Introduction	0

r Results Conjectu

njectures/Examples 000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Biases in Parts Among *k*-regular and *k*-indivisible Partitions

by Faye Jackson and Misheel Otgonbayar

University of Virginia

July 2022

Introduction ●00000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Doutition	-				

Definition

 A partition of n, denoted λ ⊢ n, is a non-increasing sequence of positive integers summing to n,

$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 $\sum_{i=1}^n \lambda_i = n$

L

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
●00000	00000000000	00000000		00000	000
Partition	IS				

Definition

 A partition of n, denoted λ ⊢ n, is a non-increasing sequence of positive integers summing to n,

$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 $\sum_{i=1}^{\kappa} \lambda_i = n$

• The partition function is $p(n) := \#\{\lambda \vdash n\}$.

Introduction •00000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Partition	s				

Definition

 A partition of n, denoted λ ⊢ n, is a non-increasing sequence of positive integers summing to n,

L

$$=(\lambda_1,\ldots,\lambda_k)$$
 $\sum_{i=1}^n \lambda_i = n$

• The partition function is $p(n) := \#\{\lambda \vdash n\}$.

Example

We have p(4) = 5 since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Our Results Cor

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

Hardy-Ramanujan's Asymptotic

Question

How does p(n) grow as $n \to \infty$?

Our Results Cor

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Hardy-Ramanujan's Asymptotic

Question

How does p(n) grow as $n \to \infty$?

Theorem (Hardy-Ramanujan)

$$p(n)\sim rac{1}{4n\sqrt{3}}e^{\pi\sqrt{rac{2n}{3}}}.$$

Our Results Conject

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Parts in Congruence Classes

Question

• What is the asymptotic for the number of parts among all partitions of *n* that lie the congruence class *r* (mod *t*)?

Our Results Conject

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Parts in Congruence Classes

Question

• What is the asymptotic for the number of parts among all partitions of *n* that lie the congruence class *r* (mod *t*)?

Definition

Let $1 \le r \le t$, then define

Our Results Conje

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Parts in Congruence Classes

Question

• What is the asymptotic for the number of parts among all partitions of *n* that lie the congruence class *r* (mod *t*)?

Definition

Let $1 \le r \le t$, then define

$$T(r, t; n) = \sum_{\lambda \vdash n} \#\{\lambda_j \mid \lambda_j \equiv r \pmod{t}\}.$$

Our Results C

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(r,t;n) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(n) - 2\psi\left(\frac{r}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(n)\right) \right],$$

where $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}.$

Our Results 0

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(\mathbf{r},t;\mathbf{n}) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(\mathbf{n}) - 2\psi\left(\frac{\mathbf{r}}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(\mathbf{n})\right) \right],$$

where $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$. Note that ψ is increasing on $(0, \infty)$.

Our Results O

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(r,t;n) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(n) - 2\psi\left(\frac{r}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(n)\right) \right],$$

where
$$\psi(x)=rac{\Gamma'(x)}{\Gamma(x)}$$
. Note that ψ is increasing on $(0,\infty)$.

Idea

• The *main term* does not depend on *r*.

Our Results O

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(r,t;n) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(n) - 2\psi\left(\frac{r}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(n)\right) \right],$$

where
$$\psi(x) = rac{\Gamma'(x)}{\Gamma(x)}$$
. Note that ψ is increasing on $(0,\infty)$.

Idea

- The *main term* does not depend on *r*.
- Parts are asymptotically *equidistributed*.

Our Results O

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(r,t;n) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(n) - 2\psi\left(\frac{r}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(n)\right) \right],$$

where
$$\psi(x) = rac{\Gamma'(x)}{\Gamma(x)}$$
. Note that ψ is increasing on $(0,\infty)$.

Idea

- The *main term* does not depend on *r*.
- Parts are asymptotically *equidistributed*.
- The second order term implies a BIAS.

Our Results 0

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The work of Beckwith and Mertens

Theorem (Beckwith and Mertens)

We have that

$$T(\mathbf{r},t;\mathbf{n}) = \frac{e^{\pi\sqrt{\frac{2n}{3}}}}{4\pi t n^{1/2}\sqrt{2}} \left[\log(\mathbf{n}) - 2\psi\left(\frac{\mathbf{r}}{t}\right) + \alpha_t + O\left(n^{-\frac{1}{2}}\log(\mathbf{n})\right) \right],$$

where
$$\psi(x)=rac{\Gamma'(x)}{\Gamma(x)}.$$
 Note that ψ is increasing on $(0,\infty).$

Idea

- The *main term* does not depend on *r*.
- Parts are asymptotically *equidistributed*.
- The second order term implies a BIAS.
- If r < s, we eventually have T(r, t; n) > T(s, t; n).

Our Results Cor

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions with distinct parts

Question

What about other types of partitions?

Our Results Cor

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions with distinct parts

Question

What about other types of partitions?

Definition

Let \mathcal{D} be the family of partitions with *distinct parts*.

Our Results Cor

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Partitions with distinct parts

Question

What about other types of partitions?

Definition

Let \mathcal{D} be the family of partitions with *distinct parts*. Define

$$D(r, t; n) = \sum_{\substack{\lambda \vdash n \\ \lambda \in \mathcal{D}}} \# \{ \lambda_j \mid \lambda_j \equiv r \pmod{t} \}.$$

Introduction 00000● Our Results Con

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

Our Results Cor

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

$$D(r,t;n) = \frac{3^{\frac{1}{4}}e^{\pi\sqrt{\frac{n}{3}}}}{2\pi t n^{\frac{1}{4}}} \left(\log(2) + \beta_t n^{-1/2} - \frac{\beta_t' r}{t n^{1/2}} + O(n^{-1}) \right).$$

Our Results Co

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

$$D(r,t;n) = \frac{3^{\frac{1}{4}}e^{\pi\sqrt{\frac{n}{3}}}}{2\pi t n^{\frac{1}{4}}} \left(\log(2) + \beta_t n^{-1/2} - \frac{\beta'_t r}{t n^{1/2}} + O(n^{-1}) \right).$$

Remark

This once again implies

Our Results Co

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

$$D(r,t;n) = \frac{3^{\frac{1}{4}} e^{\pi \sqrt{\frac{n}{3}}}}{2\pi t n^{\frac{1}{4}}} \left(\log(2) + \beta_t n^{-1/2} - \frac{\beta'_t r}{t n^{1/2}} + O(n^{-1}) \right).$$

Remark

This once again implies

• Asymptotic Equidistribution

Our Results Co

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

$$D(r,t;n) = \frac{3^{\frac{1}{4}} e^{\pi \sqrt{\frac{n}{3}}}}{2\pi t n^{\frac{1}{4}}} \left(\log(2) + \beta_t n^{-1/2} - \frac{\beta'_t r}{t n^{1/2}} + O(n^{-1}) \right).$$

Remark

This once again implies

- Asymptotic Equidistribution
- BIAS towards lower congruence classes.

Our Results Co

conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Partitions into Distinct Parts

Theorem (Craig)

We have that

$$D(r,t;n) = \frac{3^{\frac{1}{4}} e^{\pi \sqrt{\frac{n}{3}}}}{2\pi t n^{\frac{1}{4}}} \left(\log(2) + \beta_t n^{-1/2} - \frac{\beta'_t r}{t n^{1/2}} + O(n^{-1}) \right).$$

Remark

This once again implies

- Asymptotic Equidistribution
- BIAS towards lower congruence classes.
- And for $2 \le t \le 10$, r < s, $D(r, t; n) \ge D(s, t; n)$ when $n \ge 9$.

Introduction

Our Results Conjectures/E

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

k-regular partitions

Definition

Let $k \ge 2$, the *k*-regular partitions are those where no part has multiplicity $\ge k$.

Our Results Conjecture

jectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

k-regular partitions

Definition

Let $k \ge 2$, the *k*-regular partitions are those where no part has multiplicity $\ge k$. Let \mathcal{D}_k be the family of such partitions, and let

$$\mathcal{D}_k(r,t;n) \coloneqq \sum_{\substack{\lambda \vdash n \ \lambda \in \mathcal{D}_k}} \#\{\lambda_j \mid \lambda_j \equiv r \pmod{t}\}.$$

Our Results Conjecture

njectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

k-regular partitions

Definition

Let $k \ge 2$, the *k*-regular partitions are those where no part has multiplicity $\ge k$. Let \mathcal{D}_k be the family of such partitions, and let

$$\mathcal{D}_k(r,t;n) \coloneqq \sum_{\substack{\lambda \vdash n \ \lambda \in \mathcal{D}_k}} \#\{\lambda_j \mid \lambda_j \equiv r \pmod{t}\}.$$

Example

$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1$$
.

