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▶ I will begin by providing some historical background

regarding the function PDO(n) which counts the

number of odd–part partitions with designated parts.

▶ In particular, I will focus our attention on a curious

identity satisfied by PDO.

▶ I will look at past work of P. A. MacMahon which has

gained a great deal of attention recently.

▶ I will connect these results of MacMahon (and others)

to PDO(n) and transition to a conversation about a

2–parameter refinement of the above–mentioned

identity, highlighting how we prove this result.
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In 2002, Andrews, Lewis, and Lovejoy introduced the

combinatorial objects which they called partitions with

designated summands.

These are built by taking unrestricted integer partitions and

designating exactly one of each occurrence of a part.

For example, there are 10 partitions with designated

summands of weight 4:

4′, 3′ + 1′, 2′ + 2, 2 + 2′, 2′ + 1′ + 1, 2′ + 1 + 1′

1′+1+1+1, 1+1′+1+1, 1+1+1′+1, 1+1+1+1′
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Andrews, Lewis, and Lovejoy denoted the number of

partitions with designated summands of weight n by the

function PD(n).

Using this notation and the example above, we know

PD(4) = 10.

In the same paper, Andrews, Lewis, and Lovejoy also

considered the restricted partitions with designated

summands wherein all parts must be odd, and they denoted

the corresponding enumeration function by PDO(n).
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Thus, from the example above, we see that PDO(4) = 5,

where we have counted the following five objects:

3′+1′, 1′+1+1+1, 1+1′+1+1, 1+1+1′+1, 1+1+1+1′

Beginning with Andrews, Lewis, and Lovejoy, a wide variety

of Ramanujan–like congruences have been proven for PD(n)

and PDO(n) (as well as the functions PDk(n) which count

the number of k–regular partitions with designated parts;

note that in this notation, PDO(n) = PD2(n)).
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I will refrain from sharing a lot of bibliographic references

here, but as an aside I will highlight the following two recent

papers on congruences satisfied by PDO(n):

▶ J. A. Sellers, New infinite families of congruences

modulo powers of 2 for 2-regular partitions with

designated summands, Integers 24 (2024), Article A16.

▶ S. Chern and J. A. Sellers, An infinite family of internal

congruences modulo powers of 2 for partitions into odd

parts with designated summands, Acta Arith. 215, no.

1 (2024), 43–64.
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Instead of focusing on congruence properties satisfied by

PDO(n), I want to turn our attention to the following

curious identity:

Theorem: For all n ≥ 0,

PDO(2n) =

n∑
k=0

PDO(k)PDO(n− k).

From a generating function perspective, this is equivalent to

proving that

∑
n≥0

PDO(2n)qn =

∑
n≥0

PDO(n)qn

2

.
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This identity implicitly appears in the original paper of

Andrews, Lewis, and Lovejoy, as well as the 2024 Integers

paper of Sellers.

It is explicitly called out in the final section of the 2015

Integers paper of Baruah and Ojah where the authors note

that it would be “interesting to find a combinatorial proof of

this identity”.

In all of the above–mentioned works, this curious identity

was proved via elementary 2–dissection of the generating

function for PDO(n).
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Andrews, Lewis, and Lovejoy proved the following generating

function result for PDO(n).

Theorem: The generating function for PDO(n) is given by

∞∑
n=0

PDO(n)qn =
f4f

2
6

f1f3f12

where fr = (1− qr)(1− q2r)(1− q3r)(1− q4r) . . . is the

usual q–Pochhammer symbol.
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This eta quotient representation of the generating function

has been extremely helpful in proving congruences satisfied

by PDO(n).

However, interestingly enough, there’s another way to view

the generating function for PDO(n), and this approach has

allowed Shishuo Fu and me to refine the curious identity

above in a really beautiful way.
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A Different View of the Generating Function

In his 1921 Proc. London Math. Soc. paper, P. A.

MacMahon generalized the notion of the generation function

for the sum–of–divisors function by defining the following

two generating functions:

Ak(q) =
∑

0<m1<m2<···<mk

qm1+m2+···+mk

(1− qm1)2 . . . (1− qmk)2
,

Ck(q) =
∑

0<m1<m2<···<mk

q2m1+2m2+···+2mk−k

(1− q2m1−1)2 . . . (1− q2mk−1)2
.

