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Copartitions

Definition

A

n (a, b,m)-

copartition is a combination of
a partition γ

into parts ≡ a (mod m),

a partition σ

into parts ≡ b (mod m),

along with a rectangle ρ

of m′s

with dimensions

(number of parts of γ) × (number of parts of σ)

uniting them.

We define cp(a, b,m;n) to be the number of (a, b,m)-copartitions of n.
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Copartitions

Definition

An (a, b,m)-copartition is a combination of
a partition γ into parts ≡ a (mod m),
a partition σ into parts ≡ b (mod m),
along with a rectangle ρ of m′s with dimensions

(number of parts of γ) × (number of parts of σ)

uniting them.

We define cp(a, b,m;n) to be the number of (a, b,m)-copartitions of n.
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Example of a (1, 1, 2)-copartition

σ : 3 + 1 + 1

γ : 7 + 5 + 5

γ′ : conjugated (odd parts)

ρ : 2 2 2

2 2 2

2 2 2

3× 3 rectangle



6/64

Example of a (1, 1, 2)-copartition

σ : 3 + 1 + 1

γ′ : 7 + 5 + 5 conjugated

ρ : 2 2 2

2 2 2

2 2 2

3× 3 rectangle
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Example of a (1, 1, 2)-copartition

ρ : 2 2 2

2 2 2

2 2 2

: σ

“The Sky”

γ′ :

“The Woods” or “The Ground”
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Example of a (1, 1, 2)-copartition

ρ : 2 2 2

2 2 2

2 2 2

: σ “The Sky”

γ′ :

“The Woods” or “The Ground”
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Diagram of a (1, 1, 2)-copartition

ρ : 2 2 2

2 2 2

2 2 2

: σ

γ′ : Convert γ and σ to their 2-modular diagrams.
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Diagram of a (1, 1, 2)-copartition

ρ : 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 1 1

1

2 1

1

1

: σ

γ′ : Convert γ and σ to their 2-modular diagrams.
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Diagram of a (1, 1, 2)-copartition

ρ : 2 2 2

2 2 2

2 2 2

1 1 1

2 2 2

2 2 2

2

1 2

1

1

: σ

γ′ : Convert γ and σ to their 2-modular diagrams.
Move the 1’s in to border rectangle ρ.

This is the copartition diagram of
(γ, ρ, σ) = (7 + 5 + 5, 23×3, 3 + 1 + 1)
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Diagram of an (a, b,m)-copartition

ρ : m m m

m m m

m m m

a a a

m m m

m m m

m

b m

b

b

: σ

γ′ : Convert γ and σ to their m-modular diagrams.
Move the a’s and b’s in to border rectangle ρ.

This is the copartition diagram of
(γ, ρ, σ) = ((3m+ a) + (2m+ a) + (2m+ a),m3×3, (m+ b) + b+ b)
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Partitions with evens below odds *

Definition (Andrews)

EO∗(n) counts the number of partitions of n such that

all even parts are smaller than all odd parts

the only part that appears an odd number of times is the largest even
part

Example

92 + 74 + 65 + 22 = 80

is a partition counted by EO∗(80)
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Connection between cp(n) and EO∗(2n)

Theorem (Burson-E.)

For every integer n ≥ 0,

cp(1, 1, 2;n) = EO∗(2n).

Remark

The symmetry of (1, 1, 2)-copartitions is easy to see.

In contrast, the symmetry of partitions counted by EO∗ was not immediately
apparent.
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Connection to (m, k)-capsids

Definition (Garvan, Schlosser)

An (m, k)-capsid partition is a partition π such that

all parts of π are of size m− k or congruent to 0 or k mod m;

if there are no parts of size m− k, then all parts are congruent to k
mod m;

if m− k is a part, then it is the smallest part, all parts ≡ 0 mod m have
size ≤ m · fm−a, and all parts ≡ k mod m have size > m · fm−k.

They use (m, k)-capsids and t-cores to give a combinatorial interpretation of
Ramanujan’s tau function.



14/64

Connection to (m, k)-capsids

Definition (Garvan, Schlosser)

An (m, k)-capsid partition is a partition π such that

all parts of π are of size m− k or congruent to 0 or k mod m;

if there are no parts of size m− k, then all parts are congruent to k
mod m;

if m− k is a part, then it is the smallest part, all parts ≡ 0 mod m have
size ≤ m · fm−a, and all parts ≡ k mod m have size > m · fm−k.

They use (m, k)-capsids and t-cores to give a combinatorial interpretation of
Ramanujan’s tau function.



15/64

Connection to (m, k)-capsids

Theorem (Burson-E.)

