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Partition Notation
Throughout this talk, we use the convention that a partition

λ = (λ1, λ2, . . . , λk)

is a weakly decreasing sequence of integers

λ1 ≥ λ2 ≥ λ3 ≥ · · ·

with λi = 0 if i > k . The λi ̸= 0 are the parts of λ, the length is
the number of parts, and the size is |λ| = λ1 + λ2 + λ3 + · · · .

The Young diagram of
(6,6,4,4,4,3,1,1,1).

The Young diagram of the
conjugate (9,6,6,5,2,2).
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Schmidt’s Theorem

Theorem (Schmidt, 1999)

We have the equality∑
λ∈D

qλ1 + λ3 + λ5 + · · · =
∑
λ∈P

q|λ| =
1

(q; q)∞
.

Above, P and D are the sets of all partitions and partitions with
distinct parts, respectively.

Example: The Schmidt type partitions that contribute to q5 are

5, 5 + 4, 5 + 3, 5 + 2, 5 + 1,

4 + 3 + 1, 4 + 2 + 1
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Uncu’s Similar Result

Theorem (Uncu, 2018)

We have the equality∑
λ∈P

qλ1 + λ3 + λ5 + · · · = 1

(q; q)2∞
.

The product on the right can be interpreted as the generating
function for 2-colored partitions.

Example: The Schmidt type partitions that contribute to q3 are

3, 3 + 1, 3 + 2, 3 + 3, 2 + 2 + 1,

2+1+1, 2+2+1+1, 2+1+1+1, 2+1+1+1, 1+1+1+1+1
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t-Colored Partitions

For fixed t ≥ 1, A t-colored partition allows each appearance of a
part size to appear in t distinct ways, which are usually marked
with integer subscripts.

Example: 2-colored partitions of 3 are

32, 31, 22 + 12, 22 + 11, 21 + 11, 21 + 12,

12 + 12 + 12, 12 + 12 + 11, 12 + 11 + 11, 11 + 11 + 11



Elementary Proof of Schmidt and Uncu’s Theorems

Every partition λ ∈ P is uniquely determined by the columns in λ’s
Young diagram. The generating function for partitions with only
the column height of n present is (1− q⌈n/2⌉)−1, counted by the
Schmidt weight λ1 + λ3 + λ5 + · · · .

Now take the product over all n to get

1

1− q

1

1− q

1

1− q2
1

1− q2
1

1− q3
1

1− q3
· · · = 1

(q; q)2∞

which gives Uncu’s Theorem∑
λ∈P

qλ1 + λ3 + λ5 + · · · = 1

(q; q)2∞
.



Elementary Proof of Schmidt and Uncu’s Theorems

Every partition λ ∈ P is uniquely determined by the columns in λ’s
Young diagram. The generating function for partitions with only
the column height of n present is (1− q⌈n/2⌉)−1, counted by the
Schmidt weight λ1 + λ3 + λ5 + · · · .

Now take the product over all n to get

1

1− q

1

1− q

1

1− q2
1

1− q2
1

1− q3
1

1− q3
· · · = 1

(q; q)2∞

which gives Uncu’s Theorem∑
λ∈P

qλ1 + λ3 + λ5 + · · · = 1

(q; q)2∞
.



Now for Schmidt’s Theorem

Schmidt’s Theorem follows from Uncu’s Theorem once we
establish the relationship∑

λ∈P
qλ1 + λ3 + λ5 + · · · = 1

(q; q)∞

∑
λ∈D

qλ1 + λ3 + λ5 + · · ·.

This is easily seen from the fact that any partition in λ ∈ P is
uniquely determined by a pair (ν, µ) where ν ∈ D and µ has all
parts repeating in multiples of 2. To construct λ, combine the
parts of ν and µ.

This Schmidt weight of λ is equal to that of ν plus µ in this
construction.
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Moving on to q-Series

Recall that (z ; q)0 = 1, and for n ≥ 1 or n = ∞,

(z ; q)n = (1− z)(1− zq) · · · (1− zqn−1),

and that the q-multinomial coefficient is given by[
n

k1, . . . , kt

]
q
=

(q; q)n
(q; q)k1 · · · (q; q)kt

where k1 + · · ·+ kt = n.

When t = 2, this becomes the q-binomial coefficient[
n

k

]
q
=

(q; q)n
(q; q)k(q; q)n−k

.
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A q-Series identity of Andrews and Keith

Theorem (Andrews-Keith, 2023)

We have the equality

∑
n≥0

∑
j+k≥n
j ,k≤n

(−1)j+k+nt j1t
k
2 q

(n2)+(
j+1
2 )+(

k+1
2 )

[ n
n−j ,n−k,j+k−n

]
q

(t1q; q)n(t2q; q)n(q; q)n

=
1

(t1q; q)∞(t2q; q)∞
.