These provide generalizations in the following sense.
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These provide generalizations in the following sense.
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Fix a positive integer k. Define an,k :=
∑
s1 · · · sk where

the sum is taken over all partitions of n of the form

n = s1m1 + · · ·+ skmk

with 0 < m1 < · · · < mk.

When k = 1 this is simply σ1(n), the usual sum–of–divisors

function.

One can then show that

Ak(q) =

∞∑
n=1

an,kq
n.
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Next, consider cn,k :=
∑
s1 · · · sk where the sum is taken

over all partitions of n of the form

n = s1(2m1 − 1) + · · ·+ sk(2mk − 1)

with 0 < m1 < · · · < mk.

Note that for k = 1, this is simply the sum over all divisors j

of n such that n/j is an odd number.
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Note also that cn,k :=
∑
s1 · · · sk is the sum of the products

of the frequencies of all the parts in the odd–part partitions

of n into exactly k parts.

In analogous fashion, we have

Ck(q) =

∞∑
n=1

cn,kq
n.
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As an aside, it is important to note that the families of

functions Ak(q) and Ck(q), which originated with

MacMahon, have recently received a great deal of attention!

▶ Amdeberhan, Andrews, Tauraso, Res. Math. Sci.

▶ Amdeberhan, Andrews, Tauraso, arXiv:2409.20400

▶ Amdeberhan, Ono, Singh, Adv. Math.

▶ Bachmann, Res. Number Theory

▶ Craig, van Ittersum, Ono, arXiv:2405.06451

▶ Jin, Pandey, Singh, arXiv:2407.04798

▶ Ono, Singh, J. Combin. Theory Ser. A
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OK, back to PDO(n)!

We now highlight two very important connections.

First, note that for a given k, Ck(q) provides a natural

refinement of the generating function of PDO(n) in the

sense that the coefficient of qn in Ck(q) provides the

contribution to PDO(n) where the partitions in question

have exactly k different part sizes.

Said from a generating function perspective,∑
n≥0

PDO(n)qn =
∑
k≥0

Ck(q).
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Secondly, we note that, in their 2013 J. Reine Angew. Math.

paper, Andrews and Rose introduced the function

G(x, q) := 1 + 2
∑
n≥1

T2n(x/2)q
n2

where, for n ≥ 0, Tn(x) is the n
th Chebyshev polynomial (of

the first kind) defined by Tn(cos θ) = cos(nθ).

Note that the sum-product identity

cos(A+B) + cos(A−B) = 2 cos(A) cos(B)

extends naturally to these Chebyshev polynomials:

Proposition: For 0 ≤ m ≤ n, we have

Tn+m(x) + Tn−m(x) = 2Tm(x)Tn(x).
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Thanks to Andrews and Rose, we also know the following:

Theorem: We have

f2
f21
G(x, q) =

∑
k≥0

Ck(q)x
2k.

As an aside, note that

f2
f21

=
∑
n≥0

p(n)qn

where p(n) counts the number of overpartitions of n.
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Our Refinements

The above comments imply that we can now define a

“refined” version of PDO(n) which simultaneously takes

into account the weight n of the partitions in question as

well as the number of different part sizes in the partitions.

Let PDO(n) denote the set of all PDO-partitions of n, so

that PDO(n) = |PDO(n)|.

Moreover, let PDO :=
⋃

n≥0 PDO(n) with PDO(0)

containing only the empty partition ∅.

Lastly, let ℓd(λ) denote the number of different part sizes in

the partition λ.
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Then we have the following:

Theorem: For every n ≥ 0, we have∑
λ∈PDO(2n)

xℓd(λ) =

n∑
k=0

 ∑
α∈PDO(k)

xℓd(α)

 ∑
β∈PDO(n−k)

xℓd(β)

 .

Equivalently, writing

PDO(x, q) :=
∑

λ∈PDO
xℓd(λ)q|λ|,

we have for all n ≥ 0,

[q2n]PDO(x, q) = [qn] (PDO(x, q))2 .
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An example may prove helpful here.

