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Definition

A partition of an integer n is a finite non-decreasing sequence of positive
integers A1,...,\; such that A\; + ...+ Ay = n.

The \;'s are called the parts of the partition and the weight of the partition
A is defined to be |A\| = n.

Halime Omriiuzun Seyrek Constructing Generating Functions Feb 17, 2022



Definition

A partition of an integer n is a finite non-decreasing sequence of positive
integers A1,...,\; such that A\; + ...+ Ay = n.

The \;'s are called the parts of the partition and the weight of the partition
A is defined to be |A\| = n.

Example. Let n = 4. The partitions of 4 are:

4, 1+3, 242, 141+2 1+1+1+1
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Definition

A partition of an integer n is a finite non-decreasing sequence of positive
integers A1,...,Ar such that A\ + ...+ \p = n.

The \;'s are called the parts of the partition and the weight of the partition
A is defined to be |A\| = n.

Let n = 4. The partitions of 4 are:

4, 1+3, 242, 141+2 1+1+1+1

We use the standard notations concerning g-Pochhammer symbols:

(@;q)n = (1 = a)(1 = aq)(1 —ag®)...(1 - ag")
(@;9) 00 = limy_00(a;¢)n = (1 — a)(1 — aq)(1 —ag®)(1 —ag?)....
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Definition

The generating function f(q) for the sequence ag,ai,as,as,... is the
power series f(q) = >, <o anq"-
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Definition

The generating function f(q) for the sequence ag,ai,as,as,... is the
power series f(q) = >, <o anq"-

Example. The generating function P(q) = >, ~,p(n)q¢" counts all parti-
tions of all non-negative integers n, where p(n) denotes the number of all
partitions of n and the exponent of ¢ is the number being partitioned.
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Definition

The generating function f(q) for the sequence ag,ai,as,as,... is the
power series f(q) = >, <o anq"-

Example. The generating function P(q) = >, ~,p(n)q¢" counts all parti-
tions of all non-negative integers n, where p(n) denotes the number of all
partitions of n and the exponent of ¢ is the number being partitioned.

Plo) = > o =[] 1= = 7
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Definition

The generating function f(q) for the sequence ag,ai,as,as,... is the
power series f(q) = >, <o anq"-

The generating function P(q) = Y, ~,p(n)q" counts all parti-
tions of all non-negative integers n, where p(n) denotes the number of all
partitions of n and the exponent of ¢ is the number being partitioned.

1 1
Play =2 vmd" = 11— =

n>0 k>1

Euler's Identities

ann(n—l)/Q

(4 On
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© An Alternative Construction for a Family of Partition Generating
Functions due to Kanade and Russell
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
(b) Odd parts do not repeat.
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:

(a) No consecutive parts allowed.
(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition i+ \j+1+ N2, we have |\;—\i12]| >4

if X\i+1 is even and appears more than once.
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition i+ \j+1+ N2, we have |\;—\i12]| >4
if X\i+1 is even and appears more than once.

(d) 242 is not allowed as a sub-partition.
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition i+ \j+1+ N2, we have |\;—\i12]| >4
if X\i+1 is even and appears more than once.

(d) 242 is not allowed as a sub-partition.

For n,m € N, let kri(n,m) denote the number of partitions of n into m
parts such that the partitions satisfy the conditions (a), (b), (¢) and (d).
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Theorem 1 (Kursungoz, Omrriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition i+ \j+1+ N2, we have |\;—\i12]| >4
if X\i+1 is even and appears more than once.

(d) 242 is not allowed as a sub-partition.