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

The *k*-regular asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$, $1 \le r \le t$. If $K \coloneqq 1 - 1/k$, then

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-regular asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$, $1 \le r \le t$. If $K \coloneqq 1 - 1/k$, then

$$D_k(r, t; n) = A_{k,t}(n) \left(\frac{B_{k,t}}{n^{1/2}} - \frac{C_{k,t}}{n^{1/2}} \left(\frac{r}{t} - \frac{1}{2} \right) + O(n^{-1}) \right).$$

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-regular asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$, $1 \le r \le t$. If $K \coloneqq 1 - 1/k$, then

$$D_k(r, t; n) = A_{k,t}(n) \left(\frac{B_{k,t}}{n^{1/2}} - \frac{C_{k,t}}{n^{1/2}} \left(\frac{r}{t} - \frac{1}{2} \right) + O(n^{-1}) \right)$$

Remark

•
$$A_{k,t}(n) := \frac{3^{\frac{1}{4}}e^{\pi\sqrt{\frac{2Kn}{3}}}}{2^{\frac{3}{4}}K^{\frac{1}{4}}n^{\frac{1}{4}}\pi t\sqrt{k}}$$
.

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-regular asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$, $1 \le r \le t$. If $K \coloneqq 1 - 1/k$, then

$$D_k(r, t; n) = A_{k,t}(n) \left(\frac{B_{k,t}}{n^{1/2}} - \frac{C_{k,t}}{n^{1/2}} \left(\frac{r}{t} - \frac{1}{2} \right) + O(n^{-1}) \right)$$

Remark

•
$$A_{k,t}(n) := \frac{3^{\frac{1}{4}}e^{\pi}\sqrt{\frac{2Kn}{3}}}{2^{\frac{3}{4}}K^{\frac{1}{4}}n^{\frac{1}{4}}\pi t\sqrt{k}}.$$

• Asymptotic equidistribution.

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

The *k*-regular asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$, $1 \le r \le t$. If $K \coloneqq 1 - 1/k$, then

$$D_k(r, t; n) = A_{k,t}(n) \left(\frac{B_{k,t}}{n^{1/2}} - \frac{C_{k,t}}{n^{1/2}} \left(\frac{r}{t} - \frac{1}{2} \right) + O(n^{-1}) \right)$$

Remark

•
$$A_{k,t}(n) := \frac{3^{\frac{1}{4}}e^{\pi\sqrt{\frac{2Kn}{3}}}}{2^{\frac{3}{4}}K^{\frac{1}{4}}n^{\frac{1}{4}}\pi t\sqrt{k}}.$$

- Asymptotic equidistribution.
- BIAS towards lower congruence classes.

Our Results Conjectures/Exa 0000000000 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Explicit *k*-regular asymptotics

Theorem (J.-O.)

• If $3 \le k \le 10, 2 \le t \le 10$

Our Results Conjectures/

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Explicit *k*-regular asymptotics

Theorem (J.-O.)

• If $3 \le k \le 10, 2 \le t \le 10$ then r < s implies $D_k(r, t; n) \ge D_k(s, t; n)$ for $n \ge 1$.

Our Results Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Explicit *k*-regular asymptotics

Theorem (J.-O.)

- If $3 \le k \le 10, 2 \le t \le 10$ then r < s implies $D_k(r, t; n) \ge D_k(s, t; n)$ for $n \ge 1$.
- If $2 \le k \le 10$, $2 \le t \le 10$, then r < s implies $D_k(r, t; n) > D_k(s, t; n)$ for $n \ge 17$.

Our Results Conjectures/Examples 0000000000

The Circle Method

Understanding $\psi_{k,t}$

Wrap-Up

Explicit *k*-regular asymptotics

Theorem (J.-O.)

- If $3 \le k \le 10, 2 \le t \le 10$ then r < s implies $D_k(r, t; n) \geq D_k(s, t; n)$ for $n \geq 1$.
- If $2 \le k \le 10$, $2 \le t \le 10$, then r < s implies $D_k(r, t; n) > D_k(s, t; n)$ for $n \ge 17$.

Remark

Relies on explicit error terms and a finite computer check.
Our Results Conjectures/E

Examples The Circ

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Explicit *k*-regular asymptotics

Theorem (J.-O.)

- If $3 \le k \le 10, 2 \le t \le 10$ then r < s implies $D_k(r, t; n) \ge D_k(s, t; n)$ for $n \ge 1$.
- If $2 \le k \le 10$, $2 \le t \le 10$, then r < s implies $D_k(r, t; n) > D_k(s, t; n)$ for $n \ge 17$.

Remark

- Relies on explicit error terms and a finite computer check.
- *Better* explicit error terms than Craig when k = 2.

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

Stable *k*-regular counterexamples

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Stable *k*-regular counterexamples

Example

The case (n, r, s, t) = (t, t - 1, t, t) is always a counterexample to the *strict* inequality for any k.

Our Results Conjectures/Ex 0000000000 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Stable *k*-regular counterexamples

Example

The case (n, r, s, t) = (t, t - 1, t, t) is always a counterexample to the *strict* inequality for any k. The only partitions that contain such parts are,

$$(t)$$
 and $(t - 1, 1)$.

Our Results Conjecture

ures/Examples TI

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Stable counterexamples for small k

Example

For k = 3, (n, r, s, t) = (t + 2, t - 1, t, t) is also a counterexample:

$$(t,2)$$
 $(t,1,1)$
 $(t-1,3)$ $(t-1,2,1)$

Our Results Conjectu

njectures/Examples 000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Stable counterexamples for small k

Example

For k = 3, (n, r, s, t) = (t + 2, t - 1, t, t) is also a counterexample:

Example

For k = 2, (n, r, s, t) = (t + 3, t - 1, t, t) is a counterexample:

$$(t,3)$$
 $(t,2,1)$
 $(t-1,4)$ $(t-1,3,1)$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
<i>k</i> -indivisi	ble partitio	ns			

The k-indivisible partitions have no part divisible by k.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
<i>k</i> -indivisi	ble partitio	ns			

The *k*-indivisible partitions have no part divisible by *k*. Let \mathcal{D}_k^{\times} be the family of such partitions, and let

$$D_k^{\times}(r,t;n) \coloneqq \sum_{\substack{\lambda \vdash n \\ \lambda \in \mathcal{D}_k^{\times}}} \#\{\lambda_j \mid \lambda_j \equiv r \pmod{t}\}.$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
<i>k</i> -indivis	ible partitio	ns			

The *k*-indivisible partitions have no part divisible by *k*. Let \mathcal{D}_k^{\times} be the family of such partitions, and let

$$D_k^{\times}(r,t;n) \coloneqq \sum_{\substack{\lambda \vdash n \\ \lambda \in \mathcal{D}_k^{\times}}} \#\{\lambda_j \mid \lambda_j \equiv r \pmod{t}\}.$$

Example

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

The first, third, fourth, and fifth are 3-indivisible.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
<i>k</i> -indivisi	ble partitio	ns			

The *k*-indivisible partitions have no part divisible by *k*. Let \mathcal{D}_k^{\times} be the family of such partitions, and let

$$D_k^{ imes}(r,t;n)\coloneqq \sum_{\substack{\lambda\vdash n\ \lambda\in \mathcal{D}_k^{ imes}}} \#\{\lambda_j\mid \lambda_j\equiv r \pmod{t}\}.$$

Example

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

The first, third, fourth, and fifth are 3-indivisible. The second and fifth are 2-indivisible.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$
000000	000000000000	00000000		00000

Glaisher's Theorem

Proposition (Glaisher's Theorem)

The number of k-regular partitions and the number of k-indivisible partitions of n are equal.

Introduction	

Our Results Conjectures/Example Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Glaisher's Theorem

Proposition (Glaisher's Theorem)

The number of k-regular partitions and the number of k-indivisible partitions of n are equal.

Proof.

$$\prod_{n=1}^{\infty} (1+q^n+\cdots+q^{(k-1)n})$$

Introduction

Our Results Conjectures/

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Glaisher's Theorem

Proposition (Glaisher's Theorem)

The number of k-regular partitions and the number of k-indivisible partitions of n are equal.

Proof.

$$\prod_{n=1}^{\infty} (1+q^n+\dots+q^{(k-1)n}) = \prod_{n=1}^{\infty} \frac{1-q^{kn}}{1-q^n}$$

Introduction	

Our Results Conjectures/

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Glaisher's Theorem

Proposition (Glaisher's Theorem)

The number of k-regular partitions and the number of k-indivisible partitions of n are equal.

Proof.

$$\prod_{n=1}^{\infty}(1+q^n+\dots+q^{(k-1)n})=\prod_{n=1}^{\infty}rac{1-q^{kn}}{1-q^n}.$$

Remark

The literature often *conflates* k-regular and k-indivisible partitions.

Introduction

Our Results Conjectures/E

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Glaisher's Theorem

Proposition (Glaisher's Theorem)

The number of k-regular partitions and the number of k-indivisible partitions of n are equal.

Proof.

$$\prod_{n=1}^\infty (1+q^n+\dots+q^{(k-1)n}) = \prod_{n=1}^\infty rac{1-q^{kn}}{1-q^n}.$$

Remark

The literature often *conflates* k-regular and k-indivisible partitions. *However, the parts in these partitions are different.*

Our Results Conjectures/I

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$,

Our Results Conjectures/E

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$.

