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Background on Copartitions

Definition
I}
s 5\“% o .
mlmlm m ‘ o Definition
mimm / An (a,b, m)-copartition is a vector partition A =
m|m|m|b (7, p,0) where
allal a @ v has parts of size a modulo m
m|m|m @ pis a #(o) x #(v) rectangle of m’s.
m ('m|'m @ o has parts of size b modulo m
m
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Example

Background on Copartitions

All the (3,4, 5)-copartitions of size 21:
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Background on Copartitions

Example

All the (3,4, 5)-copartitions of size 21:
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Let cp,pm(n) be the function that counts the number of (a, b, m)-copartitions of size n.
Then,

cPg.45(21) = 5.



Background on Copartitions

Generating function

CPy p.m (1) := the number of (a, b, m)-copartitions of size n.

Theorem (B., Eichhorn)
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Background on Copartitions

Conjugation
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Background on Copartitions

Some facts about cp,, ,,(1)

® cpyq9(n) = EO0*(2n), where £O0*(n) counts the number of partitions of n such that
all even parts are smaller than all odd parts and only the largest even part appears
an odd number of times.



Background on Copartitions

Some facts about cp,, ,,(1)

® cpyq9(n) = EO0*(2n), where £O0*(n) counts the number of partitions of n such that
all even parts are smaller than all odd parts and only the largest even part appears
an odd number of times.

° Cpa,b,m(n) = Cpb,a,m(n)



Background on Copartitions

Some facts about cp,, ,,(1)

® cpyq9(n) = EO0*(2n), where £O0*(n) counts the number of partitions of n such that
all even parts are smaller than all odd parts and only the largest even part appears
an odd number of times.

° Cpa,b,m(n) = Cpb,a,m(n)

® CDpa kb km (KN) = €Dy pm(n), SO we will mostly assume that ged(a,b,m) = 1.
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For even m,

Cpa’“’m(2n +1)=0 (mod 2).
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Parity

A family of congruences

Theorem (B.-Eichhorn)

For even m,
CPgam(2n+1) =0 (mod 2).

proof

All (a, a, m)-copartitions of odd size can be paired by conjugation.

mimjaim|im s mimimj|a|m|m
mimjaim mimimj|a|{m|m
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Parity

What is the deeper story?

Question

For different values of a, b, and m, how often is the (a, b, m)-copartition function even?
How often is it odd?



Parity

Parity: ordinary partitions

Theorem (Kolberg)

The partition function p(n) takes both even and odd values infinitely often.



Parity

Parity: ordinary partitions

Theorem (Kolberg)

The partition function p(n) takes both even and odd values infinitely often.

Conjecture (Parkin-Shanks)

<k< is
lim #{1 <k <n|p(k)isecven} 1

n—00 n 2




Parity

Parity: ordinary partitions

Theorem (Kolberg)

The partition function p(n) takes both even and odd values infinitely often.

Conjecture (Parkin-Shanks)

<k< is
lim #{1 <k <n|p(k) is even} 1

n—00 n 2

Open Problem
Show that p(n) is even (or odd) with positive density, that is, show that

<k< is
lim #{1 <k <n|p(k) is even}

n— 00 n

> ¢ for some ¢ > 0.




Recall: For even m,

Poam(2n+1) =0 (mod 2).
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Parity

Copartitions: A first result

Recall: For even m,
CPgam(2n+1) =0 (mod 2).

Theorem (B.-Eichhorn)

For even m,

Bk < | opy (k) is even)
lim inf 2

n—00 n

1
> —.
-2



Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

SCP4 (1) 1= # self-conjugate (a, a, m)-copartitions of size n.
Then, for a odd and m even,

(o]
D 8Py (n)g" = (—4" % 47 e

n=0



Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

SCP,,m(n) := # self-conjugate (a,a, m)-copartitions of size n.
Then, for a odd and m even,

(o ]
> 50Pam(m)" = (=4 7)o
n=0
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Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

SCP,,m(n) := # self-conjugate (a,a, m)-copartitions of size n.
Then, for a odd and m even,




Parity

A closer look at self-conjugate copartitions

Theorem (B.-Eichhorn)

SCP,,m(n) := # self-conjugate (a,a, m)-copartitions of size n.
Then, for a odd and m even,