Example: Let n = 4. Of the 22 partitions into odd parts

with designated summands which are counted by PDO(8),

we see that

▶ there are 8 which contain exactly one part size (all of

which are constructed from the ordinary partition

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1), and

▶ there are 14 which contain exactly two different part

sizes (these are constructed from designating the parts

in 7 + 1, 5 + 3, 5 + 1 + 1 + 1, 3 + 3 + 1 + 1, and

3 + 1 + 1 + 1 + 1 + 1).
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If we denote by (α|β) the pairs of PDO partitions where α

has weight k and β has weight 4− k, then we see that we

can naturally break these into two subsets.

▶ the 8 pairs of PDO partitions with only one designated

part are the following:

(∅|1′ + 1 + 1 + 1), (∅|1 + 1′ + 1 + 1),

(∅|1 + 1 + 1′ + 1), (∅|1 + 1 + 1 + 1′),

(1′ + 1 + 1 + 1|∅), (1 + 1′ + 1 + 1|∅),

(1 + 1 + 1′ + 1|∅), (1 + 1 + 1 + 1′|∅)



A New View of

Odd-Part

Partitions with

Designated

Summands

James Sellers

University of

Minnesota Duluth

Background

A Different View

of the Generating

Function

Our Refinements

Closing Thoughts

Our Refinements

If we denote by (α|β) the pairs of PDO partitions where α

has weight k and β has weight 4− k, then we see that we

can naturally break these into two subsets.

▶ the 8 pairs of PDO partitions with only one designated

part are the following:

(∅|1′ + 1 + 1 + 1), (∅|1 + 1′ + 1 + 1),

(∅|1 + 1 + 1′ + 1), (∅|1 + 1 + 1 + 1′),

(1′ + 1 + 1 + 1|∅), (1 + 1′ + 1 + 1|∅),

(1 + 1 + 1′ + 1|∅), (1 + 1 + 1 + 1′|∅)



A New View of

Odd-Part

Partitions with

Designated

Summands

James Sellers

University of

Minnesota Duluth

Background

A Different View

of the Generating

Function

Our Refinements

Closing Thoughts

Our Refinements

▶ the 14 pairs of PDO partitions with exactly two

designated parts present are the following:

(∅|3′ + 1′), (3′ + 1′|∅), (1′|3′), (3′|1′),

(1′ + 1|1′ + 1), (1′ + 1|1 + 1′),

(1 + 1′|1′ + 1), (1 + 1′|1 + 1′),

(1′|1′ + 1 + 1), (1′|1 + 1′ + 1), (1′|1 + 1 + 1′),

(1′ + 1 + 1|1′), (1 + 1′ + 1|1′), (1 + 1 + 1′|1′)
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In order to prove this refinement, we require the

2–dissections of G(x, q) and the generating function for

p(n).

The 2–dissection of G(x, q) is easy since G(x, q) is naturally

written as a sum.

The 2–dissection of the generating function for p(n) appears

in the 2005 paper of Hirschhorn and Sellers on overpartitions.
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In order to prove this refinement, we require the

2–dissections of G(x, q) and the generating function for

p(n).

The 2–dissection of G(x, q) is easy since G(x, q) is naturally

written as a sum.

The 2–dissection of the generating function for p(n) appears

in the 2005 paper of Hirschhorn and Sellers on overpartitions.
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Combining all the facts above reveals that the refined

generating function identity is equivalent to the following

identity:

[q2n]

(
f2
f21
G(x, q)

)
= [qn]

(
f2
f21
G(x, q)

)2

.
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Combining all the facts above reveals that the refined

generating function identity is equivalent to the following
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After incorporating the 2–dissections for G(x, q) and the

generating function for p(n), along with performing some

simplifications, we see that we need to prove the following:

f54
f22 f

2
8

1 + 2
∑
n≥1

T4nq
2n2

+ 4q
f28
f4

∑
n≥1

T4n−2q
2n2−2n

 =

1 + 2
∑
n≥1

T2nq
n2

2

,

where we have suppressed the argument x/2 in all

Chebyshev polynomials Tn(x/2).
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After incorporating the 2–dissections for G(x, q) and the

generating function for p(n), along with performing some

simplifications, we see that we need to prove the following:
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,
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Chebyshev polynomials Tn(x/2).
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As an interesting aside, note that

f54
f22 f

2
8

and
f28
f4

are clearly related to Ramanujan’s theta functions

φ(q) := 1 + 2
∑
n≥1

qn
2
=

f52
f21 f

2
4

,

ψ(q) :=
∑
n≥1

q(
n
2) =

f22
f1
.