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$. If K := 1 - 1/k, then with

$$D_k^{\times}(r,t;n) = A_{k,t}(n) \left(\frac{K}{2} \log n + \psi_{k,t}(r) + C'_{k,t} + O\left(n^{-\frac{1}{2}} \log n\right)\right),$$

Our Results Conjectures/Ex 00000000000 0000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$. If K := 1 - 1/k, then with

$$D_k^{\times}(\mathbf{r}, t; \mathbf{n}) = A_{k,t}(\mathbf{n}) \left(\frac{K}{2} \log \mathbf{n} + \psi_{k,t}(\mathbf{r}) + C'_{k,t} + O\left(\mathbf{n}^{-\frac{1}{2}} \log \mathbf{n}\right) \right),$$

$$\psi_{k,t}(\mathbf{r}) \coloneqq -\psi\left(\frac{\mathbf{r}}{t}\right) + \frac{1}{k}\psi\left(\frac{\mathbf{r}}{t}\right).$$

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$. If K := 1 - 1/k, then with

$$D_k^{\times}(r,t;n) = A_{k,t}(n) \left(\frac{K}{2}\log n + \psi_{k,t}(r) + C'_{k,t} + O\left(n^{-\frac{1}{2}}\log n\right)\right),$$

$$\psi_{k,t}(r) := -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\bar{r}}{t}\right).$$

Remark

Asymptotic equidistribution

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$. If K := 1 - 1/k, then with

$$D_k^{\times}(r,t;n) = A_{k,t}(n) \left(\frac{K}{2}\log n + \psi_{k,t}(r) + C'_{k,t} + O\left(n^{-\frac{1}{2}}\log n\right)\right),$$

$$\psi_{k,t}(r) := -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\bar{r}}{t}\right).$$

Remark

- Asymptotic equidistribution
- UNPREDICTABLE BIASES!

Our Results Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The *k*-indivisible Asymptotic

Theorem (J.-O.)

Let $k, t \ge 2$ be coprime, $1 \le r \le t$, and $1 \le \overline{r} \le t$ with $\overline{r} \equiv k^{-1}r \pmod{t}$. If K := 1 - 1/k, then with

$$D_k^{\times}(r,t;n) = A_{k,t}(n) \left(\frac{K}{2}\log n + \psi_{k,t}(r) + C'_{k,t} + O\left(n^{-\frac{1}{2}}\log n\right)\right),$$

$$\psi_{k,t}(r) := -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\bar{r}}{t}\right).$$

Remark

- Asymptotic equidistribution
- UNPREDICTABLE BIASES! If $\psi_{k,t}(r) > \psi_{k,t}(s)$, then eventually $D_k^{\times}(r, t; n) > D_k^{\times}(s, t; n)$.

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
The orde	ering $\prec_{k,t}$				

Corollary (J.-O.)

If $\psi_{k,t}(r) > \psi_{k,t}(s)$, then eventually $D_k^{\times}(r,t;n) > D_k^{\times}(s,t;n)$.

Introduction 000000	Our Results 00000000000000	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-U 000

The ordering $\prec_{k,t}$

Corollary (J.-O.)

If $\psi_{k,t}(r) > \psi_{k,t}(s)$, then eventually $D_k^{\times}(r,t;n) > D_k^{\times}(s,t;n)$.

Definition

We say that $r \prec_{k,t} s$ provided that for sufficiently large n,

$$D_k^{\times}(r,t;n) < D_k^{\times}(s,t;n).$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-l
000000	00000000●00	00000000		00000	000

The ordering $\prec_{k,t}$

Corollary (J.-O.)

If $\psi_{k,t}(r) > \psi_{k,t}(s)$, then eventually $D_k^{\times}(r,t;n) > D_k^{\times}(s,t;n)$.

Definition

We say that $r \prec_{k,t} s$ provided that for sufficiently large n,

$$D_k^{\times}(r,t;n) < D_k^{\times}(s,t;n).$$

Let $\mathcal{O}(t)$ be the *number* of such orderings on $\{1, \ldots, t\}$ induced by $\prec_{k,t}$ for $k, t \ge 2$ coprime.

Our Results Conjectures/Exa

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

A Glimpse of *k*-indivisible Biases

$$k = 2 | 1 | 3 | 5 | 7 | 2 | 4 | 6$$

Our Results Conjecture

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

A Glimpse of *k*-indivisible Biases

<i>k</i> = 2	1	3	5	7	2	4	6
k = 3	1	2	4	5	7	3	6
<i>k</i> = 4	1	2	3	5	6	7	4
<i>k</i> = 5	1	2	3	4	6	7	5

Our Results Conjecture

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

A Glimpse of *k*-indivisible Biases

k = 2	1	3	5	7	2	4	6
<i>k</i> = 3	1	2	4	5	7	3	6
k = 4	1	2	3	5	6	7	4
k = 5	1	2	3	4	6	7	5
k = 6, 10, 13, 20	1	2	3	4	5	7	6
k = 12	1	2	3	4	6	5	7

Our Results Conjectu

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

A Glimpse of *k*-indivisible Biases

k = 2	1	3	5	7	2	4	6
<i>k</i> = 3	1	2	4	5	7	3	6
<i>k</i> = 4	1	2	3	5	6	7	4
<i>k</i> = 5	1	2	3	4	6	7	5
k = 6, 10, 13, 20	1	2	3	4	5	7	6
k = 12	1	2	3	4	6	5	7
All other <i>k</i>	1	2	3	4	5	6	7

 The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

Our Results Conjectures/

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

• Let $1 \le r \le t - k$, then $r \succ_{k,t} r + k$.

Our Results Conjectures

s The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

• Let $1 \le r \le t - k$, then $r \succ_{k,t} r + k$.

• Let
$$k \geq rac{6(t^2-1)}{\pi^2}$$
, then for $1 \leq r < s \leq t$, we have $r \succ_{k,t} s$

Our Results Conjectures/Ex

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

- Let $1 \le r \le t k$, then $r \succ_{k,t} r + k$.
- Let $k \geq \frac{6(t^2-1)}{\pi^2}$, then for $1 \leq r < s \leq t$, we have $r \succ_{k,t} s$.

$$\psi_{k,t}(\mathbf{r}) = -\psi\left(\frac{\mathbf{r}}{t}\right) + \frac{1}{k}\psi\left(\frac{\overline{\mathbf{r}}}{t}\right)$$

Our Results Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

- Let $1 \le r \le t k$, then $r \succ_{k,t} r + k$.
- Let $k \geq \frac{6(t^2-1)}{\pi^2}$, then for $1 \leq r < s \leq t$, we have $r \succ_{k,t} s$.

$$\psi_{k,t}(r) = -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\overline{r}}{t}\right)$$

• Let $1 \le r \le y \le t$ and $r < s \le t$, then for $k \ge y(y+1)$, $r \succ_{k,t} s$. Thus $1 \succ_{k,t} s$ for any $k, s, t \ge 2$.

Our Results Conjecture

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

• Let
$$1 \le r \le t - k$$
, then $r \succ_{k,t} r + k$.

• Let
$$k \geq \frac{6(t^2-1)}{\pi^2}$$
, then for $1 \leq r < s \leq t$, we have $r \succ_{k,t} s$

- Let $1 \le r \le y \le t$ and $r < s \le t$, then for $k \ge y(y+1)$, $r \succ_{k,t} s$. Thus $1 \succ_{k,t} s$ for any $k, s, t \ge 2$.
- Let $m \ge 1$, k = mt 1, then if $k \le \left(\frac{\pi^2}{6} + \frac{5}{2t}\right)^{-1} (t^2 1)$, $t \succ_{k,t} t 1$.

Our Results Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

What is known about *k*-indivisible Biases

Theorem (J.-O.)

Let $k, t \geq 2$ be coprime integers, then

• Let
$$1 \le r \le t - k$$
, then $r \succ_{k,t} r + k$.

