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@ Number theory

o Asymptotics of the partition function (circle method)
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Counting matrix points with partitions
Introduction

PARTITIONS

@ Number theory

o Asymptotics of the partition function (circle method)
e Ramanujan’s partition congruences

@ Representation theory

o Representation theory of the symmetric group S,
e Symmetric polynomials

@ Physics/Computer Science

e Quantum states
o Sorting (analogue of binary search tree)

QUESTION

Do partitions show up in arithmetic geometry?
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Introduction

q-SERIES FORMULAS

QUESTION

What is the number of commuting square matrices A, B in F?

EXAMPLE

# of 1 x 1 commuting "matrices" (elements) is ¢>
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Introduction

q-SERIES FORMULAS

QUESTION
What is the number of commuting square matrices A, B in F?
v
EXAMPLE
1), _a_
q) 1-3°
v

# of 1 x 1 commuting "matrices" (elements) is ¢% = ¢ - (
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Introduction

q-SERIES FORMULAS

QUESTION
What is the number of commuting square matrices A, B in F?
v
EXAMPLE
# of 1 x 1 commuting "matrices" (elements) is ¢% = ¢ - ( — %) 0 e
q
v

REMARK
q- (1 — %) = q — 1 is the number of nonzero elements of .
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)
For F5, we find that

#{(A, B) € Maty(F2)?, AB = BA} = 88.
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)

For F5, we find that
#{(A, B) € Maty(F,)?, AB = BA} = 88.

22 1 1 q
1-=)(1-=)- — 24
q( Q)< q2> 1—2
q
2 1 1 q2
2
q 1—)(1—)-:64,
( q ) (1-5)1-5)
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)

For F5, we find that
#{(A, B) € Maty(F,)?, AB = BA} = 88.

22 1 1 q
== == =24,
(-2 05)

q
(-2 (-3) ==

and 24 + 64 = 88. Is this an accident?
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COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)

#{(A, B) € Mat,(F3)®, AB = BA} = 945.
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COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)
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945 = 3%° (l—é) (1—3%> <1E%+(1—§(21—3%)>'
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)

#{(A, B) € Mat,(F3)®, AB = BA} = 945.

945 = 3%° (1—%) (1—3%> <1E%+(1—§(21—3%)>'

ExAMPLE (BRUTE FORCE)

#{(A, B) € Maty(F5)?, AB = BA} = 18625.
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

ExXAMPLE (BRUTE FORCE)

#{(A, B) € Maty(F3)?, AB = BA} = 945.

945 = 3%° (1—§) (1—3%) (ﬁé*(l—;il—g%))'

ExAMPLE (BRUTE FORCE)

#{(A, B) € Maty(F5)?, AB = BA} = 18625.

18625 = 52° (1—%> (1—5%> (15% + (1—%)5(21—5%))
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

OBSERVATION

For 2 x 2 matrices and q = 2, 3,5, we have observed

#{(A, B) € Maty(F,)?, AB = BA} _ ( ¢, e
- 1

A

q
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

OBSERVATION

For 2 x 2 matrices and q = 2, 3,5, we have observed

#{(A,B) € Matg(IFq)Q,AB = BA} q N q>
= 1 1 1 2
@ (1-1)(1-3% -5 (1=7)1-2)
(1-3) (1-%) |
QUESTION
Is this a coincidence?
Wy
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

OBSERVATION

For 2 x 2 matrices and q = 2, 3,5, we have observed

#{(A, B) € Maty(F,)*, AB = BA} ¢ q?
@ (1-1) (1- %) -1 1-0-2))
v
QUESTION
Is this a coincidence? Is this a partitions phenomenon?
v
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Introduction

COUNTING COMMUTING 2 X 2 MATRICES

OBSERVATION

For 2 x 2 matrices and q = 2, 3,5, we have observed

#{(A, B) € Maty(F,)*, AB = BA} ¢ q?
@ (1-1) (1- %) I~ a4
v
QUESTION
Is this a coincidence? Is this a partitions phenomenon?
What about n x n matrices for all n? )
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PARTITIONS OF n AND n X n MATRICES

THEOREM (FEIT, FINE (1960))
If P(n,q) := #{(A, B) € Mat,,(F,)?, AB = BA}, then
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PARTITIONS OF n AND n X n MATRICES

