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Partitions

Definition

A partition of n, denoted λ ⊢ n, is a non-increasing sequence
of positive integers summing to n,

λ = (λ1, . . . , λk)
k∑

i=1

λi = n

The partition function is p(n) := #{λ ⊢ n}.

Example

We have p(4) = 5 since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
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Hardy-Ramanujan’s Asymptotic

Question

How does p(n) grow as n → ∞?

Theorem (Hardy-Ramanujan)

p(n) ∼ 1

4n
√
3
e
π
√

2n
3 .
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Parts in Congruence Classes

Question

What is the asymptotic for the number of parts among all
partitions of n that lie the congruence class r (mod t)?

Definition

Let 1 ≤ r ≤ t, then define

T (r , t; n) =
∑
λ⊢n

#{λj | λj ≡ r (mod t)}.
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The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

T (r , t; n) =
eπ

√
2n
3

4πtn1/2
√
2

[
log(n)− 2ψ

( r
t

)
+ αt + O

(
n−

1
2 log(n)

)]
,

where ψ(x) = Γ′(x)
Γ(x) .

Note that ψ is increasing on (0,∞).

Idea

The main term does not depend on r .

Parts are asymptotically equidistributed.

The second order term implies a BIAS.

If r < s, we eventually have T (r , t; n) > T (s, t; n).
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Partitions with distinct parts

Question

What about other types of partitions?

Definition

Let D be the family of partitions with distinct parts. Define

D(r , t; n) =
∑
λ⊢n
λ∈D

#{λj | λj ≡ r (mod t)}.
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Partitions into Distinct Parts

Theorem (Craig)

We have that

D(r , t; n) =
3

1
4 eπ

√
n
3

2πtn
1
4

(
log(2) + βtn

−1/2 − β′tr

tn1/2
+ O(n−1)

)
.

Remark

This once again implies

Asymptotic Equidistribution

BIAS towards lower congruence classes.

And for 2 ≤ t ≤ 10, r < s, D(r , t; n) ≥ D(s, t; n) when n ≥ 9.
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k-regular partitions

Definition

Let k ≥ 2, the k-regular partitions are those where no part has
multiplicity ≥ k .

Let Dk be the family of such partitions, and let

Dk(r , t; n) :=
∑
λ⊢n
λ∈Dk

#{λj | λj ≡ r (mod t)}.

Example

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
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The k-regular asymptotic

Theorem (J.-O.)

Let k, t ≥ 2, 1 ≤ r ≤ t. If K := 1− 1/k, then

Dk(r , t; n) = Ak,t(n)

(
Bk,t −

Ck,t

n1/2

(
r

t
− 1

2

)
+ O(n−1)

)
.

Remark

Ak,t(n) :=
3
1
4 e
π
√

2Kn
3

2
3
4K

1
4 n

1
4 πt

√
k
.

Asymptotic equidistribution.

BIAS towards lower congruence classes.
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Explicit k-regular asymptotics

Theorem (J.-O.)

If 3 ≤ k ≤ 10, 2 ≤ t ≤ 10

then r < s implies
Dk(r , t; n) ≥ Dk(s, t; n) for n ≥ 1.

If 2 ≤ k ≤ 10, 2 ≤ t ≤ 10, then r < s implies
Dk(r , t; n) > Dk(s, t; n) for n ≥ 17.

Remark

Relies on explicit error terms and a finite computer check.

Better explicit error terms than Craig when k = 2.
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Stable k-regular counterexamples

Example

The case (n, r , s, t) = (t, t − 1, t, t) is always a counterexample to
the strict inequality for any k.The only partitions that contain such
parts are,

(t) and (t − 1, 1).
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Stable counterexamples for small k

Example

For k = 3, (n, r , s, t) = (t + 2, t − 1, t, t) is also a counterexample:

(t, 2) (t, 1, 1)

(t − 1, 3) (t − 1, 2, 1)

Example

For k = 2, (n, r , s, t) = (t + 3, t − 1, t, t) is a counterexample:

(t, 3) (t, 2, 1)

(t − 1, 4) (t − 1, 3, 1)
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k-indivisible partitions

Definition

The k-indivisible partitions have no part divisible by k .