Observe that the product side is the generating function∑
λ∈P2

t
ℓ1(λ)
1 t

ℓ2(λ)
2 q|λ| = 1

(t1q; q)∞(t2q; q)∞

where ℓ1(λ) and ℓ2(λ) count the number of parts by color.
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The Underlying Combinatorics

Theorem (Andrews-Keith, 2023)

Fix m ≥ 2 and S = {s1, . . . , si} ⊆ {1, 2, . . . ,m} with 1 ∈ S , and S
ordered s1 < s2 < · · · < si . For all n ≥ 1, The partitions λ with all
part sizes appearing fewer than m times such that

n =
∑
k≡S

(mod m)

λk = λs1 + · · ·+ λsi + λs1+m + · · ·+ λsi+m + · · ·

ρj =
∑
k≥0

(λmk+j − λmk+j+1) = λj − λj+1 + λj+m − λj+m+1 + · · ·

for 1 ≤ j < m are equinumerous with the partitions of size n in P
where any parts congruent to k modulo i appears in the sk+1 − sk
colors {sk , . . . , sk+1 − 1} where we take si+1 = m, and parts of
color j appear ρj times.



Stockhofe’s Partition Bijection

Before proceeding we need to introduce the following.

Fix m ≥ 2. A partition λ is m-flat if λi − λi+1 < m for all i ≥ 1,
and is m-distinct if any part size appears fewer than m times.

These two families are in bijection through conjugation.

A partition is m-regular if no part is divisble by m. The classic
Glaisher’s bijection maps m-distinct to m-regular partitions.
Stockhofe’s (restricted) bijection maps m-flat to m-regular
partitions.
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The Definition

Stockhofe’s bijection ϕ is defined on an m-flat partition λ through
the following algorithm:

1. Let λ = λ̂. Work from λ̂’s last part to the first, removing any
part that is a multiple of m and leaves λ̂ m-flat. Form µ from
these parts.

2. Now, again work from λ̂’s last part to the first. For each part
of the form λ̂i = km, remove the part then subtract m from
all larger parts. Add the part λ̂i + (i − 1)m to µ.

3. Now λ̂ is both m-regular and m-flat, and all parts of µ are
multiples of m. We can write µ = mν, treating partitions as
vectors.

4. Finally, ϕ(λ) = λ̂+mν ′.



The Andrews-Keith Theorem Example

Let m = 4 and consider the Schmidt weight∑
i ̸≡2 (mod 4)

λi = λ1 + λ3 + λ4 + λ5 + λ7 + · · · .

Take for example the 4-distinct partition

λ = (6, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1).

Conjugating λ gives a 4-flat partition λ′ = (13, 12, 10, 8, 5, 3).

We proceed now to compute ϕ(λ′).



Calculating ϕ(λ′)

Set λ̂ = λ′.

There are two parts in λ̂ that are multiples of m. Ignore λ̂4 since
removing this part leaves λ̂ no longer 4-flat. We form µ by first
removing λ̂2.

λ̂ µ



Calculating ϕ(λ′)

To deal with the remaining part that is a multiple of 4, we remove
the part and take 4 from every part above. The amount removed
gets added to µ as a single part.

λ̂ µ



Calculating ϕ(λ′)

We are almost finished. Observe all parts of µ = (16, 12) are
multiples of 4, so we can write µ = 4ν where ν = (4, 3). Then

ϕ(λ′) = λ̂+ 4ν ′ = (9, 6, 5, 3) + 4(2, 2, 2, 1) = (17, 14, 13, 7)

where addition is done coordiniatewise.

λ′ ϕ(λ′)

Since all operations were done on rows, in multiples of m, the
Schmidt weight is preserved.
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Assigning Colors

We now delete any cell not shaded in, and assign the ith part the
color c if ϕ(λ′)i ≡ c (mod m).

ϕ(λ′)

color

1
2
1
3

We finish with the partition appearing in 3 colors,
(131, 102, 101, 53).
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Finishing The Example

We started by considering 4-distinct partitions λ with the Schmidt
weight ∑

i ̸≡2 (mod 4)

λi = λ1 + λ3 + λ4 + λ5 + λ7 + · · · .

The image of this bijection is the set of partitions appearing in 3
colors {1, 2, 3} such that parts ≡ 1 (mod 3) appear in the colors
{1, 2} and parts ≡ 2 (mod 3) appear in the color {3}.

