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Example with A = (7,5,2,2,1,1,1):
Let A = (A1,...,As) be an integer partition. LA) =17, A =19, w(X) =3,

e Length: ¢(\) =s.
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o Number of occurrences of 1s: w(A).
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Introduction

Partition statistics

Let A = (A1,...,As) be an integer partition.
e Length: ¢(\) =s.
o Weight: |A| = A1 +...+ As.
o Number of occurrences of 1s: w(A).
o Number of parts greater than w(A): n(A).
e Crank: crank()) equal to
A if w()) =0,
n(A) —w(A) if w(X) > 0.

o Mex: mex(A), the smallest positive integer
which is not a part of A.

Example with A = (7,5,2,2,1,1,1):

LA) =17,
crank(X\) = —1, mex(X\) = 3.

Al =19, w(A) =3, n(A) =2,
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Introduction

Non-negative crank—odd mex identity

Theorem 1: Andrews—Newman/Hopkins—Sellers

Let n be a non-negative integer. Then,

#{\ : |A\| = n, crank(X) > 0} = #{X : |A\| = n,mex(A\) =1 mod 2}.

Analytic proof via the computation of the generating functions.

Refinement related to the parity of length and the congruences modulo 4 of the
mex.

Combinatorial interpretations of Hopkins, Sellers and Yee related to the Durfee
decomposition.
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Let i/ be a non-negative integer and A be an integer partition. The i-mex of A,
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Introduction

Extending the notion of mex

Let i/ be a non-negative integer and A be an integer partition. The i-mex of A,
mex;(\), is the smallest integer greater than / which is not a part of \.

For A = (7,5,2,2,1,1,1),

mexp(A) = mexi(X) = mexo(A) = 3,

mex3(\) = 4,
mexa(A) = mexs(\) = 6,
mexg(\) = 8,

mexi(A) =i+ 1foralli>7
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Introduction

Generalization of the non-negative crank—odd mex identity

Let n, i be two non-negative integers with n > 2. Then,

#{X 1 |[A| = n, crank(A)> i} = {A: |A| = n, i EX, mex;(A\) —i =1 mod 2}

with the convention that there is a fictitious part O at the end of any integer
partition.

When i = 0, mex = mex; and we recover the non-negative crank—odd mex identity for
the weight greater than 1.
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Durfee decomposition

Let A = (A1,...,As) be an integer partition. Set
Ao =00 and Asy1 = 0. For an non-negative
integer i, define

d* = max{u>0: X\, —u>i}.

i

A =(2,(6,3),(6,2)).

o (d?)i>0 is non-increasing and (i + d?);>o is
non-decreasing.

e Fori=0, dg‘ = d is the length of the Durfee
square, and the Durfee decomposition is
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vy=#{v: A >u}—uforallue{l,...,d}.
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Introduction

Relating the i-mex to the Durfee decomposition

Let n,i be two non-negative integers. Then,

AN =0, A s > i+ dM =#{A: [\ =n, mexi(\) —i=1 mod 2},

Bijection such that the length of the partitions and the parts < i are conserved.
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Introduction

Relating the Durfee decomposition to the crank

Theorem 4: Hopkins—Sellers—Yee

Let n, i be two non-negative integers such that n > 2. Then,

HA A =, 7 €X A > i+d}}=#{\: |\ = n, crank(\)< —i}.

Revised bijection from Hopkins, Sellers and Yee's paper.
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Introduction

Garvan's crank identity

Theorem 5: Garvan

We have

(9:9)
x—1)q+ S xrakN N = 9190
( ) ; (g%, ax7 1 q)oo

Hence, for n,i be two non-negative integers such that n > 2. Then,

#{\ : |A\| = n, crank(A\)= i} = ${\ : |A\| = n, crank()\)= —i}.