For n,m € N, let kri(n,m) denote the number of partitions of n into m
parts such that the partitions satisfy the conditions (a), (b), (¢) and (d).
Then,

i ti+2j+3kq(i+2j+3k)(i+2j+3k—1)+i+6j+3k2+6k

D kn(nmgtt= 3, (1) (s @)i(a*;a*);(a% a®)k

m,n>0 ,5,k>0
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Example. Let n = 12.

v12 v14+11 v2+10 v3+9 v4+8 VvV1+3+8
voi+T V1+4+7 V6+6 V24446

X2+2+8 X1+4+1+4+10 X4+4+4
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Proof of Theorem 1. We start with a definition:

Definition

Let A = A\ + ... + A\, be a partition counted by kri(n,m). If there
exist repeating even parts (2k) + (2k) in A, then we rewrite those parts as
consecutive odd parts (2k — 1) + (2k 4+ 1). We call the partition formed
after this transformation a seed partition.
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Proof of Theorem 1. We start with a definition:

Definition

Let A = A\ + ... + A\, be a partition counted by kri(n,m). If there
exist repeating even parts (2k) + (2k) in A, then we rewrite those parts as
consecutive odd parts (2k — 1) + (2k 4+ 1). We call the partition formed
after this transformation a seed partition.

A=3+5+8+124+12+16+18+24 424
—— ——

lwe write the repeating even parts as the consecutive odd parts

A=3+5+8+11+13+16+18+23+25
—— —
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Let A = A + ... + Ay, be a partition counted by kri(n,m) and A =
A1+ ...+ A\, be the corresponding seed partition to \.
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Let A = A + ... + Ay, be a partition counted by kri(n,m) and A =
A1+ ...+ A\, be the corresponding seed partition to \.

We define § = 1+3+5+...+2m—1 as the base partition corresponding
to the seed partition A\. Observe that § is the partition with m consecutive

odd parts.
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Let A = A + ... + Ay, be a partition counted by kri(n,m) and A =
A1+ ...+ A\, be the corresponding seed partition to \.

We define § = 1+3+5+...+2m—1 as the base partition corresponding
to the seed partition A\. Observe that § is the partition with m consecutive
odd parts.

Let pt = f11 + ... + pin, Where p; = X\; — B; foralli =1,....m.
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Let A = A + ... + Ay, be a partition counted by kri(n,m) and A =
A1+ ...+ A\, be the corresponding seed partition to \.

We define § = 1+3+5+...+2m—1 as the base partition corresponding
to the seed partition A\. Observe that § is the partition with m consecutive
odd parts.

Let pt = f11 + ... + pin, Where p; = X\; — B; foralli =1,....m.

Whenever the seed partition A has a streak of consecutive odd parts, the
number of parts in that streak must be even and that streak will give rise
to a group of same repeating even parts in u.
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Example.

A=4+44+8+12+12+19+ 21+ 24 + 24
~—— —— ——

A=3+5+8+ 11 + 134+ 19+21+23+25

B=1+3+5+7+9+11+13+15+17

pw=2+24+3+4+44+8+8+8+8
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A=4+44+8+12+12+19+ 21+ 24 + 24
~—— —— ——

A =3+ 5+ 8+ + 19421 +23+25

B =1+3+ 5+ + 11 +13+ 15+ 17

=2+ 243+ +84+8+8+8

The number of non-zero even parts that appear an even number of times
in 1 determines the number of partitions that can be generated from the
seed partition X. We have three non-zero even parts that appear an even
number of times in u, namely 2, 4 and 8.
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So, from the seed partition )\, we can generate 23 = 8 partitions counted
by kri(n,m), where n =128, m = 9:

3454+ 8+ 11+ 134 19 4 21 + 23 + 25=X
4444+ 8+11+13+19+21+23+25
3+54+8+ 12412 +19+214+23+25
444 +84+12+12+19+21 +23+25
3+5+8+11+13 + 20+ 20 + 24 + 24
444+ 8+11+13 + 20 + 20 + 24 + 24
34+5+8 412+ 124 20+20+24 424
44448+ 12412 4+20+20+24+24
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So, from the seed partition A, we can generate 23 = 8 partitions counted
by kri(n,m), where n =128, m = 9:

3454 8+ 11+ 13+ 194 21 4 23 + 25=X
4+44+84+11+13+19+21423+25
3+5+8+ 12+ 12+19421+23+25
4+44+8+12+124+19+214+23+25
3+54+8+114+13+20+20+24+24
4+44+84+11+13 +20+20+24 424
3+54+8+ 124+ 12+20+20+24+ 24
444 +8+ 12+124+204+20+24+24
Therefore, we need a generating function for ordinary partitions, where we

keep track of the number of non-zero even parts that appear an even number
of times.
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Proposition 1

