Counting matrix points on curves and SURFACES WITH PARTITIONS

Hasan Saad (University of Virginia)

(joint with Y. Huang and K. Ono)

Counting matrix points with partitions

Partitions

(1) Number theory

Partitions

(1) Number theory

- Asymptotics of the partition function (circle method)
- Ramanujan's partition congruences

Partitions

(1) Number theory

- Asymptotics of the partition function (circle method)
- Ramanujan's partition congruences
(2) Representation theory

Partitions

(1) Number theory

- Asymptotics of the partition function (circle method)
- Ramanujan's partition congruences
(2) Representation theory
- Representation theory of the symmetric group S_{n}
- Symmetric polynomials

Partitions

(1) Number theory

- Asymptotics of the partition function (circle method)
- Ramanujan's partition congruences
(2) Representation theory
- Representation theory of the symmetric group S_{n}
- Symmetric polynomials
(3) Physics/Computer Science
- Quantum states
- Sorting (analogue of binary search tree)

Partitions

(1) Number theory

- Asymptotics of the partition function (circle method)
- Ramanujan's partition congruences
(2) Representation theory
- Representation theory of the symmetric group S_{n}
- Symmetric polynomials
(3) Physics/Computer Science
- Quantum states
- Sorting (analogue of binary search tree)

Question

Do partitions show up in arithmetic geometry?

q-SERIES FORMULAS

Question

What is the number of commuting square matrices A, B in \mathbb{F}_{q} ?

q-SERIES FORMULAS

Question

What is the number of commuting square matrices A, B in \mathbb{F}_{q} ?

Example

\# of 1×1 commuting "matrices" (elements) is q^{2}

q-SERIES FORMULAS

Question

What is the number of commuting square matrices A, B in \mathbb{F}_{q} ?

Example

\# of 1×1 commuting "matrices" (elements) is $q^{2}=q \cdot\left(1-\frac{1}{q}\right) \cdot \frac{q}{1-\frac{1}{q}}$.

q-SERIES FORMULAS

Question

What is the number of commuting square matrices A, B in \mathbb{F}_{q} ?

Example

\# of 1×1 commuting "matrices" (elements) is $q^{2}=q \cdot\left(1-\frac{1}{q}\right) \cdot \frac{q}{1-\frac{1}{q}}$.

Remark

$q \cdot\left(1-\frac{1}{q}\right)=q-1$ is the number of nonzero elements of \mathbb{F}_{q}.

Counting Commuting 2×2 matrices

Example (Brute force)
For \mathbb{F}_{2}, we find that

$$
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{2}\right)^{2}, A B=B A\right\}=88 .
$$

Counting Commuting 2×2 matrices

Example (Brute force)

For \mathbb{F}_{2}, we find that

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{2}\right)^{2}, A B=B A\right\}=88 . \\
q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdot \frac{q}{1-\frac{1}{q}}=24, \\
q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdot \frac{q^{2}}{\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}=64,
\end{gathered}
$$

Counting Commuting 2×2 matrices

Example (Brute force)

For \mathbb{F}_{2}, we find that

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{2}\right)^{2}, A B=B A\right\}=88 . \\
q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdot \frac{q}{1-\frac{1}{q}}=24, \\
q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdot \frac{q^{2}}{\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}=64,
\end{gathered}
$$

and $24+64=88$. Is this an accident?

Counting Commuting 2×2 matrices

Example (Brute force)

$$
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{3}\right)^{2}, A B=B A\right\}=945 .
$$

Counting Commuting 2×2 matrices

Example (Brute force)

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{3}\right)^{2}, A B=B A\right\}=945 . \\
945=3^{2^{2}}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)\left(\frac{3}{1-\frac{1}{3}}+\frac{3^{2}}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)}\right) .
\end{gathered}
$$

Counting Commuting 2×2 matrices

Example (Brute force)

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{3}\right)^{2}, A B=B A\right\}=945 . \\
945=3^{2^{2}}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)\left(\frac{3}{1-\frac{1}{3}}+\frac{3^{2}}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)}\right) .
\end{gathered}
$$

Example (Brute force)

$$
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{5}\right)^{2}, A B=B A\right\}=18625
$$

Counting Commuting 2×2 matrices

Example (Brute force)

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{3}\right)^{2}, A B=B A\right\}=945 . \\
945=3^{2^{2}}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)\left(\frac{3}{1-\frac{1}{3}}+\frac{3^{2}}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{3^{2}}\right)}\right) .
\end{gathered}
$$

Example (Brute force)

$$
\begin{gathered}
\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{5}\right)^{2}, A B=B A\right\}=18625 . \\
18625=5^{2^{2}}\left(1-\frac{1}{5}\right)\left(1-\frac{1}{5^{2}}\right)\left(\frac{5}{1-\frac{1}{5}}+\frac{5^{2}}{\left(1-\frac{1}{5}\right)\left(1-\frac{1}{5^{2}}\right)}\right) .
\end{gathered}
$$

Counting Commuting 2×2 matrices

Observation

For 2×2 matrices and $q=2,3,5$, we have observed

$$
\left.\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}\right)\left(\frac{q}{q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}+\frac{q^{2}}{\left(1-\frac{1}{q}\right.}\right) .
$$

Counting Commuting 2×2 matrices

Observation

For 2×2 matrices and $q=2,3,5$, we have observed

$$
\left.\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}\right)\left(\frac{q}{q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}+\frac{q^{2}}{\left(1-\frac{1}{q}\right.}\right) .
$$

Question

Is this a coincidence?

Counting Commuting 2×2 matrices

Observation

For 2×2 matrices and $q=2,3,5$, we have observed

$$
\left.\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}\right)\left(\frac{q}{q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}+\frac{q^{2}}{\left(1-\frac{1}{q}\right.}\right) .
$$

Question

Is this a coincidence? Is this a partitions phenomenon?

Counting Commuting 2×2 matrices

Observation

For 2×2 matrices and $q=2,3,5$, we have observed

$$
\left.\#\left\{(A, B) \in \operatorname{Mat}_{2}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}\right)\left(\frac{q}{q^{2^{2}}\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right)}+\frac{q^{2}}{\left(1-\frac{1}{q}\right.}\right) .
$$

Question

Is this a coincidence? Is this a partitions phenomenon? What about $n \times n$ matrices for all n ?

