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@ Copartitions



Copartitions

Definition

A copartition is a combination of

a partition y

a partition o

along with a rectangle p with dimensions

(number of parts of v) x (number of parts of o)

uniting them.



Copartitions

Definition

An (a,b, m)-copartition is a combination of

a partition v into parts = a (mod m),

a partition o into parts = b (mod m),

along with a rectangle p of m’s with dimensions

(number of parts of v) x (number of parts of o)

uniting them.

We define cp(a, b, m;n) to be the number of (a, b, m)-copartitions of n.



Example of a (1, 1, 2)-copartition

p: 3 x 3 rectangle
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Example of a (1, 1, 2)-copartition

v 7+ 5+ 5 conjugated

p: 21212] 343 rectangle

[\
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[\]




Example of a (1, 1, 2)-copartition




Example of a (1, 1, 2)-copartition

P 212|2 | | : 0 “The Sky”
21212
21212

v

“The Woods” or “The Ground”




Diagram of a (1,1, 2)-copartition

2]2]2 | ]

v Convert v and o to their 2-modular diagrams.




Diagram of a (1,1, 2)-copartition

Convert v and ¢ to their 2-modular diagrams.

N NN NN
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Diagram of a (1,1, 2)-copartition

o: [2]2]2]1]2] .,
2122
212121
1(1(1
v [2]2]2 Convert v and ¢ to their 2-modular diagrams.
212712 Move the 1’s in to border rectangle p.
2

This is the copartition diagram of
(v,p,0) = (T+5+5,23334+1+1)



Diagram of an (a, b, m)-copartition

p: |mm|m b m| -
m|m|m| b
m|m|m| b
alala

v i Im|lm|m| Convert v and o to their m-modular diagrams.
mlmlm| Move the a’s and b’s in to border rectangle p.
m

This is the copartition diagram of
(v,p,0) = ((3m +a) + (2m + a) + (2m + a), m3*3, (m + b) + b+ b)



Partitions with evens below odds *

Definition (Andrews)

EO*(n) counts the number of partitions of n such that
o all even parts are smaller than all odd parts

o the only part that appears an odd number of times is the largest even
part



Partitions with evens below odds *

Definition (Andrews)

EO*(n) counts the number of partitions of n such that
o all even parts are smaller than all odd parts

o the only part that appears an odd number of times is the largest even
part

Example

9>+ 7'+ 6°+2° =180
is a partition counted by £0O*(80)



Connection between cp(n) and EO*(2n)

Theorem (Burson-E.)

For every integer n > 0,

cp(1,1,2;n) = EO*(2n).



Connection between cp(n) and EO*(2n)

Theorem (Burson-E.)
For every integer n > 0,
cp(1,1,2;n) = EO*(2n).
Remark
The symmetry of (1,1, 2)-copartitions is easy to see.

In contrast, the symmetry of partitions counted by £O* was not immediately
apparent.



Connection to (m, k)-capsids

Definition (Garvan, Schlosser)

An (m, k)-capsid partition is a partition 7 such that
o all parts of m are of size m — k or congruent to 0 or k& mod m;
o if there are no parts of size m — k, then all parts are congruent to k
mod m;

e if m — k is a part, then it is the smallest part, all parts =0 mod m have
size < m - fm_a, and all parts = k mod m have size > m - fp,_p.



Connection to (m, k)-capsids

Definition (Garvan, Schlosser)

An (m, k)-capsid partition is a partition 7 such that
o all parts of m are of size m — k or congruent to 0 or k& mod m;
o if there are no parts of size m — k, then all parts are congruent to k
mod m;

e if m — k is a part, then it is the smallest part, all parts =0 mod m have
size < m - fm_a, and all parts = k mod m have size > m - fp,_p.

They use (m, k)-capsids and ¢-cores to give a combinatorial interpretation of
Ramanujan’s tau function.



Connection to (m, k)-capsids

Theorem (Burson-E.)

For every integer n > 0, cp(k,m — k,m;n) is equal to the number of (m, k)-
capsids of n.



Connection to (m, k)-capsids

Theorem (Burson-E.)

