A bijective proof and generalization of the non-negative crank-odd mex identity

Isaac Konan

ICJ, Université Claude Bernard Lyon 1

Online Partitions Seminar, April 28

Partition statistics

$$
\text { Example with } \lambda=(7,5,2,2,1,1,1) \text { : }
$$

Partition statistics

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition.

- Length: $\ell(\lambda)=s$.

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3$,

Partition statistics

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition.
Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3, \eta(\lambda)=2$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3, \eta(\lambda)=2$,

- Length: $\ell(\lambda)=s$.
- Weight: $|\lambda|=\lambda_{1}+\ldots+\lambda_{s}$.
- Number of occurrences of $1 \mathrm{~s}: \omega(\lambda)$.
- Number of parts greater than $\omega(\lambda): \eta(\lambda)$.
- Crank: $\operatorname{crank}(\lambda)$ equal to

$$
\begin{aligned}
& \lambda_{1} \text { if } \omega(\lambda)=0 \\
& \eta(\lambda)-\omega(\lambda) \text { if } \omega(\lambda)>0 .
\end{aligned}
$$

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$:
$\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3, \eta(\lambda)=2$, $\operatorname{crank}(\lambda)=-1$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$:
$\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3, \eta(\lambda)=2$, $\operatorname{crank}(\lambda)=-1$,

Partition statistics

Example with $\lambda=(7,5,2,2,1,1,1)$: $\ell(\lambda)=7,|\lambda|=19, \omega(\lambda)=3, \eta(\lambda)=2$, $\operatorname{crank}(\lambda)=-1, \operatorname{mex}(\lambda)=3$.

Non-negative crank-odd mex identity

Theorem 1: Andrews-Newman/Hopkins-Sellers

Let n be a non-negative integer. Then,

$$
\sharp\{\lambda:|\lambda|=n, \operatorname{crank}(\lambda) \geq 0\}=\sharp\{\lambda:|\lambda|=n, \operatorname{mex}(\lambda) \equiv 1 \bmod 2\} .
$$

Analytic proof via the computation of the generating functions.
Refinement related to the parity of length and the congruences modulo 4 of the mex.

Combinatorial interpretations of Hopkins, Sellers and Yee related to the Durfee decomposition.

Extending the notion of mex

Let i be a non-negative integer and λ be an integer partition. The i-mex of λ, mex $_{i}(\lambda)$, is the smallest integer greater than i which is not a part of λ.

Extending the notion of mex

Let i be a non-negative integer and λ be an integer partition. The i-mex of λ, mex $_{i}(\lambda)$, is the smallest integer greater than i which is not a part of λ.

For $\lambda=(7,5,2,2,1,1,1)$,

$$
\begin{gathered}
\operatorname{mex}_{0}(\lambda)=\operatorname{mex}_{1}(\lambda)=\operatorname{mex}_{2}(\lambda)=3, \\
\operatorname{mex}_{3}(\lambda)=4, \\
\operatorname{mex}_{4}(\lambda)=\operatorname{mex}_{5}(\lambda)=6, \\
\operatorname{mex}_{6}(\lambda)=8 \\
\operatorname{mex}_{i}(\lambda)=i+1 \text { for all } i \geq 7
\end{gathered}
$$

Generalization of the non-negative crank-odd mex identity

Theorem 2: K.

Let n, i be two non-negative integers with $n \geq 2$. Then, $\sharp\{\lambda:|\lambda|=n, \operatorname{crank}(\lambda) \geq i\}=\sharp\left\{\lambda:|\lambda|=n, i \in \lambda, \operatorname{mex}_{i}(\lambda)-i \equiv 1 \bmod 2\right\}$
with the convention that there is a fictitious part 0 at the end of any integer partition.

When $i=0$, mex $=m e x_{i}$ and we recover the non-negative crank-odd mex identity for the weight greater than 1 .

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$.

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\}
$$

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\}
$$

- $\left(d_{i}^{\lambda}\right)_{i \geq 0}$ is non-increasing and $\left(i+d_{i}^{\lambda}\right)_{i \geq 0}$ is non-decreasing.