Let D×
k be

the family of such partitions, and let

D×
k (r , t; n) :=

∑
λ⊢n

λ∈D×
k

#{λj | λj ≡ r (mod t)}.

Example

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

The first, third, fourth, and fifth are 3-indivisible. The second and
fifth are 2-indivisible.
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Glaisher’s Theorem

Proposition (Glaisher’s Theorem)

The number of k-regular partitions and the number of k-indivisible
partitions of n are equal.

Proof.

∞∏
n=1

(1 + qn + · · ·+ q(k−1)n) =
∞∏
n=1

1− qkn

1− qn
.

Remark

The literature often conflates k-regular and k-indivisible partitions.
However, the parts in these partitions are different.
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The k-indivisible Asymptotic

Theorem (J.-O.)

Let k, t ≥ 2 be coprime, 1 ≤ r ≤ t,

and 1 ≤ r̄ ≤ t with
r̄ ≡ k−1r (mod t). If K := 1− 1/k, then with

D×
k (r , t; n) = Ak,t(n)

(
K

2
log n + ψk,t(r) + C ′

k,t + O
(
n−

1
2 log n

))
,

ψk,t(r) := −ψ
( r
t

)
+

1

k
ψ

(
r̄

t

)
.

Remark

Asymptotic equidistribution

UNPREDICTABLE BIASES! If ψk,t(r) > ψk,t(s), then
eventually D×

k (r , t; n) > D×
k (s, t; n).
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The ordering ≺k,t

Corollary (J.-O.)

If ψk,t(r) > ψk,t(s), then eventually D×
k (r , t; n) > D×

k (s, t; n).

Definition

We say that r ≺k,t s provided that for sufficiently large n,

D×
k (r , t; n) < D×

k (s, t; n).

Let O(t) be the number of such orderings on {1, . . . , t} induced
by ≺k,t for k , t ≥ 2 coprime.
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A Glimpse of k-indivisible Biases

k = 2 1 3 5 7 2 4 6

Figure: Biases among congruence classes mod t for k-indivisible
partitions when t = 7, from most common to least common.
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What is known about k-indivisible Biases

Theorem (J.-O.)

Let k, t ≥ 2 be coprime integers, then

Let 1 ≤ r ≤ t − k, then r ≻k,t r + k.

Let k ≥ 6(t2−1)
π2 , then for 1 ≤ r < s ≤ t, we have r ≻k,t s.

Let 1 ≤ r ≤ y ≤ t and r < s ≤ t, then for k ≥ y(y + 1),
r ≻k,t s. Thus 1 ≻k,t s for any k , s, t ≥ 2.

Let m ≥ 1, k = mt − 1, then if k ≤
(
π2

6 + 5
2t

)−1
(t2 − 1),

t ≻k,t t − 1.

Let t > 2, then O(t) ≥ φ(t)
2 , where φ(t) is Euler’s φ-function.
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Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Looking at t = 7 in a new light

k = 2 1 3 5 7 2 4 6

k = 3 1 2 4 5 7 3 6

k = 4 1 2 3 5 6 7 4

k = 5 1 2 3 4 6 7 5
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Figure: Biases among congruence classes mod t for k-indivisible
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Plot versus the Digamma Function for k = 3, t = 7

Figure: Second order term of each 1 ≤ r ≤ 7 when k = 3, t = 7

ψk,t(r) = −ψ
( r
t

)
+

1

k
ψ

(
r̄

t

)
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Plot versus the Digamma Function for k = 10, t = 7

Figure: Second order term of each 1 ≤ r ≤ 7 when k = 10, t = 7

ψk,t(r) = −ψ
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Plot versus the Digamma Function for k = 17, t = 7

Figure: Second order term of each 1 ≤ r ≤ 7 when k = 17, t = 7

ψk,t(r) = −ψ
( r
t

)
+

1

k
ψ

(
r̄

t

)
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A Conjecture concerning O(t)

Figure: O(t)
φ(t) vs. t.

Conjecture (J.-O.)

O(t)
φ(t) grows sublinearly as well as superlogarithmically
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Figure: O(t)
φ(t) vs. t.