00
Z SCPq,m (n)qn = (_qm+2a; q2m)0<>'
n=0

Corollary

Z Cpa,a,m(n)qn = (*qm+2a§ qzm)m (IIlOd 2)
n=0



Parity

Applications to congruences modulo 2

Corollary

0
Zcpa,a,m(n)qn = (_qm+2a; q2m)oo (mod 2)
n=0

Corollary

For m =2 (mod 4) and odd a,

CPgam(4n+1) =0 (mod 2)
CPgam(4n+2) =0 (mod 2)
(A4n+3)=0 (mod 2)

Cpa,a,m



Parity

Back to parity

Corollary

For m =2 (mod 4) and odd a,

CPgam(4n+1) =0 (mod 2)
(dn+2)=0 (mod 2)
(A4n+3)=0 (mod 2)

Cpa,a,m

Cpa,a,m

Theorem (B.-Eichhorn)

When m =2 (mod 4) and a is odd,

. #{1 <k <n|cp,qm(k) is even}
lim inf =

n—00 n

3
> —.
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Parity

Some parity conjectures

Conjecture

When m =0 (mod 4) and a =1 (mod 2),

CPg q,m(n) is even with arithmetic density t+3=3

1

When m =2 (mod 4), a =1 (mod 2), and m # 2a,

CPg q,m(n) is even with arithmetic density sy1=1

When m = 1 (mod 2) and ged(a,m) = 1, cp,4m(n) is even (odd) with arithmetic
density %



Parity

Data

n d3za(n) dige(n) dssz(n)

1000 0.765 0.871 0.705
3000 0.752 0.875 0.575
5000 0.753 0.874 0.543
7000 0.749 0.875 0.534
9000 0.748 0.873 0.524
11000 0.749 0.874 0.519
13000 0.750 0.875 0.518
15000 0.749 0.875 0.516

#{1 <k <n:cp,p.m,(k)is even}
da,bym(n) = — .

n



CPg.q,24(T) is even with arithmetic density one.
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Parity

A very special case

Theorem (B.-Eichhorn, Barman-Ray)

CDg q,24(n) is even with arithmetic density one.

Remark

Barman and Ray used the theory of modular forms and proved that cp, ,2,(n) is
almost always divisible by 2* for any k € N.



Parity

A very special case

Theorem (B.-Eichhorn, Barman-Ray)

CDg q,24(n) is even with arithmetic density one.

Remark

Barman and Ray used the theory of modular forms and proved that cp, ,2,(n) is
almost always divisible by 2* for any k € N.

Remark

We have an elementary proof using Euler’s pentagonal number theorem.



Parity

An open problem

Question

For which a # b, is cp,,,,(n) even with arithmetic density %?

Question

When there is a parity bias, how often is cp,, ,,(n) even?



For all a, m, ¢p, p—qm(n) is even (odd) infinitely often.
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Parity

What we know, part 1

Theorem (B.-Eichhorn)

For all a, m, ¢p, p—qm(n) is even (odd) infinitely often.
If a =m/2,

Cpm/Z,m/Zm(q) -

(@340 _ (414" = (™ g2

107" oo (mod 2).
(@™2¢™)2 (™% ( )



Parity

What we know, part 1

Theorem (B.-Eichhorn)

For all a, m, ¢p, p—qm(n) is even (odd) infinitely often.
If a =m/2,

Cpm/Z,m/Zm(q) -

o

(@™2%¢™)%  (@™¢* ™) ’

Apply Euler’s pentagonal number theorem to the RHS.

(mod 2).



For all a, m, c¢p, 4 m(n) is odd infinitely often.
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Parity

What we know, part 1, odd case

Theorem (B.-Eichhorn)

For all a, m, cp, ,;,_q m(n) is odd infinitely often.

If0<a<m/2,

(qu; q2m)oo
(qm—a; qm)oo(qa; qm)oo(qm; qm)oo

Cpa,mfa,m (q) (mOd 2)



Parity

What we know, part 1, odd case

Theorem (B.-Eichhorn)

For all a, m, cp, ,;,_q m(n) is odd infinitely often.

If0<a<m/2,

(@*™; > )0
m—a. ,m a. m m. 4m (mOd 2)
(@™ % q™)oo (9% q ) (@™ 4™)o

CPomaml(@) Y (—1)"g"tmmr=D/2 = Z g™ (mod 2)

n=—oo k=—o0

Cpa,mfa,m (q)



Parity

What we know, part 1, odd case

Theorem (B.-Eichhorn)

For all a, m, cp, ,;,_q m(n) is odd infinitely often.

