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Background on Copartitions

Definition
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Definition

An (a, b,m)-copartition is a vector partition � =
(�, ⇢,�) where

� has parts of size a modulo m

⇢ is a #(�)⇥#(�) rectangle of m’s.

� has parts of size b modulo m

|�| = |�|+ |⇢|+ |�|
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Background on Copartitions

Example

All the (3, 4, 5)-copartitions of size 21:
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Let cpa,b,m(n) be the function that counts the number of (a, b,m) copartitions of size n.
Then,

cp3,4,5(21) = 5.
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Let cpa,b,m(n) be the function that counts the number of (a, b,m) copartitions of size n.
Then,

cp3,4,5(21) = 5.
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Background on Copartitions

Generating function

cpa,b,m(n) := the number of (a, b,m)-copartitions of size n.

Theorem (B., Eichhorn)

cpa,b,m(q) :=
1X

n=0

cpa,b,m(n)qn

=
1X

w=0

1X

s=0

qmws+aw+bs

(qm; qm)w(qm; qm)s

=
(qa+b; qm)1

(qa; qm)1(qb; qm)1
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Background on Copartitions

Conjugation
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Background on Copartitions

Some facts about cpa,b,m(n)

cp1,1,2(n) = EO
⇤(2n), where EO

⇤(n) counts the number of partitions of n such that
all even parts are smaller than all odd parts and only the largest even part appears
an odd number of times.

cpa,b,m(n) = cpb,a,m(n)

cpka,kb,km(kn) = cpa,b,m(n), so we will mostly assume that gcd(a, b,m) = 1.
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Background on Copartitions
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Parity

A family of congruences

Theorem (B.-Eichhorn)

For even m,
cpa,a,m(2n+ 1) ⌘ 0 (mod 2).

proof

All (a, a,m)-copartitions of odd size can be paired by conjugation.
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Parity

What is the deeper story?

Question

For di↵erent values of a, b, and m, how often is the (a, b,m)-copartition function even?
How often is it odd?
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Parity

Parity: ordinary partitions

Theorem (Kolberg)

The partition function p(n) takes both even and odd values infinitely often.

Conjecture (Parkin-Shanks)

lim
n!1

#{1  k  n | p(k) is even}

n
=

1

2

Open Problem

Show that p(n) is even (or odd) with positive density, that is, show that

lim
n!1

#{1  k  n | p(k) is even}

n
� c for some c > 0.
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Parity

Copartitions: A first result

Recall: For even m,
cpa,a,m(2n+ 1) ⌘ 0 (mod 2).

Theorem (B.-Eichhorn)

For even m,

lim inf
n!1

#{1  k  n | cpa,a,m(k) is even}

n
�

1

2
.
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Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

scpa,m(n) := # self-conjugate (a, a,m)-copartitions of size n.
Then, for a odd and m even,

1X

n=0

scpa,m(n)qn = (�qm+2a; q2m)1.
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Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

scpa,m(n) := # self-conjugate (a, a,m)-copartitions of size n.
Then, for a odd and m even,

1X

n=0

scpa,m(n)qn = (�qm+2a; q2m)1.

Corollary

1X

n=0

cpa,a,m(n)qn ⌘ (�qm+2a; q2m)1 (mod 2)
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Parity

Applications to congruences modulo 2

Corollary

1X

n=0

cpa,a,m(n)qn ⌘ (�qm+2a; q2m)1 (mod 2)

Corollary

For m ⌘ 2 (mod 4) and odd a,

cpa,a,m(4n+ 1) ⌘ 0 (mod 2)

cpa,a,m(4n+ 2) ⌘ 0 (mod 2)

cpa,a,m(4n+ 3) ⌘ 0 (mod 2)
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Parity

Back to parity

Corollary

For m ⌘ 2 (mod 4) and odd a,

cpa,a,m(4n+ 1) ⌘ 0 (mod 2)

cpa,a,m(4n+ 2) ⌘ 0 (mod 2)

cpa,a,m(4n+ 3) ⌘ 0 (mod 2)

Theorem (B.-Eichhorn)

When m ⌘ 2 (mod 4) and a is odd,

lim inf
n!1

#{1  k  n | cpa,a,m(k) is even}

n
�

3

4
.
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Parity

Some parity conjectures

Conjecture

When m ⌘ 0 (mod 4) and a ⌘ 1 (mod 2),
cpa,a,m(n) is even with arithmetic density 1

2 + 1
4 = 3

4 .

When m ⌘ 2 (mod 4), a ⌘ 1 (mod 2), and m 6= 2a,
cpa,a,m(n) is even with arithmetic density 3

4 + 1
8 = 7

8 .

When m ⌘ 1 (mod 2) and gcd(a,m) = 1, cpa,a,m(n) is even (odd) with arithmetic

density 1
2 .
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Parity

Data

n d3,3,4(n) d1,1,6(n) d3,3,7(n)

1000 0.765 0.871 0.705

3000 0.752 0.875 0.575

5000 0.753 0.874 0.543

7000 0.749 0.875 0.534

9000 0.748 0.873 0.524

11000 0.749 0.874 0.519

13000 0.750 0.875 0.518

15000 0.749 0.875 0.516

da,b,m(n) =
#{1  k  n : cpa,b,m(k) is even}

n
.
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Parity

A very special case

Theorem (B.-Eichhorn, Barman-Ray)

cpa,a,2a(n) is even with arithmetic density one.