The ordinary partitions in which 0 may appear as a part is generated by

oo

H (1+tg* + (a — Dt?g*™) 1
(1 —tg21)(1 — t2¢%) "(1 —1t)’

At;q;a

where the exponent of t keeps track of the number of parts and the exponent
of a keeps track of the number of non-zero even parts that appear an even
number of times.
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From a seed partition, we can generate

2the number of non-zero even parts appearing an even number of times in p

partitions satisfying the conditions, together with the seed partition itself.
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From a seed partition, we can generate

2the number of non-zero even parts appearing an even number of times in p
partitions satisfying the conditions, together with the seed partition itself.

Therefore, we plug a = 2 into A(¢;q;a) and we get the following infinite
product:

n ﬁ (1+tg* + t¢™) 1
42 -1\ _ 2.4 A
Lo na=—eem 1=y
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t
1452 11 1_m%1,1_p4@(1_w
ﬁ (13¢5
oot 2n 1 1 _ tq2n)(1 _ t2q4n)(1 _ t)
(t3q6;q ) oo

T (9 (Pqh Yoo
4 12 g
o O el Dl H DS
@9 | \ 5 dhd); | &
(__1)kt@+2j+3kq4j+3k2+3k

Z (@ 9)i(q* q*) (a5 ¢ 3

1,7,k>0

(_l)ktSkq6k+3k(k71)

(q6;q6)k
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The remaining work is adding the weight of the base partition to the expo-
nent of ¢ in (3).
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The remaining work is adding the weight of the base partition to the expo-

nent of ¢ in (3). Consider the base partition 5 =1+3+5+...4+2m — 1.

The partition 3 has m parts and its weight is m?.
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The remaining work is adding the weight of the base partition to the expo-
nent of ¢ in (3). Consider the base partition 5 =1+3+5+...4+2m — 1.
The partition 3 has m parts and its weight is m?. Let m = i + 2j + 3k.
Then the weight of the base partition 3 becomes (i + 2j + 3k)2.
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The remaining work is adding the weight of the base partition to the expo-
nent of ¢ in (3). Consider the base partition 5 =1+3+5+...4+2m — 1.
The partition 3 has m parts and its weight is m?. Let m = i + 2j + 3k.
Then the weight of the base partition 3 becomes (i + 2 + 3k)2. Therefore,
we get:

Z kry(n,m)q"t™

m,n>0
_ Z (— 1)kti+2j+3kq4j+3k2+3kq(z‘+2_7‘+3k,)2
o (¢:9)i(q*,a");(d%, %)k
23k U254 3K) (14254 3k—1)+i+6]+3k%+6k
N i,j,Ek:zO(_l) (¢:9)i(q" 4");(a% ¢O)n
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Theorem 2 (Kursungoz, Omriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition \j+\;+1+ Aiy2, we have |\ — \ita| > 4
if \i+1 is even and appears more than once.

(d") 1 is not allowed to appear as a part.

For n,m € N, let kra(n, m) denote the number of partitions of n into m

parts such that the partitions satisfy the conditions (a), (b), (c) and (d').
Then,

Z kra(n, m)q"t™

m,n>0
i tz’+2j+3kq(i+2j+3k)(i+2j+3k71)+2i+2j+3k2+6k
- (-1
ij% (4:9)i(q*; 4")5(a% ¢°)n
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Theorem 3 (Kursungoz, Omriiuzun Seyrek 2021-Kanade,

Russell 2019).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition A;+ X114 Ait2, we have | \;— \j1o| >4
if \i+1 is even and appears more than once.

(d") 1,2 and 3 are not allowed to appear as parts.

For n,m € N, let krs(n, m) denote the number of partitions of n into m

parts such that the partitions satisfy the conditions (a), (b), (¢) and (d").
Then,

Z krs(n,m)q"t™

m,n>0
i #4253k o (i+2]+3k) (i+2+3k—1)+4i-+6+3k>+12k
- (—1
ijzk;) (g3 0)i(a* 4%)5(¢% ¢®)n
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© Construction of Evidently Positive Series for a Family of Partitions due
to Kanade and Russell
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Theorem 4 (Kursungoz, Omriiuzun Seyrek 2021).