PARTITIONS OF n AND $n \times n$ MATRICES

Theorem (Feit, Fine (1960))
If $P(n, q):=\#\left\{(A, B) \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}$, then

PARTITIONS OF n AND $n \times n$ MATRICES

Theorem (Feit, Fine (1960))
If $P(n, q):=\#\left\{(A, B) \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}$, then

$$
P(n, q)=q^{n^{2}}\left(q^{-1} ; q^{-1}\right)_{n} \cdot \sum_{\lambda \vdash n} \frac{q^{l(\lambda)}}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdot \ldots \cdot\left(q^{-1} ; q^{-1}\right)_{b(\lambda, n)}},
$$

PARTITIONS OF n AND $n \times n$ MATRICES

Theorem (Feit, Fine (1960))

If $P(n, q):=\#\left\{(A, B) \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)^{2}, A B=B A\right\}$, then

$$
P(n, q)=q^{n^{2}}\left(q^{-1} ; q^{-1}\right)_{n} \cdot \sum_{\lambda \vdash n} \frac{q^{l(\lambda)}}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdot \ldots \cdot\left(q^{-1} ; q^{-1}\right)_{b(\lambda, n)}}
$$

where

$$
(a ; q)_{n}:=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right),
$$

and $n=1 \cdot b(\lambda, 1)+\ldots+n \cdot b(\lambda, n)$ and $l(\lambda)=\sum b(\lambda, i)$.

Matrix points on curves and surfaces

Questions

(1) Do partitions count equations other than $A B-B A=0$?

Matrix points on curves and surfaces

Questions

(1) Do partitions count equations other than $A B-B A=0$?
(O) Distributions of matrix points for families of curves and surfaces?

Matrix points on curves and surfaces

Questions

(1) Do partitions count equations other than $A B-B A=0$?
(O) Distributions of matrix points for families of curves and surfaces?

Answer (Our work)

We answer these questions for "elliptic curves"

$$
B^{2}=A\left(A-I_{n}\right)\left(A-a I_{n}\right),
$$

Matrix points on curves and surfaces

Questions

(1) Do partitions count equations other than $A B-B A=0$?
(2) Distributions of matrix points for families of curves and surfaces?

Answer (OUR WORK)

We answer these questions for "elliptic curves"

$$
B^{2}=A\left(A-I_{n}\right)\left(A-a I_{n}\right),
$$

and $A O P$ K3 surfaces

$$
C^{2}=A B\left(A+I_{n}\right)\left(B+I_{n}\right)(A+a B),
$$

where I_{n} is the identity matrix and $a \in \mathbb{F}_{q}$.

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent $n \times n$ matrix.

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent $n \times n$ matrix.
There is a basis $\left\{v_{s}^{i}\right\}, i=1, \ldots, k, s=1, \ldots, r_{i}$ with

$$
A v_{s}^{i}=v_{s-1}^{i} .
$$

Partitions and Nilpotent Matrices

Definition

Let A be a nilpotent $n \times n$ matrix.
There is a basis $\left\{v_{s}^{i}\right\}, i=1, \ldots, k, s=1, \ldots, r_{i}$ with

$$
A v_{s}^{i}=v_{s-1}^{i} .
$$

We associate with A the partition

$$
\pi(A): n=r_{1}+\ldots+r_{k} .
$$

Example

Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) .
$$

Example

Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) .
$$

We have that $A^{3}=0$.

Example

Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) .
$$

We have that $A^{3}=0$. Consider the basis

$$
\begin{aligned}
v_{1}^{1} & =e_{3} \\
v_{2}^{1} & =e_{2} \\
v_{3}^{1} & =e_{1}-e_{2}
\end{aligned}
$$

with e_{1}, e_{2}, e_{3} the standard basis.

Example

Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) .
$$

We have that $A^{3}=0$. Consider the basis

$$
\begin{aligned}
v_{1}^{1} & =e_{3} \\
v_{2}^{1} & =e_{2} \\
v_{3}^{1} & =e_{1}-e_{2}
\end{aligned}
$$

with e_{1}, e_{2}, e_{3} the standard basis.Then, we have

$$
A v_{3}^{1}=v_{2}^{1}
$$

and

$$
A v_{2}^{1}=A v_{1}^{1} .
$$

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \ldots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}} .
$$

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \ldots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}}
$$

Sketch of Proof.
(1) Fix a matrix A with $\pi(A)=\lambda$.

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \cdots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}}
$$

Sketch of Proof.
(1) Fix a matrix A with $\pi(A)=\lambda$.
(2) If B commutes with A then B is determined by $B v_{r_{i}}^{i}$.

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \cdots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}}
$$

Sketch of Proof.
(1) Fix a matrix A with $\pi(A)=\lambda$.
(2) If B commutes with A then B is determined by $B v_{r_{i}}^{i}$.
(8) Determine possible images of $B v_{r_{i}}^{i}$.

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \cdots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}}
$$

Sketch of Proof.
(1) Fix a matrix A with $\pi(A)=\lambda$.
(2) If B commutes with A then B is determined by $B v_{r_{i}}^{i}$.
(8) Determine possible images of $B v_{r_{i}}^{i}$.
(4) B is nonsingular if and only if $B v_{1}^{i}$ are linearly independent.

Partitions and nilpotent matrices

Lemma

$A_{1} \sim A_{2}$ if and only if $\pi\left(A_{1}\right)=\pi\left(A_{2}\right)$.

Lemma
If $N(s, q):=\#\left\{(A, B) \in \operatorname{Mat}_{s}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nilpotent $\}$, then

$$
N(s, q)=q^{s^{2}}\left(q^{-1} ; q^{-1}\right)_{s} \cdot \sum_{\lambda \vdash s} \frac{1}{\left(q^{-1} ; q^{-1}\right)_{b(\lambda, 1)} \cdots \ldots\left(q^{-1} ; q^{-1}\right)_{b(\lambda, s)}}
$$

Sketch of Proof.

(1) Fix a matrix A with $\pi(A)=\lambda$.
(2) If B commutes with A then B is determined by $B v_{r_{i}}^{i}$.
(8) Determine possible images of $B v_{r_{i}}^{i}$.
(4) B is nonsingular if and only if $B v_{1}^{i}$ are linearly independent.
(5) Determine possible $B v_{i}^{1}$ for nonsingular B.

Partitions and Nonsingular Matrices

Lemma
If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\}
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\},
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Proof.

(1) $A B=B A$ is equivalent to $A B A^{-1}=B$.

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\},
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Proof.

(1) $A B=B A$ is equivalent to $A B A^{-1}=B$.
(2) Fix $B \in \beta$.

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\},
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Proof.

(1) $A B=B A$ is equivalent to $A B A^{-1}=B$.
(2) Fix $B \in \beta$.
(3) $\#\left\{A\right.$ is nonsingular and $\left.A B A^{-1}=B\right\}$

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\},
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Proof.

(1) $A B=B A$ is equivalent to $A B A^{-1}=B$.
(2) Fix $B \in \beta$.
(c) $\#\left\{A\right.$ is nonsingular and $\left.A B A^{-1}=B\right\}=\frac{q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t}}{\# \beta}$.