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\}
$$

- $\left(d_{i}^{\lambda}\right)_{i \geq 0}$ is non-increasing and $\left(i+d_{i}^{\lambda}\right)_{i \geq 0}$ is non-decreasing.
- For $i=0, d_{0}^{\lambda}=d$ is the length of the Durfee square, and the Durfee decomposition is $\lambda \equiv(d, \mu, \nu)$ where $\mu_{u}=\lambda_{u}-u$ and $\nu_{u}=\sharp\left\{v: \lambda_{v} \geq u\right\}-u$ for all $u \in\{1, \ldots, d\}$.

$$
d_{0}^{\lambda}=2 .
$$

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\} .
$$

$$
\lambda \equiv(2,(6,3),(6,2))
$$

- $\left(d_{i}^{\lambda}\right)_{i \geq 0}$ is non-increasing and $\left(i+d_{i}^{\lambda}\right)_{i \geq 0}$ is non-decreasing.
- For $i=0, d_{0}^{\lambda}=d$ is the length of the Durfee square, and the Durfee decomposition is $\lambda \equiv(d, \mu, \nu)$ where $\mu_{u}=\lambda_{u}-u$ and $\nu_{u}=\sharp\left\{v: \lambda_{v} \geq u\right\}-u$ for all $u \in\{1, \ldots, d\}$.

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\}
$$

$$
\lambda \equiv(2,(6,3),(6,2))
$$

- $\left(d_{i}^{\lambda}\right)_{i \geq 0}$ is non-increasing and $\left(i+d_{i}^{\lambda}\right)_{i \geq 0}$ is non-decreasing.
- For $i=0, d_{0}^{\lambda}=d$ is the length of the Durfee square, and the Durfee decomposition is $\lambda \equiv(d, \mu, \nu)$ where $\mu_{u}=\lambda_{u}-u$ and $\nu_{u}=\sharp\left\{v: \lambda_{v} \geq u\right\}-u$ for all $u \in\{1, \ldots, d\}$.
- For $i \geq 0$,

$$
\begin{aligned}
& i \in \mu \Longleftrightarrow \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda} \\
& i \notin \mu \Longleftrightarrow \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda} .
\end{aligned}
$$

Durfee decomposition

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be an integer partition. Set $\lambda_{0}=\infty$ and $\lambda_{s+1}=0$. For an non-negative integer i, define

$$
d_{i}^{\lambda}=\max \left\{u \geq 0: \lambda_{u}-u \geq i\right\}
$$

- $\left(d_{i}^{\lambda}\right)_{i \geq 0}$ is non-increasing and $\left(i+d_{i}^{\lambda}\right)_{i \geq 0}$ is non-decreasing.
- For $i=0, d_{0}^{\lambda}=d$ is the length of the Durfee square, and the Durfee decomposition is $\lambda \equiv(d, \mu, \nu)$ where $\mu_{u}=\lambda_{u}-u$ and $\nu_{u}=\sharp\left\{v: \lambda_{v} \geq u\right\}-u$ for all $u \in\{1, \ldots, d\}$.
- For $i \geq 0$,

$$
\begin{aligned}
& i \in \mu \Longleftrightarrow \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda} \\
& i \notin \mu \Longleftrightarrow \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda} .
\end{aligned}
$$

$$
d_{2}^{\lambda}=2 .
$$

Relating the i-mex to the Durfee decomposition

Theorem 3: K.

Let n, i be two non-negative integers. Then,

$$
\sharp\left\{\lambda:|\lambda|=n, \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\}=\sharp\left\{\lambda:|\lambda|=n, \operatorname{mex}_{i}(\lambda)-i \equiv 1 \bmod 2\right\},
$$

Bijection such that the length of the partitions and the parts $\leq i$ are conserved.

Relating the Durfee decomposition to the crank

Theorem 4: Hopkins-Sellers-Yee

Let n, i be two non-negative integers such that $n \geq 2$. Then,

$$
\sharp\left\{\lambda:|\lambda|=n, i \in \lambda, \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\}=\sharp\{\lambda:|\lambda|=n, \operatorname{crank}(\lambda) \leq-i\} .
$$

Revised bijection from Hopkins, Sellers and Yee's paper.

Garvan's crank identity

Theorem 5: Garvan

We have

$$
(x-1) q+\sum_{\lambda} x^{\operatorname{crank}(\lambda)} q^{|\lambda|}=\frac{(q ; q)_{\infty}}{\left(q x, q x^{-1} ; q\right)_{\infty}}
$$

Hence, for n, i be two non-negative integers such that $n \geq 2$. Then,

$$
\sharp\{\lambda:|\lambda|=n, \operatorname{crank}(\lambda)=i\}=\sharp\{\lambda:|\lambda|=n, \operatorname{crank}(\lambda)=-i\} .
$$

Involution which transforms the crank into its opposite.

