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Introduction

q-series formulas

Question

What is the number of commuting square matrices A,B in Fq?

Example

# of 1× 1 commuting "matrices" (elements) is q2 = q ·
(
1− 1

q

)
· q
1− 1

q

.

Remark

q ·
(
1− 1

q

)
= q − 1 is the number of nonzero elements of Fq.
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Introduction

Counting commuting 2× 2 matrices

Example (Brute force)

For F2, we �nd that

#{(A,B) ∈ Mat2(F2)
2, AB = BA} = 88.

q2
2

(
1− 1

q

)(
1− 1

q2

)
· q

1− 1
q

= 24,

q2
2

(
1− 1

q

)(
1− 1

q2

)
· q2

(1− 1
q )(1−

1
q2 )

= 64,

and 24 + 64 = 88. Is this an accident?
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Introduction

Counting commuting 2× 2 matrices

Example (Brute force)

#{(A,B) ∈ Mat2(F3)
2, AB = BA} = 945.

945 = 32
2

(
1− 1

3

)(
1− 1

32

)(
3

1− 1
3

+
32

(1− 1
3 )(1−

1
32 )

)
.

Example (Brute force)

#{(A,B) ∈ Mat2(F5)
2, AB = BA} = 18625.

18625 = 52
2

(
1− 1

5

)(
1− 1

52

)(
5

1− 1
5

+
52

(1− 1
5 )(1−

1
52 )

)
.
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Introduction

Counting commuting 2× 2 matrices

Observation

For 2× 2 matrices and q = 2, 3, 5, we have observed

#{(A,B) ∈ Mat2(Fq)
2, AB = BA}

q22
(
1− 1

q

)(
1− 1

q2

) =

(
q

1− 1
q

+
q2

(1− 1
q )(1−

1
q2 )

)
.

Question

Is this a coincidence? Is this a partitions phenomenon?

What about n× n matrices for all n?

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Introduction

Counting commuting 2× 2 matrices

Observation

For 2× 2 matrices and q = 2, 3, 5, we have observed

#{(A,B) ∈ Mat2(Fq)
2, AB = BA}

q22
(
1− 1

q

)(
1− 1

q2

) =

(
q

1− 1
q

+
q2

(1− 1
q )(1−

1
q2 )

)
.

Question

Is this a coincidence?

Is this a partitions phenomenon?

What about n× n matrices for all n?

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Introduction

Counting commuting 2× 2 matrices

Observation

For 2× 2 matrices and q = 2, 3, 5, we have observed

#{(A,B) ∈ Mat2(Fq)
2, AB = BA}

q22
(
1− 1

q

)(
1− 1

q2

) =

(
q

1− 1
q

+
q2

(1− 1
q )(1−

1
q2 )

)
.

Question

Is this a coincidence? Is this a partitions phenomenon?

What about n× n matrices for all n?

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Introduction

Counting commuting 2× 2 matrices

Observation

For 2× 2 matrices and q = 2, 3, 5, we have observed

#{(A,B) ∈ Mat2(Fq)
2, AB = BA}

q22
(
1− 1

q

)(
1− 1

q2

) =

(
q

1− 1
q

+
q2

(1− 1
q )(1−

1
q2 )

)
.

Question

Is this a coincidence? Is this a partitions phenomenon?

What about n× n matrices for all n?

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Introduction

Partitions of n and n× n matrices

Theorem (Feit, Fine (1960))

If P (n, q) := #{(A,B) ∈ Matn(Fq)
2, AB = BA}, then

P (n, q) = qn
2

(q−1; q−1)n ·
∑
λ⊢n

ql(λ)

(q−1; q−1)b(λ,1) · . . . · (q−1; q−1)b(λ,n)
,

where

(a; q)n := (1− a)(1− aq) . . . (1− aqn−1),

and n = 1 · b(λ, 1) + . . .+ n · b(λ, n) and l(λ) =
∑

b(λ, i).
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Introduction

Matrix points on curves and surfaces

Questions

1 Do partitions count equations other than AB −BA = 0?

2 Distributions of matrix points for families of curves and surfaces?

Answer (Our work)

We answer these questions for "elliptic curves"

B2 = A(A− In)(A− aIn),

and AOP K3 surfaces

C2 = AB(A+ In)(B + In)(A+ aB),

where In is the identity matrix and a ∈ Fq.
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Background on matrices

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent n× n matrix.