For every integer n > 0, cp(k,m — k,m;n) is equal to the number of (m, k)-
capsids of n.

Remark

The symmetry between (k, m—k, m)-copartitions and (m—£k, k, m)-copartitions
is easy to see.

In contrast, the symmetry between (m, k)-capsids and (m,m — k)-capsids is,
“not at all combinatorially obvious.”



Generating function

Theorem (Burson, E.)

cp(a,b,m;q) : Zcpabmn



Generating function

Theorem (Burson, E.)

o0

cp(a,b,m;q) : Zcpabmn

-3y

w=0 s=0

mws+aw+bs
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Generating function

Theorem (Burson, E.)

Cp(a7 b, m; Q) = Z Cp(a, b, m; n)qn

© X qmws+aw+bs

- wog (@™ q™)w(g™; q™)s
I
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Generating function

Our combinatorial proof is a direct proof of

1
(0% ) oo(@® ¢)oe “*b ZCP ab,m;n)g



Generating function

Our combinatorial proof is a direct proof of

1
(0% ) oo(@® ¢)oe ““’ ZCP a,b,m;n)q

Open Problem

Give a direct combinatorial proof of

(qa+b m

(4% ¢™) oo

Zcpabmn



© Three partition-theoretic objects



Three partition-theoretic objects

Ordinary partitions | 2-colored partitions | (1.1,2)-Copartitions




Three partition-theoretic objects

Ordinary partitions

2-colored partitions

(1,1.2)-Copartitions

p(5n +4) =0 (mod 5)

ca(bn +2) =0 (mod 5)
c2(5n +3) =0 (mod 5)
co(bn+4) =0 (mod 5)




A Ramanujan-type congruence

Theorem (Andrews)

EO*(10n+8) =0 (mod 5)



A Ramanujan-type congruence

Theorem (Andrews)

EO*(10n+8) =0 (mod 5)

that is,
cp(1,1,2;5n+4) =0 (mod 5)



Three partition-theoretic objects

Ordinary partitions 2-colored partitions (1,1,2)-Copartitions

p(5n+4) =0 (mod 5) | c2(5n+2) =0 (mod 5) | cp;1(5n +4) =0 (mod 5)
ca(bn+3) =0 (mod 5)
ca(bn+4) =0 (mod 5)




Three partition-theoretic objects

Ordinary partitions 2-colored partitions (1,1,2)-Copartitions

p(5n+4) =0 (mod 5) | c2(5n+2) =0 (mod 5) | cp;1(5n +4) =0 (mod 5)
ca(bn+3) =0 (mod 5)
ca(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts




Partitions of 9 separated by their rank modulo 5

Rank = Largest part - # of parts

0 (mod5) | 1 (mod5) |2 (mod5) |3 (modb) |4 (mod5)
7+ 2 8+1 6+13 9 7+12
5414 542412 54+3+1 6+2+1 6-+3

443412 42 41 5422 5+4 442413
4422 +1 44342 3+2+14 4+41° 32+2+1
33 3+16 24 +1 32413 3423

2417 22 4 1° 23+ 13 | 3422412 1°




Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(5n +4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

ca(5n +2) =0 (mod 5)
c2(bn 4+ 3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

(1,1, 2)-Copartitions

cpy12(5n +4) =0 (mod 5)



2-colored partitions of 3 separated by their birank modulo 5

Birank = # red parts - # blue parts
0 (mod 5) | 1 (mod 5) | 2 (mod 5) | 3 (mod 5) | 4 (mod 5)
241 3 2+1 2+1 3
2+1 1+141 1+1+1 1+1+41 1+1+1




Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank

# ground parts - # sky parts



Definition

(Andrews) For each partition 7 enumerated by £O*, the even-odd crank of
s
eoc(m) = largest even part —# (odd parts of )
(Burson, E.)
If A\ = (v, p,0) is a copartition, the copartition crank of X is

cp-crank(A) = (number of parts of ) - (number of parts of o)
= “the rank of the rectangle” p.



The congruence is witnessed by a crank

Theorem (Andrews)

The even-odd crank separates the partitions enumerated by £O*(10n 4 8) into
five equinumerous sets.