The setup

Let \mathcal{P} be the set of partitions. For $i \geq 0$,

$$
\begin{gathered}
\mathcal{P}_{i}=\{\lambda: i \in \lambda\} \text { and } \overline{\mathcal{P}}_{i}=\{\lambda: i \notin \lambda\} \\
\mathcal{F}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\} \text { and } \overline{\mathcal{F}}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda}\right\} .
\end{gathered}
$$

The setup

Let \mathcal{P} be the set of partitions. For $i \geq 0$,

$$
\begin{gathered}
\mathcal{P}_{i}=\{\lambda: i \in \lambda\} \text { and } \overline{\mathcal{P}}_{i}=\{\lambda: i \notin \lambda\} \\
\mathcal{F}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\} \text { and } \overline{\mathcal{F}}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda}\right\} .
\end{gathered}
$$

For $i, k \geq 0$, set $\Delta_{i, k}=(i+k, \ldots, i+1)$ consisting of k consecutive integers ending by $i+1$. Hence,

The setup

Let \mathcal{P} be the set of partitions. For $i \geq 0$,

$$
\begin{gathered}
\mathcal{P}_{i}=\{\lambda: i \in \lambda\} \text { and } \overline{\mathcal{P}}_{i}=\{\lambda: i \notin \lambda\} \\
\mathcal{F}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\} \text { and } \overline{\mathcal{F}}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda}\right\} .
\end{gathered}
$$

For $i, k \geq 0$, set $\Delta_{i, k}=(i+k, \ldots, i+1)$ consisting of k consecutive integers ending by $i+1$. Hence,

- The set $\left\{\lambda: \operatorname{mex}_{i}(\lambda)-i \equiv 1 \bmod 2\right\}$ can be identified to

$$
\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}
$$

The setup

Let \mathcal{P} be the set of partitions. For $i \geq 0$,

$$
\begin{gathered}
\mathcal{P}_{i}=\{\lambda: i \in \lambda\} \text { and } \overline{\mathcal{P}}_{i}=\{\lambda: i \notin \lambda\} \\
\mathcal{F}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\} \text { and } \overline{\mathcal{F}}_{i}=\left\{\lambda: \lambda_{d_{i}^{\lambda}}=i+d_{i}^{\lambda}\right\} .
\end{gathered}
$$

For $i, k \geq 0$, set $\Delta_{i, k}=(i+k, \ldots, i+1)$ consisting of k consecutive integers ending by $i+1$. Hence,

- The set $\left\{\lambda: \operatorname{mex}_{i}(\lambda)-i \equiv 1 \bmod 2\right\}$ can be identified to

$$
\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}
$$

- The set $\left\{\lambda: \lambda_{d_{i}^{\lambda}}>i+d_{i}^{\lambda}\right\}$ can be identified to

$$
\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}=\{\emptyset\} \times \mathcal{F}_{i}
$$

Main idea

Build a transformation ϕ_{i} on
such that

Main idea

Build a transformation ϕ_{i} on

$$
\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}\right) \backslash\left(\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}\right)=\left(\bigsqcup_{k \geq 1}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}\right) \sqcup\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k}\right)
$$

such that

$$
\phi_{i}\left(\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{F}}_{i}\right) \subset\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{P}}_{i+1}
$$

Main idea

Build a transformation ϕ_{i} on

$$
\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}\right) \backslash\left(\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}\right)=\left(\bigsqcup_{k \geq 1}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}\right) \sqcup\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k}\right)
$$

such that

$$
\phi_{i}\left(\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{F}}_{i}\right) \subset\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{P}}_{i+1}
$$

and for $k \geq 1$,

$$
\phi_{i}\left(\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}\right) \subset\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \sqcup\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1},
$$

Main idea

Build a transformation ϕ_{i} on

$$
\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}\right) \backslash\left(\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}\right)=\left(\bigsqcup_{k \geq 1}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}\right) \sqcup\left(\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k}\right)
$$

such that

$$
\phi_{i}\left(\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{F}}_{i}\right) \subset\left\{\Delta_{i, 0}\right\} \times \overline{\mathcal{P}}_{i+1}
$$

and for $k \geq 1$,

$$
\phi_{i}\left(\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}\right) \subset\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \sqcup\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1},
$$

and iterate it on

$$
\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}
$$

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \bar{F}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k}^{\lambda}$,