There is a basis {vis}, i = 1, . . . , k, s = 1, . . . , ri with

Avis = vis−1.

We associate with A the partition

π(A) : n = r1 + . . .+ rk.

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Background on matrices

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent n× n matrix.

There is a basis {vis}, i = 1, . . . , k, s = 1, . . . , ri with

Avis = vis−1.

We associate with A the partition

π(A) : n = r1 + . . .+ rk.

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Background on matrices

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent n× n matrix.

There is a basis {vis}, i = 1, . . . , k, s = 1, . . . , ri with

Avis = vis−1.

We associate with A the partition

π(A) : n = r1 + . . .+ rk.

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Background on matrices

Example

Consider the matrix

A =

0 0 0
1 0 0
1 1 0

 .

We have that A3 = 0. Consider the basis

v11 = e3

v12 = e2

v13 = e1 − e2.

with e1, e2, e3 the standard basis.Then, we have

Av13 = v12

and
Av12 = Av11 .
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Background on matrices

Partitions and nilpotent matrices

Lemma

A1 ∼ A2 if and only if π(A1) = π(A2).

Lemma

If N(s, q) := #{(A,B) ∈ Mats(Fq)2, AB = BA,A nilpotent}, then

N(s, q) = qs
2
(q−1; q−1)s ·

∑
λ⊢s

1

(q−1; q−1)b(λ,1) · · . . . (q−1; q−1)b(λ,s)
.

Sketch of Proof.

1 Fix a matrix A with π(A) = λ.

2 If B commutes with A then B is determined by Bviri .

3 Determine possible images of Bviri .

4 B is nonsingular if and only if Bvi1 are linearly independent.

5 Determine possible Bv1i for nonsingular B.
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Background on matrices

Partitions and Nonsingular Matrices

Lemma

If R(t, q) := #{(A,B) ∈ Matt(Fq)
2, AB = BA,A nonsingular}, then

R(t, q) = qt
2

(q−1; q−1)t ·#{β},

where #{β} denotes the number of similarity classes of t× t-matrices.

Proof.

1 AB = BA is equivalent to ABA−1 = B.

2 Fix B ∈ β.

3 #{A is nonsingular and ABA−1 = B} = qt
2
(q−1;q−1)t

#β .

4 Sum over B ∈ β.
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Counting matrix points with partitions

Background on matrices

Partitions and nonsingular matrices

Lemma

#{β} =
∑
λ⊢t

ql(λ).

Proof.

1 Similarity class is determined by rational canonical form
g1, . . . , gt−1. '

2 Take hi = gt+1−i/gt−i and bi = deg hi.

3

∑
ibi = t is the only restriction on hi.
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Counting matrix points with partitions

Background on matrices

Proof of Feit-Fine Theorem

Proof.

1 By elementary linear algebra,

P (n, q) =
∑

s+t=n

h(s, t, q)N(s, q)R(t, q),

where h(s, t, q) := # of complementary subspaces of dim s and t.

2 Write
∑ P (n,q)

qn2 (q−1,q−1)n
xn in terms of N(s, q) and R(t, q).

3 Use Euler's partition formula∏
j≥1

(1− tq−j)−1 =
∑
m≥0

tm

(q−1; q−1)m
,

where (a; q)n := (1− a)(1− aq) . . . (1− aqn−1).
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Counting matrix points with partitions

Background on counting points

Fq-rational points ( i.e. n = 1)

Question

How do we count Fq-solutions to

ELeg
a : y2 = x(x− 1)(x− a)

and

Xa : s2 = xy(x+ 1)(y + 1)(x+ ay)?

Answer

The number of points is given by �nite �eld hypergeometric functions.
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Counting matrix points with partitions

Background on counting points

Finite field Hypergeometric Functions

Definition (Greene)

If A1, A2, . . . , An and B1, B2, . . . , Bn−1 are characters of F×
q , then their

Gaussian hypergeometric function is

nFn−1

(
A1, A2, . . . , An

B1, . . . , Bn−1
| x

)
Fq

:=

q

q − 1

∑
χ∈F̂×q

(
A1χ

χ

)(
A2χ

B1χ

)
· · ·

(
Anχ

Bn−1χ

)
· χ(x),

where (
A

B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑
y∈Fq

A(y)B(1− y).

is a normalized Jacobi sum.
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Counting matrix points with partitions

Background on counting points

Finite Field Hypergeometric Functions

Example

1

2F1

(
ϕ ϕ

ε
| a

)
Fq

=
ϕ(−1)

q

∑
x∈Fq

ϕ(x(x− 1)(x− a)).