Remark. The generating function for these Schmidt type
partitions is thus

1

(q; q3)2∞(q2; q3)∞
.
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Extending The Bijection

Consider now the same Schmidt weight and m = 4, but now
suppose λ is 8-distinct.

Form µ by taking 4 copies of any part that appears 4 or more
times, and added them to µ as a single part. Let λ̂ be what
remains.

Then:

▶ All parts of µ are multiples of 4 and appear at most once, and
λ̂′ is 4-flat.

▶ The Schmidt weight of λ is that of µ plus λ̂.

Now combine (not vector addition) the parts of σ′ and ϕ(λ̂′), and
do the same process as before to get a colored partition.
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What Is The Image Now?

Plainly any 4-distinct partition is also 8-distinct, and for these
partitions µ is the empty partition, so the same colored partitions
from before are in the image.

Now, parts ≡ 0 (mod 3) are allowed and get assigned the color 4.
The generating function becomes

(−q3; q3)∞
(q; q3)2∞(q2; q3)∞

.
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Using These Maps To Get q-series Identities

A special case of the Andrews-Keith partition identity says that the
following two families of partitions are equinumerous:

1. The 2-colored partitions of n with m1 and m2 being the
number of times parts in each respective colors appear.

2. The partitions λ with parts repeating < 3 times, such that

n = λ1 + λ4 + λ7 + · · ·
m1 = λ1 − λ2 + λ4 − λ5 + · · ·
m2 = λ2 − λ3 + λ5 − λ6 + · · · .



A Recurrence for the Schmidt Type Partitions

Define Qi = q⌊i/3⌋t(i) where

t(i) =


t1 i ≡ 1 (mod 3)

t2 i ≡ 2 (mod 3)

1 i ≡ 0 (mod 3)

Let G0 = 1, G1 = (1− Q1)
−1, and for n ≥ 2 let

Gn =
Qn−2Gn−2

1− Qn
+

Qn−1Gn−1

1− Qn
.

Then ∑
n≥0

G3n =
1

(t1q; q)∞(t2q; q)∞
.



Jumping Now to Overpartitions

The overpartitions P are partitions with the first appearance of any
part optionally overlined.

Example: The overpartitions of 3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1 1 + 1 + 1

If ℓ0(λ) and ℓn(λ) count the overlined and non-overlined parts of λ,∑
λ∈P

t
ℓo(λ)
1 t

ℓn(λ)
2 q|λ| = (−t1q; q)∞

(t2q; q)∞
.
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A Companion to the Andrews-Keith Identity

Theorem (2024)

We have the equality

∑
n≥0

∑
j+k≥n
j ,k≤n

(−1)j+k+nt j1t
k
2 q

(n2)+(
k+1
2 )+j2−nj+j

[ n
n−j ,n−k,j+k−n

]
q

(t2q; q)n(q; q)n

=
(−t1q; q)∞
(t2q; q)∞

.



The Schmidt Type Partitions

The Schmidt type partitions that describe this identity do not
come from the Andrews-Keith partition identity, we have to extend
their map.

The desired generating function equality turns out to be

∑
λ∈D4

t
e(λ)
1 tλ1 − λ2 + λ3 − λ4 + · · ·

2 qλ1 + λ3 + λ5 + · · ·

=
(−qt1; q)∞
(qt2; q)∞

where D4 is the set of partitions with parts appearing < 4 times,
and e(λ) counts the number of part sizes appearing 2 or 3 times.



An Example

The coefficient of t1t
2
2q

6 on both sides of∑
λ∈D4

t
e(λ)
1 tλ1 − λ2 + λ3 − λ4 + · · ·

2 qλ1 + λ3 + λ5 + · · ·

=
(−qt1; q)∞
(qt2; q)∞

is 6.

The Schmidt type partitions are

5 + 3 + 1 + 1, 4 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 1

4 + 4 + 2, 3 + 2 + 2 + 2 + 1, 4 + 2 + 2 + 2

and the overpartitions are

4 + 1 + 1, 4 + 1 + 1, 2 + 2 + 2, 3 + 2 + 1, 3 + 2 + 1, 3 + 2 + 1.

Remark. This identity also generalizes Schmidt’s theorem.
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The Recurrence

The q-series identity was discovered from the following recurrence
relation (but proved differently!).

Let Q2k = qk and Q2k+1 = t2q
k+1, and

Ln =
Qn

1− Qn
(Ln−1 + t1Ln−2 + t1Ln−3)

where the base cases are L0 = 1, L1 = Q1/(1− Q1), and

L2 =
Q2t1
1− Q2

+
Q1Q2

(1− Q1)(1− Q2)
.