Conjecture (J.-O.)

O(t)
φ(t) grows sublinearly as well as superlogarithmically
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There are no Ties

Conjecture (J.-O.)

For coprime k , t ≥ 2, if 1 ≤ r ̸= s ≤ t, then ψk,t(r) ̸= ψk,t(s).

Thus, there are no ties in the second order term.

Remark

Linked to deep work of Gun, Murty, and Rath.

Concerns the linear independence of {ψ(a/t) | gcd(a, t) = 1}
over number fields.

Shows there exists a t0 such that if gcd(t, t0) = 1, and
gcd(r , t) = gcd(s, t) = 1, then the conjecture holds.
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Divisibility Relations Fail

Example

One might expect that if ≺k,t is not the standard ordering
and d | k , then ≺d ,t is not the standard ordering.

This fails for t = 11.

The nonstandard orderings for t = 11 are given by

k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, . . . , 42, 43, 54, 65.

Notice 14 | 42, but 14 is not listed

The ordering for k = 42 has 9 ≺42,11 10, as 9 + 11 · 3 = 42.

But 14 | 42, and 14 does not divide 10+11 · j until 98 (j = 8).
Combinatorial heuristics aren’t enough to see orderings
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The ordering for k = 42 has 9 ≺42,11 10, as 9 + 11 · 3 = 42.

But 14 | 42, and 14 does not divide 10+11 · j until 98 (j = 8).
Combinatorial heuristics aren’t enough to see orderings
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Circle method

Idea

To find asymptotic for a(n), study its generating function

F (q) =
∞∑
n=0

a(n)qn.

We can get back a(n) by integrating around the origin as

1

2πi

∫
C

F (q)

qn+1
dq = a(n).

Question

How do we estimate the integral?
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Wright’s circle method

Idea

The generating functions have singularities on the unit circle

Make the radius of the circle of integration close to 1

Approximate the integrand near the singularity.

The integral far from the singularity is an error term.

The main contribution of the integral is the major arc, and
the error term is the minor arc.
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Path of Integration

Re z

Im z η + iπ

η − iπ

η − i∆η

η + i∆η

z = η + iy plane

Re q

Im q

Major ArcMinor Arc

q = e−z plane
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The Generating Function for k-regular/k-indivisible Partitions

Proposition

The generating function for k-regular/k-indivisible partitions is

ξk(q) :=
∞∏

m=1

1− qmk

1− qm
=

P(q)

P(qk)
.

Proof.

1

1− qm
= 1 + qm + q2m + · · ·

Choice of term in the sum ↔ How many parts have size m.
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Question

How do we get generating functions for Dk(r , t; n) and D×
k (r , t; n)?

Idea
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Question

How do we get generating functions for Dk(r , t; n) and D×
k (r , t; n)?

Idea

The generating function

ξk(q) ·
qm + 2q2m + · · ·+ (k − 1)q(k−1)m

1 + qm + · · ·+ q(k−1)m

= ξk(q) ·
(

qm

1− qm
− kqmk

1− qmk

)

counts the # of times m is a part in the k-regular ptns. Then sum
over m ≡ r (mod t).
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Question

How do we get generating functions for Dk(r , t; n) and D×
k (r , t; n)?

Idea

The generating function

ξk(q) ·
qm + 2q2m + 3q3m + . . .

1 + qm + q2m + . . .

= ξk(q) ·
qm

1− qm
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Question

How do we get generating functions for Dk(r , t; n) and D×
k (r , t; n)?

Idea

The generating function

ξk(q) ·
qm + 2q2m + 3q3m + . . .

1 + qm + q2m + . . .