2

3F2

(
ϕ ϕ ϕ

ε ε
| −a

)
Fq

=
1

q2

∑
x,y∈Fq

ϕ(x(x+ 1)y(y + 1)(x+ ay)).

Theorem (Greene (1984), Ono (1998))

(1) If a ∈ Fq \ {0, 1} and char(Fq) ≥ 5, then

#ELeg
a (Fq) = q + 1 + ϕ(−1)q · 2F1(a)Fq .

(2) If a ∈ Fq \ {0,−1} and char(Fq) ≥ 5, then

#Xa(Fq) = 1 + q2 + 19q + q2 · 3F2(−a)Fq .
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Counting matrix points with partitions

Our work

Matrix Varieties

Definition

Let q be a prime power, n ≥ 1, and consider the system of equations

f1(t1, . . . , tm) = . . . = fr(t1, . . . , tm) = 0.

Its a�ne variety is

X(Mn(Fq)) :=

{
(A1, . . . , Am)

Ai ∈ Matn(Fq), AiAj = AjAi

fs(A1, . . . , Am) = 0 for 1 ≤ s ≤ r

}
.
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Counting matrix points with partitions

Our work

matrix points on elliptic curves

Question

What is the number of points NLeg
n (a; q) := #ELeg

a (Mn(Fq))?

Theorem (Huang, Ono, S.)

If q = pr with p ≥ 5 and a ∈ Fq \ {0, 1}, then

NLeg
n (a; q) =

n∑
k=0

ϕqk (−1) · P (n, k)q · 2F1(a)qk ,

where

P (n, k)q := (−1)kqn(n−k)+
k(k+1)

2

⌊n−k
2

⌋∑
s=0

q2s(s−n+k)· (q; q)n
(q; q)s(q; q)k+s(q; q)n−k−2s

.
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Counting matrix points with partitions

Our work

Sato-Tate Distribution

Theorem (Huang, Ono, S.)

If n ≥ 1, q = pr with p ≥ 5 and a ∈ Fq, then write

aL,n(a; q) := NLeg
n (a; q)− P (n, 0)q.

If −2 ≤ b < c ≤ 2, then

lim
p→∞

#{a ∈ Fq : q
1
2−n2

aL,n(a; q) ∈ [b, c]}
q

=
1

2π

∫ c

b

√
4− t2dt.
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Our work

Histogram for Legendre ECs

2× 2 matrices on Legendre elliptic curves
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Our work

Matrix points on K3 surfaces

Question

What is the number of points NK3
n (a; q) := #Xa(Mn(Fq))?

Theorem (Huang, Ono, S.)

If q = pr with p ≥ 5 and a ∈ Fq \ {0,−1}, then

NK3
n (a; q) = R(n, ϕq(a+1))q +

n∑
k=0

ϕqk (−1) ·Q(n, k, ϕqk (a+1))q · 3F2

(
a

a+ 1

)
qk

,

where

Q(n, k, γ)q := q
n(n−1)

2
+k

∑
λ1,...,λ4

|λ1|+...+|λ4|=n
l(λ3)−l(λ4)=k

ql(λ1)γl(λ2)(−1)n−m(λ1,...,λ4)

(q, q)n−m(λ1,...,λ4) · q
∑ b(λi,j)(b(λi,j)+1)

2 ·
(q; q)n∏

(q; q)b(λi,j)
(q; q)n−m(λ1,...,λ4)

and R(n, γ)q is an explicit polynomial in q and m(λ1, . . . , λ4) =
4∑

i=1
l(λi).
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Our work

Sato-Tate Distributions

Theorem (Huang, Ono, S.)

If n ≥ 1, q = pr with p ≥ 5 and a ∈ Fq , then write

An(a; q) := NK3
n (a; q)−Q(n, 0, ϕq(a+ 1))q −R(n, ϕq(a+ 1))q .