Involution which transforms the crank into its opposite.
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From the mex to the Durfee decomposition

The setup

Let P be the set of partitions. For i > 0,
Pi={ :ic€Aand P;={\:i¢g\}
Fi={A:dp >i+dyand Fi={N: A =i+d )
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From the mex to the Durfee decomposition

The setup

Let P be the set of partitions. For i > 0,
Pi={ :ic€Aand P;={\:i¢g\}
Fi={A:dp >i+dyand Fi={N: A =i+d )
For i,k >0, set Aj, = (i+ k,...,i+ 1) consisting of k consecutive integers ending
by i + 1. Hence,
e The set {\: mex;(A\) —i =1 mod 2} can be identified to

| {22k} X Pisarsa
k>0

e Theset {\: A, > i+ d*} can be identified to

{AI,O} X .F,' = {@} X .F,'
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From the mex to the Durfee decomposition

Main idea

Build a transformation ¢; on

u {Ai2c} x P |\ ({Aio} x Fi) U {Djok} X Figor |U |_| {2} % Figox
k>0 k>1 k>0

such that
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From the mex to the Durfee decomposition

Main idea

Build a transformation ¢; on
u {Aj2} x P )\({Aio} x Fi) = U {Djok} X Figor |U |_| {2} % Figox
k>0 k>1 k>0

such that - B
¢i({Aio} x Fi) C{Ajo} X Pis1,
and for k > 1,
i({Aj2k} X P) C {Aj 2k} X Piyors1 U {Ajok—2} X Pijtok—1,

and iterate it on

| {226} X Pisors
k>0
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 ok} X Fipox for k >0

Example with i =1, A\ =(7,6,6,6,2,1,1)
and k = 1. We have d3>‘ =3 and

= _ A
Let A € Fiiok. Then, )\dii\r2k_l+2k+di+2k. Ns=3+3—6.
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Let A € Fiiok. Then, )\dii\r2k_l+2k+di+2k. Ns=3+3—6.

e Add one to \; for 1 < j < d?
\ - i+2k? L] J

Isaac Konan
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On {4 ok} X Fipox for k >0

Example with i =1, A =(7,6,6,6,2,1,1)
and k = 1. We have d3>‘ =3 and

= _ A
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 ok} X Fipox for k >0

Example with i =1, A =(7,6,6,6,2,1,1)
and k = 1. We have d3>‘ =3 and

Let A € Fiiok. Then, X =i+2k+d>,,.
et A€ Fitak. Then, Agy =1+ 2kt diia A3=34+3=6. u=(87,64211).

e Add one to }; for1§j<dﬁ2k, o | « ‘

e transform A ,x into i+ 2k + 1.
i ok

Let p be the partition obtained. Then
Bi((Ai2k; A)) = (A2, 1)-
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 2k} X Figok for k > 1

Example with i =1, A = (7,6,5,5,2,1,1)
Let \ € -Fi+2k- Then, Ad* > i+2k+ dﬁzk- and kK = 1. We have d??‘ = 2 and
i+2k

A =6 >3+2.
.
.
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 2k} X Figok for k > 1

Example with i =1, A = (7,6,5,5,2,1,1)

A
Let A € Fiyox. Then, Ayn > i+ 2k +dd,,. and k =1. We have di* =2 and
i+2k 9ok i+2k A2=6>3+2.

e Subtract one from A; for 1 < j < di\nk' . H
°
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A
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 2k} X Figok for k > 1

Example with i =1, A = (7,6,5,5,2,1,1)

A
Let A € Fiyox. Then, Ayn > i+ 2k +dd,,. and k =1. We have di* =2 and
i+2k 9ok i+2k A2=6>3+2.

e Subtract one from A; for 1 < j < di\nk'
L]

e add the parts i 4+ 2k 4+ d}},, and i + 2k — 1.
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 2k} X Figok for k > 1

Example with i =1, A = (7,6,5,5,2,1,1)
and k = 1. We have d3>‘ =2 and

. 2 A =6>3+2.
Let A € Fitok. Then, )\dé&k > i+ 2k + di+2k'

e Subtract one from \; for 1 < j < dilzk'

[ ]
o
e add the parts i + 2k + d\,, and i+ 2k — 1. m
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From the mex to the Durfee decomposition

Transformation ¢;
On {4 2k} X Figok for k > 1

Example with i =1, A = (7,6,5,5,2,1,1)
and k = 1. We have d3>‘ =2 and

do=6>3+2 p=(6,55552211).
Let A € Friok. Then, Apx > i+ 2k +dA,,. ? = )
i+2k

e Subtract one from \; for 1 < j < dilzk' N
L]

e add the parts i + 2k + d\,, and i+ 2k — 1. m

Let 1 be the partition obtained. Then

Bi((Ai2k,A)) = (Dj2k—2, 1)
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From the mex to the Durfee decomposition

The map ®; from Ukzo{AiQk} X Pitok+1 to {Ajo} X Fi

For (Ajk, A) € {Aj 2k} X Pitokt1, iterate the transformation ¢; as long as it is
possible.