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k}^{\lambda}$,

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \bar{F}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k}^{\lambda}$,
- transform $\lambda_{d_{i+2 k}^{\lambda}}$ into $i+2 k+1$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \bar{F}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k}^{\lambda}$,
- transform $\lambda_{d_{i+2 k}^{\lambda}}$ into $i+2 k+1$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \bar{F}_{i+2 k}$ for $k \geq 0$

Example with $i=1, \lambda=(7,6,6,6,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=3$ and $\lambda_{3}=3+3=6 . \mu=(8,7,6,4,2,1,1)$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k}^{\lambda}$,
- transform $\lambda_{d_{i+2 k}^{\lambda}}$ into $i+2 k+1$.

Let μ be the partition obtained. Then

$$
\phi_{i}\left(\left(\Delta_{i, 2 k}, \lambda\right)\right)=\left(\Delta_{i, 2 k}, \mu\right) .
$$

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,
- add the parts $i+2 k+d_{i+2 k}^{\lambda}$ and $i+2 k-1$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$.
Let $\lambda \in \mathcal{F}_{i+2 k}$. Then, $\lambda_{d_{i+2 k}^{\lambda}}>i+2 k+d_{i+2 k}^{\lambda}$.

Transformation ϕ_{i}

On $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k}$ for $k \geq 1$

Example with $i=1, \lambda=(7,6,5,5,2,1,1)$ and $k=1$. We have $d_{3}^{\lambda}=2$ and $\lambda_{2}=6>3+2$. $\mu=(6,5,5,5,5,2,2,1,1)$.
Let $\lambda \in \mathcal{F}_{i+2 k}$. Then, $\lambda_{d_{i+2 k}^{\lambda}}>i+2 k+d_{i+2 k}^{\lambda}$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,
- add the parts $i+2 k+d_{i+2 k}^{\lambda}$ and $i+2 k-1$.

Let μ be the partition obtained. Then

$$
\phi_{i}\left(\left(\Delta_{i, 2 k}, \lambda\right)\right)=\left(\Delta_{i, 2 k-2}, \mu\right) .
$$

The map Φ_{i} from $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ to $\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}$

For $\left(\Delta_{i, 2 k}, \lambda\right) \in\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$, iterate the transformation ϕ_{i} as long as it is possible.

Claim 1: Finite number of iterations

The number of iterations is finite, and the last pair belongs to $\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}$.

We set $\Phi_{i}\left(\left(\Delta_{i, 2 k}, \lambda\right)\right)$ to be the last pair obtained after the iterations of ϕ_{i} on $\left(\Delta_{i, 2 k}, \lambda\right)$.

Example with $i=1$ and the pair $\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)$

Step 0

Example with $i=1$ and the pair $\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)$

Step 1

Example with $i=1$ and the pair $\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)$

Step 2

Example with $i=1$ and the pair $\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)$

Step 3

Example with $i=1$ and the pair $\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)$

$$
\Phi_{1}\left(\left(\Delta_{1,2},(7,6,6,6,2,1,1)\right)\right)=\left(\Delta_{1,0},(8,7,5,4,4,2,2,1,1)\right)
$$

$$
\Delta_{1,0}
$$

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.

Example with $i=1$,
$\lambda=(6,5,5,5,5,2,2,1,1)$ and $k=0$. We have $d_{2}^{\lambda}=3$ and $\lambda_{3}=5=2+3$.

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k+1}^{\lambda}$,

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k+1}^{\lambda}$,

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k+1}^{\lambda}$,
- delete the parts $\lambda_{d_{i+2 k+1}^{\lambda}}$ and $i+2 k+1$.

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.

Example with $i=1$,
$\lambda=(6,5,5,5,5,2,2,1,1)$ and $k=0$. We have $d_{2}^{\lambda}=3$ and $\lambda_{3}=5=2+3$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k+1}^{\lambda}$,
- delete the parts $\lambda_{d_{i+2 k+1}^{\lambda}}$ and $i+2 k+1$.

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \overline{\mathcal{F}}_{i+2 k+1}$. Then,
$\lambda_{d_{i+2 k+1}^{\lambda}}=1+i+2 k+d_{1+i+2 k}^{\lambda}$ and $1+i+2 k \in \lambda$.
Example with $i=1$,

$$
\lambda=(6,5,5,5,5,2,2,1,1) \text { and } k=0 . \mathrm{We}
$$ have $d_{2}^{\lambda}=3$ and $\lambda_{3}=5=2+3$.