Remark

Barman and Ray used the theory of modular forms and proved that cpa,a,2a(n) is

almost always divisible by 2k for any k 2 N.

Remark

We have an elementary proof using Euler’s pentagonal number theorem.
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Parity

An open problem

Question

For which a 6= b, is cpa,b,m(n) even with arithmetic density 1
2?

Question

When there is a parity bias, how often is cpa,b,m(n) even?
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Parity

What we know, part 1

Theorem (B.-Eichhorn)

For all a, m, cpa,m�a,m(n) is even (odd) infinitely often.

If a = m/2,

cpm/2,m/2,m(q) =
(qm; qm)1
(qm/2; qm)21

⌘
(qm; qm)1
(qm; q2m)1

⌘ (q2m; q2m)1 (mod 2).

Apply Euler’s pentagonal number theorem to the RHS.
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Parity

What we know, part 1, odd case

Theorem (B.-Eichhorn)

For all a, m, cpa,m�a,m(n) is odd infinitely often.

If 0 < a < m/2,

cpa,m�a,m(q) ⌘
(q2m; q2m)1

(qm�a; qm)1(qa; qm)1(qm; qm)1
(mod 2)

cpa,m�a,m(q)
1X

n=�1
(�1)nqan+mn(n�1)/2

⌘

1X

k=�1
qmk(3k�1) (mod 2)

If cpa,m�a,m(n) has finitely many odd values, then there is a point at which the LHS has two
close odd values, but the RHS does not.
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Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cpa,m�a,m(n) is even infinitely often.

If 0 < a < m/2, cpa,m�a,m(q) ⌘
(q2m; q2m)1

(qm�a; qm)1(qa; qm)1(qm; qm)1
(mod 2).

Let Ea,m := {n 2 N0 : cpa,m�a,m(n) is even} and Ga,m(q) =
P

n2Ea,m
qn.

1

1� q
⌘ cpa,m�a,m(q) +Ga,m(q) (mod 2)
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Parity

What we know, part 2

Theorem (B.-Eichhorn)

cp3,1,4(n) is even with arithmetic density one. Specifically, cp3,1,4(n) is even if the
prime factorization of 24n + 5 includes a prime ⌘ 3 (mod 4) occuring with an odd
exponent.

Theorem (B.-Eichhorn)

cp5,1,6(n) is even with arithmetic density one. Specifically, cp5,1,6(n) is even if the
prime factorization of 6n + 1 includes a prime ⌘ 2 (mod 3) occuring with an odd
exponent.
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Parity

Proof sketch

1X

n=0

cp3,1,4(n)q
n =

(q4; q4)1
(q3; q4)1(q; q4)1

=
(q4; q4)1
(q; q2)1

= (�q; q)1(q4; q4)1

⌘ (q; q)1(q4; q4)1 (mod 2)

Applying Euler’s pentagonal number theorem:

1X

n=0

cp3,1,4(n)q
n
⌘

0

@
1X

j=�1
qj(3j+1)/2

1

A
 1X

k=�1
q2k(3k+1)

!
(mod 2)



24/39

Parity

Proof sketch

1X

n=0

cp3,1,4(n)q
n =

(q4; q4)1
(q3; q4)1(q; q4)1

=
(q4; q4)1
(q; q2)1

= (�q; q)1(q4; q4)1

⌘ (q; q)1(q4; q4)1 (mod 2)

Applying Euler’s pentagonal number theorem:

1X

n=0

cp3,1,4(n)q
n
⌘

0

@
1X

j=�1
qj(3j+1)/2

1

A
 1X

k=�1
q2k(3k+1)

!
(mod 2)



24/39

Parity

Proof sketch

1X

n=0

cp3,1,4(n)q
n =

(q4; q4)1
(q3; q4)1(q; q4)1

=
(q4; q4)1
(q; q2)1

= (�q; q)1(q4; q4)1

⌘ (q; q)1(q4; q4)1 (mod 2)

Applying Euler’s pentagonal number theorem:

1X

n=0

cp3,1,4(n)q
n
⌘

0

@
1X

j=�1
qj(3j+1)/2

1

A
 1X

k=�1
q2k(3k+1)

!
(mod 2)



24/39

Parity

Proof sketch

1X

n=0

cp3,1,4(n)q
n =

(q4; q4)1
(q3; q4)1(q; q4)1

=
(q4; q4)1
(q; q2)1

= (�q; q)1(q4; q4)1

⌘ (q; q)1(q4; q4)1 (mod 2)

Applying Euler’s pentagonal number theorem:

1X

n=0

cp3,1,4(n)q
n
⌘

0

@
1X

j=�1
qj(3j+1)/2

1

A
 1X

k=�1
q2k(3k+1)

!
(mod 2)
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Proof sketch, continued

1X

n=0

cp3,1,4(n)q
n
⌘

0

@
1X

j=�1
qj(3j+1)/2

1

A
 1X

k=�1
q2k(3k+1)

!
(mod 2)

cp3,1,4(n) can be odd only if n = j(3j + 1)/2 + 2k(3k + 1) for some integers j and k.