Equivalently, the copartition crank separates the partitions enumerated by
cp(1,1,2;5n + 4) into five equinumerous sets.



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank

# ground parts - # sky parts



Open Problem

Open Problem

Give a combinatorial proof that Dyson’s rank, the birank, or the copartition
crank witness their associated congruences.



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank

# ground parts - # sky parts



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

Rank identities

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank

# ground parts - # sky parts



Identities for Dyson’s rank

Definition (Dyson)

Let N(r,5,n) be the number of partitions of n with rank congruent to r
(mod 5).

Theorem (Atkin, Swinnerton-Dyer)

For every integer n > 0,
N(1,5,5n+1) = N(2,5,56n+1) = N(3,5,5n+ 1) = N(4,5,5n + 1)

(3
N(0,5,5n 4 2) = N(2,5,5n 4 2) = N(3,5,5n + 2)
N(0,5,5n+4) =N(1,5,5n +4) =N(2,5,5n +4) =N(3,5,5n + 4) =N (4,5, 5n + 4)



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

Rank identities

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

Birank identities

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank
# ground parts - # sky parts



Definition (Hammond, Lewis)

Identities for the birank

Let R(r,5,n) be the number of 2-colored partitions of n with birank congruent

to r (mod 5).

Theorem (Hammond, Lewis)

For every integer n > 0,

R(1,5,5n) = R(2,5,5n) = R(3,5,5n) = R(4,5,5n)
R(0,5,5n + 1) = R(2,5,5n 4 1) = R(3,5,5n + 1)
R(0,5,5n +2) = R(1,5,5n+2) = R(2,5,5n +2) = R(3,5,5n + 2) =
R(0,5,5n + 3) = R(1,5,5n +3) = R(2,5,5n + 3) = R(3,5,5n + 3) =
R(0,5,5n 4+ 4) = R(1,5,5n +4) = R(2,5,5n +4) = R(3,5,5n + 4) =

R(4,5,5n + 2)
R(4,5,5n + 3)
R(4,5,5n + 4)



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

Rank identities

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

Birank identities

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank
# ground parts - # sky parts

Crank identities



Identities for the copartition crank

Definition

Let M (r,5,n) be the number of (1,1, 2)-copartitions of n with copartition crank
congruent to r (mod 5).

Theorem (Burson-E.)
For every integer n > 0,

M(1,5,5n) = M(2,5,5n) = M(3,5,5n) = M(4,5,5n)

M(0,5,5n+1) = M(1,5,5n+ 1) = M(4,5,5n + 1)

M(0,5,5n +2) = M(2,5,5n +2) = M(3,5,5n + 2)

M(1,5,5n +3) = M(2,5,5n +3) = M(3,5,5n + 3) = M(4,5,5n + 3)



Identities for the copartition crank

Definition

Let M (r,5,n) be the number of (1,1, 2)-copartitions of n with copartition crank
congruent to r (mod 5).

Theorem (Burson-E.)
For every integer n > 0,

M(1,5,5n) = M(2,5,5n) = M(3,5,5n) = M(4,5,5n)

M(0,5,5n +1) = M(1,5,5n+ 1) = M(4,5,5n + 1)

M(0,5,5n +2) = M(2,5,5n + 2) = M(3,5,5n + 2)

M(1,5,5n+3) = M(2,5,5n+3) = M(3,5,5n + 3) = M (4,5,5n + 3)

Andrews:
M(0,5,5n+4)=M(1,5,5n +4)=M(2,5,5n +4)=M (3,5,5n + 4) =M (4,5,5n + 4)



Three partition-theoretic objects

Ordinary partitions

2-colored partitions

p(bn+4) =0 (mod 5)

witnessed by

Dyson’s rank
Largest part - # of parts

Rank identities

ca(5bn+2) =0 (mod 5)
c2(5n+3) =0 (mod 5)
c2(bn+4) =0 (mod 5)

witnessed by

Birank
# red parts - # blue parts

Birank identities

(1,1,2)-Copartitions

cpy12(5n +4) =0 (mod 5)

witnessed by

Copartition crank
# ground parts - # sky parts

Crank identities



Open Problem

Open Problem

Give an explanation or a heuristic for why ordinary partitions, 2-colored par-
titions, and (1, 1, 2)-copartitions share these properties.