For every integer n ≥ 0, cp(k,m − k,m;n) is equal to the number of (m, k)-
capsids of n.

Remark

The symmetry between (k,m−k,m)-copartitions and (m−k, k,m)-copartitions
is easy to see.

In contrast, the symmetry between (m, k)-capsids and (m,m − k)-capsids is,
“not at all combinatorially obvious.”
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Generating function

Theorem (Burson, E.)

cp(a, b,m; q) :=

∞∑
n=0

cp(a, b,m;n)qn

=
∞∑

w=0

∞∑
s=0

qmws+aw+bs

(qm; qm)w(qm; qm)s

=
(qa+b; qm)∞

(qa; qm)∞(qb; qm)∞



16/64

Generating function

Theorem (Burson, E.)

cp(a, b,m; q) :=

∞∑
n=0

cp(a, b,m;n)qn

=

∞∑
w=0

∞∑
s=0

qmws+aw+bs

(qm; qm)w(qm; qm)s

=
(qa+b; qm)∞

(qa; qm)∞(qb; qm)∞



16/64

Generating function

Theorem (Burson, E.)

cp(a, b,m; q) :=

∞∑
n=0

cp(a, b,m;n)qn

=

∞∑
w=0

∞∑
s=0

qmws+aw+bs

(qm; qm)w(qm; qm)s

=
(qa+b; qm)∞

(qa; qm)∞(qb; qm)∞



17/64

Generating function

Our combinatorial proof is a direct proof of

1

(qa; qm)∞(qb; qm)∞
=

1

(qa+b; qm)∞

∞∑
n=0

cp(a, b,m;n)qn

Open Problem

Give a direct combinatorial proof of

(qa+b; qm)∞
(qa; qm)∞(qb; qm)∞

=

∞∑
n=0

cp(a, b,m;n)qn
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Three partition-theoretic objects

Ordinary partitions 2-colored partitions (1, 1, 2)-Copartitions

p(5n+ 4) ≡ 0 (mod 5) c2(5n+ 2) ≡ 0 (mod 5)
c2(5n+ 3) ≡ 0 (mod 5)
c2(5n+ 4) ≡ 0 (mod 5)
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A Ramanujan-type congruence

Theorem (Andrews)

EO∗(10n+ 8) ≡ 0 (mod 5)

that is,
cp(1, 1, 2; 5n+ 4) ≡ 0 (mod 5)
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Dyson’s rank
Largest part - # of parts
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Partitions of 9 separated by their rank modulo 5

Rank = Largest part - # of parts

0 (mod 5) 1 (mod 5) 2 (mod 5) 3 (mod 5) 4 (mod 5)

7 + 2 8+1 6+13 9 7+12

5+14 5+2+12 5+3+1 6+2+1 6+3
4+3+12 42 + 1 5+22 5+4 4+2+13

4+22 + 1 4+3+2 3+2+14 4+15 32 + 2 + 1
33 3+16 24 + 1 32 + 13 3+23

2+17 22 + 15 23 + 13 3+22 + 12 19
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Ordinary partitions 2-colored partitions (1, 1, 2)-Copartitions

p(5n+ 4) ≡ 0 (mod 5) c2(5n+ 2) ≡ 0 (mod 5) cp1,1,2(5n+ 4) ≡ 0 (mod 5)
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c2(5n+ 4) ≡ 0 (mod 5)

witnessed by witnessed by

Dyson’s rank Birank
Largest part - # of parts # red parts - # blue parts
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2-colored partitions of 3 separated by their birank modulo 5

Birank = # red parts - # blue parts

0 (mod 5) 1 (mod 5) 2 (mod 5) 3 (mod 5) 4 (mod 5)

2 + 1 3 2+1 2+1 3
2+1 1+1+1 1+1+1 1+1+1 1+1+1
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Three partition-theoretic objects

Ordinary partitions 2-colored partitions (1, 1, 2)-Copartitions

p(5n+ 4) ≡ 0 (mod 5) c2(5n+ 2) ≡ 0 (mod 5) cp1,1,2(5n+ 4) ≡ 0 (mod 5)

c2(5n+ 3) ≡ 0 (mod 5)
c2(5n+ 4) ≡ 0 (mod 5)

witnessed by witnessed by witnessed by

Dyson’s rank Birank Copartition crank
Largest part - # of parts # red parts - # blue parts # ground parts - # sky parts
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A crank

Definition

(Andrews) For each partition π enumerated by EO∗, the even-odd crank of
π is

eoc(π) = largest even part −# (odd parts of π)

(Burson, E.)
If λ = (γ, ρ, σ) is a copartition, the copartition crank of λ is

cp-crank(λ) = (number of parts of γ) - (number of parts of σ)

= “the rank of the rectangle” ρ.
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The congruence is witnessed by a crank

Theorem (Andrews)

The even-odd crank separates the partitions enumerated by EO∗(10n+8) into
five equinumerous sets.