Partitions and Nonsingular Matrices

Lemma

If $R(t, q):=\#\left\{(A, B) \in \operatorname{Mat}_{t}\left(\mathbb{F}_{q}\right)^{2}, A B=B A, A\right.$ nonsingular $\}$, then

$$
R(t, q)=q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t} \cdot \#\{\beta\},
$$

where $\#\{\beta\}$ denotes the number of similarity classes of $t \times t$-matrices.

Proof.

(1) $A B=B A$ is equivalent to $A B A^{-1}=B$.
(2) Fix $B \in \beta$.
(c) $\#\left\{A\right.$ is nonsingular and $\left.A B A^{-1}=B\right\}=\frac{q^{t^{2}}\left(q^{-1} ; q^{-1}\right)_{t}}{\# \beta}$.
(1) Sum over $B \in \beta$.

Partitions and nonsingular matrices

Lemma

$$
\#\{\beta\}=\sum_{\lambda \vdash t} q^{l(\lambda)}
$$

Partitions and nonsingular matrices

Lemma

$$
\#\{\beta\}=\sum_{\lambda \vdash t} q^{l(\lambda)}
$$

Proof.

(1) Similarity class is determined by rational canonical form g_{1}, \ldots, g_{t-1},

Partitions and nonsingular matrices

Lemma

$$
\#\{\beta\}=\sum_{\lambda \vdash t} q^{l(\lambda)} .
$$

Proof.

(1) Similarity class is determined by rational canonical form g_{1}, \ldots, g_{t-1}.
(c) Take $h_{i}=g_{t+1-i} / g_{t-i}$ and $b_{i}=\operatorname{deg} h_{i}$.

Partitions and nonsingular matrices

Lemma

$$
\#\{\beta\}=\sum_{\lambda \vdash t} q^{l(\lambda)} .
$$

Proof.

(1) Similarity class is determined by rational canonical form g_{1}, \ldots, g_{t-1}.
(2) Take $h_{i}=g_{t+1-i} / g_{t-i}$ and $b_{i}=\operatorname{deg} h_{i}$.
(3) $\sum i b_{i}=t$ is the only restriction on h_{i}.

Proof of Feit-Fine Theorem

Proof.

(1) By elementary linear algebra,

$$
P(n, q)=\sum_{s+t=n} h(s, t, q) N(s, q) R(t, q)
$$

where $h(s, t, q):=\#$ of complementary subspaces of $\operatorname{dim} s$ and t.

Proof of Feit-Fine Theorem

Proof.

(1) By elementary linear algebra,

$$
P(n, q)=\sum_{s+t=n} h(s, t, q) N(s, q) R(t, q)
$$

where $h(s, t, q):=\#$ of complementary subspaces of $\operatorname{dim} s$ and t.
(2) Write $\sum \frac{P(n, q)}{q^{n^{2}}\left(q^{-1}, q^{-1}\right)_{n}} x^{n}$ in terms of $N(s, q)$ and $R(t, q)$.

Proof of Feit-Fine Theorem

Proof.

(1) By elementary linear algebra,

$$
P(n, q)=\sum_{s+t=n} h(s, t, q) N(s, q) R(t, q)
$$

where $h(s, t, q):=\#$ of complementary subspaces of $\operatorname{dim} s$ and t.
(2) Write $\sum \frac{P(n, q)}{q^{n^{2}\left(q^{-1}, q^{-1}\right)_{n}}} x^{n}$ in terms of $N(s, q)$ and $R(t, q)$.
(3) Use Euler's partition formula

$$
\prod_{j \geq 1}\left(1-t q^{-j}\right)^{-1}=\sum_{m \geq 0} \frac{t^{m}}{\left(q^{-1} ; q^{-1}\right)_{m}}
$$

where $(a ; q)_{n}:=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$.

\mathbb{F}_{q}-RATIONAL POINTS (i.e. $n=1$)

Question

How do we count \mathbb{F}_{q}-solutions to

$$
E_{a}^{\mathrm{Leg}}: \quad y^{2}=x(x-1)(x-a)
$$

and

$$
X_{a}: \quad s^{2}=x y(x+1)(y+1)(x+a y) ?
$$

\mathbb{F}_{q}-RATIONAL POINTS (i.e. $n=1$)

Question

How do we count \mathbb{F}_{q}-solutions to

$$
E_{a}^{\mathrm{Leg}}: \quad y^{2}=x(x-1)(x-a)
$$

and

$$
X_{a}: \quad s^{2}=x y(x+1)(y+1)(x+a y) ?
$$

Answer
The number of points is given by finite field hypergeometric functions.

Finite field Hypergeometric Functions

Definition (Greene)

If $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n-1}$ are characters of \mathbb{F}_{q}^{\times}, then their Gaussian hypergeometric function is

$$
\begin{aligned}
&{ }_{n} F_{n-1}\left(\begin{array}{ccccc}
A_{1}, & A_{2}, & \ldots, & A_{n} \\
B_{1}, & \ldots, & B_{n-1} & \mid x
\end{array}\right)_{\mathbb{F}_{q}}:= \\
& \\
& \frac{q}{q-1} \sum_{\chi \in \widehat{\mathbb{F}}_{q}^{\times}}\binom{A_{1} \chi}{\chi}\binom{A_{2} \chi}{B_{1} \chi} \cdots\binom{A_{n} \chi}{B_{n-1} \chi} \cdot \chi(x),
\end{aligned}
$$

Finite field Hypergeometric Functions

Definition (Greene)

If $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n-1}$ are characters of \mathbb{F}_{q}^{\times}, then their Gaussian hypergeometric function is

$$
\begin{aligned}
&{ }_{n} F_{n-1}\left(\begin{array}{cccc}
A_{1}, & A_{2}, & \ldots, & A_{n} \\
B_{1}, & \ldots, & B_{n-1} & \mid x
\end{array}\right)_{\mathbb{F}_{q}}:= \\
& \\
& \frac{q}{q-1} \sum_{\chi \in \widehat{\mathbb{F}}_{q}^{\times}}\binom{A_{1} \chi}{\chi}\binom{A_{2} \chi}{B_{1} \chi} \cdots\binom{A_{n} \chi}{B_{n-1} \chi} \cdot \chi(x),
\end{aligned}
$$

where

$$
\binom{A}{B}:=\frac{B(-1)}{q} J(A, \bar{B})=\frac{B(-1)}{q} \sum_{y \in \mathbb{F}_{q}} A(y) \bar{B}(1-y)
$$

is a normalized Jacobi sum.