If0<a<m/2,
(qu; q2m)oo
Cpa m—a,m q = — , mod 2
> s ( ) (qm a;qm)oo(qa;qm)oo(qm;qm)oo ( )
CParmam(@) D (—1)rgetmnn=h/2 = N qmkEE=D - (mod 2)
n=—oo k=—o0

If cpy 1 —q,m (1) has finitely many odd values, then there is a point at which the LHS has two
close odd values, but the RHS does not.



Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cp, ;;,_q.m(n) is even infinitely often.

(q2m; q2m)oo
(@™ 0™) 00 (4% ™) 00 (4™5 ™) 5o

If0<a<m/2 cp,,m_qm(q)

(mod 2).



Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cp, ;;,_q.m(n) is even infinitely often.

(q2m; q2m)oo
(@ 4™ oo (4% 4™ ) oo (€™ 4™ ) o
Let Eqm = {n € No : ¢y m_q,m(n) is even} and Gam(q) =>,cp, , 0"

If0<a<m/2 cp,mam(q) = (mod 2).



Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cp, ;;,_q.m(n) is even infinitely often.

(q2m; q2m)oo
(@ 4™ oo (4% 4™ ) oo (€™ 4™ ) o
Let Eqm = {n € No : ¢y m_q,m(n) is even} and Gam(q) =>,cp, , 0"

If0<a<m/2 cp,mam(q) = (mod 2).

1
Tq = Cpa,mfa,m(Q) + Ga,m(q) (IHOd 2)



Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cp, ;;,_q.m(n) is even infinitely often.

(q2m; q2m)oo
(@ 4™ oo (4% 4™ ) oo (€™ 4™ ) o
Let Eqm = {n € No : ¢y m_q,m(n) is even} and Gam(q) =>,cp, , 0"

If0<a<m/2 cp,mam(q) = (mod 2).

1
Tq = Cpa,mfa,m(Q) + Ga,m(q) (IHOd 2)

Z;)OZ_ (71)nqan+mn(n71)/2 m m - n an+mn(n—
= (@™ 6" )oo + Gam(@) D> (=)™t =D/ (mod 2)

n=—oo

1—¢



Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)
For all a, m, cp, ;;,_q.m(n) is even infinitely often.
(q2m; q2m)oo

(@ 4™ oo (4% 4™ ) oo (€™ 4™ ) o
Let Eqm = {n € No : ¢y m_q,m(n) is even} and Gam(q) =>,cp, , 0"

If0<a<m/2 cPymam(q) = (mod 2).

tege derS 1
e
?o%‘f“l 17 = Cpa,mfa,m(q) + Ga,m(q) (mOd 2) -
—q zero density
ec0
S0 o (—1)ngantmn(n=1)/2 ¢ gt = /
e = (50" )oo + Gamla)| D (<1)"g™ D/ (mod 2)




Parity

What we know, part 1, even case

Theorem (B.-Eichhorn)

For all a, m, cp, ;;,_q.m(n) is even infinitely often.

(q2m; q2m)oo
(@ 4™ oo (4% 4™ ) oo (€™ 4™ ) o
Let Eqm = {n € No : ¢y m_q,m(n) is even} and Gam(q) =>,cp, , 0"

If0<a<m/2 cPymam(q) = (mod 2).

N Y
e B0 (@) + Gam(g) (mod 2)

1—gq o o\ M.mqk s / 2ev0 dﬂnsiﬁg
) 1) an+mn(n—1)/2 (zdu\s\hﬁ
e 1)_qq = (*" ") Z g2 (mod 2)
n=—oo




Parity

What we know, part 2

Theorem (B.-Eichhorn)

cp314(n) is even with arithmetic density one. Specifically, cps; 4(n) is even if the
prime factorization of 24n + 5 includes a prime = 3 (mod 4) occuring with an odd
exponent.