• Let
$$k \geq rac{6(t^2-1)}{\pi^2}$$
, then for $1 \leq r < s \leq t$, we have $r \succ_{k,t} s$

- Let $1 \le r \le y \le t$ and $r < s \le t$, then for $k \ge y(y+1)$, $r \succ_{k,t} s$. Thus $1 \succ_{k,t} s$ for any $k, s, t \ge 2$.
- Let $m \ge 1$, k = mt 1, then if $k \le \left(\frac{\pi^2}{6} + \frac{5}{2t}\right)^{-1} (t^2 1)$, $t \succ_{k,t} t 1$.
- Let t > 2, then $\mathscr{O}(t) \geq \frac{\varphi(t)}{2}$, where $\varphi(t)$ is Euler's φ -function.
| Introduction | Our Results | Conjectures/Examples | The Circle Method | Understanding $\psi_{k,t}$ | |
|--------------|-------------|----------------------|-------------------|----------------------------|--|
| | | 0000000 | | | |
| | | | | | |

Conjectures/Examples

Our Results Co

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Looking at t = 7 in a new light

k = 2	1	3	5	7	2	4	6
<i>k</i> = 3	1	2	4	5	7	3	6
<i>k</i> = 4	1	2	3	5	6	7	4
<i>k</i> = 5	1	2	3	4	6	7	5
k = 6, 10, 13, 20	1	2	3	4	5	7	6
k = 12	1	2	3	4	6	5	7
All other <i>k</i>	1	2	3	4	5	6	7

Figure: Biases among congruence classes mod t for k-indivisible partitions when t = 7, from most common to least common.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
		0000000			

Plot versus the Digamma Function for k = 3, t = 7

Figure: Second order term of each $1 \le r \le 7$ when k = 3, t = 7

$$\psi_{k,t}(r) = -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\bar{r}}{t}\right).$$

Introduction Ou	r Results 🛛 C	onjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
	000000000 0	0000000			

Plot versus the Digamma Function for k = 10, t = 7

Figure: Second order term of each $1 \le r \le 7$ when k = 10, t = 7

$$\psi_{k,t}(\mathbf{r}) = -\psi\left(\frac{\mathbf{r}}{t}\right) + \frac{1}{k}\psi\left(\frac{\overline{\mathbf{r}}}{t}\right).$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
		0000000			

Plot versus the Digamma Function for k = 17, t = 7

Figure: Second order term of each $1 \le r \le 7$ when k = 17, t = 7

$$\psi_{k,t}(r) = -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\bar{r}}{t}\right)$$

Our Results Conj

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

A Conjecture concerning $\mathcal{O}(t)$

Our Results Con

Conjectures/Examples 00000●00 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

A Conjecture concerning $\mathcal{O}(t)$

Conjecture (J.-O.)

 $rac{\mathscr{O}(t)}{arphi(t)}$ grows sublinearly as well as superlogarithmically

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understa
000000	00000000000	000000●0		00000

There are no Ties

Conjecture (J.-O.)

For coprime $k, t \ge 2$, if $1 \le r \ne s \le t$, then $\psi_{k,t}(r) \ne \psi_{k,t}(s)$.

Introduction	

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

There are no Ties

Conjecture (J.-O.)

For coprime $k, t \ge 2$, if $1 \le r \ne s \le t$, then $\psi_{k,t}(r) \ne \psi_{k,t}(s)$.

Thus, there are no ties in the second order term.

Introduction	

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

There are no Ties

Conjecture (J.-O.)

For coprime $k, t \ge 2$, if $1 \le r \ne s \le t$, then $\psi_{k,t}(r) \ne \psi_{k,t}(s)$. Thus, there are no **ties** in the second order term.

Remark

• Linked to deep work of Gun, Murty, and Rath.

Introduction

Conjectures/Examples 000000●0 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

There are no Ties

Conjecture (J.-O.)

For coprime $k, t \ge 2$, if $1 \le r \ne s \le t$, then $\psi_{k,t}(r) \ne \psi_{k,t}(s)$. Thus, there are no **ties** in the second order term.

Remark

- Linked to deep work of Gun, Murty, and Rath.
- Concerns the linear independence of {ψ(a/t) | gcd(a, t) = 1} over number fields.

Introduction

Conjectures/Examples 000000●0 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

There are no Ties

Conjecture (J.-O.)

For coprime $k, t \ge 2$, if $1 \le r \ne s \le t$, then $\psi_{k,t}(r) \ne \psi_{k,t}(s)$. Thus, there are no **ties** in the second order term.

Remark

- Linked to deep work of Gun, Murty, and Rath.
- Concerns the linear independence of {ψ(a/t) | gcd(a, t) = 1} over number fields.
- Shows there exists a t_0 such that if $gcd(t, t_0) = 1$, and gcd(r, t) = gcd(s, t) = 1, then the conjecture holds.

Introduction Our Results

Its Conjectures/

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Divisibility Relations Fail

Example

 One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.

Introduction 000000	Our Results 00000000000	Conjectures/Examples 0000000●	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wr

in-Un

Divisibility Relations Fail

Example

- One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.
- This fails for t = 11.

Introduction	

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Divisibility Relations Fail

Example

- One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.
- This fails for t = 11.
- The nonstandard orderings for t = 11 are given by

 $k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, \dots, 42, 43, 54, 65.$

Introduction	

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Divisibility Relations Fail

Example

- One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.
- This fails for t = 11.
- The nonstandard orderings for t = 11 are given by

 $k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, \dots, 42, 43, 54, 65.$

Notice 14 | 42, but 14 is not listed

Introduction

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Divisibility Relations Fail

Example

- One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.
- This fails for t = 11.
- The nonstandard orderings for t = 11 are given by

 $k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, \dots, 42, 43, 54, 65.$

Notice 14 | 42, but 14 is not listed

- The ordering for k = 42 has $9 \prec_{42,11} 10$, as $9 + 11 \cdot 3 = 42$.
- But 14 | 42, and 14 does not divide $10 + 11 \cdot j$ until 98 (j = 8).

Introduction

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Divisibility Relations Fail

Example

- One might expect that if ≺_{k,t} is not the standard ordering and d | k, then ≺_{d,t} is not the standard ordering.
- This fails for t = 11.
- The nonstandard orderings for t = 11 are given by

 $k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, \dots, 42, 43, 54, 65.$

Notice 14 | 42, but 14 is not listed

- The ordering for k = 42 has $9 \prec_{42,11} 10$, as $9 + 11 \cdot 3 = 42$.
- But 14 | 42, and 14 does not divide 10 + 11 · j until 98 (j = 8). Combinatorial heuristics aren't enough to see orderings

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Circle m	ethod				

Idea

To find asymptotic for a(n), study its generating function

$$F(q)=\sum_{n=0}^{\infty}a(n)q^{n}.$$

000000	Our Results 00000000000	Conjectures/Examples		Onderstanding $\psi_{k,t}$	000			
Circle m	Circle method							

Idea

To find asymptotic for a(n), study its generating function

$$F(q)=\sum_{n=0}^{\infty}a(n)q^{n}.$$

We can get back a(n) by integrating around the origin as

$$\frac{1}{2\pi i}\int_{\mathcal{C}}\frac{F(q)}{q^{n+1}}\,\mathrm{d}q=a(n).$$

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method ●0000000000000000	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000	
Circle method						

Idea

To find asymptotic for a(n), study its generating function

$$F(q)=\sum_{n=0}^{\infty}a(n)q^{n}.$$

We can get back a(n) by integrating around the origin as

$$\frac{1}{2\pi i}\int_{\mathcal{C}}\frac{F(q)}{q^{n+1}}\,\mathrm{d}q=a(n).$$

Question

How do we estimate the integral?

Our Results Conject

ijectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Wright's circle method

Idea

• The generating functions have singularities on the unit circle

Our Results

The Circle Method

Understanding $\psi_{k,t}$

Wright's circle method

- The generating functions have singularities on the unit circle
- Make the radius of the circle of integration close to 1

Our Results Conjection

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Wright's circle method

- The generating functions have singularities on the unit circle
- Make the radius of the circle of integration close to 1
- Approximate the integrand near the singularity.

Our Results Conject

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Wright's circle method

- The generating functions have singularities on the unit circle
- Make the radius of the circle of integration close to 1
- Approximate the integrand near the singularity.
- The integral far from the singularity is an error term.

Our Results Conject

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Wright's circle method

- The generating functions have singularities on the unit circle
- Make the radius of the circle of integration close to 1
- Approximate the integrand near the singularity.
- The integral far from the singularity is an error term.
- The main contribution of the integral is the major arc, and the error term is the minor arc.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
Path of I	Integration				

Our Results Conject

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The Generating Function for k-regular/k-indivisible Partitions

Proposition

The generating function for k-regular/k-indivisible partitions is

$$\xi_k(q)\coloneqq \prod_{m=1}^\infty rac{1-q^{mk}}{1-q^m} = rac{\mathcal{P}(q)}{\mathcal{P}(q^k)}.$$

Our Results Conjection

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The Generating Function for *k*-regular/*k*-indivisible Partitions

Proposition

The generating function for k-regular/k-indivisible partitions is

$$\xi_k(q)\coloneqq \prod_{m=1}^\infty rac{1-q^{mk}}{1-q^m} = rac{\mathcal{P}(q)}{\mathcal{P}(q^k)}.$$

Proof.

$$\frac{1}{1-q^m}=1+q^m+q^{2m}+\cdots$$

Our Results Conje

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

The Generating Function for k-regular/k-indivisible Partitions

Proposition

The generating function for k-regular/k-indivisible partitions is

$$\xi_k(q)\coloneqq \prod_{m=1}^\infty rac{1-q^{mk}}{1-q^m} = rac{\mathcal{P}(q)}{\mathcal{P}(q^k)}.$$

Proof.