Finite Field Hypergeometric Functions

Example

(1)

$$
{ }_{2} F_{1}\left(\begin{array}{ccc}
\phi & \phi & \\
& \varepsilon & \mid a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{\phi(-1)}{q} \sum_{x \in \mathbb{F}_{q}} \phi(x(x-1)(x-a))
$$

Finite Field Hypergeometric Functions

Example

(1)

$$
{ }_{2} F_{1}\left(\begin{array}{ccc}
\phi & \phi & \\
& \varepsilon & \mid a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{\phi(-1)}{q} \sum_{x \in \mathbb{F}_{q}} \phi(x(x-1)(x-a)) .
$$

(2)

$$
{ }_{3} F_{2}\left(\begin{array}{llll}
\phi & \phi & \phi & \\
& \varepsilon & \varepsilon & -a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{1}{q^{2}} \sum_{x, y \in \mathbb{F}_{q}} \phi(x(x+1) y(y+1)(x+a y)) .
$$

Finite Field Hypergeometric Functions

Example

(1)

$$
{ }_{2} F_{1}\left(\begin{array}{ccc}
\phi & \phi & \\
& \varepsilon & \mid a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{\phi(-1)}{q} \sum_{x \in \mathbb{F}_{q}} \phi(x(x-1)(x-a)) .
$$

(2)

$$
{ }_{3} F_{2}\left(\begin{array}{llll}
\phi & \phi & \phi & -a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{1}{q^{2}} \sum_{x, y \in \mathbb{F}_{q}} \phi(x(x+1) y(y+1)(x+a y)) .
$$

Theorem (Greene (1984), Ono (1998))
(1) If $a \in \mathbb{F}_{q} \backslash\{0,1\}$ and $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 5$, then

$$
\# E_{a}^{\operatorname{Leg}}\left(\mathbb{F}_{q}\right)=q+1+\phi(-1) q \cdot{ }_{2} F_{1}(a)_{\mathbb{F}_{q}}
$$

Finite Field Hypergeometric Functions

Example

(1)

$$
{ }_{2} F_{1}\left(\begin{array}{ccc}
\phi & \phi & \\
& \varepsilon & \mid a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{\phi(-1)}{q} \sum_{x \in \mathbb{F}_{q}} \phi(x(x-1)(x-a))
$$

(2)

$$
{ }_{3} F_{2}\left(\begin{array}{cccc}
\phi & \phi & \phi & \mid-a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{1}{q^{2}} \sum_{x, y \in \mathbb{F}_{q}} \phi(x(x+1) y(y+1)(x+a y))
$$

Theorem (Greene (1984), Ono (1998))
(1) If $a \in \mathbb{F}_{q} \backslash\{0,1\}$ and $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 5$, then

$$
\# E_{a}^{\mathrm{Leg}}\left(\mathbb{F}_{q}\right)=q+1+\phi(-1) q \cdot{ }_{2} F_{1}(a)_{\mathbb{F}_{q}} .
$$

(2) If $a \in \mathbb{F}_{q} \backslash\{0,-1\}$ and $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 5$, then

Finite Field Hypergeometric Functions

Example

(1)

$$
{ }_{2} F_{1}\left(\begin{array}{ccc}
\phi & \phi & \\
& \varepsilon & \mid a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{\phi(-1)}{q} \sum_{x \in \mathbb{F}_{q}} \phi(x(x-1)(x-a))
$$

(2)

$$
{ }_{3} F_{2}\left(\begin{array}{cccc}
\phi & \phi & \phi & \mid-a
\end{array}\right)_{\mathbb{F}_{q}}=\frac{1}{q^{2}} \sum_{x, y \in \mathbb{F}_{q}} \phi(x(x+1) y(y+1)(x+a y))
$$

Theorem (Greene (1984), Ono (1998))
(1) If $a \in \mathbb{F}_{q} \backslash\{0,1\}$ and $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 5$, then

$$
\# E_{a}^{\mathrm{Leg}}\left(\mathbb{F}_{q}\right)=q+1+\phi(-1) q \cdot{ }_{2} F_{1}(a)_{\mathbb{F}_{q}}
$$

(2) If $a \in \mathbb{F}_{q} \backslash\{0,-1\}$ and $\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 5$, then

$$
\# X_{a}\left(\mathbb{F}_{q}\right)=1+q^{2}+19 q+q^{2} \cdot{ }_{3} F_{2}(-a)_{\mathbb{F}_{q}} .
$$

Matrix Varieties

Definition

Let q be a prime power, $n \geq 1$, and consider the system of equations

$$
f_{1}\left(t_{1}, \ldots, t_{m}\right)=\ldots=f_{r}\left(t_{1}, \ldots, t_{m}\right)=0 .
$$

Matrix Varieties

DEfinition

Let q be a prime power, $n \geq 1$, and consider the system of equations

$$
f_{1}\left(t_{1}, \ldots, t_{m}\right)=\ldots=f_{r}\left(t_{1}, \ldots, t_{m}\right)=0 .
$$

Its affine variety is

$$
X\left(M_{n}\left(\mathbb{F}_{q}\right)\right):=\left\{\begin{array}{l|l}
\left(A_{1}, \ldots, A_{m}\right) & \begin{array}{l}
A_{i} \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right), A_{i} A_{j}=A_{j} A_{i} \\
f_{s}\left(A_{1}, \ldots, A_{m}\right)=0 \text { for } 1 \leq s \leq r
\end{array}
\end{array}\right\}
$$

matrix points on Elliptic curves

Question

What is the number of points $N_{n}^{\mathrm{Leg}}(a ; q):=\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

matrix points on Elliptic curves

Question

What is the number of points $N_{n}^{\mathrm{Leg}}(a ; q):=\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

Theorem (Huang, Ono, S.)
If $q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q} \backslash\{0,1\}$, then

$$
N_{n}^{\mathrm{Leg}}(a ; q)=\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot P(n, k)_{q} \cdot{ }_{2} F_{1}(a)_{q^{k}}
$$

MATRIX POINTS ON ELLIPTIC CURVES

Question

What is the number of points $N_{n}^{\mathrm{Leg}}(a ; q):=\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

Theorem (Huang, Ono, S.)
If $q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q} \backslash\{0,1\}$, then

$$
N_{n}^{\mathrm{Leg}}(a ; q)=\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot P(n, k)_{q} \cdot{ }_{2} F_{1}(a)_{q^{k}}
$$

where

$$
P(n, k)_{q}:=(-1)^{k} q^{n(n-k)+\frac{k(k+1)}{2}} \sum_{s=0}^{\left\lfloor\frac{n-k}{2}\right\rfloor} q^{2 s(s-n+k)} \cdot \frac{(q ; q)_{n}}{(q ; q)_{s}(q ; q)_{k+s}(q ; q)_{n-k-2 s}}
$$

Sato-Tate Distribution

Theorem (Huang, Ono, S.)