Theorem (B.-Eichhorn)

cps1,6(n) is even with arithmetic density one. Specifically, cps; g(n) is even if the
prime factorization of 6n + 1 includes a prime = 2 (mod 3) occuring with an odd
exponent.



o0
Z Cp3,1,4(n)qn _
n=0

(¢ 4")o
(q3; q4)oo(q; q4)oo

O T o =»

<

nae -



[e.e]
Z cp31,4(n)q" =
n=0

(7% ")

_ (@h4Y)
(@%0M)o0(@: 00 (656%) 0
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Parity

Proof sketch

(0% q%)oo (7% ") oo

o0
cp n)q" = =
7;) s4(?) (6% 0Mo (600 (600

= (—4;0)oo(q*; ¢*) oo
= (¢:9)o0(q"¢")oe  (mod 2)



Parity

Proof sketch

icps 14(n)q" = (4% 4% = URTES
= (%0 oo (G000 (4500

= (=4 D)oo(q" 00
= (¢;9)o0(q* ¢")oo  (mod 2)

Applying Euler’s pentagonal number theorem:

ZCpSJA(n)qn = ( Z qj(3j+1)/2) < Z q2k(3k+1)> (mod 2)
n=0 k

j:—OO =—00



Parity

Proof sketch, continued

ZCP3,1,4(n)an Z qj(3j+1)/2 (Z q2k(3k+1)> (mod 2)
n=0

j=—00 k=—o00

cp31.4(n) can be odd only if n = j(3j + 1)/2 + 2k(3k + 1) for some integers j and k.



Parity

Proof sketch, continued

Zcp371,4(n)q” = Z qj(3j+1)/2 ( Z q2k(3k+1)> (mod 2)
n=0

j=—00 k=—o00

cp31.4(n) can be odd only if n = j(3j + 1)/2 + 2k(3k + 1) for some integers j and k.
Equivalently, 24n 4+ 5 = (65 + 1)® + 4(6k + 1)® = A% + B>



Parity

Proof sketch, continued

Zcp371,4(n)q” = Z qj(3j+1)/2 ( Z q2k(3k+1)> (mod 2)
n=0

j=—00 k=—o00

cp31.4(n) can be odd only if n = j(3j + 1)/2 + 2k(3k + 1) for some integers j and k.
Equivalently, 24n 4+ 5 = (65 + 1)® + 4(6k + 1)® = A% + B>

Note that 24n + 5 is representable by A2 4+ B? precisely when the prime factorization of
24n + 5 has all primes = 3 (mod 4) occur with an even exponent.



Parity

Some implied congruences, part 1

Corollary
For any prime p >3, p=3 (mod 4), let 246 = 1 (mod p?). Then,
Cp3,1,4(p2k’ +pt—50)=0 (mod 2)

fort=1,2,...,p—1and all k € N.

Example
For r = 3,17,24,31, 38,45 and any k € N,

cp31,4(49k +7) =0 (mod 2)



Parity

Some implied congruences, part 2

Corollary
For any prime p > 2, p =2 (mod 3), let 65 = 1 (mod p?). Then,
cps,16(p°k +pt —8) =0 (mod 2)

fort=1,2,...,p—1and all k € N.

Example
For r =9,14,19,24 and any k € N,

cp5.1,6(25k +7) =0 (mod 2)



Parity

More data

Questions

For which a # b, is cp, j, ,,,(1) even with arithmetic density 7
When there is a parity bias, how often is cp,, ,,(n) even?

n dise(n) dias(n) dsss(n)

1000 0.581 0.503 0.628
2000 0.599 0.511 0.654
4000 0.623 0.509 0.681
8000 0.641 0.509 0.703
16000  0.653 0.508 0.720
32000 0.671 0.501 0.735



Parity

A bold conjecture

Conjecture

When ged(a,b,m) =1, a #b, and a+b # m, cp,p ,,(n) is even (odd) with arithmetic
density %
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Adding weight

Motivation

Theorem (Chern 2021)

Define eoj(n) (resp. eo3(n)) to be the number of partitions counted by £O0*(n) with
largest even part congruent to 0 (resp. 2) modulo 4. Then,

g
> (eop(n) — eo3(n))g" = (=¢%4")=

4. 48
= (0% ¢%)s0

Corollary



Adding weight

Overpartition analogue

Define €o(j(n) (resp. €05(n)) to be the number of overpartitions with all even parts smaller
than all odd parts, only the largest even part appearing an odd number of times, and

largest even part = 0 (resp. 2) (mod 4).
Theorem (Chern 2021)

() {:eo;(n) if 41 n

>eos(n) ifd|n



Adding weight

Copartitions version

Let cp{ ; 5(n) (resp. cp{ ; 5(n)) be the number of (1,1, 2)-copartitions with an even (resp.
odd) number of woods parts.