= ξk(q) ·
qm

1− qm

counts the # of times m is a part in the k-indivisible ptns. when
k ∤ m. We then sum over m ≡ r (mod t) while excluding k | m.
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Generating functions for Dk(r , t; n),D
×
k (r , t; n)

Proposition

Let Dk(r , t; q),D×
k (r , t; q) be defined by

Dk(r , t; q) :=
∞∑
n=1

Dk(r , t; n)q
n

D×
k (r , t; q) :=

∞∑
n=1

D×
k (r , t; n)qn

Then, recalling that Li0(q) :=
q

1−q , we have

Dk(r , t; q) = ξk(q) ·
D×

k (r , t; q) = ξk(q) · .
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q

1−q , we have

Dk(r , t; q) = ξk(q) ·

 ∑
m≡r (mod t)

Li0(q
m)− k Li0(q

mk)



D×
k (r , t; q) = ξk(q) · .
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n=1

Dk(r , t; n)q
n

D×
k (r , t; q) :=
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n=1

D×
k (r , t; n)qn

Then, recalling that Li0(q) :=
q

1−q , we have

Dk(r , t; q) = ξk(q) ·
∑

m≡r (mod t)

Ek(mz)

D×
k (r , t; q) = ξk(q) ·

∑
m≡r (mod t)

E×(mz)−
∑

m≡r̄ (mod t)

E×(mkz).



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Generating functions for Dk(r , t; n),D
×
k (r , t; n)

Proposition

Let Dk(r , t; q),D×
k (r , t; q) be defined by

Dk(r , t; q) :=
∞∑
n=1

Dk(r , t; n)q
n

D×
k (r , t; q) :=

∞∑
n=1

D×
k (r , t; n)qn

Then, recalling that Li0(q) :=
q

1−q , we have

Dk(r , t; q) = ξk(q) · Lk(r , t; q)
D×

k (r , t; q) = ξk(q) · L×k (r , t; q).
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Estimating ξk

Idea

The ξk function is a quotient of the partition generating functions.

=⇒ We can use the modular transformation law for P.

Proposition

For q = e−z and ε := exp
(
−4π2

kz

)
, we have that

ξk(q) =
1√
k
exp

(
π2

6z

(
1− 1

k

)
+

z

24
(k − 1)

)
P(εk)

P(ε)
.
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How to deal with P(ε) in the denominator

Question

How do we estimate P(ε)−1?

Proposition (Euler’s Pentagonal Number Theorem)

P(q)−1 = 1 +
∑
m≥1

(−1)m
(
qm(3m+1)/2 + qm(3m−1)/2

)
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Estimating Lk(r , t; q)

Question

We must estimate∑
m≡r (mod t)

Li0(q
m) =

∑
ℓ≥0

Li0(q
ℓt+r ).

How do we estimate a sum over integers?

Idea

Euler-Maclaurin Summation gives a formula for∫ b

a
f (z)dz −

b−a∑
m=0

f (a+m).

Zagier gives an asymptotic version estimating
∑

m≥1 f (mz)
under mild conditions on f .
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Zagier’s Asymptotic

Definition

The Bernoulli numbers Bn are defined by∑
n≥0

Bn
xn

n!
:=

x

ex − 1
.

Proposition (Zagier)

If f (x) ∼
∑
n≥0

cnx
n and its derivatives have rapid decay at ∞, then

∑
m≥1

f (mx) ∼ 1

x

∫ ∞

0
f (u)du +

∞∑
n=0

cn
Bn+1

n + 1
(−x)n

as x → 0+.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Zagier’s Asymptotic

Definition

The Bernoulli numbers Bn are defined by∑
n≥0

Bn
xn

n!
:=

x

ex − 1
.

Proposition (Zagier)

If f (x) ∼
∑
n≥0

cnx
n and its derivatives have rapid decay at ∞, then

∑
m≥1

f (mx) ∼ 1

x

∫ ∞

0
f (u)du +

∞∑
n=0

cn
Bn+1

n + 1
(−x)n

as x → 0+.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Zagier’s Asymptotic

Definition

The Bernoulli numbers Bn are defined by∑
n≥0

Bn
xn

n!
:=

x

ex − 1
.

Proposition (Zagier)

If f (x) ∼
∑
n≥0

cnx
n and its derivatives have rapid decay at ∞, then

∑
m≥1

f (mx) ∼ 1

x

∫ ∞

0
f (u)du +

∞∑
n=0

cn
Bn+1

n + 1
(−x)n

as x → 0+.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Zagier’s Asymptotic

Definition

The Bernoulli numbers Bn are defined by∑
n≥0

Bn
xn

n!
:=

x

ex − 1
.