Claim 1: Finite number of iterations

The number of iterations is finite, and the last pair belongs to {A; o} x F;.

We set ®;((Aj 2k, A)) to be the last pair obtained after the iterations of ¢; on
(Aj2k,A).

Isaac Konan



From the mex to the Durfee decomposition

Example with i = 1 and the pair (A1,(7,6,6,6,2,1,1))

Step 0

A1

e
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From the mex to the Durfee decomposition

Example with i = 1 and the pair (A1,(7,6,6,6,2,1,1))

Step 1

A1
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From the mex to the Durfee decomposition

Example with i = 1 and the pair (A1,(7,6,6,6,2,1,1))

Step 2

A1
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From the mex to the Durfee decomposition

Example with i = 1 and the pair (A1,(7,6,6,6,2,1,1))

Step 3

A1
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From the mex to the Durfee decomposition

Example with i = 1 and the pair (A1,(7,6,6,6,2,1,1))

®1((A1,2,(7,6,6,6,2,1,1))) = (A1,0,(8,7,5,4,4,2,2,1,1))

A1

. Il
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n ?f+2k+l)

Example with i =1,

A= (6,5,5,5,5,2,2,1,1) and k =0. We
_ _ haved2’\:3and)\3:5:2+3.

Let X € Piyok+1 N Fit2kt1- Then,

Agh. =14 i+2k+d}, 5 and 1+i+2k € .

i+2k+1

-
-+
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n ?f+2k+l)

Example with i =1,

A= (6,5,5,5,5,2,2,1,1) and k =0. We
_ _ haved2’\:3and)\3:5:2+3.

Let X € Piyok+1 N Fit2kt1- Then,

Agh. =14 i+2k+d}, 5 and 1+i+2k € .

i+2k+1

e Add one to )j for 1 <j < dd, .,

e delete the parts )‘d* and i + 2k + 1.
2k+1
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n ?f+2k+l)

Example with i =1,
Let A € Prroxsr N Fisoks1. Then, A= (6,5,5,5,5,2,2,1,1) and k = 0. We

A — 5 —
Agp =14i+2k+d), ., and 1+i+2ke ), havedy =3and s =5=2+3

i+2k+1

e Add one to )j for 1 <j < dd, ., n J
o delete the parts A x and i + 2k + 1.
i+2k+1 *
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n ?f+2k+l)

Example with i =1,

A= (6,5,5,5,5,2,2,1,1) and k = 0. We
have dQ)‘ =3and \3 =5=2+3.
n=(7,6,55211).

Let A € Piyokqr N Fipokt1- Then,

Agh. =14 i+2k+d}, 5 and 1+i+2k € .

i+2k+1

e Add one to )j for 1 <j < dd, .,
o delete the parts A x and i + 2k + 1.
i+2k+1

Let p be the partition obtained. Then

Yi((Aj2k N)) = (Di2k+2, 1)
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Let A € Pijoks1 N Fipoks1. Then, Example with i=1,A = (8,7.6.4,2,1,1)

— A
>1+i+2k+di12k+1 and i+ 2k +1€E A and k = 1. We have d;' =2 and

A
a2 M =T7>4+2.

i+2k+1

F»
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Let A € Pijoks1 N Fipoks1. Then, Example with i=1,A = (8,7.6.4,2,1,1)

— A
>1+i+2k+di12k+1 and i+ 2k +1€E A and kK = 1. We have d;' =2 and

A
d N=7>4+2 p=(7,6,6621,1).

i+2k+1

e Subtract from to A; for 1 < j < dﬁ}_ka N

F»
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Example with i =1, A = (8,7,6,4,2,1,1)

Let A € Pijoks1 N Fipoks1. Then, N
B\ 1442kt dr dit2k+1en, and k = 1. We have d;' =2 and
di,\+2k+1> +i+2k+di,andi+2k+1¢€ N =7 >4+2.
e Subtract from to \; for 1 <j < d},,, ol = ‘
° *
L]
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From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Example with i =1, A = (8,7,6,4,2,1,1)