If −3 ≤ b < c ≤ 3, then

lim
p→∞

#{a ∈ Fq : q1−n2−nAn(a; q) ∈ [b, c]}
q

=
1

4π

∫ c

b
f(t)dt,

where

f(t) =



3−|t|√
3+2|t|−t2

if 1 < |t| < 3,

3+t√
3−2t−t2

+ 3−t√
3+2t−t2

if |t| < 1,

0 otherwise.
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Our work

Histogram for AOP K3 surfaces

2× 2 matrices on AOP K3 Surfaces
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Background for proofs

Traces of Frobenius

Definition

Let E be an elliptic curve. For prime powers q, de�ne the trace of

Frobenius a(q) ∈ [−2
√
q, 2

√
q] by

a(q) := q + 1−#E(Fq).

Definition

Let E be an elliptic curve and q a prime power. Take π, π such that

π + π = a(q)

and
ππ = q.

π and π are called the eigenvalues of Frobenius.
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Background for proofs

Zeta function of a variety

Definition

Let V/Fq be an a�ne variety. The zeta function of V/Fq is the power series

Z(V/Fq ;T ) := exp

( ∞∑
n=1

(#V (Fqn ))
Tn

n

)
.

Classical Fact

Let E be an elliptic curve and a(q) its trace of Frobenius at q.

Z(E/Fq ;T ) =
1− a(q)T + qT 2

(1− qT )
.
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Background for proofs

Cohen-Lenstra Zeta series

Definition

Let q = pr, n ≥ 1 and X/Fq an a�ne variety.

We de�ne a
Cohen-Lenstra zeta series

ẐX(t) :=
∑
n≥0

#X(Mn(Fq))

#GLn(Fq)
· tn.
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Background for proofs

Cohen-Lenstra Zeta series

Proposition (Huang)

Assume the notation above.

1 If X is a smooth curve over Fq, then

ẐX(t) =

∞∏
i=1

ZX(q−it).

2 If X is a smooth surface over Fq, then

ẐX(t) =
∏
i,j≥1

ZX(q−jti).
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ẐX(t) =
∏
i,j≥1

ZX(q−jti).

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Background for proofs

Cohen-Lenstra Zeta series

Proposition (Huang)

Assume the notation above.

1 If X is a smooth curve over Fq, then
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Background for proofs

Cohen-Lenstra Zeta Series

Proof.

1 ẐX(x) =
∏

P∈X

ẐÔX,P
.

2 ÔX,P = κP [[t]].

3 ẐκP [[t]] counts nilpotent matrices.

4 Using Young diagrams, Fine and Herstein compute this series.

Remark

For surfaces, the local zeta function counts pairwise commuting

nilpotent matrices. Evaluating this zeta series also requires partitions.
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1 ẐX(x) =
∏

P∈X
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Proofs

Expanding zeta series

Classical Fact

Let E be an elliptic curve and π, π the eigenvalues of Frobenius at q.

Z(E/Fq;T ) =
(1− πT )(1− πT )

(1− qT )
.

Problem

We need to �nd the series expansion of∏
j≥1

(1− πTq−j)

and ∏
j≥1

1

1− q1−jT
.
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Proofs

Euler's q-series identities

Lemma (Euler)

The following series expansions hold.

1 ∏
j≥1

(1− cq−j) =
∑
m≥0

cm

(q; q)m
.

2 ∏
j≥1

1

1− cq−j
=
∑
m≥0

(−1)mqm(m−1)/2cm

(q; q)m
.
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Proofs

Proof of point counts

1 Write the Cohen-Lenstra zeta series

ẐX(T ) =
∏
j≥1

(1− πTq−j)(1− πTq−j)

1− Tq1−j
.

2 Expand the product of each factor as a series in T.

3 Multiply the three resulting series to get the coe�cient of Tn.

4 Use ππ = q and π + π = ϕq(−1) · q · 2F1(a)q.
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Proofs

Distributions of 2F1(a)q.

Theorem (Ono-S-Saikia)

If −2 ≤ b < c ≤ 2, and r is a �xed positive integer, then

lim
p→∞

# {a ∈ Fpr :
√
pr · 2F1(a)pr ∈ [b, c]}
pr

=
1

2π

∫ c

b

√
4− t2dt.

In other words, the limiting distribution is semicircular.
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Proofs

Deducing distributions

1 We have that

q
1
2
−n2

aL,n(a; q) = −ϕq(−1)q
1
2 2F1(a)q +Or,n(q

− 1
2 ).