Proposition (Zagier)

If f (x) ∼
∑
n≥0

cnx
n and its derivatives have rapid decay at ∞, then

∑
m≥1

f (mx) ∼ 1

x

∫ ∞

0
f (u)du +

∞∑
n=0

cn
Bn+1

n + 1
(−x)n

as x → 0+.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Zagier’s Asymptotic

Definition

The Bernoulli numbers Bn are defined by∑
n≥0

Bn
xn

n!
:=

x

ex − 1
.

Proposition (Zagier)

If f (x) ∼
∑
n≥0

cnx
n and its derivatives have rapid decay at ∞, then

∑
m≥1

f (mx) ∼ 1

x

∫ ∞

0
f (u)du +

∞∑
n=0

cn
Bn+1

n + 1
(−x)n

as x → 0+.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Pole Cancellation

Recall

Li0(q) = Li0(e
−z) has a simple pole 1

z at z = 0.

Idea

Li0(q
m)− k Li0(q

mk) cancels this pole for Dk(r , t; q)
=⇒ Zagier’s asymptotic applies.∑
m≡r

Li0(q
m)−

∑
m≡r̄

Li0(q
mk) does not cancel this pole

=⇒ Zagier’s asymptotic does not apply.
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Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let 0 < a ≤ 1, let

f (z) ∼
∞∑

n=−1

cnz
n,

and suppose its derivatives are of sufficient decay as z → ∞, then

∞∑
n=0

f ((n + a)z) ∼ I ∗f
z

− c−1

z
(log(z) + ψ(a) + γ)−

∞∑
n=0

cn
Bn+1(a)

n + 1
zn

as z → 0, where

I ∗f :=

∫ ∞

0

(
f (u)− c−1e

−u

u

)
du,

ψ is the digamma fnc., and γ is the Euler-Mascheroni constant.
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Applying to Lk(r , t; q)

Lemma (J.-O.)

Let q = e−z , then as z → 0 on the major arc we have

Lk(r , t; q) =
log k

tz
+

k − 1

2

(
r

t
− 1

2

)
+ O(z).

Proof Idea.

Write

Ek(z) :=
q

1− q
− kqk

1− qk
= Li0(q)− k Li0(q

k)

Lk(r , t; q) =
∑
ℓ≥0

Ek

((
ℓ+

r

t

)
tz
)
.

Note, Li0 has a series expansion.

Apply variant of Euler-Maclaurin, without a pole so no ψ.
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Applying to L×k (r , t; q)

Lemma (J.-O.)

Let q = e−z , then as z → 0 on the major arc we have

L×k (r , t; q) = −K log z

tz
+

1

tz

(
ψk,t(r)− K log t +

log k

k

)
+ O(1).

Proof Idea.

Write

E×(z) :=
q

1− q
= Li0(q)

L×k (r , t; q) =
∑
ℓ≥0

E×

((
ℓ+

r

t

)
tz
)
−
∑
ℓ≥0

E×

((
ℓ+

r̄

t

)
tkz

)
.

Apply Euler-Maclaurin twice, with a pole, giving ψ.
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Minor Arc Estimates for Lk(r , t; q), L
×
k (r , t; q)

Lemma (J.-O.)

For any z = η + iy , if q = e−z , we have that as η → 0,

|Lk(r , t; q)| ,
∣∣L×k (r , t; q)∣∣ = O(η−2).

Proof.

|Lk(r , t; q)| ,
∣∣L×k (r , t; q)∣∣ ≤ ∑

m≥1

(k + 1) |q|m

1− |q|m
=

∑
m≥1

(k + 1)σ0(m) |q|m ,

where σ0(m) = # of divisors of m. Then

|Lk(r , t; q)| ,
∣∣L×k (r , t; q)∣∣ ≤ (k + 1)

∑
m≥1

m |q|m = (k + 1)
|q|

(1− |q|)2
.
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Proving the Asymptotics

Proof Outline.

Use modularity to estimate ξk(q) on the major/minor arc

Euler-Maclaurin estimates Lk(r , t; q), L
×
k (r , t; q) the major arc.

Trivially estimate Lk(r , t; q), L
×
k (r , t; q) on the minor arc.