Equivalently, 24n+ 5 = (6j + 1)2 + 4(6k + 1)2 = A2 +B2.

Note that 24n+ 5 is representable by A2 +B2 precisely when the prime factorization of
24n+ 5 has all primes ⌘ 3 (mod 4) occur with an even exponent.
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Some implied congruences, part 1

Corollary

For any prime p > 3, p ⌘ 3 (mod 4), let 24� ⌘ 1 (mod p2). Then,

cp3,1,4(p
2k + pt� 5�) ⌘ 0 (mod 2)

for t = 1, 2, . . . , p� 1 and all k 2 N.

Example

For r = 3, 17, 24, 31, 38, 45 and any k 2 N,

cp3,1,4(49k + r) ⌘ 0 (mod 2)
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Parity

Some implied congruences, part 2

Corollary

For any prime p > 2, p ⌘ 2 (mod 3), let 6� ⌘ 1 (mod p2). Then,

cp5,1,6(p
2k + pt� �) ⌘ 0 (mod 2)

for t = 1, 2, . . . , p� 1 and all k 2 N.

Example

For r = 9, 14, 19, 24 and any k 2 N,

cp5,1,6(25k + r) ⌘ 0 (mod 2)
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More data

Questions

For which a 6= b, is cpa,b,m(n) even with arithmetic density 1
2?

When there is a parity bias, how often is cpa,b,m(n) even?

n d1,5,6(n) d1,4,5(n) d3,5,8(n)

1000 0.581 0.503 0.628
2000 0.599 0.511 0.654
4000 0.623 0.509 0.681
8000 0.641 0.509 0.703
16000 0.653 0.508 0.720
32000 0.671 0.501 0.735
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Parity

A bold conjecture

Conjecture

When gcd(a, b,m) = 1, a 6= b, and a+ b 6= m, cpa,b,m(n) is even (odd) with arithmetic

density 1
2 .
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Motivation

Theorem (Chern 2021)

Define eo⇤0(n) (resp. eo⇤2(n)) to be the number of partitions counted by EO
⇤(n) with

largest even part congruent to 0 (resp. 2) modulo 4. Then,

X

n�0

(eo⇤0(n)� eo⇤2(n))q
n =

(�q4; q4)1
(q4; q8)1

Corollary

eo⇤0(n)

(
= eo⇤2(n) if 4 - n
> eo⇤2(n) if 4 | n
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Overpartition analogue

Define eo⇤0(n) (resp. eo
⇤
2(n)) to be the number of overpartitions with all even parts smaller

than all odd parts, only the largest even part appearing an odd number of times, and
largest even part ⌘ 0 (resp. 2) (mod 4).

Theorem (Chern 2021)

eo⇤0(n)

(
= eo⇤2(n) if 4 - n
> eo⇤2(n) if 4 | n
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Adding weight

Copartitions version

Let cpe1,1,2(n) (resp. cp
o
1,1,2(n)) be the number of (1, 1, 2)-copartitions with an even (resp.

odd) number of woods parts.

Theorem

cpe1,1,2(n)

(
= cpo1,1,2(n) if n is odd

> cpo1,1,2(n) if n is even
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Combinatorial proof idea
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Adding weight

Overpartition version

Remark

Our injection preserves the sum of the diversities (number of distinct part sizes) of the
woods and the sky.

Corollary

cpe1,1,2(n)

(
= cpo1,1,2(n) if n is odd

> cpo1,1,2(n) if n is even
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General version: a conjecture

Let cpea,b,m(n) (resp. cpoa,b,m(n)) be the number of (a, b,m)-copartitions with an even (resp. odd)
number of woods parts.

Conjecture

If b|a, then
cpea,b,m(n) � cpoa,b,m(n)

for all n 2 N.

Conjecture, reframed

When expanded as a q-series,
(�qa+b; qm)1

(�qa; qm)1(qb; qm)1

has non-negative coe�cients when b|a.
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Adding weight

Related conjectures and progress

Conjecture (Seo-Yee)

For m � 4,
1

(q; qm)1(�qm�1; qm)1

has non-negative coe�cients (when expanded as a q-series).

Remark

Will Craig proved the case m = 4 of the above conjecture.
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Conclusion

Open problems

What other divisibility properties does cpa,b,m(n) have?

By changing the restrictions on the ground and sky, there are many options for
generalizations. Which generalizations have interesting properties?

Is there a logical way to unite three (or more) partitions?
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Conclusion

To learn more

H. E. Burson and D. Eichhorn. Copartitions. arXiv:2111.04171

H. E. Burson and D. Eichhorn. On the parity of the number of (a, b,m)-copartitions of n.
arXiv:2201.04247

H. E. Burson and D.Eichhorn. On the positivity of a family of infinite products. In
preparation.