e Properties of copartitions



Conjugation

212|122
2122 |1|2|2]2 2 (2|12 2
2212 ]|1]|2 2121
1]11]1 _— 111
2| 2 2|2
2| 2 2

2

(v,p,0) — (0,0',7)



A congruence modulo 2

Theorem (Burson-E.)

cp(1,1,2;2n+1) =0 (mod 2)



A congruence modulo 2

Theorem (Burson-E.)
cp(1,1,2;2n+1) =0 (mod 2)

Proof.

Copartitions of odd size can be paired by conjugation,
and the rectangle cannot be a square,

so there are no self-conjugate partitions.



Conjugation

2 (2|12 2
2122 |1|2|2]2 2 (2|12 2
212212 212 |1
1]11]1 _— 111
2| 2 2|2
2| 2 2

2




A congruence modulo 2

Theorem (Burson-E.)
cp(1,1,2;2n+1) =0 (mod 2)

Proof.
Copartitions of odd size can be paired by conjugation.
and there are no self-conjugate partitions. O



A congruence modulo 2

Theorem
(Chern)
EO*(4n+2) =0 (mod 2)
(Burson, E.)
cp(1,1,2;2n+1) =0 (mod 2)
Proofs:

Chern: An identity between two sub-types of EO* partitions

Burson, E.: Conjugation, which matches completely different sub-types



Conjugation of an (a, b, m)-copartition

m|m|a|m|m|m
mlim|m|b|m|m]|m

m|m/|a|m|m
m|m|m]| b |m

ml|m| a
alal a

— | b |}

m | m

m | m
m | m

m
m

m

(v,p,0) — (o,0',7)



Symmetry

Theorem (Burson-E.)
cp(a, b, m;n) = cp(b, a,m;n)

Proof.
Conjugation. O



Another congruence modulo 2

Theorem (Burson-E.)

For even m,
cp(a,a,m;2n+1) =0 (mod 2)



Conjugation of an (a, a, m)-copartition

m | m a m | m | m
m | m [ m a m | m{m

m | m a m | m
m | m {m a m

m | m a
a a a

_— a a

m | m

m | m
m | m

m
m




Another congruence modulo 2

Theorem (Burson-E.)

For even m,
cp(a,a,m;2n+1) =0 (mod 2)



Another congruence modulo 2

Theorem (Burson-E.)

For even m,
cp(a,a,m;2n+1) =0 (mod 2)

Proof.

Copartitions of odd size can be paired by conjugation,
and the rectangle cannot be a square,

so there are no self-conjugate partitions.



@ Interesting special cases



Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1




Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 ({11]1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 (1)1
111
111

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1 (1)1
1|1
1|1

1

Where is the rectangle?



Definition

The diversity of a partition X is the number of different part sizes that appear
in .

We denote diversity of a partition A as dv(A).



Example of a (1, 1, 1)-copartition

1]11]1
1|1
1|1

1

Where is the rectangle?



Example of a (1, 1, 1)-copartition

1]11]1
1|1
1|1

1

Where is the rectangle?

There are dv(A)+1 choices for the rectangle of a copartition with shape A.



cp(1,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

ep(1,1,1;n) = Y (dv(A) + 1)

AFn



cp(1,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

ep(1,1,1;n) = Y (dv(N) +1) =Y p(k),

AFn k=0



cp(1,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

n

ep(1,1,1;n) = Y (dv(N) +1) =Y p(k),

AFn k=0

which is also the total number of 1s among all partitions of n + 1.



Example of a (0, 1, 1)-copartition

010
1|1
111
1

We have to insist that ¢ be non-empty.



Example of several (0,1, 1)-copartitions

0[01]O0
1|1
111




Example of several (0,1, 1)-copartitions

0]0]0]O0
1|1
111










Example of several (0,1, 1)-copartitions

1|1
111
1

All of these have the same set of 1s.



Example of several (0,1, 1)-copartitions

1|1
111
1

All of these have the same set of 1s.