THEOREM (FEIT, FINE (1960))
If P(n,q) := #{(A, B) € Mat,,(F,)?, AB = BA}, then
ey
a5 e - (@7 )

P(n,q) =q" (g5 n - Y (

AFn
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Introduction

PARTITIONS OF n AND n X n MATRICES

THEOREM (FEIT, FINE (1960))
If P(n,q) := #{(A, B) € Mat,,(F,)?, AB = BA}, then

ey

P(n,q) =q" (g5 n - Y (

a5 oo - (@75 Db

where
(a;¢)n == (1 —a)(1 —aq)...(1 —ag"™"),
andn=1-b(A\,1)+...+n-b(A,n) and [(\) = > b(\,1).
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MATRIX POINTS ON CURVES AND SURFACES

QUESTIONS
@ Do partitions count equations other than AB — BA = 07
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@ Do partitions count equations other than AB — BA = 07
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Introduction

MATRIX POINTS ON CURVES AND SURFACES

QUESTIONS

@ Do partitions count equations other than AB — BA = 07

@ Distributions of matriz points for families of curves and surfaces?
v

ANSWER (OUR WORK)

We answer these questions for "elliptic curves”

B? = A(A—1,))(A — al,,),
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Introduction

MATRIX POINTS ON CURVES AND SURFACES

QUESTIONS
@ Do partitions count equations other than AB — BA = 07

@ Distributions of matriz points for families of curves and surfaces?
v

ANSWER (OUR WORK)

We answer these questions for "elliptic curves”
B% = A(A - I,)(A — aly,),
and AOP K3 surfaces
C?=AB(A+ I,)(B+I,)(A + aB),

where I, is the identity matriz and a € .
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PARTITIONS AND NILPOTENT MATRICES

DEFINITION
Let A be a nilpotent n x n matrix.
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PARTITIONS AND NILPOTENT MATRICES

DEFINITION

Let A be a nilpotent n x n matrix.
There is a basis {v'},i=1,...,k,s =1,...,r; with

i i
Avd =vl_;.
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

DEFINITION

Let A be a nilpotent n x n matrix.
There is a basis {v:},i =1,...,k,s =1,...,r; with
Avt =i,

We associate with A the partition

m(A):n=r+...+ 7.
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EXAMPLE

Consider the matrix

)
= O O
o o o

[m]

(=)
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 Background om matrices
EXAMPLE
Consider the matrix

We have that A% = 0.

)
= O O
o o o

[m]

&5 =
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Background on matrices

EXAMPLE

Consider the matrix

A:

)

0
0
1

e e e

We have that A% = 0. Consider the basis

V1 =¢€3
U%ZBQ
1

V3 = €1 — €2.

with ey, e, e3 the standard basis.
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Background on matrices

EXAMPLE

Consider the matrix

A:

)

0
0
1

e e e

We have that A% = 0. Consider the basis

V1 =¢€3
U%ZBQ
1

V3 = €1 — €2.
with ey, e, e3 the standard basis.Then, we have
1_ 1
Av; = v;

and
Av% = Av% .
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,9) =g (¢ a7 )s - > !

@ Ba ey - @ a bns |
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,9) =g (¢ a7 )s - > !

@ Ba ey - @ a bns |

SKETCH OF PROOF.

@ Fix a matrix A with 7(A) = A.

= i - =

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

A1 ~ Az if and only if 7(A1) = 7(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,9) =g (¢ a7 )s - > :

@ Ba ey - @ a bns |

SKETCH OF PROOF.

@ Fix a matrix A with 7(A) = A.
@ If B commutes with A then B is determined by Bu. .

™ il
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,q) = (@ g Y)s - > :

@ a7 Doy - (@70 ey

SKETCH OF PROOF.
@ Fix a matrix A with 7(A) = A.
@ If B commutes with A then B is determined by Bvy., .

© Determine possible images of Bv};i.

™ =
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,q) = (@ g Y)s - > :

@ a7 Doy - (@70 ey

SKETCH OF PROOF.
@ Fix a matrix A with 7(A) = A.
@ If B commutes with A then B is determined by Bvy., .
© Determine possible images of Bv,i.i.

@ B is nonsingular if and only if Bv? are linearly independent.
g y 1 y

™ 7= - =
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Background on matrices

PARTITIONS AND NILPOTENT MATRICES

LEMMA

Aq ~ Az if and only if (A1) = w(A2).