If $n \geq 1, q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q}$, then write

$$
a_{L, n}(a ; q):=N_{n}^{\operatorname{Leg}}(a ; q)-P(n, 0)_{q} .
$$

Sato-Tate Distribution

Theorem (Huang, Ono, S.)
If $n \geq 1, q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q}$, then write

$$
a_{L, n}(a ; q):=N_{n}^{\mathrm{Leg}}(a ; q)-P(n, 0)_{q} .
$$

If $-2 \leq b<c \leq 2$, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{q}: q^{\frac{1}{2}-n^{2}} a_{L, n}(a ; q) \in[b, c]\right\}}{q}=\frac{1}{2 \pi} \int_{b}^{c} \sqrt{4-t^{2}} d t .
$$

Histogram for Legendre ECs

2×2 matrices on Legendre elliptic curves

Matrix points on K3 surfaces

Question

What is the number of points $N_{n}^{\mathrm{K} 3}(a ; q):=\# X_{a}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

Matrix points on K3 surfaces

Question

What is the number of points $N_{n}^{\mathrm{K} 3}(a ; q):=\# X_{a}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

Theorem (Huang, Ono, S.)
If $q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q} \backslash\{0,-1\}$, then

$$
N_{n}^{\mathrm{K} 3}(a ; q)=R\left(n, \phi_{q}(a+1)\right)_{q}+\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot Q\left(n, k, \phi_{q^{k}}(a+1)\right)_{q} \cdot{ }_{3} F_{2}\left(\frac{a}{a+1}\right)_{q^{k}},
$$

Matrix points on K3 surfaces

Question

What is the number of points $N_{n}^{\mathrm{K} 3}(a ; q):=\# X_{a}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)$?

Theorem (Huang, Ono, S.)
If $q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q} \backslash\{0,-1\}$, then

$$
N_{n}^{\mathrm{K} 3}(a ; q)=R\left(n, \phi_{q}(a+1)\right)_{q}+\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot Q\left(n, k, \phi_{q^{k}}(a+1)\right)_{q} \cdot{ }_{3} F_{2}\left(\frac{a}{a+1}\right)_{q^{k}},
$$

where

$$
\begin{aligned}
& Q(n, k, \gamma)_{q}:=q^{\frac{n(n-1)}{2}+k} \sum_{\substack{\lambda_{1}, \ldots, \lambda_{4} \\
\left|\lambda_{1}\right|+\ldots+\left|\lambda_{4}\right|=n \\
l\left(\lambda_{3}\right)-l\left(\lambda_{4}\right)=k}} q^{l\left(\lambda_{1}\right)} \gamma^{l\left(\lambda_{2}\right)}(-1)^{n-m\left(\lambda_{1}, \ldots, \lambda_{4}\right)} \\
& (q, q)_{n-m\left(\lambda_{1}, \ldots, \lambda_{4}\right)} \cdot q^{\sum \frac{b\left(\lambda_{i}, j\right)\left(b\left(\lambda_{i}, j\right)+1\right)}{2}}
\end{aligned} \frac{(q ; q)_{n}}{\prod(q ; q)_{b\left(\lambda_{i}, j\right)}(q ; q)_{n-m\left(\lambda_{1}, \ldots, \lambda_{4}\right)}} .
$$

and $R(n, \gamma)_{q}$ is an explicit polynomial in q and $m\left(\lambda_{1}, \ldots, \lambda_{4}\right)=\sum_{i=1}^{4} l\left(\lambda_{i}\right)$.

Sato-Tate Distributions

Theorem (Huang, Ono, S.)
If $n \geq 1, q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q}$, then write

$$
A_{n}(a ; q):=N_{n}^{\mathrm{K} 3}(a ; q)-Q\left(n, 0, \phi_{q}(a+1)\right)_{q}-R\left(n, \phi_{q}(a+1)\right)_{q} .
$$

Sato-Tate Distributions

Theorem (Huang, Ono, S.)
If $n \geq 1, q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q}$, then write

$$
A_{n}(a ; q):=N_{n}^{\mathrm{K} 3}(a ; q)-Q\left(n, 0, \phi_{q}(a+1)\right)_{q}-R\left(n, \phi_{q}(a+1)\right)_{q} .
$$

If $-3 \leq b<c \leq 3$, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{q}: q^{1-n^{2}-n} A_{n}(a ; q) \in[b, c]\right\}}{q}=\frac{1}{4 \pi} \int_{b}^{c} f(t) d t
$$

Sato-Tate Distributions

Theorem (Huang, Ono, S.)

If $n \geq 1, q=p^{r}$ with $p \geq 5$ and $a \in \mathbb{F}_{q}$, then write

$$
A_{n}(a ; q):=N_{n}^{\mathrm{K} 3}(a ; q)-Q\left(n, 0, \phi_{q}(a+1)\right)_{q}-R\left(n, \phi_{q}(a+1)\right)_{q} .
$$

If $-3 \leq b<c \leq 3$, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{q}: q^{1-n^{2}-n} A_{n}(a ; q) \in[b, c]\right\}}{q}=\frac{1}{4 \pi} \int_{b}^{c} f(t) d t
$$

where

$$
f(t)= \begin{cases}\frac{3-|t|}{\sqrt{3+2|t|-t^{2}}} & \text { if } 1<|t|<3, \\ \frac{3+t}{\sqrt{3-2 t-t^{2}}}+\frac{3-t}{\sqrt{3+2 t-t^{2}}} & \text { if }|t|<1, \\ 0 & \text { otherwise. }\end{cases}
$$

Histogram for AOP K3 surfaces

Traces of Frobenius

Definition

Let E be an elliptic curve. For prime powers q, define the trace of Frobenius $a(q) \in[-2 \sqrt{q}, 2 \sqrt{q}]$ by

$$
a(q):=q+1-\# E\left(\mathbb{F}_{q}\right) .
$$

Traces of Frobenius

Definition

Let E be an elliptic curve. For prime powers q, define the trace of Frobenius $a(q) \in[-2 \sqrt{q}, 2 \sqrt{q}]$ by

$$
a(q):=q+1-\# E\left(\mathbb{F}_{q}\right) .
$$

Definition

Let E be an elliptic curve and q a prime power. Take $\pi, \bar{\pi}$ such that

$$
\pi+\bar{\pi}=a(q)
$$

and

$$
\pi \bar{\pi}=q
$$

Traces of Frobenius

Definition

Let E be an elliptic curve. For prime powers q, define the trace of Frobenius $a(q) \in[-2 \sqrt{q}, 2 \sqrt{q}]$ by

$$
a(q):=q+1-\# E\left(\mathbb{F}_{q}\right) .
$$

Definition

Let E be an elliptic curve and q a prime power. Take $\pi, \bar{\pi}$ such that

$$
\pi+\bar{\pi}=a(q)
$$

and

$$
\pi \bar{\pi}=q
$$

π and $\bar{\pi}$ are called the eigenvalues of Frobenius.

