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» A partition A is a finite sequence (A1, -+, Ag) of weakly
decreasing positive integers, called the parts of \.

» )\ has size |A| = A1 + A2 + A3 + - -+ and number of parts /().

The g-Pochhammer symbol is defined:
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Example
The partitions of 5 are

(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1), and (1,1,1,1,1)

The corresponding partitions with distinct parts are
(5),(4,3,1),(4,2,1),(5,4),(5,3).(5,2),(5,1)

We call sums of the form A, + A\¢1, + Aopar + -+ - Schmidt weights
of \.



Background

Theorem (Frank Schmidt)

The number of partitions of n is equal to the number of partitions
A with distinct parts such that Ay + A3+ X s+ --- = n.

Let D and P be the sets of partitions with distinct parts and
unrestricted parts, respectively. Schmidt's result implies:

Zq/\1+/\3+/\5+--- _ Zq|>\| _ 1
\ED \EP (9: 9)oc
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Mork's bijection
Theorem (Frank Schmidt)
The number of partitions of n is equal to the number of partitions

A with distinct parts such that Ay + A3+ A5+ --- = n.

Peter Mork'’s bijection proves this:

86 | 8 ]
413 6
1 4
3 A
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Mork’s bijection maps p = (5,4,3,1) to A = (8,6,4,3,1).

The diagonal hooks hf-‘ become the odd indexed parts Ay;_1, the
hooks to their right become the even indexed parts.
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Mork's bijection
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AL+ A3+ A5+ = |y
Ao+ X+ X6+ = || — £()

so [A] = 2|u| — {(k)



Mork's bijection
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/\1+)\3+)\5+"':‘/~L‘
Mot et s = [l — ()
so |A[ = 2|u| — £(n)

If we write p as a 2-modular diagram with remainder 1 on each
part, this becomes a size preserving bijection from partitions with
odd parts to partitions with distinct parts.



This is exactly Bessenrodt's bijection!
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A+ A3+ A5+ = |y
A2+ A+ A6+ = |l — L(w)
s [A] = 2|u| — £(n)

If we write 1 as a 2-modular diagram with remainder 1 on each
part, this becomes a size preserving bijection from partitions with
odd parts to partitions with distinct parts.



The relationship between these maps

The following diagram commutes:

Mork

O ¢ > P
Delete numbers
from 2-modular diagram

P - partitions
O - partitions with odd parts
D - partitions with distinct parts



|dentities implied by Mork's bijection
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|dentities implied by Mork's bijection
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= (9z; 42%) 0
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Proof. We have by Mork’s bijection:

S g s+ ds e 5 20 = ) gl
AeD AEP
S U S U0 e 1
n=0 (qZ2' qzz)n n=0 (q22’ qzz) (1q22; qzz)oo



|dentities implied by Mork's bijection

E: Al A1 + s + A5 + - #
3 Alghe et Ag - 1
(2 02)

Proof. We have by Mork’s bijection:
ZZ‘)\’q/\1+/\3+)\5+" 222‘)\‘ )\) ’/\|
AeD AeP
00 00 2\n (1\7"

_ (g2)" <~ (02)"(5) _ 1
_Z(qz2;q22),,_z(qz2 qz2), )

n=0 n= (qu2-q22)oo

Replace z with gz and g with g~! to get the second identity.
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A closer look at the first identity

1

_ 2 3y 2 3 4 5\ 3
m—l'{’ZC]‘i‘(Z +Z)q +(z +z +Z)q

+ (54228420 + -

Setting z = 1 gives the values of the partition function:

=14+q+2¢°+3¢°+5¢* + -
(q;q)oo

These polynomials have two interpretations:

Zz\/\! - Zz2|/\\*f(>\)

AeD, AEP,
A1+A3+As+-=n [A|=n

For example, (3,2,1),(4,2) and (3,1),(2,2), respectively,
contribute to the 2z° factored out of g* above.