LEMMA

If N(s,q) := #{(A, B) € Mat4(Fq)?, AB = BA, A nilpotent}, then

N(s,q) = (@ g Y)s - > :

@ a7 Doy - (@70 ey

SKETCH OF PROOF.
@ Fix a matrix A with 7(A) = A.
@ If B commutes with A then B is determined by Bvy., .
© Determine possible images of Bv,i.i.

@ B is nonsingular if and only if Bv? are linearly independent.
g y 1 y

. . 1 .
@ Determine possible Bv; for nonsingular B.

™ = - =
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES

LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.

PROOF.

@ AB = BA is equivalent to ABA™! =
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.

PROOF.

@ AB = BA is equivalent to ABA™! =
Q Fix B € p.
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.

PROOF.

@ AB = BA is equivalent to ABA™! =
@ Fix B € .

@ #{A is nonsingular and ABA~! = B}
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.

PROOF.

@ AB = BA is equivalent to ABA™! =
@ Fix B € .

+2 —
Q #{A is nonsingular and ABA~! = B} = %m.
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Counting matrix points with partitions
Background on matrices

PARTITIONS AND NONSINGULAR MATRICES
LEMMA
If R(t,q) :== #{(A, B) € Mat,(F,)?, AB = BA, A nonsingular}, then

R(t,q) = 4" (¢ ¢7 V) - #{B)},

where #{S} denotes the number of similarity classes of t x t-matrices.

PROOF.

@ AB = BA is equivalent to ABA™! =
@ Fix B € .

+2

Q #{A is nonsingular and ABA~! = B} = %ﬁl)t.
@ Sum over B € f3.
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Counting matrix points with partitions
Background on matrices

PARTITIONS AND NONSINGULAR MATRICES

LEMMA

#{(By=> ¢™.

At

PROOF.

@ Similarity class is determined by rational canonical form
@y < = o5 Bhimile
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES

LEMMA

#{(By=> ¢™.

At

PRrROOF.
@ Similarity class is determined by rational canonical form
@y < = o5 Bhimile
@ Take h; = gty1-i/g:+—; and b; = degh;.
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Background on matrices

PARTITIONS AND NONSINGULAR MATRICES

LEMMA
#{(By=> ¢™.
ARt )
PRrROOF.
@ Similarity class is determined by rational canonical form
@y < = o5 Bhimile
Q Take h; = gs11-i/g:—i and b; = deg h;.
@ ) ib; =t is the only restriction on h,;.
D)
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Background on matrices

PROOF OF FEIT-FINE THEOREM

PROOF.

@ By elementary linear algebra,

P(n,q)= Y h(s,t,q)N(s,q)R(t,q),

s+t=n

where h(s,t,q) := # of complementary subspaces of dim s and ¢.
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Background on matrices

PROOF OF FEIT-FINE THEOREM

PROOF.
@ By elementary linear algebra,
P(n,g)= 3 h(s,t,q)N(s,q)R(t,q),
s+t=n
where h(s,t,q) := # of complementary subspaces of dim s and ¢.

Q@ Write Y — 29 g in terms of N(s,q) and R(t,q).

(=1, )n

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Background on matrices

PROOF OF FEIT-FINE THEOREM

PROOF.

@ By elementary linear algebra,

P(n,q)= Y h(s,t,q)N(s,q)R(t,q),

s+t=n
where h(s,t,q) := # of complementary subspaces of dim s and ¢.
Q@ Write Y %x” in terms of N(s,q) and R(¢,q).
@ Use Euler’s partition formula

[Ta—tg9) =" (

—1.,—1 ’
S =@ ha m

tm

where (a;¢)n, = (1 —a)(1 —agq)...(1 —ag"1).
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Background on counting points

F,~-RATIONAL POINTS (i.e. n = 1)

QUESTION

How do we count Fq-solutions to
Ele. 42 =z(z—1)(z —a)

and
Xo: 82 =ay(z+1)(y+1)(z + ay)?
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Background on counting points

F,~-RATIONAL POINTS (i.e. n = 1)

QUESTION

How do we count Fq-solutions to
Ele. 42 =z(z—1)(z —a)

and

Xo: 82 =ay(z+1)(y+1)(z + ay)?