2 If m is a nonnegative integer, the moments are then

1

q

∑
a∈Fq\{0,1}

(
q

1
2
−n2

aL,n(a; q)
)m

=
1

q

∑
a∈Fq\{0,1}

(
−ϕq(−1)q

1
2 2F1(a)q

)m
+o(1).

3 Use result for the case n = 1.
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Proofs

Zeta series for AOP K3 surfaces

Theorem (Ahlgren, Ono, Penniston, '02)

If ordp(a(a+ 1)) = 0 and γ = ϕp(a+ 1), then local zeta-function for the

a�ne part X of Xa is

ZX(T ) =
1

(1− p2T )(1− γpT )(1− γπ2T )(1− γπ2T )
,

where π and π are the Frobenius eigenvalues of the Clausen elliptic curve

ECl(a) : y
2 = (x− 1)(x2 + a).

Remark

The complicated part of ZX(T ) is a symmetric square zeta-function.
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Proofs

Sketch of Proof

1 Write the Cohen-Lenstra zeta series

ẐX(T ) =
∏
i,j≥1

1

(1− q2−jT i)(1− γq1−jT i)(1− γπ2q−jT i)(1− γπ2q−jT i)
.

2 Expand the product of each factor as a series in T.

3 Multiply the resulting series to get the coe�cient of Tn.

4 Use ππ = q and

π2k + π2k = q2kϕq(a+ 1)k3F2

(
a

a+ 1

)
qk

− qk.

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Proofs

Sketch of Proof

1 Write the Cohen-Lenstra zeta series
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Proofs

Distribution for AOP K3 surfaces

Theorem (Ono-S-Saikia)

If −3 ≤ b < c ≤ 3, and r is a �xed positive integer, then

lim
p→∞

# {a ∈ Fpr : pr · 3F2(a)pr ∈ [b, c]}
pr

=
1

4π

∫ c

b

f(t)dt,

where

f(t) =



3−|t|√
3+2|t|−t2

if 1 < |t| < 3,

3+t√
3−2t−t2

+ 3−t√
3+2t−t2

if |t| < 1,

0 otherwise.
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Summary

Points of elliptic curves

Theorem (Huang, Ono, S.)

#ELeg
a (Mn(Fq)) =

n∑
k=0

ϕqk (−1) · P (n, k)q · 2F1(a)qk ,

where P (n, k)q are explicit polynomials in q arising from partitions of n.

Theorem (Huang, Ono, S.)

If we let
aL,n(a; q) := #ELeg

a (Mn(Fq))− P (n, 0)q

and −2 ≤ b < c ≤ 2, then

lim
p→∞

#{a ∈ Fq : q
1
2
−n2

aL,n(a; q) ∈ [b, c]}
q

=
1

2π

∫ c

b

√
4− t2dt.
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Summary

AOP K3 Surfaces

Theorem (Huang, Ono, S.)

#Xa(Mn(Fq)) = R(n, ϕq(a+1))q+
n∑

k=0

ϕqk (−1)·Q(n, k, ϕqk (a+1))q ·3F2

(
a

a+ 1

)
qk

,

where R(n, γ)q and Q(n, k, γ)q are polynomials in q involving partitions of n.

Theorem (Huang, Ono, S.)

lim
p→∞

#{a ∈ Fq : q1−n2−nAn(a; q) ∈ [b, c]}
q

=
1

4π

∫ c

b
f(t)dt,

where

f(t) =
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3−2t−t2

+ 3−t√
3+2t−t2

if |t| < 1,

0 otherwise.
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AOP K3 Surfaces

Theorem (Huang, Ono, S.)

#Xa(Mn(Fq)) = R(n, ϕq(a+1))q+
n∑

k=0

ϕqk (−1)·Q(n, k, ϕqk (a+1))q ·3F2

(
a

a+ 1

)
qk

,

where R(n, γ)q and Q(n, k, γ)q are polynomials in q involving partitions of n.

Theorem (Huang, Ono, S.)

lim
p→∞

#{a ∈ Fq : q1−n2−nAn(a; q) ∈ [b, c]}
q

=
1

4π

∫ c

b
f(t)dt,

where

f(t) =



3−|t|√
3+2|t|−t2

if 1 < |t| < 3,

3+t√
3−2t−t2

+ 3−t√
3+2t−t2

if |t| < 1,

0 otherwise.
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Histograms

2× 2 matrix points on Legendre ECs 2× 2 matrix points on AOP K3s
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