ZETA FUNCTION OF A VARIETY

Definition

Let V / \mathbb{F}_{q} be an affine variety. The zeta function of V / \mathbb{F}_{q} is the power series

$$
Z\left(V / \mathbb{F}_{q} ; T\right):=\exp \left(\sum_{n=1}^{\infty}\left(\# V\left(\mathbb{F}_{q^{n}}\right)\right) \frac{T^{n}}{n}\right)
$$

ZETA FUNCTION OF A VARIETY

Definition

Let V / \mathbb{F}_{q} be an affine variety. The zeta function of V / \mathbb{F}_{q} is the power series

$$
Z\left(V / \mathbb{F}_{q} ; T\right):=\exp \left(\sum_{n=1}^{\infty}\left(\# V\left(\mathbb{F}_{q^{n}}\right)\right) \frac{T^{n}}{n}\right)
$$

Classical Fact

Let E be an elliptic curve and $a(q)$ its trace of Frobenius at q.

ZETA FUNCTION OF A VARIETY

Definition

Let V / \mathbb{F}_{q} be an affine variety. The zeta function of V / \mathbb{F}_{q} is the power series

$$
Z\left(V / \mathbb{F}_{q} ; T\right):=\exp \left(\sum_{n=1}^{\infty}\left(\# V\left(\mathbb{F}_{q^{n}}\right)\right) \frac{T^{n}}{n}\right)
$$

Classical Fact

Let E be an elliptic curve and $a(q)$ its trace of Frobenius at q.

$$
Z\left(E / \mathbb{F}_{q} ; T\right)=\frac{1-a(q) T+q T^{2}}{(1-q T)}
$$

Cohen-Lenstra Zeta series

Definition

Let $q=p^{r}, n \geq 1$ and X / \mathbb{F}_{q} an affine variety.

Cohen-Lenstra Zeta series

DEFINITION

Let $q=p^{r}, n \geq 1$ and X / \mathbb{F}_{q} an affine variety. We define a Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(t):=\sum_{n \geq 0} \frac{\# X\left(M_{n}\left(\mathbb{F}_{q}\right)\right)}{\# \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)} \cdot t^{n}
$$

Cohen-Lenstra Zeta series

Proposition (Huang)
Assume the notation above.

Cohen-Lenstra Zeta series

Proposition (Huang)

Assume the notation above.
(1) If X is a smooth curve over \mathbb{F}_{q}, then

$$
\widehat{Z}_{X}(t)=\prod_{i=1}^{\infty} Z_{X}\left(q^{-i} t\right)
$$

Cohen-Lenstra Zeta series

Proposition (Huang)

Assume the notation above.
(1) If X is a smooth curve over \mathbb{F}_{q}, then

$$
\widehat{Z}_{X}(t)=\prod_{i=1}^{\infty} Z_{X}\left(q^{-i} t\right)
$$

(2) If X is a smooth surface over \mathbb{F}_{q}, then

$$
\widehat{Z}_{X}(t)=\prod_{i, j \geq 1} Z_{X}\left(q^{-j} t^{i}\right)
$$

Cohen-Lenstra Zeta Series

Proof.
(1) $\widehat{Z}_{X}(x)=\prod_{P \in X} \widehat{Z}_{\widehat{O}_{X, P}}$.

Cohen-LEnstra Zeta Series

Proof.
(1) $\widehat{Z}_{X}(x)=\prod_{P \in X} \widehat{Z}_{\widehat{O}_{X, P}}$.
(c) $\widehat{O}_{X, P}=\kappa_{P}[[t]]$.

Cohen-Lenstra Zeta Series

Proof.
(1) $\widehat{Z}_{X}(x)=\prod_{P \in X} \widehat{Z}_{\widehat{O}_{X, P}}$.
(c) $\widehat{O}_{X, P}=\kappa_{P}[[t]]$.
(3) $\widehat{Z}_{\kappa_{P}[[t]]}$ counts nilpotent matrices.

Cohen-Lenstra Zeta Series

Proof.

(1) $\widehat{Z}_{X}(x)=\prod_{P \in X} \widehat{Z}_{\widehat{O}_{X, P}}$.
(c) $\widehat{O}_{X, P}=\kappa_{P}[[t]]$.
(3) $\widehat{Z}_{\kappa_{P}[[t]]}$ counts nilpotent matrices.
© Using Young diagrams, Fine and Herstein compute this series.

Cohen-Lenstra Zeta Series

Proof.

(1) $\widehat{Z}_{X}(x)=\prod_{P \in X} \widehat{Z}_{\widehat{O}_{X, P}}$.
(c) $\widehat{O}_{X, P}=\kappa_{P}[[t]]$.
(3) $\widehat{Z}_{\kappa_{P}[[t]]}$ counts nilpotent matrices.
© Using Young diagrams, Fine and Herstein compute this series.

Remark

For surfaces, the local zeta function counts pairwise commuting nilpotent matrices. Evaluating this zeta series also requires partitions.

EXPANDING ZETA SERIES

Classical Fact

Let E be an elliptic curve and $\pi, \bar{\pi}$ the eigenvalues of Frobenius at q.

$$
Z\left(E / \mathbb{F}_{q} ; T\right)=\frac{(1-\pi T)(1-\bar{\pi} T)}{(1-q T)}
$$

EXPANDING ZETA SERIES

Classical Fact

Let E be an elliptic curve and $\pi, \bar{\pi}$ the eigenvalues of Frobenius at q.

$$
Z\left(E / \mathbb{F}_{q} ; T\right)=\frac{(1-\pi T)(1-\bar{\pi} T)}{(1-q T)}
$$

Problem

We need to find the series expansion of

$$
\prod_{j \geq 1}\left(1-\pi T q^{-j}\right)
$$

and

$$
\prod_{j \geq 1} \frac{1}{1-q^{1-j} T}
$$

EULER'S q-SERIES IDENTITIES

Lemma (Euler)
The following series expansions hold.
©

$$
\prod_{j \geq 1}\left(1-c q^{-j}\right)=\sum_{m \geq 0} \frac{c^{m}}{(q ; q)_{m}}
$$

EULER'S q-SERIES IDENTITIES

Lemma (Euler)
The following series expansions hold.
©

$$
\prod_{j \geq 1}\left(1-c q^{-j}\right)=\sum_{m \geq 0} \frac{c^{m}}{(q ; q)_{m}} .
$$

©

$$
\prod_{j \geq 1} \frac{1}{1-c q^{-j}}=\sum_{m \geq 0} \frac{(-1)^{m} q^{m(m-1) / 2} c^{m}}{(q ; q)_{m}}
$$

Proof of point counts

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{j \geq 1} \frac{\left(1-\pi T q^{-j}\right)\left(1-\bar{\pi} T q^{-j}\right)}{1-T q^{1-j}}
$$

Proof of point counts

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{j \geq 1} \frac{\left(1-\pi T q^{-j}\right)\left(1-\bar{\pi} T q^{-j}\right)}{1-T q^{1-j}} .
$$

(2) Expand the product of each factor as a series in T.