A closer look at the first identity

These polynomials seem to be unimodal. For example, the
following is the coefficient of ¢2°:

720 4 22 41 2722 13,28 1524 4 772 1112704+
152%7 4 222%8 4+ 302%° 4 42230 4+ 54231 + 70232+
82233 + 0023 + 8423 + 64230 + 33237 + 10238 + 23
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Background

Theorem (Ali Uncu)

AMA+A3+ A5+ 1
I ~ (4:9)?
AEP 1 iJee
Later, George Andrews and Peter Paule independently found the
same result, and gave the following interpretation.

Theorem
The number of 2-colored partitions of n is equal to the number of
partitions X such that \1 + A3+ s +--- = n.
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Background

Example
There are 10 2-colored partitions of 3.

(31, (3%). (2,11),(2%,11), (21,17), (2%,1%),

(11’ 11’ 11)’ (12, 11’ 11)’ (12’ 217 11)’ (12’ 12’ 12)

There are 10 partitions A such that Ay + A3+ Xs + - - -
(3),(3,1),(3,2),(3,3),(2,2,1),(2,2,1,1),

(27 17 1)7 (2? 17 17 1)7 (1? 1? 17 17 1)7 (1? 1? 17 17 17 1)

=3.



Background

Theorem (Walter Bridges and Ali Uncu)
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Background

Theorem (Walter Bridges and Ali Uncu)

ZZ)\lq)\1+)\3+)\5+"': 1 .

fyd (92 9)3,
William Keith and George Andrews remarked on a bijection that
explains the first of these identities. Conjugate a partition A, and
use the uncounted places A\, A4, A, ... to get the colors:

=N =



Extending the Bijection

Theorem
The number of partitions A such that Ay = k, A\, = m, and
Ar + Atgr + Aot4r + - = n is equal to the number of pairs (u, v)

such that p is a partition with at most r — 1 parts where
pu1 =k —m, and v is a t-colored partition of n with m parts.



Extending the Bijection

Theorem
The number of partitions A such that Ay = k, A\, = m, and
Ar + Atgr + Aot4r + - = n is equal to the number of pairs (u, v)

such that p is a partition with at most r — 1 parts where
w1 =k —m, and v is a t-colored partition of n with m parts.

This implies:
3 2Mgh T A T Ao e o S ZZ ) gl Al
AP AEP, AePt

E()\)Sr—l

T (12 (az; 9)k

where Pt is the set of t-colored partitions.



Extending the Bijection

[ ] >
1
. - 3
A 1L
v
A2t+r!

Example of the bijection where r =4 and t = 3:
A=1(9,7,6,5,4,4,4,4,3,2 1) maps to u = (4,2,1) and
v=(3%3%23%1211).



Restricting the bijection to distinct parts

Restricting this bijection to r = 1 and partitions with only distinct
parts gives the following.

Corollary

The number of partitions A with distinct parts such that \1 = k
and A1 + Aey1 + Aogr1 + - -+ = n is equal to the number of
t-colored partitions v of n with k parts in which every possible part
size from 1 to vy appears, and in all t colors, except the largest
which only appears in the colors 1,...,s for some s < t.



A better identity

Using a much different approach, we can do better:

S MM+ Aepr Ao +
AEP

1
o (sz s), H (snt+r ntlz;5);



The proof when r =1

Define
fn(q7 5) — Z 5|)‘|q)‘1 + )\tJrl + )\2t+1 + -
AEP,
A1=n
So then
0o
F(S, q, Z) _ Z Zx\ls’)\|q)\1 4+ At+1 + A1 + - _ Z f,,(q,S)Zn
AEP n=0

is the generating function of f,.