Equivalently, the copartition crank separates the partitions enumerated by
cp(1, 1, 2; 5n+ 4) into five equinumerous sets.
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Open Problem

Open Problem

Give a combinatorial proof that Dyson’s rank, the birank, or the copartition
crank witness their associated congruences.
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Identities for Dyson’s rank

Definition (Dyson)

Let N(r, 5, n) be the number of partitions of n with rank congruent to r
(mod 5).

Theorem (Atkin, Swinnerton-Dyer)

For every integer n ≥ 0,

N(1, 5, 5n+ 1) = N(2, 5, 5n+ 1) = N(3, 5, 5n+ 1) = N(4, 5, 5n+ 1)

N(0, 5, 5n+ 2) = N(2, 5, 5n+ 2) = N(3, 5, 5n+ 2)

N(0, 5, 5n+ 4) =N(1, 5, 5n+ 4) =N(2, 5, 5n+ 4) =N(3, 5, 5n+ 4) =N(4, 5, 5n+ 4)
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Identities for the birank

Definition (Hammond, Lewis)

Let R(r, 5, n) be the number of 2-colored partitions of n with birank congruent
to r (mod 5).

Theorem (Hammond, Lewis)

For every integer n ≥ 0,

R(1, 5, 5n) = R(2, 5, 5n) = R(3, 5, 5n) = R(4, 5, 5n)

R(0, 5, 5n+ 1) = R(2, 5, 5n+ 1) = R(3, 5, 5n+ 1)

R(0, 5, 5n+ 2) = R(1, 5, 5n+ 2) = R(2, 5, 5n+ 2) = R(3, 5, 5n+ 2) = R(4, 5, 5n+ 2)

R(0, 5, 5n+ 3) = R(1, 5, 5n+ 3) = R(2, 5, 5n+ 3) = R(3, 5, 5n+ 3) = R(4, 5, 5n+ 3)

R(0, 5, 5n+ 4) = R(1, 5, 5n+ 4) = R(2, 5, 5n+ 4) = R(3, 5, 5n+ 4) = R(4, 5, 5n+ 4)
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Identities for the copartition crank

Definition

LetM(r, 5, n) be the number of (1, 1, 2)-copartitions of n with copartition crank
congruent to r (mod 5).

Theorem (Burson-E.)

For every integer n ≥ 0,

M(1, 5, 5n) = M(2, 5, 5n) = M(3, 5, 5n) = M(4, 5, 5n)

M(0, 5, 5n+ 1) = M(1, 5, 5n+ 1) = M(4, 5, 5n+ 1)

M(0, 5, 5n+ 2) = M(2, 5, 5n+ 2) = M(3, 5, 5n+ 2)

M(1, 5, 5n+ 3) = M(2, 5, 5n+ 3) = M(3, 5, 5n+ 3) = M(4, 5, 5n+ 3)

Andrews:

M(0, 5, 5n+ 4)=M(1, 5, 5n+ 4)=M(2, 5, 5n+ 4)=M(3, 5, 5n+ 4)=M(4, 5, 5n+ 4)
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Open Problem

Open Problem

Give an explanation or a heuristic for why ordinary partitions, 2-colored par-
titions, and (1, 1, 2)-copartitions share these properties.
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Conjugation

2 2 2 1 2 2 2

2 2 2 1 2

1 1 1

2 2

2 2

−−−−−−−→

2 2 1 2 2

2 2 1 2 2

2 2 1

1 1

2 2

2

2

(γ, ρ, σ) −→ (σ, ρ′, γ)
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A congruence modulo 2

Theorem (Burson-E.)

cp(1, 1, 2; 2n+ 1) ≡ 0 (mod 2)

Proof.
Copartitions of odd size can be paired by conjugation,
and the rectangle cannot be a square,
so there are no self-conjugate partitions.
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2 2 2 1 2
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A congruence modulo 2

Theorem (Burson-E.)

cp(1, 1, 2; 2n+ 1) ≡ 0 (mod 2)

Proof.
Copartitions of odd size can be paired by conjugation.
and there are no self-conjugate partitions.
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A congruence modulo 2

Theorem

(Chern)
EO∗(4n+ 2) ≡ 0 (mod 2)

(Burson, E.)
cp(1, 1, 2; 2n+ 1) ≡ 0 (mod 2)

Proofs:
Chern: An identity between two sub-types of EO∗ partitions

Burson, E.: Conjugation, which matches completely different sub-types
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Conjugation of an (a, b,m)-copartition

m m m b m m m

m m m b m

a a a

m m

m m

m

−−−−−−−→

m m a m m m

m m a m m

m m a

b b

m m

m

m

(γ, ρ, σ) −→ (σ, ρ′, γ)
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Symmetry

Theorem (Burson-E.)

cp(a, b,m;n) = cp(b, a,m;n)

Proof.
Conjugation.
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Another congruence modulo 2

Theorem (Burson-E.)