Let A € Pijoks1 N Fipoks1. Then, N
N 1 i4 2k 4 dA di4t2k+1e and k = 1. We have d;' =2 and
ChP > ltitektdio, and i+ 2k+ 1€ A =7>4+2.
e Subtract from to A; for 1 < j < dﬁ}_ka .| « ‘
e transform a part i + 2k + 1 into ol

i+2k+1+ dl)\+i+2k

Isaac Konan



From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Let A € Pijoks1 N Fipoks1. Then, Exjn;(p|e iNit\7vi ? . )(\1/\: (8é77 6d7 s2L
A 147+ 2k + d di+2k+1ep 2ndx=1 Wehaved=2an
sy > LI H2KH Ay and T2k 1€ M=T7>4+2
e Subtract from to Aj for 1 < j < dﬁ}_ka N ‘

e transform a part i + 2k + 1 into
i+2k+1+ d1)\+i+2k

Isaac Konan



From the mex to the Durfee decomposition

Transformation v; on | |, ~o{Ai2«} X Piioks1

On {4 2} X (5/—2k+1 n f/’—2k+1)

Let A € Pijoks1 N Fipoks1. Then,

Ax
di+2k+1

e Subtract from to A; for 1 < j < dﬁ}_ka

e transform a part i + 2k + 1 into
i+2k+1+ d1)\+i+2k

Let p be the partition obtained. Then

Pi((Dj2k A)) = (D 2k 1)

Isaac Konan

>1+i+2k+d},, andi+2k+1€A

Example with i =1, A =(8,7,6,4,2,1,1)
and kK = 1. We have dlf‘ =2 and
A =7>4+2.




From the mex to the Durfee decomposition

The map V; from {A;o} x F; to I_lkZO{AiQk} X Pitok+1

For (Ai,A) € {Aj o} x Fj, iterate the transformation 1; as long as it is possible.

Claim 2: Finite number of iterations

The number of iterations is finite, and the last pair belongs to | |, ~o{Aj 2k} X
Pit2k+1- -

We set W;((Ajg,\)) to be the last pair obtained after the iterations of ¢;.

Isaac Konan



From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

e The maps ¢; and v; describe inverse bijections between:
* {Ajok} X Fipox and {Aj ok} x fii2k+1 N Fiyak41 for k >0,
* {Djox} X Fiyor and {Ajok—2} X Pijok—1 N Fijok—1 for k > 1.

Isaac Konan



From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

e The maps ¢; and v; describe inverse bijections between:
x {2k} X Fiyor and {42} X Pijoky1 N Fiyokq1 for k >0,
*x {2k} X Fiyok and {A; ok—2} X Pipok—1 N Fipok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
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From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

e The maps ¢; and v; describe inverse bijections between:
x {2k} X Fiyor and {42} X Pijoky1 N Fiyokq1 for k >0,
*x {2k} X Fiyok and {A; ok—2} X Pipok—1 N Fipok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
o The pairs of {Aj 2} X Pjjok+1 are not fixed by ¢; so as their iterations.
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From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

The maps ¢; and v; describe inverse bijections between:
x {2k} X Fiyor and {42} X Pijoky1 N Fiyokq1 for k >0,
*x {2k} X Fiyok and {A; ok—2} X Pipok—1 N Fipok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
The pairs of {A,-72k} X Piyok+1 are not fixed by ¢; so as their iterations.

e For all (Aj 2k, A) not fixed by ¢;, the number of its iterations in {A; 2k} X P is
|4 2k [+ Al
1+i4+2k

less than
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From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

The maps ¢; and v; describe inverse bijections between:
x {2k} X Fiyor and {42} X Pijoky1 N Fiyokq1 for k >0,
*x {2k} X Fiyok and {A; ok—2} X Pipok—1 N Fipok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
The pairs of {A,-72k} X Piyok+1 are not fixed by ¢; so as their iterations.
e For all (Aj 2k, A) not fixed by ¢;, the number of its iterations in {A; 2k} X P is
|Aj 2k |+[A]
T+it+2k
e The number of possible iterations of (A,-72k, A) is less than

(A 2k +[A)(1+log(k+1))
> .

less than
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From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

e The maps ¢; and v; describe inverse bijections between:
* {Ajok} X Fipox and {Aj ok} x fii2k+1 N Fiyak41 for k >0,
* {Djox} X Fiyor and {Ajok—2} X Pijok—1 N Fijok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
o The pairs of {Aj 2} X Pjjok+1 are not fixed by ¢; so as their iterations.
e For all (Aj 2k, A) not fixed by ¢;, the number of its iterations in {A; 2k} X P is
|4 2k |+
T+it+2k
e The number of possible iterations of (A; », A) is less than
(18,26 [+ [)(1+log(k+1))
> .
e The maps ®; and W; describe inverse bijections.