ANSWER
The number of points is given by finite field hypergeometric functions. J
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

DEFINITION (GREENE)

If A1, As,...,An and B1, Bs,. .., Bn_1 are characters of F;, then their
Gaussian hypergeometric function is

A, Az, ..., A, )
nF’nfl( Bl7 °oo0oy anl | x>F T

q
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

DEFINITION (GREENE)

If A1, As,...,An and B1, Bs,. .., Bn_1 are characters of F;, then their

Gaussian hypergeometric function is

A, As, .., A,
nanl( Bl, s Bn71 | l’)F

where

is a normalized Jacobi sum.

q

b
N—
Il
=
o
=
=
ol
\
=
h S
S
=

q Aix\ [ A2x Anx
qg—1 Z:X ( X ><le> (Bn1x> x(@),
xe]Fq

(1—y).
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

EXAMPLE

£ 02 1e) =HD S el E-a).

“q q z€Fg
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

EXAMPLE

3F2( v ¢ ¢ |—a) LS $ate+ Dy + 1)@ +ay)).

€ &
faq z,y€Ffq
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

EXAMPLE

¢ & )
F
21< € la\r‘

q z€Fg

3F2( v ¢ ¢ |—a) LS $ate+ Dy + 1)@ +ay)).

€ &
faq z,y€Ffq

THEOREM (GREENE (1984), ONo (1998))
(1) If a € Fg \ {0,1} and char(Fq) > 5, then

#EL5(Fy) = g+ 1+ ¢(—1)g- 2Fi (a)r,
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Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

EXAMPLE
°
(70 1a) - ).
Fq x€Fy
°
(2000 ) =5 5 dlate Dyl + Do+ an).
Tq zye]Fq

THEOREM (GREENE (1984), ONo (1998))
(1) If a € Fg \ {0,1} and char(Fq) > 5, then

#EL°8(Fq) = q+ 1+ ¢(—1)q- 2 F1(a)p,
(2) If a € Fg \ {0, —1} and char(Fq) > 5, then

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Background on counting points

FINITE FIELD HYPERGEOMETRIC FUNCTIONS

EXAMPLE
°
(70 1a) - ).
Fq x€Fy
°
(2000 ) =5 5 dlate Dyl + Do+ an).
Tq zye]Fq

THEOREM (GREENE (1984), ONo (1998))
(1) If a € Fg \ {0,1} and char(Fq) > 5, then

#ELB(Fy) = q+ 1+ ¢(—1)g- 2Fi(a)y,
(2) If a € Fg \ {0, —1} and char(Fq) > 5, then

#Xa(Fg) =1+ ¢* +19¢ + ¢° - 3F2(—a)r, .

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Our work

MATRIX VARIETIES

DEFINITION

Let ¢ be a prime power, n > 1, and consider the system of equations

Filtryeostm) = oo = foltry . tm) = 0.

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Our work

MATRIX VARIETIES

DEFINITION

Let ¢ be a prime power, n > 1, and consider the system of equations
fl(tl,...,tm): 0.

o= fo(t1, e tm)

Its affine variety is

X(M,(F,)) := {(Al, cey Am)

fo(As,..., A

A; e Matn(IF‘q),AiAj = AJAZ
JAn)=0for 1 <s<r|’

V

Hasan Saad (University of Virginia)
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What is the number of points Ny°%(a; q) := #E5°8 (M, (Fy))?
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Counting matrix points with partitions
Our work

MATRIX POINTS ON ELLIPTIC CURVES

QUESTION

What is the number of points N5°€(a; q) := #FEL°8(M,,(Fy))?

THEOREM (Huang, ONo, S.)
If q=p" withp>5 and a € F, \ {0,1}, then

Nz(a;q) = Y dgr(=1) - P(n, k)q - 2F1(a) g1,
k=0

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions

Our work

MATRIX POINTS ON ELLIPTIC CURVES

QUESTION

What is the number of points N5°€(a; q) := #FEL°8(M,,(Fy))?