$$\frac{1}{1-q^m}=1+q^m+q^{2m}+\cdots$$

Choice of term in the sum \leftrightarrow How many parts have size *m*.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	0000000000	00000000		00000	000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$\xi_k(q) \cdot rac{q^m + 2q^{2m} + \dots + (k-1)q^{(k-1)m}}{1 + q^m + \dots + q^{(k-1)m}} = \xi_k(q) \cdot \left(rac{q^m}{1 - q^m} - rac{kq^{mk}}{1 - q^{mk}}
ight)$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	0000000000	00000000		00000	000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$\xi_k(q) \cdot rac{q^m + 2q^{2m} + \dots + (k-1)q^{(k-1)m}}{1 + q^m + \dots + q^{(k-1)m}} = \xi_k(q) \cdot \left(rac{q^m}{1 - q^m} - rac{kq^{mk}}{1 - q^{mk}}
ight)$$

counts the # of times *m* is a part in the *k*-regular ptns.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	0000000000	00000000		00000	000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$\xi_k(q) \cdot rac{q^m + 2q^{2m} + \dots + (k-1)q^{(k-1)m}}{1 + q^m + \dots + q^{(k-1)m}} = \xi_k(q) \cdot \left(rac{q^m}{1 - q^m} - rac{kq^{mk}}{1 - q^{mk}}
ight)$$

counts the # of times m is a part in the k-regular ptns. Then sum over $m \equiv r \pmod{t}$.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$\xi_k(q) \cdot rac{q^m + 2q^{2m} + 3q^{3m} + \dots}{1 + q^m + q^{2m} + \dots} = \xi_k(q) \cdot rac{q^m}{1 - q^m}$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$egin{aligned} \xi_k(q) &\cdot rac{q^m + 2q^{2m} + 3q^{3m} + \dots}{1 + q^m + q^{2m} + \dots} \ &= \xi_k(q) \cdot rac{q^m}{1 - q^m} \end{aligned}$$

counts the # of times *m* is a part in the *k*-indivisible ptns. when $k \nmid m$.
Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

Question

How do we get generating functions for $D_k(r, t; n)$ and $D_k^{\times}(r, t; n)$?

Idea

The generating function

$$egin{aligned} &\xi_k(q) \cdot rac{q^m + 2q^{2m} + 3q^{3m} + \ldots}{1 + q^m + q^{2m} + \ldots} \ &= \xi_k(q) \cdot rac{q^m}{1 - q^m} \end{aligned}$$

counts the # of times m is a part in the k-indivisible ptns. when $k \nmid m$. We then sum over $m \equiv r \pmod{t}$ while excluding $k \mid m$.

Our Results Conject

njectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Generating functions for $D_k(r, t; n), D_k^{\times}(r, t; n)$

Proposition

Let $\mathcal{D}_k(r, t; q), \mathcal{D}_k^{\times}(r, t; q)$ be defined by

$$\mathcal{D}_k(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k(r,t;n) q^n$$

 $\mathcal{D}_k^{\times}(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k^{\times}(r,t;n) q^n$

Our Results Conjectur

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Generating functions for $D_k(r, t; n), D_k^{\times}(r, t; n)$

Proposition

Let $\mathcal{D}_k(r, t; q), \mathcal{D}_k^{\times}(r, t; q)$ be defined by $\mathcal{D}_k(r, t; q) \coloneqq \sum_{n=1}^{\infty} D_k(r, t; n) q^n$ $\mathcal{D}_k^{\times}(r, t; q) \coloneqq \sum_{n=1}^{\infty} D_k^{\times}(r, t; n) q^n$

Then, recalling that $\operatorname{Li}_0(q)\coloneqq rac{q}{1-q}$, we have

$$\mathcal{D}_k(r,t;q) = \xi_k(q) \cdot \left(\sum_{m \equiv r \pmod{t}} \operatorname{Li}_0(q^m) - k \operatorname{Li}_0(q^{mk})\right)$$

Our Results Conjecture

ctures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Generating functions for $D_k(r, t; n), D_k^{\times}(r, t; n)$

Proposition

Let $\mathcal{D}_k(r, t; q), \mathcal{D}_k^{\times}(r, t; q)$ be defined by

$$\mathcal{D}_k(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k(r,t;n)q^n$$

 $\mathcal{D}_k^{\times}(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k^{\times}(r,t;n)q^n$

Then, recalling that $\operatorname{Li}_0(q)\coloneqq rac{q}{1-q}$, we have

$$\mathcal{D}_k(r,t;q) = \xi_k(q) \cdot \left(\sum_{m \equiv r \pmod{t}} \operatorname{Li}_0(q^m) - k \operatorname{Li}_0(q^{mk})\right)$$
$$\mathcal{D}_k^{\times}(r,t;q) = \xi_k(q) \cdot \left(\sum_{m \equiv r \pmod{t}} \operatorname{Li}_0(q^m) - \sum_{m \equiv \overline{r} \pmod{t}} \operatorname{Li}_0(q^{mk})\right).$$

Our Results Conjectu

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Generating functions for $D_k(r, t; n), D_k^{\times}(r, t; n)$

Proposition

Let $\mathcal{D}_k(r, t; q), \mathcal{D}_k^{\times}(r, t; q)$ be defined by $\mathcal{D}_k(r,t;q) \coloneqq \sum_{k=1}^{\infty} D_k(r,t;n)q^n$ $\mathcal{D}_k^{\times}(r,t;q) \coloneqq \sum_{k=1}^{\infty} D_k^{\times}(r,t;n)q^n$ Then, recalling that $Li_0(q) := \frac{q}{1-q}$, we have $\mathcal{D}_k(r,t;q) = \xi_k(q) \cdot \sum E_k(mz)$ $m \equiv r \pmod{t}$ $\mathcal{D}_k^{\times}(r,t;q) = \xi_k(q) \cdot \sum E_{\times}(mz) - \sum E_{\times}(mkz).$ $m \equiv r \pmod{t}$ $m \equiv \overline{r} \pmod{t}$

Our Results Conject

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Generating functions for $D_k(r, t; n), D_k^{\times}(r, t; n)$

Proposition

Let $\mathcal{D}_k(r, t; q), \mathcal{D}_k^{\times}(r, t; q)$ be defined by

$$\mathcal{D}_k(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k(r,t;n) q^n$$

 $\mathcal{D}_k^{\times}(r,t;q) \coloneqq \sum_{n=1}^{\infty} D_k^{\times}(r,t;n) q^n$

Then, recalling that $Li_0(q) \coloneqq \frac{q}{1-q}$, we have $\mathcal{D}_k(r, t; q) = \xi_k(q) \cdot \underline{L}_k(r, t; q)$ $\mathcal{D}_k^{\times}(r, t; q) = \xi_k(q) \cdot \underline{L}_k^{\times}(r, t; q).$

Introduction

Our Results Conject

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,j}$

Wrap-Up 000

Estimating ξ_k

ldea

The ξ_k function is a quotient of the partition generating functions.

Introduction	

Our Results Con

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Estimating ξ_k

Idea

The ξ_k function is a quotient of the partition generating functions. \implies We can use the modular transformation law for \mathcal{P} .

Introduction

Our Results Co

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Estimating ξ_k

Idea

The ξ_k function is a quotient of the partition generating functions. \implies We can use the modular transformation law for \mathcal{P} .

Proposition

For
$$q = e^{-z}$$
 and $\varepsilon \coloneqq \exp\left(-\frac{4\pi^2}{kz}\right)$, we have that

$$\xi_k(q) = \frac{1}{\sqrt{k}} \exp\left(\frac{\pi^2}{6z} \left(1 - \frac{1}{k}\right) + \frac{z}{24}(k-1)\right) \frac{\mathcal{P}(\varepsilon^k)}{\mathcal{P}(\varepsilon)}$$

Introduction

Our Results Co

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Estimating ξ_k

Idea

The ξ_k function is a quotient of the partition generating functions. \implies We can use the modular transformation law for \mathcal{P} .

Proposition

For
$$q = e^{-z}$$
 and $\varepsilon \coloneqq \exp\left(-\frac{4\pi^2}{kz}\right)$, we have that

$$\xi_k(q) = \frac{1}{\sqrt{k}} \exp\left(\frac{\pi^2}{6z} \left(1 - \frac{1}{k}\right) + \frac{z}{24}(k-1)\right) \frac{\mathcal{P}(\varepsilon^k)}{\mathcal{P}(\varepsilon)}$$

Our Results Conje

njectures/Examples

The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

How to deal with $\mathcal{P}(\varepsilon)$ in the denominator

Question

How do we estimate $\mathcal{P}(\varepsilon)^{-1}$?

Our Results Conject

njectures/Examples 000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

How to deal with $\mathcal{P}(\varepsilon)$ in the denominator

Question

How do we estimate $\mathcal{P}(\varepsilon)^{-1}$?