Here Ln counts the number of relevant Schmidt type partitions
with exactly n parts.
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A Proof Using q-Series Techniques
Recall we are trying to show

∑
n≥0

∑
j+k≥n
j ,k≤n

(−1)j+k+nt j1t
k
2 q

(n2)+(
k+1
2 )+j2−nj+j

[ n
n−j ,n−k,j+k−n

]
q

(t2q; q)n(q; q)n

=
(−t1q; q)∞
(t2q; q)∞

.

Write

(−t1q; q)∞
(t2q; q)∞

=
∑
n≥0

tn1q
(n+1

2 )

(q; q)n
×

∑
m≥0

tm2 qm
2

(q; q)m(t2q; q)m

so for any fixed J ≥ 0, the coefficient of tJ1 on the product side is

q(
J+1
2 )

(q; q)J

∑
m≥0

tm2 qm
2

(q; q)m(qt2; q)m
.
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A Proof Using q-Series Techniques

The coefficient of tJ1 on the sum side is

(−1)JqJ
2+J

∑
n≥J

∑
J+k≥n
k≤n

(−1)k+ntk2 q
(n2)+(

k+1
2 )−nJ

[ n
n−J,n−k,J+k−n

]
q

(t2q; q)n(q; q)n

=
q(

J+1
2 )

(q; q)J

∑
n≥0

tn2q
n2

(t2q; q)n+J(q; q)n

J∑
k=0

(−1)ktk2 q
(k2)+(n+1)k

[J
k

]
q

after many omitted reindexings and calculations.

Using Cauchy’s
identity

(z ; q)N =
N∑

k=0

(−1)kzkq(
k
2)
[N
k

]
q

with z = t2q
n+1 gives the result.
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Questions and Conjectures

The generality of the Andrews-Keith partition identity gives strong
evidence there are many other related identities.

Their q-series
identity seems to be the k = 2 case of an infinite family.

Conjecture.
For each k ≥ 2, there exists polynomials f (n, i1, · · · , ik , q) in q
with non-negative coefficients and a constant term 1 such that

∑
n≥0

∑
i1+···+ik≥n
i1,...,ik≤n

(−1)n+i1+···+ik t i11 · · · t ikk q(
n
2)+(

i1+1
2 )+···+(ik+1

2 )f (n, i1, · · · , ik , q)
(q; q)n(t1q; q)n · · · (tkq; q)n

=
1

(t1q, t2q, . . . , tkq; q)∞
.
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A Systematic Method to Solve Recurrences?

The recurrence from the Andrews-Keith q-series generalizes to

Gn =
1

1− Qn
(Qn−1Gn−1 + · · ·Qn−kGn−k)

where now Qi = q⌈i/(k+1)⌉t(i) and t(i) = ti if i ̸≡ 0 (mod k + 1),
with t(i) = 1 otherwise.

The initial conditions are G0 = 1, and for 1 ≤ i < k,

Gi =
1

(1− Q1) · · · (1− Qi )
.

Question 1. Is there a general method to solve this recurrence?

Question 2. How can this be established from looking at colored
partitions alone? Do we need the Schmidt type perspective?
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Some Data Supporting This Conjecture

Let’s look at the k = 3 case. The Mathematica code here will
compute the recurrence for us:



Some Data Supporting This Conjecture

If we expand out for instance G4, which corresponds to n = 1, we
get

q3t1t2t3 − q2t1t2 − q2t1t3 − q2t2t3 + qt1 + qt2 + qt3
(1− q) (1− qt1) (1− qt2) (1− qt3)

.

The denominator is (q; q)1(qt1; q)1(qt2; q)1(qt3; q)1, and each
term on top has the form

(−1)1+i1+i2+i3t i11 t
i2
2 t

i3
3 q

(n2)+(
i1+1
2 )+(i2+1

2 )+(i3+1
2 )f (1, i1, i2, i3, q).

where 0 ≤ i1, i2, i3 ≤ 1 and i1 + i2 + i3 ≥ 1.



A Closer Look at f (n, i1, i2, i3, q)

Here are some particular examples:

f (4, 3, 3, 2, q) = (q + 1)
(
q2 + 1

) (
q2 + q + 1

) (
q4 + 2q3 + 2q2 + q + 1

)
f (4, 2, 2, 2, q) =

(
q2 + 1

) (
q2 + q + 1

) (
q5 + 5q4 + 5q3 + 5q2 + 2q + 1

)
f (4, 0, 3, 4, q) = (1 + q)(1 + q2) =

[ 4
4−3,4−4,3+4−4

]
q



Thank you!