THEOREM (Huang, ONo, S.)
If q=p" withp>5 and a € F, \ {0,1}, then

Nz(a;q) = Y dgr(=1) - P(n, k)q - 2F1(a) g1,
k=0

where
LL*’V
_ry R 3 - (4 0)n
P(’I’L,k) o= _1)kqn(n k)+—= q23(s n+k) 3 3
2= ; (4 0)s(@3 Dret-s (@5 Dn—r—2s

y
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Counting matrix points with partitions
Our work

SATO-TATE DISTRIBUTION

THEOREM (HuaNG, ONO, S.)
If n>1, g=p" withp >5 and a € F,, then write

aL,n(a; q) = er;eg(a; Q) - P(TL, O)tl
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Counting matrix points with partitions
Our work

SATO-TATE DISTRIBUTION

THEOREM (HuaNG, ONO, S.)
If n>1, g=p" withp >5 and a € F,, then write

aL,n(a; q) = er;eg(a; Q) - P(’I’L,O)q

If =2 < b<c<2, then

1_,2 . c
i #{CL € ]Fq S gz aL,n(G'a‘J) € [bv C]} _ QL/ /4 — t2dt.
T Jb

p—00 q
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What is the number of points NX3(a;q) := #Xo(Mn(Fq))? l




Counting matrix points with partitions
Our work

MATRIX POINTS ON K3 SURFACES

QUESTION

What is the number of points NX3(a;q) := #Xo(Mn(Fq))?

TueoreEM (Huang, ONo, S.)

If g =p" withp > 5 and a € Fq \ {0, —1}, then

NE(a5) = R(ndafa+ D)+ Y o (1) Qb dye(at Da-af (57
q

k=0
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Counting matrix points with partitions
Our work

MATRIX POINTS ON K3 SURFACES

QUESTION

What is the number of points NX3(a; q) := #Xa(Mn(Fq))?

TueoreEM (Huang, ONo, S.)
If g =p" withp > 5 and a € Fq \ {0, —1}, then
n
a
NE(a5) = R(ndafa+ D)+ Y o (1) Qb dye(at Da-af (57
= a+1/ gk
where
Q. ky)gi= ¢ Tt Y OO (CyremA)
Al Ng
[A1]+...+|Ag[=n
L(X3)—l(Xa)=k
b, 3) (b (Xg,5)+1) (q; Qn
(@ Dn—m(rr..rg) -4 2 =
mem(M <) H(q; Q)b()\,,,j)(q; Q)nfm,(/\l,....,k4)
4
and R(n,v)q ts an explicit polynomial in g and m(A1,..., A1) = > I(N\;).
i=1
)
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Counting matrix points with partitions
Our work

SATO-TATE DISTRIBUTIONS

THEOREM (HuaNG, ONO, S.)
Ifn>1, q=p" withp>5 and a € Fy, then write

An(a;q) = NTIf3(a; q) — Q(n,0,¢q(a+1))g — R(n,pq(a+1))q.
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Counting matrix points with partitions
Our work

SATO-TATE DISTRIBUTIONS

THEOREM (HuaNG, ONO, S.)

Ifn>1, q=p" withp>5 and a € Fy, then write

An(a; q) := NS?(a;q) — Q(n,0,¢q4(a+1))g — R(n, ¢g(a +1))q.
If =3 <b<c<3, then

. #{a€Fq: ql_"z_"An(CH Qe 1 f°
lim = E/[) f(t)dt,

p—00 q
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Counting matrix points with partitions
Our work

SATO-TATE DISTRIBUTIONS

THEOREM (HuaNG, ONO, S.)
Ifn>1, q=p" withp>5 and a € Fy, then write

An(a; q) := NS?(a;q) — Q(n,0,¢q4(a+1))g — R(n, ¢g(a +1))q.
If =3 <b<c<3, then

. #{a€Fq: ql_”z_"An(CH Qe 1 f°
lim = E/() f(t)dt,

p—>00 q
where -
—|t .
s if 1< |t <3,
f@t) = 3t 4 3=t it <1,

V3—2t—t2 = \/3+2t—t2

0 otherwise.
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Counting matrix points with partitions
Background for proofs

TRACES OF FROBENIUS

DEFINITION

Let E be an elliptic curve. For prime powers ¢, define the trace of
Frobenius a(q) € [-2,/g,2,/q] by

a(q) == q+ 1 —#E(F,).
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Counting matrix points with partitions
Background for proofs

TRACES OF FROBENIUS

DEFINITION

Let E be an elliptic curve. For prime powers ¢, define the trace of
Frobenius a(q) € [-2,/g,2,/q] by

a(q) == q+ 1 —#E(F,).

DEFINITION

Let E be an elliptic curve and g a prime power. Take m, 7 such that

T+ 7 =a(q)

and
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Counting matrix points with partitions
Background for proofs

TRACES OF FROBENIUS

DEFINITION

Let E be an elliptic curve. For prime powers ¢, define the trace of
Frobenius a(q) € [-2,/g,2,/q] by

a(q) :==q+1—#E(F,).