Proposition (Euler's Pentagonal Number Theorem)

$$\mathcal{P}(q)^{-1} = 1 + \sum_{m \ge 1} (-1)^m \left(q^{m(3m+1)/2} + q^{m(3m-1)/2}
ight)$$

Our Results Conjecture

The Circle Method

Understanding ψ_k 00000 Wrap-Up 000

Estimating $L_k(r, t; q)$

Question

• We must estimate

$$\sum_{m\equiv r \pmod{t}} \operatorname{Li}_0(q^m) = \sum_{\ell \ge 0} \operatorname{Li}_0(q^{\ell t+r}).$$

Introduction
000000

Our Results Conjecture

bles The Circle Method

Understanding ψ_{k} , 00000

Wrap-Up 000

Estimating $L_k(r, t; q)$

Question

• We must estimate

$$\sum_{\substack{m \equiv r \pmod{t}}} \operatorname{Li}_0(q^m) = \sum_{\ell \ge 0} \operatorname{Li}_0(q^{\ell t+r}).$$

• How do we estimate a sum over integers?

Introduction
000000

Our Results Conjection

n

njectures/Examples 000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Estimating $L_k(r, t; q)$

Question

• We must estimate

$$\sum_{m\equiv r \pmod{t}} \operatorname{Li}_0(q^m) = \sum_{\ell \ge 0} \operatorname{Li}_0(q^{\ell t+r}).$$

• How do we estimate a sum over integers?

Idea

• Euler-Maclaurin Summation gives a formula for

$$\int_a^b f(z)dz - \sum_{m=0}^{b-a} f(a+m).$$

Introduction
000000

Our Results

n

The Circle Method Understanding $\psi_{k,t}$

Estimating $L_k(r, t; q)$

Question

We must estimate

$$\sum_{m\equiv r \pmod{t}} \operatorname{Li}_0(q^m) = \sum_{\ell \ge 0} \operatorname{Li}_0(q^{\ell t+r}).$$

• How do we estimate a sum over integers?

Idea

• Euler-Maclaurin Summation gives a formula for

$$\int_a^b f(z)dz - \sum_{m=0}^{b-a} f(a+m).$$

• Zagier gives an asymptotic version estimating $\sum_{m>1} f(mz)$ under mild conditions on f.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

Definition

The Bernoulli numbers B_n are defined by

$$\sum_{n\geq 0} B_n \frac{x^n}{n!} \coloneqq \frac{x}{e^x - 1}.$$

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-U 000

Definition

The Bernoulli numbers B_n are defined by

$$\sum_{n\geq 0} B_n \frac{x^n}{n!} \coloneqq \frac{x}{e^x - 1}.$$

Proposition (Zagier)

If $f(x) \sim \sum_{n \geq 0} c_n x^n$ and its derivatives have rapid decay at ∞ , then

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-I 000

Definition

The Bernoulli numbers B_n are defined by

$$\sum_{n\geq 0} B_n \frac{x^n}{n!} \coloneqq \frac{x}{e^x - 1}.$$

Proposition (Zagier)

If $f(x) \sim \sum_{n \geq 0} c_n x^n$ and its derivatives have rapid decay at ∞ , then

$$\sum_{m \ge 1} f(mx) \sim \frac{1}{x} \int_0^\infty f(u) du + \sum_{n=0}^\infty c_n \frac{B_{n+1}}{n+1} (-x)^n$$

as $x \to 0^+$.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap- 000

Definition

The Bernoulli numbers B_n are defined by

$$\sum_{n\geq 0} B_n \frac{x^n}{n!} \coloneqq \frac{x}{e^x - 1}.$$

Proposition (Zagier)

If $f(x) \sim \sum_{n \ge 0} c_n x^n$ and its derivatives have rapid decay at ∞ , then

$$\sum_{m\geq 1} f(mx) \sim \frac{1}{x} \int_0^\infty f(u) du + \sum_{n=0}^\infty c_n \frac{B_{n+1}}{n+1} (-x)^n$$

as $x \to 0^+$.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap- 000

Definition

The Bernoulli numbers B_n are defined by

$$\sum_{n\geq 0} B_n \frac{x^n}{n!} := \frac{x}{e^x - 1}.$$

Proposition (Zagier)

If $f(x) \sim \sum_{n \ge 0} c_n x^n$ and its derivatives have rapid decay at ∞ , then

$$\sum_{m\geq 1}f(mx)\sim \frac{1}{x}\int_0^\infty f(u)du+\sum_{n=0}^\infty c_n\frac{B_{n+1}}{n+1}(-x)^n$$

as $x \to 0^+$.

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understand 00000

Pole Cancellation

Recall

$$Li_0(q) = Li_0(e^{-z})$$
 has a simple pole $\frac{1}{z}$ at $z = 0$.

Introduction

Our Results Conject

Conjectures/Examples

The Circle Method

Jnderstanding $\psi_{k,t}$

Wrap-Up 000

Pole Cancellation

Recall

$$Li_0(q) = Li_0(e^{-z})$$
 has a simple pole $\frac{1}{z}$ at $z = 0$.

Idea

•
$$\operatorname{Li}_0(q^m) - k \operatorname{Li}_0(q^{mk})$$
 cancels this pole for $\mathcal{D}_k(r, t; q)$

Our Results Conje

Conjectures/Examples 00000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Pole Cancellation

Recall

$$Li_0(q) = Li_0(e^{-z})$$
 has a simple pole $\frac{1}{z}$ at $z = 0$.

Idea

- $\operatorname{Li}_0(q^m) k \operatorname{Li}_0(q^{mk})$ cancels this pole for $\mathcal{D}_k(r, t; q)$ \implies Zagier's asymptotic applies.
- $\sum_{m\equiv r} {\sf Li}_0(q^m) \sum_{m\equiv \bar r} {\sf Li}_0(q^{mk})$ does not cancel this pole

Our Results Conje

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Pole Cancellation

Recall

$$\operatorname{Li}_0(q) = \operatorname{Li}_0(e^{-z})$$
 has a simple pole $\frac{1}{z}$ at $z = 0$.

Idea

- $\operatorname{Li}_0(q^m) k \operatorname{Li}_0(q^{mk})$ cancels this pole for $\mathcal{D}_k(r, t; q)$ \implies Zagier's asymptotic applies.
- $\sum_{\substack{m \equiv r \\ \implies}} \text{Li}_0(q^m) \sum_{\substack{m \equiv \bar{r} \\ \implies}} \text{Li}_0(q^{mk})$ does not cancel this pole

Our Results Co

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let $0 < a \leq 1$, let

$$f(z)\sim\sum_{n=-1}^{\infty}c_nz^n,$$

Our Results Co

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let $0 < a \leq 1$, let

$$f(z)\sim\sum_{n=-1}^{\infty}c_nz^n,$$

Our Results Cor

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let $0 < a \leq 1$, let

$$f(z)\sim \sum_{n=-1}^{\infty}c_nz^n,$$

and suppose its derivatives are of sufficient decay as $z
ightarrow \infty$, then

$$\sum_{n=0}^{\infty} f((n+a)z) \sim \frac{l_{f}^{*}}{z} - \frac{c_{-1}}{z} \left(\log(z) + \psi(a) + \gamma \right) - \sum_{n=0}^{\infty} c_{n} \frac{B_{n+1}(a)}{n+1} z^{n}$$

Our Results Cor

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let $0 < a \leq 1$, let

$$f(z)\sim \sum_{n=-1}^{\infty}c_nz^n,$$

and suppose its derivatives are of sufficient decay as $z
ightarrow \infty$, then

$$\sum_{n=0}^{\infty} f((n+a)z) \sim \frac{l_{f}^{*}}{z} - \frac{c_{-1}}{z} \left(\log(z) + \psi(a) + \gamma \right) - \sum_{n=0}^{\infty} c_{n} \frac{B_{n+1}(a)}{n+1} z^{n}$$

as $z \rightarrow 0$, where

$$J_f^* \coloneqq \int_0^\infty \left(f(u) - \frac{c_{-1}e^{-u}}{u} \right) \mathrm{d}u,$$

 ψ is the digamma fnc., and γ is the Euler-Mascheroni constant.

Our Results Co

onjectures/Examples 0000000 The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Euler-Maclaurin Asymptotics with a Pole

Proposition (Bringmann, Craig, Males, Ono)

Let $0 < a \leq 1$, let

$$f(z)\sim \sum_{n=-1}^{\infty}c_nz^n,$$

and suppose its derivatives are of sufficient decay as $z
ightarrow \infty$, then

$$\sum_{n=0}^{\infty} f((n+a)z) \sim \frac{l_f^*}{z} - \frac{c_{-1}}{z} \left(\log(z) + \psi(a) + \gamma\right) - \sum_{n=0}^{\infty} c_n \frac{B_{n+1}(a)}{n+1} z^n$$

as $z \rightarrow 0$, where

$$J_f^* \coloneqq \int_0^\infty \left(f(u) - \frac{c_{-1}e^{-u}}{u} \right) \mathrm{d}u,$$

 ψ is the digamma fnc., and γ is the Euler-Mascheroni constant.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000	000000000000000000000000000000000000	00000	000
Applying	to $L_k(r, t; c)$	q)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Applying	to $L_k(r, t; c)$	q)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have $L_k(r, t; q) = \frac{\log k}{tz} + \frac{k-1}{2}\left(\frac{r}{t} - \frac{1}{2}\right) + O(z).$

Proof Idea.