Forn,m € N, let h(n, m) denote the number of partitions of n into m parts
such that each part appears at most twice. Then,

Z h(n,m)q"t™ = Z

m,n>0 n1,n2>0
ni=nii+ni2

q|5|t2n2+n1

(@5 D1z (635 ) ng

where [ is the base partition with no pairs, ni1 immobile singletons, nis
moveable singletons.
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Example. Let A = 1,4,4,5,6,6,9,10,11,12,12, 14.
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Example. Let A\ = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.
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Example. Let A\ = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.

We have no = 4 pairs and n; = 4 singletons.
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Let A = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.

We have no = 4 pairs and n; = 4 singletons. We start to perform backward
moves on the pairs, and once all possible backward moves are performed on
the pairs, we continue with the backward moves on the moveable singletons.
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Let A = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.

We have no = 4 pairs and n; = 4 singletons. We start to perform backward
moves on the pairs, and once all possible backward moves are performed on
the pairs, we continue with the backward moves on the moveable singletons.

A=1,[4,4],[5,6],6,[9,10],[11,12],12,14

Halime Omriiuzun Seyrek Constructing Generating Functions Feb 17, 2022



Let A = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.

We have no = 4 pairs and n; = 4 singletons. We start to perform backward
moves on the pairs, and once all possible backward moves are performed on
the pairs, we continue with the backward moves on the moveable singletons.

A=1,1[4,4],[5,6],6,[9,10],[11,12],12,14
lone backward move

1,[2,3],[5,6],6,[9,10],[11,12], 12, 14
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Let A = 1,4,4,5,6,6,9,10,11,12,12,14. We first determine
the pairs and the singletons:

A=1,[4,4],[5,6],6,[9,10], [11,12],12, 14.

We have no = 4 pairs and n; = 4 singletons. We start to perform backward
moves on the pairs, and once all possible backward moves are performed on
the pairs, we continue with the backward moves on the moveable singletons.

A=1,1[4,4],[5,6],6,[9,10],[11,12],12,14
lone backward move
1,[2,3],[5,6],6,[9,10],[11,12],12,14

Jregrouping the pairs

[1,2],3,[5,6],6,[9,10], [11,12], 12, 14
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lone backward move

[1,2],3,[4,4],6,[9,10],[11,12], 12, 14
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lone backward move
[1,2],3,4,4],6,[9,10],[11,12],12,14
lregrouping the pairs

[1,2],[3,4],4,6,[9,10],[11,12],12, 14
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lone backward move
[1,2],3,4,4],6,[9,10],[11,12],12,14
lregrouping the pairs
[1,2],[3,4],4,6,[9,10],[11,12],12,14
lone backward move

[1,2],[3,4],4,6,[8,8],[11,12],12, 14
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lone backward move
[1,2],3,4,4],6,[9,10],[11,12],12,14
lregrouping the pairs
[1,2],[3,4],4,6,[9,10],[11,12],12,14
lone backward move
[1,2],[3,4],4,6,[8,8],[11,12],12,14
lone backward move

[1,2],[3,4],4,6,[6,7],[11,12],12,14
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lone backward move
[1,2],3,4,4],6,[9,10],[11,12],12,14
lregrouping the pairs
[1,2],[3,4],4,6,[9,10],[11,12],12,14
lone backward move
[1,2],[3,4],4,6,[8,8],[11,12],12,14
lone backward move
[1,2],[3,4],4,6,[6,7],[11,12],12,14
lregrouping the pairs
[1,2],[3,4],4,[6,6],7,[11,12],12,14

We observe that the pair [6, 6] can not be moved further back and 4 is an
immobile singleton.
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lone backward move

[1,2],[3,4],4,[6,6],7,[10,10],12, 14
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lone backward move
[1,2],[3,4],4,[6,6],7,[10,10],12, 14
lone backward move