$\mu=(7,6,5,5,2,1,1)$.

- Add one to λ_{j} for $1 \leq j<d_{i+2 k+1}^{\lambda}$,
- delete the parts $\lambda_{d_{i+2 k+1}^{\lambda}}$ and $i+2 k+1$.

Let μ be the partition obtained. Then

$$
\psi_{i}\left(\left(\Delta_{i, 2 k}, \lambda\right)\right)=\left(\Delta_{i, 2 k+2}, \mu\right)
$$

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then,
$\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and $\lambda_{2}=7>4+2$.

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then,
$\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and
$\lambda_{2}=7>4+2 . \mu=(7,6,6,6,2,1,1)$.

- Subtract from to λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then,
$\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and $\lambda_{2}=7>4+2$.

- Subtract from to λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
On $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then,
$\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and $\lambda_{2}=7>4+2$.

- Subtract from to λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,
- transform a part $i+2 k+1$ into
$i+2 k+1+d_{1+i+2 k}^{\lambda}$

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and $\lambda_{2}=7>4+2$.

- Subtract from to λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,
- transform a part $i+2 k+1$ into
$i+2 k+1+d_{1+i+2 k}^{\lambda}$

Transformation ψ_{i} on $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1}$
on $\left\{\Delta_{i, 2 k}\right\} \times\left(\overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}\right)$

Let $\lambda \in \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1}$. Then, $\lambda_{d_{i+2 k+1}^{\lambda}}>1+i+2 k+d_{i+2 k+1}^{\lambda}$ and $i+2 k+1 \in \lambda$.

Example with $i=1, \lambda=(8,7,6,4,2,1,1)$ and $k=1$. We have $d_{4}^{\lambda}=2$ and $\lambda_{2}=7>4+2$.

- Subtract from to λ_{j} for $1 \leq j \leq d_{i+2 k}^{\lambda}$,
- transform a part $i+2 k+1$ into

$$
i+2 k+1+d_{1+i+2 k}^{\lambda}
$$

Let μ be the partition obtained. Then

$$
\psi_{i}\left(\left(\Delta_{i, 2 k}, \lambda\right)\right)=\left(\Delta_{i, 2 k}, \mu\right) .
$$

The map Ψ_{i} from $\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}$ to $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$

For $\left(\Delta_{i, 0}, \lambda\right) \in\left\{\Delta_{i, 0}\right\} \times \mathcal{F}_{i}$, iterate the transformation ψ_{i} as long as it is possible.

Claim 2: Finite number of iterations

The number of iterations is finite, and the last pair belongs to $\bigsqcup_{k \geq 0}\left\{\Delta_{i, 2 k}\right\} \times$ $\mathcal{P}_{i+2 k+1}$.

We set $\Psi_{i}\left(\left(\Delta_{i, 0}, \lambda\right)\right)$ to be the last pair obtained after the iterations of ϕ_{i}.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form ($\Delta_{i, 2 k}, \lambda$) with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form $\left(\Delta_{i, 2 k}, \lambda\right)$ with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.
- The pairs of $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ are not fixed by ϕ_{i} so as their iterations.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form $\left(\Delta_{i, 2 k}, \lambda\right)$ with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.
- The pairs of $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ are not fixed by ϕ_{i} so as their iterations.
- For all $\left(\Delta_{i, 2 k}, \lambda\right)$ not fixed by ϕ_{i}, the number of its iterations in $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}$ is less than $\frac{\left|\Delta_{i, 2 k}\right|+|\lambda|}{1+i+2 k}$.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form $\left(\Delta_{i, 2 k}, \lambda\right)$ with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.
- The pairs of $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ are not fixed by ϕ_{i} so as their iterations.
- For all $\left(\Delta_{i, 2 k}, \lambda\right)$ not fixed by ϕ_{i}, the number of its iterations in $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}$ is less than $\frac{\left|\Delta_{i, 2 k}\right|+|\lambda|}{1+i+2 k}$.
- The number of possible iterations of $\left(\Delta_{i, 2 k}, \lambda\right)$ is less than $\frac{\left(\left|\Delta_{i, 2 k}\right|+|\lambda|\right)(1+\log (k+1))}{2}$.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form $\left(\Delta_{i, 2 k}, \lambda\right)$ with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.
- The pairs of $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ are not fixed by ϕ_{i} so as their iterations.
- For all $\left(\Delta_{i, 2 k}, \lambda\right)$ not fixed by ϕ_{i}, the number of its iterations in $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}$ is less than $\frac{\left|\Delta_{i, 2 k}\right|+|\lambda|}{1+i+2 k}$.
- The number of possible iterations of $\left(\Delta_{i, 2 k}, \lambda\right)$ is less than $\frac{\left(\left|\Delta_{i, 2 k}\right|+|\lambda|\right)(1+\log (k+1))}{2}$.
- The maps Φ_{i} and Ψ_{i} describe inverse bijections.