DEFINITION
Let E be an elliptic curve and ¢ a prime power. Take 7,7 such that
T+ 7 =a(q)

and
T = (.

7w and 7 are called the eigenvalues of Frobenius.
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Counting matrix points with partitions
Background for proofs

ZETA FUNCTION OF A VARIETY

DEFINITION

Let V/Fq be an affine variety. The zeta function of V/F, is the power series

Z(V/Fq;T) = exp <Z(#V(]Fq"))7:> o

n=1
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Counting matrix points with partitions
Background for proofs

ZETA FUNCTION OF A VARIETY

DEFINITION

Let V/Fq be an affine variety. The zeta function of V/F, is the power series

Z(V/Fy; T) = exp <Z<#v<qu>>7:> :

n=1

Crassican Fact

Let E be an elliptic curve and a(q) its trace of Frobenius at q.
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Counting matrix points with partitions
Background for proofs

ZETA FUNCTION OF A VARIETY

DEFINITION

Let V/Fq be an affine variety. The zeta function of V/Fq is the power series

Z(V/Fy; T) = exp <Z<#v<qu>>7:> :

n=1

CrassicaL Fact
Let E be an elliptic curve and a(q) its trace of Frobenius at q.
1 —a(q)T +qT*

2(B/F T) = 12
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Let ¢ =p", n > 1 and X/F, an affine variety.

«O0>» «F»r» « > E E 9Ar



Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

DEFINITION

Let ¢ =p", n > 1 and X/F, an affine variety. We define a
Cohen-Lenstra zeta series

) .
Z #GL L
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Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

ProrosiTION (HUANG)

Assume the notation above.
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Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

ProrosiTION (HUANG)
Assume the notation above.

Q@ If X is a smooth curve over Fy, then

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

ProrosiTION (HUANG)
Assume the notation above.

Q@ If X is a smooth curve over Fy, then
t)=1]2x("
i=1

@ If X is a smooth surface over F,, then

H Zx(q77t).

3,521
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Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

PROOF.
Q@ Zx(x)= Il Z5

PeX
@ Ox.p = rp[t]]-
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Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

PROOF.

0 Z\X xXr) = Z\’\ 5
@ =11 Z,.,

@ Ox,p = rp[[t]]-

Q Z\K #[[)) counts nilpotent matrices.
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Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

PROOF.

o Z\X ) = Z\’\ 0
@= 11 Z,,
@ Ox p = rpllt]].
Q Zﬁ #[[¢] counts nilpotent matrices.

@ Using Young diagrams, Fine and Herstein compute this series.

O

V

Hasan Saad (University of Virginia) Counting matrix points with partitions



Counting matrix points with partitions
Background for proofs

COHEN-LENSTRA ZETA SERIES

PROOF.

~

o ZX($) == P]_;[X Zaxyp.
@ Ox.p = rp[[t]].
o Zﬁ #[[¢] counts nilpotent matrices.
@ Using Young diagrams, Fine and Herstein compute this series.
O

V

REMARK

For surfaces, the local zeta function counts pairwise commuting
nilpotent matrices. Evaluating this zeta series also requires partitions. )
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Counting matrix points with partitions
Proofs

EXPANDING ZETA SERIES

CLASSICAL FACT
Let E be an elliptic curve and 7,7 the eigenvalues of Frobenius at q.

(1 - #T)(1 - =T)
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Counting matrix points with partitions
Proofs

EXPANDING ZETA SERIES

CLASSICAL FACT
Let E be an elliptic curve and 7,7 the eigenvalues of Frobenius at q.

(1—7T)(1 - =T)
(1—4T)

Z(E[Fg;T) =

PROBLEM

We need to find the series expansion of
[[a-=Tq7)
j>1

and

1
=7

Jj=z1
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Counting matrix points with partitions
Proofs

EULER’S ¢-SERIES IDENTITIES

LEMMA (EULER)

The following series expansions hold.

o
[[a-ea?) =)
m>0

Jj=1

Cm

(G @)m
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Counting matrix points with partitions
Proofs

EULER’S ¢-SERIES IDENTITIES

LEMMA (EULER)

The following series expansions hold.