Write

$$\mathsf{E}_k(z)\coloneqq rac{q}{1-q}-rac{kq^k}{1-q^k}=\mathsf{Li}_0(q)-k\,\mathsf{Li}_0(q^k)$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000	000000000000000000	00000	000
Applying	to $L_k(r, t;$	q)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have $L_k(r, t; q) = \frac{\log k}{tz} + \frac{k-1}{2}\left(\frac{r}{t} - \frac{1}{2}\right) + O(z).$

Proof Idea.

Write

$$egin{aligned} & \mathsf{E}_k(z) \coloneqq rac{q}{1-q} - rac{kq^k}{1-q^k} = \mathsf{Li}_0(q) - k \, \mathsf{Li}_0(q^k) \ & \mathsf{L}_k(r,t;q) = \sum_{\ell \geq 0} \mathsf{E}_k\left(\left(\ell + rac{r}{t}
ight) tz
ight). \end{aligned}$$

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Applying	to $L_k(r, t; c)$	q)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have $L_k(r, t; q) = \frac{\log k}{tz} + \frac{k-1}{2}\left(\frac{r}{t} - \frac{1}{2}\right) + O(z).$

Proof Idea.

Write

$$egin{aligned} & \mathsf{E}_k(z) \coloneqq rac{q}{1-q} - rac{kq^k}{1-q^k} = \mathsf{Li}_0(q) - k\,\mathsf{Li}_0(q^k) \ & \mathsf{Li}_k(r,t;q) = \sum_{\ell \geq 0} \mathsf{E}_k\left(\left(\ell + rac{r}{t}
ight)tz
ight). \end{aligned}$$

• Note, Li₀ has a series expansion.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Applying	to $L_k(r, t; c)$	q)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have $L_k(r, t; q) = \frac{\log k}{tz} + \frac{k-1}{2}\left(\frac{r}{t} - \frac{1}{2}\right) + O(z).$

Proof Idea.

Write

$$egin{aligned} & \mathsf{E}_k(z) \coloneqq rac{q}{1-q} - rac{kq^k}{1-q^k} = \mathsf{Li}_0(q) - k\,\mathsf{Li}_0(q^k) \ & \mathsf{Li}_k(r,t;q) = \sum_{\ell \geq 0} \mathsf{E}_k\left(\left(\ell + rac{r}{t}
ight)tz
ight). \end{aligned}$$

- Note, Li₀ has a series expansion.
- Apply variant of Euler-Maclaurin, without a pole so no ψ .

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method 000000000000000000	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
Applying	to $L_k^{\times}(r,t;$	<i>q</i>)			

Let $q = e^{-z}$, then as $z \to 0$ on the major arc we have
Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000
Applying	to $L_k^{\times}(r,t;)$	q)			

Lemma (J.-O.)

Let
$$q = e^{-z}$$
, then as $z \to 0$ on the major arc we have
 $L_k^{\times}(r, t; q) = -\frac{K \log z}{tz} + \frac{1}{tz} \left(\psi_{k,t}(r) - K \log t + \frac{\log k}{k} \right) + O(1).$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Unde
			000000000000000000000000000000000000000	

Applying to $L_k^{\times}(r, t; q)$

Lemma (J.-O.)

Let
$$q = e^{-z}$$
, then as $z \to 0$ on the major arc we have
 $L_k^{\times}(r, t; q) = -\frac{K \log z}{tz} + \frac{1}{tz} \left(\psi_{k,t}(r) - K \log t + \frac{\log k}{k} \right) + O(1).$

$$\psi_{k,t} = -\psi \left(\frac{r}{t} \right) + \frac{1}{k} \psi \left(\frac{\overline{r}}{t} \right)$$

Proof Idea.

• Write

$$\mathsf{E}_{ imes}(z)\coloneqq rac{q}{1-q}=\mathsf{Li}_0(q)$$

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

Applying to $L_k^{\times}(r, t; q)$

Lemma (J.-O.)

Let
$$q = e^{-z}$$
, then as $z \to 0$ on the major arc we have
 $L_k^{\times}(r, t; q) = -\frac{K \log z}{tz} + \frac{1}{tz} \left(\psi_{k,t}(r) - K \log t + \frac{\log k}{k} \right) + O(1).$

Proof Idea.

• Write

$$E_{\times}(z) := \frac{q}{1-q} = \operatorname{Li}_{0}(q)$$
$$L_{k}^{\times}(r,t;q) = \sum_{\ell \geq 0} E_{\times}\left(\left(\ell + \frac{r}{t}\right)tz\right) - \sum_{\ell \geq 0} E_{\times}\left(\left(\ell + \frac{\bar{r}}{t}\right)tkz\right).$$

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method 000000000000000000	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000
	• > /				

Applying to $L_k^{\times}(r, t; q)$

Lemma (J.-O.)

Let
$$q = e^{-z}$$
, then as $z \to 0$ on the major arc we have
 $L_k^{\times}(r, t; q) = -\frac{K \log z}{tz} + \frac{1}{tz} \left(\psi_{k,t}(r) - K \log t + \frac{\log k}{k} \right) + O(1).$

Proof Idea.

Write

$$E_{\times}(z) := \frac{q}{1-q} = \operatorname{Li}_{0}(q)$$
$$L_{k}^{\times}(r,t;q) = \sum_{\ell \ge 0} E_{\times}\left(\left(\ell + \frac{r}{t}\right)tz\right) - \sum_{\ell \ge 0} E_{\times}\left(\left(\ell + \frac{\bar{r}}{t}\right)tkz\right).$$

• Apply Euler-Maclaurin *twice*, with a pole, giving ψ .

Our Results Conjectures/

The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + iy$$
, if $q = e^{-z}$, we have that as $\eta \to 0$,

Our Results Conjectures/

tures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + iy$$
, if $q = e^{-z}$, we have that as $\eta \to 0$,

$$\left|L_{k}(r,t;q)\right|,\left|L_{k}^{\times}(r,t;q)\right|=O(\eta^{-2}).$$

Our Results Conjectures

The Circle Method

Understanding $\psi_{k,i}$ 00000 Wrap-Up 000

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + iy$$
, if $q = e^{-z}$, we have that as $\eta \to 0$,

$$\left|L_{k}(r,t;q)\right|,\left|L_{k}^{\times}(r,t;q)\right|=O(\eta^{-2}).$$

$$|L_k(r,t;q)|, |L_k^{\times}(r,t;q)| \le \sum_{m\geq 1} \frac{(k+1)|q|^m}{1-|q|^m}$$

Our Results Conjectur

ctures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + iy$$
, if $q = e^{-z}$, we have that as $\eta \to 0$,

$$\left|L_{k}(r,t;q)\right|,\left|L_{k}^{\times}(r,t;q)\right|=O(\eta^{-2}).$$

Proof.

$$|L_k(r,t;q)|, |L_k^{\times}(r,t;q)| \leq \sum_{m\geq 1} \frac{(k+1)|q|^m}{1-|q|^m} = \sum_{m\geq 1} (k+1)\sigma_0(m)|q|^m,$$

where $\sigma_0(m) = \#$ of divisors of m.

Our Results

The Circle Method

Understanding $\psi_{k,t}$

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + i y$$
, if $q = e^{-z}$, we have that as $\eta o 0$,

$$\left|L_{k}(r,t;q)\right|,\left|L_{k}^{\times}(r,t;q)\right|=O(\eta^{-2}).$$

Proof.

$$|L_k(r,t;q)|, |L_k^{\times}(r,t;q)| \leq \sum_{m\geq 1} \frac{(k+1)|q|^m}{1-|q|^m} = \sum_{m\geq 1} (k+1)\sigma_0(m)|q|^m,$$

where $\sigma_0(m) = \#$ of divisors of *m*. Then

$$\left|L_{k}(r,t;q)
ight|,\left|L_{k}^{ imes}(r,t;q)
ight|\leq\left(k+1
ight)\sum_{m\geq1}m\left|q
ight|^{m}$$

Our Results Conjectu 0000000000 000000

ctures/Examples 0000

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Minor Arc Estimates for $L_k(r, t; q), L_k^{\times}(r, t; q)$

Lemma (J.-O.)

For any
$$z = \eta + i y$$
, if $q = e^{-z}$, we have that as $\eta o 0$,

$$\left|L_{k}(r,t;q)\right|,\left|L_{k}^{\times}(r,t;q)\right|=O(\eta^{-2}).$$

Proof.

$$|L_k(r,t;q)|, |L_k^{\times}(r,t;q)| \leq \sum_{m\geq 1} \frac{(k+1)|q|^m}{1-|q|^m} = \sum_{m\geq 1} (k+1)\sigma_0(m)|q|^m,$$

where $\sigma_0(m) = \#$ of divisors of m. Then

$$|L_k(r,t;q)|, |L_k^{\times}(r,t;q)| \leq (k+1) \sum_{m \geq 1} m |q|^m = (k+1) \frac{|q|}{(1-|q|)^2}.$$

Our Results Conject

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Proving the Asymptotics

Proof Outline.