Sketch of the proof of the well-definedness of the maps

- The maps ϕ_{i} and ψ_{i} describe inverse bijections between:

$$
\begin{aligned}
& \star\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{F}}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k}\right\} \times \overline{\mathcal{P}}_{i+2 k+1} \cap \mathcal{F}_{i+2 k+1} \text { for } k \geq 0, \\
& \star\left\{\Delta_{i, 2 k}\right\} \times \mathcal{F}_{i+2 k} \text { and }\left\{\Delta_{i, 2 k-2}\right\} \times \overline{\mathcal{P}}_{i+2 k-1} \cap \overline{\mathcal{F}}_{i+2 k-1} \text { for } k \geq 1 .
\end{aligned}
$$

- The pairs fixed by ϕ_{i} (and ψ_{i}) are those of the form $\left(\Delta_{i, 2 k}, \lambda\right)$ with $\lambda_{1}=i+2 k+1$, i.e. $\lambda \in \overline{\mathcal{F}}_{i+2 k}$ with $d_{i+2 k}^{\lambda}=1$.
- The pairs of $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}_{i+2 k+1}$ are not fixed by ϕ_{i} so as their iterations.
- For all $\left(\Delta_{i, 2 k}, \lambda\right)$ not fixed by ϕ_{i}, the number of its iterations in $\left\{\Delta_{i, 2 k}\right\} \times \mathcal{P}$ is less than $\frac{\left|\Delta_{i, 2 k}\right|+|\lambda|}{1+i+2 k}$.
- The number of possible iterations of $\left(\Delta_{i, 2 k}, \lambda\right)$ is less than $\frac{\left(\left|\Delta_{i, 2 k}\right|+|\lambda|\right)(1+\log (k+1))}{2}$.
- The maps Φ_{i} and Ψ_{i} describe inverse bijections.
- The parts $\leq i$ are conserved.

Relation between $\operatorname{crank}(\lambda)$ and d_{i}^{λ}

Theorem 6: Hopkins-Sellers-Yee

Let i be a non-negative integer. Then,

$$
\operatorname{crank}(\lambda) \leq-i \Longleftrightarrow \omega(\lambda) \geq i+d_{i}^{\lambda}
$$

Proof.

Trivial when $|\lambda|=0$. When $|\lambda|>0, i+d_{i}^{\lambda} \geq d_{0}^{\lambda}>0$.
If $\omega(\lambda) \geq i+d_{i}^{\lambda}>0$, then $\eta(\lambda) \leq d_{i}^{\lambda}$ and $\operatorname{crank}(\lambda) \leq-i$.
If If $0<\omega(\lambda)<i+d_{i}^{\lambda}$, then $\eta(\lambda) \geq d_{i}^{\lambda}$ and $\operatorname{crank}(\lambda) \leq-i$. If $\omega(\lambda)=0$, $\operatorname{crank}(\lambda)=\lambda_{1}>0 \geq-i$.

Set $\mathcal{C}_{i}=\{\lambda: \operatorname{crank}(\lambda) \leq-i\}=\left\{\lambda: \omega(\lambda) \geq i+d_{i}^{\lambda}\right\}$.

Bijective proof of Theorem 4

Let $\lambda \in \mathcal{F}_{i} \cap \overline{\mathcal{P}}_{i}$. Then, $\lambda_{d_{i}^{\lambda}}>i$ and $i \in \lambda$.
Example with $i=1$, $\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.

Bijective proof of Theorem 4

Let $\lambda \in \mathcal{F}_{i} \cap \overline{\mathcal{P}}_{i}$. Then, $\lambda_{d_{i}^{\lambda}}>i$ and $i \in \lambda$.
Example with $i=1$, $\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.