"]

Cm

110 =) :mzzo (G @)m

Jj=1

(_l)mqm(m—l)/2cm

1
1 T—cgi ngo (¢ Dm

Jj=1
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Counting matrix points with partitions
Proofs

PROOF OF POINT COUNTS

@ Write the Cohen-Lenstra zeta series

> (1—nTq 7)(1 —7Tq7)
Zx(T) =[] = Tq T .
i>1
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Counting matrix points with partitions
Proofs

PROOF OF POINT COUNTS

@ Write the Cohen-Lenstra zeta series

Zx(n) =[] 1= Wqu:J)T(qll_qu_”.

j>1

© Expand the product of each factor as a series in 7.
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Counting matrix points with partitions
Proofs

PROOF OF POINT COUNTS

@ Write the Cohen-Lenstra zeta series

Zx(n) =[] 1= Wqu:J)T(qll_qu_”.

j>1

© Expand the product of each factor as a series in 7.

@ Multiply the three resulting series to get the coefficient of T™.
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Counting matrix points with partitions
Proofs

PROOF OF POINT COUNTS

@ Write the Cohen-Lenstra zeta series

Zx(n) =[] 1= Wqu:J)T(qll_qu_”.

j>1

© Expand the product of each factor as a series in 7.
@ Multiply the three resulting series to get the coefficient of T™.
Q@ Usemm=qand 7+ 7 = ¢¢(—1) - ¢ - 2F1(a)q-
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Counting matrix points with partitions
Proofs

DISTRIBUTIONS OF o F(a),.

THEOREM (ONO-S-SAIKIA)
If =2 <b<c<2, and r is a fived positive integer, then

g 0By I iy Sl L | vi—ea
™ Jo

p—00 pr

In other words, the limiting distribution is semicircular.
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@ We have that

2 1 _1
a2 " aLn(a;q) = —¢g(—=1)q22F1(a), + Ornl(q 2).
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Counting matrix points with partitions
Proofs

DEDUCING DISTRIBUTIONS

@ We have that

1

1_,2 1 _1
q> " arm(a;q) = —¢q(=1)g?2F1(a), + Ornlg 2).
@ If m is a nonnegative integer, the moments are then

LY (@) =2 Y (Ced-nataRi@),) o).

q a€fg\{0,1} a€F, \{0,1}
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Counting matrix points with partitions
Proofs

DEDUCING DISTRIBUTIONS

@ We have that

1

1,2 1 _1
q> " aLn(a;q) = —¢e(—1)g22F1(a), + Orn(q ).

@ If m is a nonnegative integer, the moments are then

LY (@) =2 Y (Ced-nataRi@),) o).

q a€fg\{0,1} a€F, \{0,1}

@ Use result for the case n = 1.
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Counting matrix points with partitions
Proofs

ZETA SERIES FOR AOP K3 SURFACES

THEOREM (AHLGREN, ONO, PENNISTON, '02)

If ordy(a(a+1)) =0 and v = ¢p(a + 1), then local zeta-function for the
affine part X of X, is
1

2xT) = G- @Y A = 7Y = 7?10 = 7T
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Proofs

ZETA SERIES FOR AOP K3 SURFACES

THEOREM (AHLGREN, ONO, PENNISTON, '02)
If ordy(a(a+1)) =0 and v = ¢p(a + 1), then local zeta-function for the
affine part X of X, is
2x(T) = :
T U — D) (T — T (I~ 7T

where ™ and T are the Frobenius eigenvalues of the Clausen elliptic curve
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Counting matrix points with partitions
Proofs

ZETA SERIES FOR AOP K3 SURFACES

THEOREM (AHLGREN, ONO, PENNISTON, '02)
If ordy(a(a+1)) =0 and v = ¢p(a + 1), then local zeta-function for the
affine part X of X, is
2x(T) = :
T U — D) (T — T (I~ 7T

where ™ and T are the Frobenius eigenvalues of the Clausen elliptic curve

Eai(a) : y® = (x — 1)(2° + a).
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Counting matrix points with partitions
Proofs

ZETA SERIES FOR AOP K3 SURFACES

THEOREM (AHLGREN, ONO, PENNISTON, '02)
If ordy(a(a+1)) =0 and v = ¢p(a + 1), then local zeta-function for the
affine part X of X, is

1
(1 =p*T)(1 — vpT)(1 — yn2T)(1 — y7*T)’

Zx(T) =

where ™ and T are the Frobenius eigenvalues of the Clausen elliptic curve

Eai(a) : y® = (x — 1)(2° + a).