• Use modularity to estimate $\xi_k(q)$ on the major/minor arc

Our Results Conject

onjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000

Wrap-Up 000

Proving the Asymptotics

- Use modularity to estimate $\xi_k(q)$ on the major/minor arc
- Euler-Maclaurin estimates $L_k(r, t; q), L_k^{\times}(r, t; q)$ the major arc.

Our Results Conject

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Proving the Asymptotics

- Use modularity to estimate $\xi_k(q)$ on the major/minor arc
- Euler-Maclaurin estimates $L_k(r, t; q), L_k^{\times}(r, t; q)$ the major arc.
- Trivially estimate $L_k(r, t; q), L_k^{\times}(r, t; q)$ on the minor arc.

Our Results Conject

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 000

Proving the Asymptotics

- Use modularity to estimate $\xi_k(q)$ on the major/minor arc
- Euler-Maclaurin estimates $L_k(r, t; q), L_k^{\times}(r, t; q)$ the major arc.
- Trivially estimate $L_k(r, t; q), L_k^{\times}(r, t; q)$ on the minor arc.
- Apply two variants of Wright's Circle Method.

Introduction	Our Results	Conjectures/Examples	The Circ

The Circle Method

Understanding $\psi_{k,t}$ •0000 Wrap-Up 000

Understanding $\psi_{k,t}$

$$\psi_{k,t}(r) = -\psi\left(\frac{r}{t}\right) + \frac{1}{k}\psi\left(\frac{\overline{r}}{t}\right)$$

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 0000	Wrap-Up 000
Basic Fa	icts				

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 0000	Wrap-Up 000
Basic Fac	ts				

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

•
$$\psi(x)$$
 is increasing for $x > 0$.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		0000	000
Basic Fa	cts				

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

•
$$\psi(x)$$
 is increasing for $x > 0$.

•
$$\psi(x+1) = \frac{1}{x} + \psi(x)$$
.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		0000	000
Basic Fa	cts				

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

•
$$\psi(x)$$
 is increasing for $x > 0$.

•
$$\psi(x+1) = \frac{1}{x} + \psi(x)$$
.

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 0000	Wrap-Up 000

Basic Facts

Recall

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

•
$$\psi(x)$$
 is increasing for $x > 0$.

•
$$\psi(x+1) = \frac{1}{x} + \psi(x)$$
.

Lemma (J.-O.)

If x, a > 0, then

$$\psi(x) = \psi(x + N + 1) - \sum_{n=0}^{N} \frac{1}{x + n},$$

. .

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 0000	Wrap-Up 000

Basic Facts

Recall

•
$$\psi(x) \coloneqq \frac{\Gamma'(x)}{\Gamma(x)}$$
.

•
$$\psi(x)$$
 is increasing for $x > 0$.

•
$$\psi(x+1) = \frac{1}{x} + \psi(x)$$
.

Lemma (J.-O.)

If x, a > 0, then

$$\psi(x) = \psi(x + N + 1) - \sum_{n=0}^{N} \frac{1}{x + n},$$

$$\psi(x + a) - \psi(x) = a \sum_{n=0}^{\infty} \frac{1}{(x + n)(x + a + n)}.$$

. .

Introduction 000000	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

$$\psi(1) - \psi(a) = (1 - a) \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+a)}$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

$$\psi(1) - \psi(a) = (1 - a) \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+a)}$$

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+a)}$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

$$\psi(1) - \psi(a) = (1 - a) \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+a)}$$
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+a)}$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

$$\psi(1) - \psi(a) = (1 - a) \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+a)}$$
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} < \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+a)} < \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 00000	Wrap-Up 000

Lemma (J.-O.)

For 0 < a < 1, we have

$$(1-a)\left(rac{1}{a}+rac{\pi^2}{6}-1
ight)<\psi(1)-\psi(a)<(1-a)\left(rac{1}{a}+1
ight).$$

$$\psi(1) - \psi(a) = (1 - a) \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+a)}$$
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} < \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+a)} < \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Estimating $\psi(a) - \psi(b)$ for 0 < b < a < 1

Lemma (J.-O.)

For 0 < b < a < 1, we have

$$(a-b)\left(rac{1}{ab}+rac{1}{b+1}
ight)<\psi(a)-\psi(b)<(a-b)\left(rac{1}{ab}+rac{\pi^2}{6}
ight).$$

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		0000 \bullet	000
Proving	One Patter	n			

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$.

Introduction 000000	Our Results 00000000000	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$ 0000 \bullet	Wrap-Up 000
Proving	One Patter	n			

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$. Then, if $1 \le r \le y \le t$ and $r < s \le t$, we have that $r \succ_{k,t} s$.

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 0000 \bullet	Wrap-Up 000
_	-				

Proving One Pattern

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$. Then, if $1 \le r \le y \le t$ and $r < s \le t$, we have that $r \succ_{k,t} s$.

• Rewrite as
$$\psi\left(\frac{s}{t}\right) - \psi\left(\frac{r}{t}\right) > \frac{1}{k}\left(\psi\left(\frac{\bar{s}}{t}\right) - \psi\left(\frac{\bar{r}}{t}\right)\right)$$
.

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		0000	000
Proving	One Patter	n			

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$. Then, if $1 \le r \le y \le t$ and $r < s \le t$, we have that $r \succ_{k,t} s$.

- Rewrite as $\psi\left(\frac{s}{t}\right) \psi\left(\frac{r}{t}\right) > \frac{1}{k}\left(\psi\left(\frac{\bar{s}}{t}\right) \psi\left(\frac{\bar{r}}{t}\right)\right)$.
- Minimize the left hand side and maximize the right hand side

Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		0000 \bullet	000
	-				

Proving One Pattern

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$. Then, if $1 \le r \le y \le t$ and $r < s \le t$, we have that $r \succ_{k,t} s$.

- Rewrite as $\psi\left(\frac{s}{t}\right) \psi\left(\frac{r}{t}\right) > \frac{1}{k}\left(\psi\left(\frac{\bar{s}}{t}\right) \psi\left(\frac{\bar{r}}{t}\right)\right)$.
- Minimize the left hand side and maximize the right hand side

$$\psi\left(\frac{y+1}{t}\right) - \psi\left(\frac{y}{t}\right) > \frac{1}{k}\left(\psi(1) - \psi\left(\frac{1}{t}\right)\right)$$

Introduction 000000	Our Results	Conjectures/Examples 00000000	The Circle Method	Understanding $\psi_{k,t}$ 0000 \bullet	Wrap-Up 000

Proving One Pattern

Proposition (J.-O.)

Let $k, t \ge 2$ be coprime, and suppose that $k \ge y(y+1)$. Then, if $1 \le r \le y \le t$ and $r < s \le t$, we have that $r \succ_{k,t} s$.

Proof Outline.

- Rewrite as $\psi\left(\frac{s}{t}\right) \psi\left(\frac{r}{t}\right) > \frac{1}{k}\left(\psi\left(\frac{\bar{s}}{t}\right) \psi\left(\frac{\bar{r}}{t}\right)\right)$.
- Minimize the left hand side and maximize the right hand side

$$\psi\left(rac{y+1}{t}
ight)-\psi\left(rac{y}{t}
ight)>rac{1}{k}\left(\psi(1)-\psi\left(rac{1}{t}
ight)
ight)$$

• Apply the previous two lemmas and rearrange.

Our Results Conje

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up ●00

Summary of Methods

Idea

- Want: Asymptotics for parts lying in residue classes.
- Use the circle method. How do we estimate?
 - Modular Transformation Laws.
 - Euler-Maclaurin Summation when you're not so lucky.
- $\psi_{k,t}$ is intricate. How do we understand it?
 - Approximate with a square sum.
 - Make the weighting factor $\frac{1}{k}$ so small it washes everything out.
 - Fix $k \mod t$ (i.e., k = mt 1).

Our Results Con

Conjectures/Examples

The Circle Method

Understanding $\psi_{k,t}$ 00000 Wrap-Up 0●0

Summary of Results

Theorem (J.-O.)

Asymptotics for parts in k-regular/k-indivisible partitions of n which are r mod t (notationally, $D_k(r, t; n), D_k^{\times}(r, t; n)$).

Corollary (J.-O.)

• Bias towards lower congruence classes for $D_k(r, t; n)$.

• Intricate Bias for $D_k^{\times}(r, t; n)$.

Theorem (J.-O.)

Basic properties of the biases in $D_k^{\times}(r, t; n)$
Introduction	Our Results	Conjectures/Examples	The Circle Method	Understanding $\psi_{k,t}$	Wrap-Up
000000	00000000000	00000000		00000	00●
Acknowle	edgements				

- This research was done as part of the 2022 UVA REU in Number Theory
- The authors would like to thank Ken Ono, the director, as well as their graduate student mentor William Craig.
- They are grateful for the support of grants from the NSF (DMS-2002265, DMS-2055118, DMS-2147273), the NSA (H98230-22-1-0020), and the Templeton World Charity Foundation.