Bijective proof of Theorem 4

Let $\lambda \in \mathcal{F}_{i} \cap \overline{\mathcal{P}}_{i}$. Then, $\lambda_{d_{i}^{\lambda}}>i$ and $i \in \lambda$.
Example with $i=1$, $\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i}^{\lambda}$,

Bijective proof of Theorem 4

Let $\lambda \in \mathcal{F}_{i} \cap \overline{\mathcal{P}}_{i}$. Then, $\lambda_{d_{i}^{\lambda}}>i$ and $i \in \lambda$.
Example with $i=1$, $\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i}^{\lambda}$,
- delete a part i and add $d_{i}^{\lambda}+i$ parts equal to 1

Bijective proof of Theorem 4

$$
\begin{aligned}
& \text { Example with } i=1 \text {, } \\
& \lambda=(8,7,5,4,4,2,2,1,1) . \text { We have } \\
& d_{1}^{\lambda}=3 \text { and } \lambda_{3}=5>1+3 .
\end{aligned}
$$

Let $\lambda \in \mathcal{F}_{i} \cap \overline{\mathcal{P}}_{i}$. Then, $\lambda_{d_{i}^{\lambda}}>i$ and $i \in \lambda$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i}^{\lambda}$,
- delete a part i and add $d_{i}^{\lambda}+i$ parts equal to 1

Bijective proof of Theorem 4

Example with $i=1$,
$\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.
$\mu=(7,6,4,4,4,2,2,1,1,1,1,1)$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i}^{\lambda}$,
- delete a part i and add $d_{i}^{\lambda}+i$ parts equal to 1

The partition μ obtained satisfies $d_{i}^{\mu}=d_{i}^{\lambda}$ and $\omega(\mu) \geq i+d_{i}^{\mu}$, so that $\mu \in \mathcal{C}_{i}$.

Bijective proof of Theorem 4

Example with $i=1$,
$\lambda=(8,7,5,4,4,2,2,1,1)$. We have $d_{1}^{\lambda}=3$ and $\lambda_{3}=5>1+3$.
$\mu=(7,6,4,4,4,2,2,1,1,1,1,1)$.

- Subtract one from λ_{j} for $1 \leq j \leq d_{i}^{\lambda}$,
- delete a part i and add $d_{i}^{\lambda}+i$ parts equal to 1

The partition μ obtained satisfies $d_{i}^{\mu}=d_{i}^{\lambda}$ and $\omega(\mu) \geq i+d_{i}^{\mu}$, so that $\mu \in \mathcal{C}_{i}$.

For $\mu \in \mathcal{C}_{i}$ with $|\mu|>1, \ell(\mu) \geq 2 d_{i}^{\mu}+i$ and the transformation is invertible.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)=0$, then transform the part λ_{1} into λ_{1} parts equals to 1 to obtain a partition μ with $\omega(\mu)=\lambda_{1}$ and $\eta(\mu)=0$. Hence $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.

Example with $\lambda=(4,4,2,2)$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)=0$, then transform the part λ_{1} into λ_{1} parts equals to 1 to obtain a partition μ with $\omega(\mu)=\lambda_{1}$ and $\eta(\mu)=0$. Hence $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.

Example with $\lambda=(4,4,2,2)$. $\mu=(4,2,2,1,1,1,1)$

Involution transforming the crank into its opposite

Example with $\lambda=(4,2,2,1,1,1,1)$.
Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)=0$, then transform the part λ_{1} into λ_{1} parts equals to 1 to obtain a partition μ with $\omega(\mu)=\lambda_{1}$ and $\eta(\mu)=0$. Hence $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.
- If $\omega(\lambda)>0$ and $\eta(\lambda)=0$, transform the $\omega(\lambda)$ parts equals to 1 into a part $\omega(\lambda)$ to obtain a partition μ with $\omega(\mu)=0$ and $\mu_{1}=\omega(\lambda)$. Hence, $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)=0$, then transform the part λ_{1} into λ_{1} parts equals to 1 to obtain a partition μ with $\omega(\mu)=\lambda_{1}$ and $\eta(\mu)=0$. Hence $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.
- If $\omega(\lambda)>0$ and $\eta(\lambda)=0$, transform the $\omega(\lambda)$ parts equals to 1 into a part $\omega(\lambda)$ to obtain a partition μ with $\omega(\mu)=0$ and $\mu_{1}=\omega(\lambda)$. Hence, $\operatorname{crank}(\mu)=-\operatorname{crank}(\lambda)$.

Example with $\lambda=(4,2,2,1,1,1,1)$. $\mu=(4,4,2,2)$

These two cases are inverse each other.