The proof when r =1
First we find a recurrence relation for

f(q,s) = Z s gAL F Aerr + Aoegr 4+

AEP,
A1=n

)\t—‘,-li fi(s, q)

p = K —k+t—1
ha.9) = (@) 2o 0 [T as)
k=0 S



The proof when r =1

Now we replace f, with the recurrence relation:

o0

D= k(e [n—k+t—1 n
F(s,q,2) =) ((qS) D skl [n 1 Lfk(%s)) z
k=0

n=0



The proof when r =1

Now we replace f, with the recurrence relation:

F(s,q.2) = Ej(an Ejﬁ“l F‘fi{“]fuma)z"

n=0

n
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The proof when r =1

Now we replace f, with the recurrence relation:

o0
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n=0
n
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The proof when r =1

Now we replace f, with the recurrence relation:

F(s,q.2) = Z((qs Zs ) [”_fff‘l] fk(q,s))z"

n=0
n

on—k+t—1 i
k(=) [ ] (g, 5)(s02)
S

t—1
n=0 k=0
N D) (= [n+t—1 )
_ (Zs (-Df,(q, 5)(sq2) ) (Z [ e } (s42) )
n=0 n=0 S
This factors to F(s, q,z) = ﬁF(s,q,stqz).



The proof when r =1

Finally, expand F(s, q,z) = ﬁF(s, q,s'qz) N times:

sqz;s

Nt N
F(S,q, H (snt+1 n+lz 5) F(S q,s °q Z)



The proof when r =1

Finally, expand F(s, q,z) = mF(s, q,s'qz) N times:
N
F — 1 F Nt N
(S,Q,Z) (5,q,5 q Z)

i (Snt+1qn+lz; S)t

Then take the limit to get

[e.e]
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The proof when r =1

Finally, expand F(s, q,z) = ﬁF(s, q,s'qz) N times:

sqz;s

N

1 Nt N
F(S,q,Z) = | | (Snt+1qn+12' S)tF(S’ q,s g Z)
n=0 !

Then take the limit to get

[e.e]

S g9,z H snt+1 n+1Z S)

The r > 1 case follows easily from this.



The proof when r > 1

Let F/(s,q,z) = Z z)‘15|>‘|q)‘r  Netr 4 Aoy 4o
AEP



The proof when r > 1

Let F/(s,q,z) = Z z)‘15|>“q)‘r  Netr 4 Aoy 4o
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F”(S’ q, Z) =



The proof when r > 1

Let Fr(S, q,Z) = Z Z)\15|>\‘q)\f + )\t-i-r + A2t+r -+
AEP

n(r— 1
(s,4,2 ZS oz S) fa(s, q)



The proof when r > 1
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The proof when r > 1

Let Fr(s, q, z Z Z)\15|>\‘q)\r + Aer + Aopgr +
AEP
sn(r=1) 1/(sz;s)r-1
Ar fn(S, CI) :

n(r— 1
(s,q,2 Zs = S) fa(s, q)

-1

1

-~ F =1, =
(sz;s),— (s:9,5"72) (sz S)r H o (5" g ntlz:s):



Reversing the Schmidt weight

Setting s to g and g to g~ in

Z Z)\lsf)\’q)\r + Xepr + Xopgr + - produces
AEP
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Reversing the Schmidt weight

Setting s to g and g to g~ in

Z Z)\lsf)\’q)\r + Xepr + Xopgr + - produces

AeP
ZZ)\lq|A|_)\r_)\t+r—)\2t+r—...: ]_1 :

: r—1-. yt—
AEP (qz, q)oo(q z,q )oo

This has a colored partition interpretation if r > 1: The number of
partitions A with A\ = k and all parts except at the indices
ryt+r,2t+r,... summing to n is equal to the number of
2-colored partitions i of n such that ¢(u) = k, and the second
color appears only in part sizes
r—1t—1+r—12(t—1)+r—1,....
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Further Work

» Generalize Mork's bijection, perhaps by first generalizing
Bessenrodt's bijection.

» Adapt the new bijection or the proof of the main theorem to
work with more general Schmidt weights, or to certain subsets
of P.



Thank you!
A preprint of this work can be found at
https://arxiv.org/abs/2207.14586


https://arxiv.org/abs/2207.14586