less than
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From the mex to the Durfee decomposition

Sketch of the proof of the well-definedness of the maps

e The maps ¢; and v; describe inverse bijections between:
* {Ajok} X Fipox and {Aj ok} x fii2k+1 N Fiyak41 for k >0,
* {Djox} X Fiyor and {Ajok—2} X Pijok—1 N Fijok—1 for k > 1.
e The pairs fixed by ¢; (and 1);) are those of the form (A; 2k, A) with
A =i+2k+1,ie Xe Fipp with dd,, =1.
o The pairs of {Aj 2} X Pjjok+1 are not fixed by ¢; so as their iterations.
e For all (Aj 2k, A) not fixed by ¢;, the number of its iterations in {A; 2k} X P is
|4 2k |+
T+it+2k
e The number of possible iterations of (A; », A) is less than
(18,26 [+ [)(1+log(k+1))
> .
e The maps ®; and W; describe inverse bijections.

less than

o The parts < / are conserved.
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From the Durfee decomposition to the crank

Relation between crank()) and d?

Theorem 6: Hopkins—Sellers—Yee

Let i/ be a non-negative integer. Then,

crank(A) < —i <= w(A) > i+ d.

Proof.
Trivial when |A| = 0. When |A| >0, i +d? > dg > 0.

If w(A) > i+d} >0, then n(\) < d? and crank()\) < —i.

If If 0 < w(A) < i+ d}, then n(A) > d and crank(X) < —i. If w(X) =0,
crank(X) = X1 > 0> —i.

Set C; = {X: crank()\) < —i} = {A: w(X) > i+ d}}.
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From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
Let A € FiNP;. Then, Ax >iand i€ A di =3and \3=5>1+3.

Isaac Konan



From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
Let A € FiNP;. Then, Ax >iand i€ A di =3and \3=5>1+3.

e Subtract one from A; for 1 < j < d,.)‘,

Isaac Konan
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Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
Let A € FiNP;. Then, Ax >iand i€ A di =3and \3=5>1+3.

e Subtract one from A; for 1 < j < d,.)‘,
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From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
Let A € FiNP;. Then, Ax >iand i€ A di =3and \3=5>1+3.

e Subtract one from A; for 1 < j < d,.)‘,

e delete a part i and add d,?‘ + i parts equal to 1
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From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
d} =3and A\3=5>1+3.

Let A € FiNP;. Then, Agr >iand i€

e Subtract one from \; for 1 < j < dl?‘,

e delete a part i and add dl.A + i parts equal to 1

Isaac Konan



From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
d} =3and A\3=5>1+3.

Let A € F;NP;. Then, Agr >iand i€ p=1(7,6,4,4,4,2,2,1,1,1,1,1).

e Subtract one from \; for 1 < j < dl?‘,

e delete a part i and add dl.A + i parts equal to 1 ;

The partition p obtained satisfies dl.M = d,?‘ and
w(p) > i+ d", so that € C;.

Isaac Konan



From the Durfee decomposition to the crank

Bijective proof of Theorem 4

Example with i =1,
A=(8,7,5,4,4,2,2,1,1). We have
d} =3and A\3=5>1+3.

Let A € F;NP;. Then, Agr >iand i€ p=1(7,6,4,4,4,2,2,1,1,1,1,1).

e Subtract one from \; for 1 < j < dl?‘,

e delete a part i and add dl.A + i parts equal to 1 ;

The partition p obtained satisfies dl.M = d,?‘ and
w(p) > i+ d", so that € C;.

For p € Cj with |u| > 1, () > 2d! + i and the
transformation is invertible.

Isaac Konan



Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Let A\ be a partition with |A| > 1.
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Let A\ be a partition with |A| > 1.
e If w(\) =0, then transform the part A; into Example with A = (4,4,2,2).

A1 parts equals to 1 to obtain a partition p

with w(p) = A1 and n(p) = 0. Hence
crank(p) = —crank(X).