Apply two variants of Wright’s Circle Method.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Proving the Asymptotics

Proof Outline.

Use modularity to estimate ξk(q) on the major/minor arc

Euler-Maclaurin estimates Lk(r , t; q), L
×
k (r , t; q) the major arc.

Trivially estimate Lk(r , t; q), L
×
k (r , t; q) on the minor arc.

Apply two variants of Wright’s Circle Method.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Proving the Asymptotics

Proof Outline.

Use modularity to estimate ξk(q) on the major/minor arc

Euler-Maclaurin estimates Lk(r , t; q), L
×
k (r , t; q) the major arc.

Trivially estimate Lk(r , t; q), L
×
k (r , t; q) on the minor arc.

Apply two variants of Wright’s Circle Method.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Proving the Asymptotics

Proof Outline.

Use modularity to estimate ξk(q) on the major/minor arc

Euler-Maclaurin estimates Lk(r , t; q), L
×
k (r , t; q) the major arc.

Trivially estimate Lk(r , t; q), L
×
k (r , t; q) on the minor arc.

Apply two variants of Wright’s Circle Method.



Introduction Our Results Conjectures/Examples The Circle Method Understanding ψk,t Wrap-Up

Understanding ψk ,t

ψk,t(r) = −ψ
( r
t

)
+

1

k
ψ

(
r

t

)
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Basic Facts

Recall

ψ(x) := Γ′(x)
Γ(x) .

ψ(x) is increasing for x > 0.

ψ(x + 1) = 1
x + ψ(x).

Lemma (J.-O.)

If x , a > 0, then

ψ(x) = ψ(x + N + 1)−
N∑

n=0

1

x + n
,

ψ(x + a)− ψ(x) = a
∞∑
n=0

1

(x + n)(x + a+ n)
.
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Estimating ψ(1)− ψ(a) for 0 < a < 1

Lemma (J.-O.)

For 0 < a < 1, we have

(1− a)

(
1

a
+
π2

6
− 1

)
< ψ(1)− ψ(a) < (1− a)

(
1

a
+ 1

)
.

Proof.

ψ(1)− ψ(a) = (1− a)
∞∑
n=0

1

(n + 1)(n + a)

∞∑
n=1

1

(n + 1)2
<

∞∑
n=1

1

(n + 1)(n + a)

<
∞∑
n=1

1

n(n + 1)

.
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Estimating ψ(a)− ψ(b) for 0 < b < a < 1

Lemma (J.-O.)

For 0 < b < a < 1, we have

(a− b)

(
1

ab
+

1

b + 1

)
< ψ(a)− ψ(b) < (a− b)

(
1

ab
+
π2

6

)
.
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Proving One Pattern

Proposition (J.-O.)

Let k, t ≥ 2 be coprime, and suppose that k ≥ y(y + 1).

Then, if
1 ≤ r ≤ y ≤ t and r < s ≤ t, we have that r ≻k,t s.

Proof Outline.

Rewrite as ψ
(
s
t

)
− ψ

(
r
t

)
> 1

k

(
ψ
(
s̄
t

)
− ψ

(
r̄
t

))
.

Minimize the left hand side and maximize the right hand side

ψ

(
y + 1

t

)
− ψ

(y
t

)
>

1

k

(
ψ(1)− ψ

(
1

t

))
.

Apply the previous two lemmas and rearrange.
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Summary of Methods

Idea

Want: Asymptotics for parts lying in residue classes.

Use the circle method. How do we estimate?

Modular Transformation Laws.
Euler-Maclaurin Summation when you’re not so lucky.

ψk,t is intricate. How do we understand it?

Approximate with a square sum.
Make the weighting factor 1

k so small it washes everything out.
Fix k mod t (i.e., k = mt − 1).
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Summary of Results

Theorem (J.-O.)

Asymptotics for parts in k-regular/k-indivisible partitions of n
which are r mod t (notationally, Dk(r , t; n),D

×
k (r , t; n)).

Corollary (J.-O.)

Bias towards lower congruence classes for Dk(r , t; n).

Intricate Bias for D×
k (r , t; n).

Theorem (J.-O.)

Basic properties of the biases in D×
k (r , t; n)
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