For even m,
cp(a, a,m; 2n+ 1) ≡ 0 (mod 2)

Proof.
Copartitions of odd size can be paired by conjugation, and the rectangle cannot
be a square, so there are no self-conjugate partitions.
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Conjugation of an (a, a,m)-copartition

m m m a m m m

m m m a m

a a a

m m

m m

m

−−−−−−−→

m m a m m m

m m a m m

m m a

a a

m m

m

m
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Another congruence modulo 2

Theorem (Burson-E.)

For even m,
cp(a, a,m; 2n+ 1) ≡ 0 (mod 2)

Proof.
Copartitions of odd size can be paired by conjugation,
and the rectangle cannot be a square,
so there are no self-conjugate partitions.
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Example of a (1, 1, 1)-copartition

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1

1 1

1

Where is the rectangle?
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Definition

The diversity of a partition λ is the number of different part sizes that appear
in λ.

We denote diversity of a partition λ as dv(λ).
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Example of a (1, 1, 1)-copartition
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1 1 1

1 1
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1

Where is the rectangle?

There are dv(λ)+1 choices for the rectangle of a copartition with shape λ.
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cp(1, 1, 1;n)

Theorem (Burson-E.)

For every integer n ≥ 0,

cp(1, 1, 1;n) =
∑
λ⊢n

(dv(λ) + 1)

=

n∑
k=0

p(k),

which is also the total number of 1s among all partitions of n+ 1.
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Example of a (0, 1, 1)-copartition

1 1 1 1 1 1 1

1 1 1 1 1

0 0

1 1

1 1

1

We have to insist that σ be non-empty.



55/64

Example of several (0, 1, 1)-copartitions

1 1 1 1 1 1 1

1 1 1 1 1

0 0 0

1 1

1 1

1
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Example of several (0, 1, 1)-copartitions

1 1 1 1 1 1 1

1 1 1 1 1

1 1

1 1

1

All of these have the same set of 1s.

The partition with this set of 1s can be realized once for every square in the first
row.
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cp(0, 1, 1;n)

Theorem (Burson-E.)

For every integer n ≥ 0,

cp(0, 1, 1;n) =
∑
λ⊢n

largest part(λ)

=
∑
λ⊢n

number of parts(λ).

Thus cp(0, 1, 1;n) is the total number of parts among all partitions of n.

Also,

cp(0, 1, 1;n) =

n−1∑
k=0

p(k)d(n− k),

where d(n) is the number of divisors of n.
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cp(0, 0, 1;n)

Theorem (Burson-E.)

For every integer n ≥ 0,

cp(0, 0, 1;n) =
∑
λ⊢n

the perimeter(λ).

Also,

cp(0, 0, 1;n) = 2cp(0, 1, 1;n)− p(n) = −p(n) + 2
n−1∑
k=0

p(k)d(n− k),

where d(n) is the number of divisors of n.
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Summary of Interesting Special Cases

cp(1, 1, 2;n) = EO∗(2n)

cp(1, 1, 1;n) is the total number of 1s among all partitions of n+ 1.

cp(0, 1, 1;n) is the total number of parts among all partitions of n.

cp(0, 0, 1;n) is sum of the perimeters of all partitions of n.

1

(q; q5)∞(q4; q5)∞
=

1

(q5; q5)∞

∞∑
n=0

cp(1, 4, 5;n)qn

A new characterization of the Rogers-Ramanujan partitions

Many other interesting special cases
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Conclusion

cp(1, 1, 2;n) shares an alarming number of properties with p(n) and c2(n)
regarding congruences modulo 5 witnessed by crank statistics.

The symmetries of cp(a, b,m;n) are very clear, and they shed light on the
symmetries of EO∗ and (m, k)-capsid partitions.

Conjugation allows us to prove some simple congruences modulo 2.

Several special cases of (a, b,m)-copartitions connect to other classical
partition-theoretic objects and statistics.

NEXT WEEK, we will see more remarkable properties and theorems.
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Thanks!
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