The partition with this set of 1s can be realized once for every square in the first
row.



cp(0,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

cp(0,1,1;n) = Zlargest part(\)
AFn



cp(0,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

cp(0,1,1;n) = Z largest part(\) = Z number of parts(\).
AFn AFn

Thus ¢p(0, 1, 1;7n) is the total number of parts among all partitions of n.



cp(0,1,1;n)

Theorem (Burson-E.)

For every integer n > 0,

cp(0,1,1;n) = Z largest part(\) = Z number of parts(\).
AFn AFn

Thus ¢p(0, 1, 1;7n) is the total number of parts among all partitions of n.
Also,

p(0,1,1;n) = Zp

where d(n) is the number of divisors of n.



cp(0,0,1;n)

Theorem (Burson-E.)
For every integer n > 0,

cp(0,0,1;n) = Zthe perimeter(\).
AFn



cp(0,0,1;n)

Theorem (Burson-E.)
For every integer n > 0,

cp(0,0,1;n) = Zthe perimeter(\).
AFn

Also,
n—1
cp(0,0,1;n) = 2cp(0,1,1;n) — p(n) = —p(n) + 2 _ p(k)d(n — k),
k=0

where d(n) is the number of divisors of n.



Summary of Interesting Special Cases

e cp(1,1,2;n) = £EO*(2n)



Summary of Interesting Special Cases

e cp(1,1,2;n) = £EO*(2n)

e cp(1,1,1;n) is the total number of 1s among all partitions of n + 1.



Summary of Interesting Special Cases

e cp(1,1,2;n) = £EO*(2n)
e cp(1,1,1;n) is the total number of 1s among all partitions of n + 1.

e ¢p(0,1,1;n) is the total number of parts among all partitions of n.



Summary of Interesting Special Cases

o cp(1,1,2;n) = EO*(2n)

e cp(1,1,1;n) is the total number of 1s among all partitions of n + 1.
e ¢p(0,1,1;n) is the total number of parts among all partitions of n.
( )

@ ¢cp(0,0,1;n) is sum of the perimeters of all partitions of n.



Summary of Interesting Special Cases

1,1,2;n) = £E0*(2n)

° cp( ) =
e cp(1,1,1;n) is the total number of 1s among all partitions of n + 1.
e ¢p(0,1,1;n) is the total number of parts among all partitions of n.
( )

@ ¢p(0,0,1;n) is sum of the perlmeters of all partitions of n.

1
° = E cp(1,4,5;n)¢"
) 4 (q53q5)oo e ( )

(@:0°)oo(0: ¢°) 0



Summary of Interesting Special Cases

e cp(1,1,2;n
(
(
e ¢p(0,0,1;n) is sum of the perlmeters of all partitions of n.
1
° = cp(1,4,5;n)¢"
P ZO (1,4,8:m)

e A new characterization of the Rogers-Ramanujan partitions

£0"(2n)
@ c¢p(1,1,1;n) is the total number of 1s among all partitions of n + 1.

)=
)

e ¢p(0,1,1;n) is the total number of parts among all partitions of n.
)




Summary of Interesting Special Cases

cp(l,1,2:n) = E0*(2n)

cp(1,1,1;n) is the total number of 1s among all partitions of n + 1.
cp(
¢p(0,0,1;n) is sum of the perlmeters of all partitions of n.

1

)=
)

0,1,1;n) is the total number of parts among all partitions of n.
)

° = cp(1,4,5;n)q"
P o ZO (1,4,5:m)

e A new characterization of the Rogers-Ramanujan partitions

Many other interesting special cases
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Conclusion

@ cp(1,1,2;n) shares an alarming number of properties with p(n) and ca(n)
regarding congruences modulo 5 witnessed by crank statistics.

e The symmetries of c¢p(a, b, m;n) are very clear, and they shed light on the
symmetries of £EO* and (m, k)-capsid partitions.
o Conjugation allows us to prove some simple congruences modulo 2.

e Several special cases of (a, b, m)-copartitions connect to other classical
partition-theoretic objects and statistics.

o NEXT WEEK, we will see more remarkable properties and theorems.



Thanks!
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