[1,2],[3,4],4,[6,6],7,[8,9],12,14
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Halime Omriiuzun Seyrek

lone backward move
[1,2],[3,4],4,[6,6],7,[10,10],12, 14
lone backward move
[1,2],[3,4],4,[6,6],7,[8,9],12,14
Jregrouping the pairs
[1,2],[3,4],4,[6,6],[7,8],9,12,14
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lone backward move
[1,2],[3,4],4,[6,6],7,[10,10],12, 14
lone backward move
[1,2],[3,4],4,[6,6],7,[8,9],12,14
Jregrouping the pairs
[1,2],[3,4],4,[6,6],[7,8],9,12,14
lone backward move

[1,2],[3,4],4,[6,6],[7,8],8,12,14
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lone backward move

[1,2],[3,4],4,[6,6],7,[10,10],12, 14
lone backward move

[1,2],[3,4],4,[6,6],7,[8,9],12,14

lregrouping the pairs
[1,2],[3,4],4,[6,6],[7,8],9,12,14

lone backward move

[1,2],[3,4],4,[6,6],[7,8],8,12,14
ltwo backward moves

[1,2],[3,4],4,[6,6],[7,8],8,10,14
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lone backward move
[1,2],[3,4],4,[6,6],7,[10,10],12, 14
lone backward move
[1,2],[3,4],4,[6,6],7,[8,9],12,14
lregrouping the pairs
[1,2],[3,4],4,[6,6],[7,8],9,12,14
lone backward move
[1,2],[3,4],4,[6,6],[7,8],8,12,14
ltwo backward moves
[1,2],[3,4],4,[6,6],[7,8],8,10,14
ltwo backward moves

6 =11,2],13,4],4,1[6,6],[7,8],8,10,12
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We have y=3+3+6+6and 8 =0+ 1+ 2+ 2. We observe that

Al =94 = |B] + |pu| +10] = 71 + 18 + 5.
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For my,mo,m3g € N and m € Z, let P(my,mo, ms,m + 1;q) be the
generating function of base partitions 3's defined in the proof of Theorem
4 with mq pairs of two repeating parts, mo pairs of two consecutive parts
and mg blocks, where a block is a partition into five parts which have the
form [k — 1,k], k, [k + 2,k + 2]. Then,

P(m1,ma, m3,m + 1;q) =Py(m1, ma, m3,m + 1;q)

+ Pl(mlam2am3am+ 1aq)

where Py(mi, ma2, ms, m + 1;q) is the generating function of the base par-
titions in which the largest pair is [m, m] and Py(m1, ma, ms,m + 1;q) is
the generating function of the base partitions in which the largest pair is
[m,m + 1].
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Py(mqy, ma,m3,m+ 1;q) and P;(my, ma, ms,m + 1; q) satisfy the
following functional equations:
Po(ma, mg, m3,m+ 1;q) =¢°™ [Po(ml —1,ma,m3,m; q)
+ Pi(mq — 1,ma,m3,m — 1;q)
+ Py(mq — 1, mg, m3, m — l;q)}
+ ¢ |:P1(m1,m2,m3 —1,m—3;q)
+ Py(my,mg,mg — 1,m — 3;q)
+ Py(my, mg, mg — 1,m—4;q)}
Py(my, mg, mg, m+ 1;¢) =¢*" [Pl(mlamZ —1,m3,m;q)
+ Po(mi, me — 1,m3,m; q)

+P1(m17m2 - 17m37m_ 17Q)
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Pyj1(ma, ma, m3,m;q) =0 ifm <0
PFyj1(m1,ma,m3,0;q) =1
Py1(0,0,0,m;q) =0 if m#1
Py(0,0,0,1;9) =1
P1(0,0,0,1;¢) =0
Moreover, P(my,mga, m3,m+1;q)'s are the polynomials of ¢ with evidently
positive coefficients.
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Theorem 6 (Kursungoz, Omriiuzun Seyrek 2021).

For n,m € N, let h(n, m) denote the number of partitions of n into m
parts such that each part appears at most twice. Then,

H(t;q) = Y h(n,m)q"t"

m,n>0

2
Z P(m1, mg, m3, m + 1; q)g™™12 a2 mi+2me+oms tni

iy G, (% D12 (€35 8 )ma+mo+2ms
m,n122>0

where P(mi, ma, m3, m + 1;q)’s are the polynomials of q with evidently
positive coefficients constructed in Lemma 5.
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Theorem 7 (Kursungtz, Omriiuzun Seyrek 2021).