Proof of point counts

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{j \geq 1} \frac{\left(1-\pi T q^{-j}\right)\left(1-\bar{\pi} T q^{-j}\right)}{1-T q^{1-j}} .
$$

(2) Expand the product of each factor as a series in T.
(3) Multiply the three resulting series to get the coefficient of T^{n}.

Proof of point counts

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{j \geq 1} \frac{\left(1-\pi T q^{-j}\right)\left(1-\bar{\pi} T q^{-j}\right)}{1-T q^{1-j}} .
$$

(2) Expand the product of each factor as a series in T.
(3) Multiply the three resulting series to get the coefficient of T^{n}.
(9) Use $\pi \bar{\pi}=q$ and $\pi+\bar{\pi}=\phi_{q}(-1) \cdot q \cdot{ }_{2} F_{1}(a)_{q}$.

Distributions of ${ }_{2} F_{1}(a)_{q}$.

Theorem (Ono-S-Saikia)

If $-2 \leq b<c \leq 2$, and r is a fixed positive integer, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{p^{r}}: \sqrt{p^{r}} \cdot{ }_{2} F_{1}(a)_{p^{r}} \in[b, c]\right\}}{p^{r}}=\frac{1}{2 \pi} \int_{b}^{c} \sqrt{4-t^{2}} d t .
$$

In other words, the limiting distribution is semicircular.

DEDUCING DISTRIBUTIONS

(1) We have that

$$
q^{\frac{1}{2}-n^{2}} a_{\mathrm{L}, n}(a ; q)=-\phi_{q}(-1) q^{\frac{1}{2}}{ }_{2} F_{1}(a)_{q}+O_{r, n}\left(q^{-\frac{1}{2}}\right)
$$

DEDUCING DISTRIBUTIONS

(1) We have that

$$
q^{\frac{1}{2}-n^{2}} a_{\mathrm{L}, n}(a ; q)=-\phi_{q}(-1) q^{\frac{1}{2}}{ }_{2} F_{1}(a)_{q}+O_{r, n}\left(q^{-\frac{1}{2}}\right)
$$

(2) If m is a nonnegative integer, the moments are then

$$
\frac{1}{q} \sum_{a \in \mathbb{F}_{q} \backslash\{0,1\}}\left(q^{\frac{1}{2}-n^{2}} a_{\mathrm{L}, n}(a ; q)\right)^{m}=\frac{1}{q} \sum_{a \in \mathbb{F}_{q} \backslash\{0,1\}}\left(-\phi_{q}(-1) q^{\frac{1}{2}} 2_{1}(a)_{q}\right)^{m}+o(1) .
$$

DEDUCING DISTRIBUTIONS

(1) We have that

$$
q^{\frac{1}{2}-n^{2}} a_{\mathrm{L}, n}(a ; q)=-\phi_{q}(-1) q^{\frac{1}{2}}{ }_{2} F_{1}(a)_{q}+O_{r, n}\left(q^{-\frac{1}{2}}\right)
$$

(2) If m is a nonnegative integer, the moments are then

$$
\frac{1}{q} \sum_{a \in \mathbb{F}_{q} \backslash\{0,1\}}\left(q^{\frac{1}{2}-n^{2}} a_{\mathrm{L}, n}(a ; q)\right)^{m}=\frac{1}{q} \sum_{a \in \mathbb{F}_{q} \backslash\{0,1\}}\left(-\phi_{q}(-1) q^{\frac{1}{2}} 2_{1}(a)_{q}\right)^{m}+o(1) .
$$

(3) Use result for the case $n=1$.

ZETA series For AOP K3 surfaces

Theorem (Ahlgren, Ono, Penniston, '02)
If $\operatorname{ord}_{p}(a(a+1))=0$ and $\gamma=\phi_{p}(a+1)$, then local zeta-function for the affine part X of X_{a} is

$$
Z_{X}(T)=\frac{1}{\left(1-p^{2} T\right)(1-\gamma p T)\left(1-\gamma \pi^{2} T\right)\left(1-\gamma \bar{\pi}^{2} T\right)},
$$

ZETA series For AOP K3 surfaces

Theorem (Ahlgren, Ono, Penniston, '02)
If $\operatorname{ord}_{p}(a(a+1))=0$ and $\gamma=\phi_{p}(a+1)$, then local zeta-function for the affine part X of X_{a} is

$$
Z_{X}(T)=\frac{1}{\left(1-p^{2} T\right)(1-\gamma p T)\left(1-\gamma \pi^{2} T\right)\left(1-\gamma \bar{\pi}^{2} T\right)},
$$

where π and $\bar{\pi}$ are the Frobenius eigenvalues of the Clausen elliptic curve

ZETA sERIES FOR AOP K3 surfaces

Theorem (Ahlgren, Ono, Penniston, '02)
If $\operatorname{ord}_{p}(a(a+1))=0$ and $\gamma=\phi_{p}(a+1)$, then local zeta-function for the affine part X of X_{a} is

$$
Z_{X}(T)=\frac{1}{\left(1-p^{2} T\right)(1-\gamma p T)\left(1-\gamma \pi^{2} T\right)\left(1-\gamma \bar{\pi}^{2} T\right)},
$$

where π and $\bar{\pi}$ are the Frobenius eigenvalues of the Clausen elliptic curve

$$
E_{\mathrm{Cl}}(a): y^{2}=(x-1)\left(x^{2}+a\right) .
$$

ZETA series For AOP K3 surfaces

Theorem (Ahlgren, Ono, Penniston, '02)
If $\operatorname{ord}_{p}(a(a+1))=0$ and $\gamma=\phi_{p}(a+1)$, then local zeta-function for the affine part X of X_{a} is

$$
Z_{X}(T)=\frac{1}{\left(1-p^{2} T\right)(1-\gamma p T)\left(1-\gamma \pi^{2} T\right)\left(1-\gamma \bar{\pi}^{2} T\right)},
$$

where π and $\bar{\pi}$ are the Frobenius eigenvalues of the Clausen elliptic curve

$$
E_{\mathrm{Cl}}(a): y^{2}=(x-1)\left(x^{2}+a\right) .
$$

Remark

The complicated part of $Z_{X}(T)$ is a symmetric square zeta-function.