Isaac Konan



Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with A
1

L (4,4,2,2).
Let A be a partition with |A| > 1. o= (4,2,2,1, 1)

k) 17
o If w(\) =0, then transform the part A; into
A1 parts equals to 1 to obtain a partition
with w(p) = A1 and n(p) = 0. Hence ‘ ‘
crank(p) = —crank()\).
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

o . Example with A = (4,2,2,1,1,1,1).
Let A be a partition with [A| > 1.

o If w(\) =0, then transform the part A; into
A1 parts equals to 1 to obtain a partition
with w(p) = A1 and n(p) = 0. Hence ‘ ‘
crank(p) = —crank()\).

e If w(X) > 0 and n(\) = 0, transform the w(\)
parts equals to 1 into a part w()\) to obtain a
partition p with w(u) =0 and p1 = w(A).
Hence, crank(u) = —crank()).
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Let A\ be a partition with |A| > 1.
e If w(\) =0, then transform the part A; into Example with A = (4,2,2,1,1,1,1).
A1 parts equals to 1 to obtain a partition p u=(4,4,2,2)

with w(p) = A1 and n(p) = 0. Hence
crank(p) = —crank(X).

e If w(X) > 0 and n(A\) = 0, transform the w(\)
parts equals to 1 into a part w(\) to obtain a
partition g with w(p) = 0 and p1 = w(A).

Hence, crank(u) = —crank(X).

These two cases are inverse each other.

Isaac Konan



Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have
w(A) =5, n(A\) =2 and
p(X) = max{5,5} = 5.
Let A be a partition with |A| > 1.

o If w()) > 0 and 7(\) > 0, set
p(X) = max{w(X), A2 — 1} and do the

following. r

Isaac Konan




Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have

Let A be a partition with |A| > 1. SO 25 ) =2 and
e If w(A\) > 0 and n(\) > 0, set p(\) = max{5.5} — 5.
p(A) = max{w(A), A2 — 1} and do the
following.

* Transform X into its conjugate A*.

F-

Isaac Konan



Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have

Let A\ be a partition with |A| > 1. w(A) = 5. 1(A) = 2 and
o If w(A) >0 and n(A) >0, set p(A) = max{5,5} = 5.
p(A) = max{w(A), A2 — 1} and do the
following.
* Transform X into its conjugate A*.
* Transform A] into A5 + A1 — p(A) — 1. F
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have

Let A\ be a partition with |A| > 1. w(N) = 5, n(A) = 2 and
e If w(X) >0 and n(\) > 0, set p(\) = max{5,5} = 5.
p(A) = max{w(A), A2 — 1} and do the
following.
* Transform X into its conjugate A*.
* Transform A] into A5 + A1 — p(A) — 1.
% Add one to Xf for 1 < i < w(X). H
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Let X\ be a partition with |A| > 1.

e If w(X) >0 and n(\) > 0, set
p(A) = max{w(A), A2 — 1} and do the
following.
* Transform X into its conjugate A*.
% Transform A into AJ + A1 — p(XA) — 1.
% Add one to XF for 1 < i < w(X).
* Delete A1 — p(\) — 1 parts 1.

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have
w(A) =5, n(A\) =2 and

p(A) = max{5,5} = 5.
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Let A\ be a partition with |A| > 1.
e If w(X) >0 and n(\) > 0, set
p(A) = max{w(A), A2 — 1} and do the
following.
* Transform X into its conjugate A*.

*
% Add one to Xf for 1 < i < w(X).

* Delete A1 — p(A) — 1 parts 1.

* Transform the part )‘Z)(A) =n(A) into

n(A) parts equal to 1.

Transform A] into A5 + A1 — p(X) — 1.

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have
w(A) =5, n(A\) =2 and

p(A) = max{5,5} =5.
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Involution transforming the crank into its opposite

Involution transforming the crank into its opposite

Example with
A=(7,6,4,4,4,2,2,1,1,1,1,1). We have

Let A\ be a partition with |A| > 1. w(N) = 5, n(A) = 2 and

e If w(X) >0 and n(\) > 0, set p(A) = max{5,5} = 5.
p(A) = max{w(A), A2 — 1} and do the pw=(9,8,6,63,1,1)
following.

* Transform X into its conjugate A*.
Transform A] into A5 + A1 — p(X) — 1. H

Add one to Af for 1 < i < w().
Delete A\; — p(A) — 1 parts 1.
Transform the part )‘Z)(A) =n(A) into

*
*
*
*

n(A) parts equal to 1.

The partition p obtained satisfies w(u) = n(A)
and n(p) = w(A) (and p(p) = A3).
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Involution transforming the crank into its opposite

THANK U
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