Theorem

=cpfy9(n) if nisodd

CP§,1,2(”) {

> cpfq9(n) ifnis even



Adding weight

Combinatorial proof idea

—
\V)
\V)
\V)

ro| —| po| rof b0
—
DO
DO
DO

DO DN — (DN DN DN
DO DN — (DN DN DN

DO DN DO | DN DN DN
DO DN DO | DN DN DN




Adding weight

Combinatorial proof idea

2[2]2]2]2]1]2]2]2]2]
212(212|2(1|2]2]|2
212(212|2(1|2]|2]|2
2122|121
212(2]2|2

111]1|1

2

2

—

2

2[2]2]2]2]1]2]2]2]2]

212(212|2(1|2]2|2
212(212|2(1|2|2|2
1(1]1(1|1
212|222
2(2|2|2

2




Adding weight

Combinatorial proof idea

1

2[2]2]2]2]1]2]2]2]2]
212(212|2(1|2]|2]|2
212(212|2(1|2]2]|2

21212(2]1

2

2

—

—2(2(2]|2]|2
-1|1]|1|1

2222212222\

2(2(2(2|2(1|2]|2]|2
2(2(12(2|2(1|2]|2]|2
2(2(12(2]1
2(2(12(2]1
22|21

1

—

2

2

2[2[2]2]2]1[2]2]2]2]

212(212|2(1|2|2|2
212(212|2(1|2|2|2
1)11(1]1(1
2122|122
202|2|2

2

2[2]2]2]2]1]2]2]2]2]
2(2(12(2|2]|1(2]|2]|2
2(2|2(2|2]|1(2]|2]|2

21212]2]1
2(212|2]1

-

= 1|1{1|1]|1
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Adding weight

Combinatorial proof idea

1

2212222222\

212(112|2(2|2]|2]|2
212(112(2(2|2]|2]|2
21211(2|2
21211(2|2
212(1]2

1

—

2

2[2]2]2]2]1]2]2]2]2]
212(212|2(1|2]2(2
212(212(2(1(2]2|2
1)11(1]1(1
212(12|2|2

212(2]|2

2




Adding weight

Overpartition version

Remark

Our injection preserves the sum of the diversities (number of distinct part sizes) of the
woods and the sky.



Adding weight

Overpartition version

Remark

Our injection preserves the sum of the diversities (number of distinct part sizes) of the
woods and the sky.

Corollary

epi12(n) {

> TPy 9(n) ifnis even



Adding weight
General version: a conjecture

Let cpf ; ,,(n) (vesp. cpy ;. (n)) be the number of (a, b, m)-copartitions with an even (resp. odd)
number of woods parts.

Conjecture

If bla, then
sz,b,m(n) > Cpg,bﬂn(n)

for all n € N.



Adding weight
General version: a conjecture

Let cpf ; ,,(n) (vesp. cpy ;. (n)) be the number of (a, b, m)-copartitions with an even (resp. odd)
number of woods parts.

Conjecture

If bla, then
sz,b,m(n) > Cpg,bgm(n)

for all n € N.

Conjecture, reframed

When expanded as a g-series,
(_qa-l-b; qm)oc
(—a%0™) (0" ¢™) o

has non-negative coefficients when bla.




Adding weight

Related conjectures and progress

Conjecture (Seo-Yee)

For m > 4,
1
(44™)oc(—q™ 15 4™) o

has non-negative coefficients (when expanded as a g-series).

Remark

Will Craig proved the case m = 4 of the above conjecture.



What other divisibility properties does cp, (1) have?
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Conclusion

Open problems

What other divisibility properties does cp,p ,,, () have?

By changing the restrictions on the ground and sky, there are many options for
generalizations. Which generalizations have interesting properties?



Conclusion

Open problems

What other divisibility properties does cp,p ,,, () have?

By changing the restrictions on the ground and sky, there are many options for
generalizations. Which generalizations have interesting properties?

Is there a logical way to unite three (or more) partitions?



Conclusion

To learn more

H. E. Burson and D. Eichhorn. Copartitions. arXiv:2111.04171

H. E. Burson and D. Eichhorn. On the parity of the number of (a, b, m)-copartitions of n.
arXiv:2201.04247

H. E. Burson and D.Eichhorn. On the positivity of a family of infinite products. In
preparation.



