\rho}(w)$.

つへへ

Final steps

Let e be even and suppose $\lambda \vdash n$ has e weight w and self-conjugate core $\lambda_{(\bm{e})}.$ Apply Bessenrodt's bijection to get a pair $\{\tau, e\gamma\}$ where $\tau = (c_1, c_2, \ldots, c_k)$ has distinct odd parts and γ has all odd parts. Verify all the τ have the same 2e-bar core.

Calculate the 2e-bar quotient of τ . Since τ has distinct odd parts, its 2e-bar quotient is a tuple $(\rho^1,\rho^2,\cdots,\rho^{\mathsf{e}/2})$. Use this to get the formula for $f_{\rho}(w)$.

Thank you!

 200