Involution transforming the crank into its opposite

Example with

$$
\begin{aligned}
& \lambda=(7,6,4,4,4,2,2,1,1,1,1,1) . \text { We have } \\
& \omega(\lambda)=5, \eta(\lambda)=2 \text { and } \\
& \rho(\lambda)=\max \{5,5\}=5 .
\end{aligned}
$$

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
\star Transform λ into its conjugate λ^{*}.

Example with
$\lambda=(7,6,4,4,4,2,2,1,1,1,1,1)$. We have $\omega(\lambda)=5, \eta(\lambda)=2$ and
$\rho(\lambda)=\max \{5,5\}=5$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
* Transform λ into its conjugate λ^{*}.
\star Transform λ_{1}^{*} into $\lambda_{2}^{*}+\lambda_{1}-\rho(\lambda)-1$.

Example with
$\lambda=(7,6,4,4,4,2,2,1,1,1,1,1)$. We have $\omega(\lambda)=5, \eta(\lambda)=2$ and
$\rho(\lambda)=\max \{5,5\}=5$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
* Transform λ into its conjugate λ^{*}.
\star Transform λ_{1}^{*} into $\lambda_{2}^{*}+\lambda_{1}-\rho(\lambda)-1$.
\star Add one to λ_{i}^{*} for $1 \leq i \leq \omega(\lambda)$.

Example with
$\lambda=(7,6,4,4,4,2,2,1,1,1,1,1)$. We have $\omega(\lambda)=5, \eta(\lambda)=2$ and
$\rho(\lambda)=\max \{5,5\}=5$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
\star Transform λ into its conjugate λ^{*}.
\star Transform λ_{1}^{*} into $\lambda_{2}^{*}+\lambda_{1}-\rho(\lambda)-1$.
\star Add one to λ_{i}^{*} for $1 \leq i \leq \omega(\lambda)$.
\star Delete $\lambda_{1}-\rho(\lambda)-1$ parts 1 .

Example with
$\lambda=(7,6,4,4,4,2,2,1,1,1,1,1)$. We have
$\omega(\lambda)=5, \eta(\lambda)=2$ and
$\rho(\lambda)=\max \{5,5\}=5$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
* Transform λ into its conjugate λ^{*}.
\star Transform λ_{1}^{*} into $\lambda_{2}^{*}+\lambda_{1}-\rho(\lambda)-1$.
\star Add one to λ_{i}^{*} for $1 \leq i \leq \omega(\lambda)$.
\star Delete $\lambda_{1}-\rho(\lambda)-1$ parts 1 .
\star Transform the part $\lambda_{\omega(\lambda)}^{*}=\eta(\lambda)$ into $\eta(\lambda)$ parts equal to 1 .

Example with
$\lambda=(7,6,4,4,4,2,2,1,1,1,1,1)$. We have $\omega(\lambda)=5, \eta(\lambda)=2$ and
$\rho(\lambda)=\max \{5,5\}=5$.

Involution transforming the crank into its opposite

Let λ be a partition with $|\lambda|>1$.

- If $\omega(\lambda)>0$ and $\eta(\lambda)>0$, set $\rho(\lambda)=\max \left\{\omega(\lambda), \lambda_{2}-1\right\}$ and do the following.
* Transform λ into its conjugate λ^{*}.
\star Transform λ_{1}^{*} into $\lambda_{2}^{*}+\lambda_{1}-\rho(\lambda)-1$.
\star Add one to λ_{i}^{*} for $1 \leq i \leq \omega(\lambda)$.
\star Delete $\lambda_{1}-\rho(\lambda)-1$ parts 1 .
\star Transform the part $\lambda_{\omega(\lambda)}^{*}=\eta(\lambda)$ into $\eta(\lambda)$ parts equal to 1 .
The partition μ obtained satisfies $\omega(\mu)=\eta(\lambda)$ and $\eta(\mu)=\omega(\lambda)\left(\right.$ and $\left.\rho(\mu)=\lambda_{2}^{*}\right)$.

Example with

$$
\begin{aligned}
& \lambda=(7,6,4,4,4,2,2,1,1,1,1,1) . \text { We have } \\
& \omega(\lambda)=5, \eta(\lambda)=2 \text { and } \\
& \rho(\lambda)=\max \{5,5\}=5 . \\
& \mu=(9,8,6,6,3,1,1)
\end{aligned}
$$