Consider the partitions satisfying the following conditions:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition \; + Xi+1 + Nit2, we have |\; — Xjy2| >4 if \i11 is even

and appears more than once.

(d) 24 2 is not allowed as a sub-partition.
For n,m € N, let kri(n, m) denote the number of partitions of n into m parts such that the
partitions satisfy the conditions (a), (b), (¢) and (d).
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Theorem 7 (Kursungtz, Omriiuzun Seyrek 2021).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
(b) Odd parts do not repeat.
(¢) For a contiguous sub-partition \; + Xi+1 + Nit2, we have |\; — Xjy2| >4 if \i11 is even
and appears more than once.
(d) 24 2 is not allowed as a sub-partition.

For n,m € N, let kri(n, m) denote the number of partitions of n into m parts such that the
partitions satisfy the conditions (a), (b), (¢) and (d). Then,

Z kri(n, m)g"t™

m,n>0

_ 3 P(m1,mga,m3,m+ 1;42) @)
maprms, (@%50%)n12 (6% 6% my +matams (9% 6%)i(a*; a*);

m,n12,%,5,k>0

5% qzmn12+2n§2+i+4j+(2m1+2m2+5m3+n12+i+2j+k)2t2m1+2m2+5m3+n12+i+2j+k

where P(m1,m2,m3, m + 1;q)’s are the polynomials of q with evidently positive coefficients
constructed in Lemma 5. Moreover, the generating function (4) is an evidently positive series.
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Theorem 8 (Kursungtz, Omriiuzun Seyrek 2021).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition \; + Xi+1 + Nit2, we have |\; — Xjy2| >4 if \i11 is even
and appears more than once.

(d") 1 is not allowed to appear as a part.

For n,m € N, let kro(n, m) denote the number of partitions of n into m parts such that the
partitions satisfy the conditions (a), (b), (c) and (d'). Then,

Z kra(n,m)q"t™

m,n>0

. Z P(ml,mz,m3,m+1;q2) (5)
iy omms, (@254%)n12(4% 6% ma +mat2ms (9% 62)i(a%; 4*);
m,n12,i,5>0

X qzmn12+2n%2+i+(2m1+2m2+5m3+n12+i+2j)2t2m1+2m2+5m3+n12+z‘+2j

where P(m1,m2,m3, m + 1;q)’s are the polynomials of q with evidently positive coefficients
constructed in Lemma 5. Moreover, the generating function (5) is an evidently positive series.
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rem 9 (Kursung6z, Omriiuzun Seyrek 2021).

Consider the partitions satisfying the following conditions:
(a) No consecutive parts allowed.
(b) Odd parts do not repeat.

(¢) For a contiguous sub-partition A\; + Xix1 + Niy2, we have [\; — Xita| >4 if \j+1 is even
and appears more than once.

(d") 1,2 and 3 are not allowed to appear as parts.

For n,m € N, let krs(n,m) denote the number of partitions of n into m parts such that the
partitions satisfy the conditions (a), (b), (c) and (d""). Then,

Z krs(n,m)q"t™

m,n>0

_ Z P(m1,m2,m3,m+ 1;4°) (6)
my mma, (@25 0%)n12(0% @%)my +matams (0% 6%)i (g% a4);
m,ni2,i,j>0

% q2mn12+2n%2 +3i+4j+4mi+4mo+10ms+2ni2+(2mq +2ma+5ms +n12+i+2j)2

x $2m1+2ma+5ma+nia+it2j

where P(m1,m2,m3, m + 1;q)’s are the polynomials of q with evidently positive coefficients
constructed in Lemma 5. Moreover, the generating function (6) is an evidently positive series.
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THANK YOU.

Halime Omriiuzun Seyrek Constructing Generating Functions b 17, 2022



	Main Part
	Introduction
	An Alternative Construction for a Family of Partition Generating Functions due to Kanade and Russell
	Construction of Evidently Positive Series for a Family of Partitions due to Kanade and Russell