Sketch of Proof

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{i, j \geq 1} \frac{1}{\left(1-q^{2-j} T^{i}\right)\left(1-\gamma q^{1-j} T^{i}\right)\left(1-\gamma \pi^{2} q^{-j} T^{i}\right)\left(1-\gamma \bar{\pi}^{2} q^{-j} T^{i}\right)} .
$$

Sketch of Proof

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{i, j \geq 1} \frac{1}{\left(1-q^{2-j} T^{i}\right)\left(1-\gamma q^{1-j} T^{i}\right)\left(1-\gamma \pi^{2} q^{-j} T^{i}\right)\left(1-\gamma \bar{\pi}^{2} q^{-j} T^{i}\right)}
$$

(O) Expand the product of each factor as a series in T.

Sketch of Proof

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{i, j \geq 1} \frac{1}{\left(1-q^{2-j} T^{i}\right)\left(1-\gamma q^{1-j} T^{i}\right)\left(1-\gamma \pi^{2} q^{-j} T^{i}\right)\left(1-\gamma \bar{\pi}^{2} q^{-j} T^{i}\right)} .
$$

(3) Expand the product of each factor as a series in T.
(3) Multiply the resulting series to get the coefficient of T^{n}.

Sketch of Proof

(1) Write the Cohen-Lenstra zeta series

$$
\widehat{Z}_{X}(T)=\prod_{i, j \geq 1} \frac{1}{\left(1-q^{2-j} T^{i}\right)\left(1-\gamma q^{1-j} T^{i}\right)\left(1-\gamma \pi^{2} q^{-j} T^{i}\right)\left(1-\gamma \bar{\pi}^{2} q^{-j} T^{i}\right)} .
$$

(3) Expand the product of each factor as a series in T.
(Multiply the resulting series to get the coefficient of T^{n}.
(1) Use $\pi \bar{\pi}=q$ and

$$
\pi^{2 k}+\bar{\pi}^{2 k}=q^{2 k} \phi_{q}(a+1)^{k}{ }_{3} F_{2}\left(\frac{a}{a+1}\right)_{q^{k}}-q^{k} .
$$

Distribution for AOP K3 surfaces

Theorem (Ono-S-Saikia)
If $-3 \leq b<c \leq 3$, and r is a fixed positive integer, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{p^{r}}: p^{r} \cdot{ }_{3} F_{2}(a)_{p^{r}} \in[b, c]\right\}}{p^{r}}=\frac{1}{4 \pi} \int_{b}^{c} f(t) d t,
$$

Distribution for AOP K3 surfaces

Theorem (Ono-S-Saikia)
If $-3 \leq b<c \leq 3$, and r is a fixed positive integer, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{p^{r}}: p^{r} \cdot{ }_{3} F_{2}(a)_{p^{r}} \in[b, c]\right\}}{p^{r}}=\frac{1}{4 \pi} \int_{b}^{c} f(t) d t
$$

where

$$
f(t)= \begin{cases}\frac{3-|t|}{\sqrt{3+2|t|-t^{2}}} & \text { if } 1<|t|<3, \\ \frac{3+t}{\sqrt{3-2 t-t^{2}}}+\frac{3-t}{\sqrt{3+2 t-t^{2}}} & \text { if }|t|<1, \\ 0 & \text { otherwise. }\end{cases}
$$

POINTS OF ELLIPTIC CURVES

Theorem (Huang, Ono, S.)

$$
\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)=\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot P(n, k)_{q} \cdot{ }_{2} F_{1}(a)_{q^{k}}
$$

where $P(n, k)_{q}$ are explicit polynomials in q arising from partitions of n.

Theorem (Huang, Ono, S.)
If we let

$$
a_{L, n}(a ; q):=\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)-P(n, 0)_{q}
$$

POINTS OF ELLIPTIC CURVES

Theorem (Huang, Ono, S.)

$$
\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)=\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot P(n, k)_{q} \cdot{ }_{2} F_{1}(a)_{q^{k}}
$$

where $P(n, k)_{q}$ are explicit polynomials in q arising from partitions of n.

Theorem (Huang, Ono, S.)
If we let

$$
a_{L, n}(a ; q):=\# E_{a}^{\mathrm{Leg}}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)-P(n, 0)_{q}
$$

and $-2 \leq b<c \leq 2$, then

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{q}: q^{\frac{1}{2}-n^{2}} a_{L, n}(a ; q) \in[b, c]\right\}}{q}=\frac{1}{2 \pi} \int_{b}^{c} \sqrt{4-t^{2}} d t
$$

AOP K3 Surfaces

Theorem (Huang, Ono, S.)
$\# X_{a}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)=R\left(n, \phi_{q}(a+1)\right)_{q}+\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot Q\left(n, k, \phi_{q^{k}}(a+1)\right)_{q} \cdot 3 F_{2}\left(\frac{a}{a+1}\right)_{q^{k}}$

AOP K3 Surfaces

Theorem (Huang, Ono, S.)
$\# X_{a}\left(M_{n}\left(\mathbb{F}_{q}\right)\right)=R\left(n, \phi_{q}(a+1)\right)_{q}+\sum_{k=0}^{n} \phi_{q^{k}}(-1) \cdot Q\left(n, k, \phi_{q^{k}}(a+1)\right)_{q} \cdot 3 F_{2}\left(\frac{a}{a+1}\right)_{q^{k}}$
where $R(n, \gamma)_{q}$ and $Q(n, k, \gamma)_{q}$ are polynomials in q involving partitions of n.

Theorem (Huang, Ono, S.)

$$
\lim _{p \rightarrow \infty} \frac{\#\left\{a \in \mathbb{F}_{q}: q^{1-n^{2}-n} A_{n}(a ; q) \in[b, c]\right\}}{q}=\frac{1}{4 \pi} \int_{b}^{c} f(t) d t,
$$

where

$$
f(t)= \begin{cases}\frac{3-|t|}{\sqrt{3+2|t|-t^{2}}} & \text { if } 1<|t|<3, \\ \frac{3+t}{\sqrt{3-2 t-t^{2}}}+\frac{3-t}{\sqrt{3+2 t-t^{2}}} & \text { if }|t|<1, \\ 0 & \text { otherwise. }\end{cases}
$$

Histograms

2×2 matrix points on Legendre ECs

2×2 matrix points on AOP $K 3 \mathrm{~s}$