REMARK

The complicated part of Zx(T) is a symmetric square zeta-function.
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Counting matrix points with partitions
Proofs

SKETCH OF PROOF

@ Write the Cohen-Lenstra zeta series

Zx(T) = L

11 (1= q*T") (1 = yq' I TH)(1 = yn2q 9T (1 — y72q I T")

4,521
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Counting matrix points with partitions
Proofs

SKETCH OF PROOF

@ Write the Cohen-Lenstra zeta series

1
11 (1= q*T") (1 = yq' I TH)(1 = yn2q 9T (1 — y72q I T")

4,521

Zx(T) =

@ Expand the product of each factor as a series in 7.
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Counting matrix points with partitions
Proofs

SKETCH OF PROOF

@ Write the Cohen-Lenstra zeta series

1
11 (1= q*T") (1 = yq' I TH)(1 = yn2q 9T (1 — y72q I T")

4,521

Zx(T) =

@ Expand the product of each factor as a series in 7.

@ Multiply the resulting series to get the coefficient of T".
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Counting matrix points with partitions
Proofs

SKETCH OF PROOF

@ Write the Cohen-Lenstra zeta series
1

2 = 11 G=goma gm0 w190 — 7w T

4,521

@ Expand the product of each factor as a series in 7.
@ Multiply the resulting series to get the coefficient of T".
© Use 7™ = q and

_2k a
7T2k+ﬂ_2k =q2k¢q(a+1)k3Fg <a ) _qk
qk
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Counting matrix points with partitions
Proofs

DISTRIBUTION FOR AOP K3 SURFACES

THEOREM (ONO-S-SATKIA)
If =3 <b<c<3, andr is a fizred positive integer, then

lim #{a €Fpr :p" - 3F5(a)pr € [b,c]} 1 /Cf(t)dt
T b ’

p—ro0 D T
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Counting matrix points with partitions
Proofs

DISTRIBUTION FOR AOP K3 SURFACES

THEOREM (ONO-S-SATKIA)

If =3 <b<c<3, andr is a fizred positive integer, then

lim #{a€Fy :p" - 3F5(a)pr € [b,c]} 1 /C (t)dt
T b ,

p—00 p T 4rn
where -
—|t .
fO) =4 =+ 7 Ry if |t < 1,
0 otherwise.
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Counting matrix points with partitions
Summary

POINTS OF ELLIPTIC CURVES

TueoreEM (Huang, ONo, S.)

n
#EL8(Mn(Fq)) = D ¢k (—1) - P(n, k)q - 2F1(a) i,
k=0
where P(n,k)q are explicit polynomials in q arising from partitions of n.

Treorem (Huang, Ono, S.)

If we let
ar,n(a;q) = #Eg®(Mn(Fq)) — P(n,0)q
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Counting matrix points with partitions
Summary

POINTS OF ELLIPTIC CURVES

TueoreEM (Huang, ONo, S.)

#ELE (Mn(Fq)) = D dgr(=1) - P(n, k)g - 2F1(a) g
k=0

where P(n,k)q are explicit polynomials in q arising from partitions of n.

Treorem (Huang, Ono, S.)

If we let
ar,n(a;q) i= #E;%(Mn(Fq)) — P(n,0)q
and —2 < b < c< 2, then

1 2
Fg:q27™" :
Tz #{a’ S q qz2 aL,n(a7 q) b C]} / / tZdt

pP—r00 q
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#Xa(Mn(Fq)) = R(n, $g(a+1))g+ Y ¢4x (=1)-Q(n, k, $gr (a+1))g-3F2 <
k=0

a

a+1

).

40> «4F»>» « =>» =



Counting matrix points with partitions
Summary

AOP K3 SURFACES

TueoreEM (Huang, ONo, S.)

#Xa(Mn(Fy)) = B, 6q(a+1) +Z¢ LD Qe ko ess (55 )

where R(n,v)q and Q(n, k,7v)q are polynomials in q involving partitions of n.

Tueorem (Huang, Ono, S.)

. #{a€eFy: q1’"2*"An(a; q) €E[bc} 1 f°
lim = E/ f(t)dt

jamde el q
where -
—|t .
W if 1< |t] < 3,
f@) = e iflt] <1,

V3—2t—t2 = \/3+2t—t2

0 otherwise.
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