After a bit more simplification, we reduce the above

equation to an even simpler equality, and we close out the

proof then via a pair of elementary bijections.
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2
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f28
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∑
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,
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.
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In the time that remains, let me provide a two–parameter

refinement of the original curious identity (which is a

one–parameter refinement of our first refinement).

For a PDO partition λ ∈ PDO, let ℓod(λ) be the number of

different parts that occur an odd number of times in λ, and

write P1(x, y, q) :=
∑

λ∈PDO x
ℓd(λ)yℓ

o
d(λ)q|λ|.

For example, ℓod(7
′ + 3 + 3′ + 1 + 1 + 1 + 1′ + 1) = 2.
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In the time that remains, let me provide a two–parameter
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For a PDO partition λ ∈ PDO, let ℓod(λ) be the number of

different parts that occur an odd number of times in λ, and

write P1(x, y, q) :=
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For a PDO partition pair (α|β), let ℓr(α, β) be the number

of different part sizes that occur (simultaneously) in both α

and β.

As an example, ℓr(3
′ + 3 + 1 + 1 + 1′, 5′ + 5 + 3′) = 1 since

only the part 3 is found in both α and β.

Now let

P2(x, y, q) :=
∑

(α|β)∈PDO×PDO

xℓd(α)+ℓd(β)y2ℓr(α,β)q|α|+|β|.

We then have the following:
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only the part 3 is found in both α and β.

Now let

P2(x, y, q) :=
∑

(α|β)∈PDO×PDO
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P1(x, y, q)

=
∏
m≥1

(
1 + 2x

q4m−2

(1− q4m−2)2
+ xy

q2m−1(1 + q4m−2)

(1− q4m−2)2

)

=
∏
m≥1

(
1 + xy

q2m−1

(1− q2m−1)2
+ 2x(1− y)

q4m−2

(1− q4m−2)2

)
,

and

P2(x, y, q)

=
∏
m≥1

(
1 + 2x

q2m−1

(1− q2m−1)2
+ x2y2

(
q2m−1

(1− q2m−1)2

)2
)

=
∏
m≥1

((
1 + xy

q2m−1

(1− q2m−1)2

)2

+ 2x(1− y)
q2m−1

(1− q2m−1)2

)
.
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Moreover, for all n ≥ 0 we have

[q2n]P1(x, y, q) = [qn]P2(x, y, q).

Our proof involves tools similar to those mentioned above,

along with the extension of some of the results of Andrews

and Rose.

Let me demonstrate the above result with a brief example.

Example: Let n = 4 and k = j = 2.
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Moreover, for all n ≥ 0 we have

[q2n]P1(x, y, q) = [qn]P2(x, y, q).

Our proof involves tools similar to those mentioned above,

along with the extension of some of the results of Andrews

and Rose.

Let me demonstrate the above result with a brief example.

Example: Let n = 4 and k = j = 2.
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There are ten PDO partitions in PDO(8) which contain

exactly two different part sizes, and each of them occur an

odd number of times (these are derived from designating the

parts in 7+1, 5+3, 5+1+1+1, and 3+1+1+1+1+1).

On the other hand, the following ten PDO partition pairs

are all of those having combined weight 4, with 2 designated

parts and j/2 = 1 simultaneously shared part size.

(1′ + 1|1′ + 1), (1′ + 1|1 + 1′),

(1 + 1′|1′ + 1), (1 + 1′|1 + 1′),

(1′|1′ + 1 + 1), (1′|1 + 1′ + 1), (1′|1 + 1 + 1′),

(1′ + 1 + 1|1′), (1 + 1′ + 1|1′), (1 + 1 + 1′|1′)
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exactly two different part sizes, and each of them occur an

odd number of times (these are derived from designating the
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I’ll close with a few comments:

▶ As a complete sidenote, if we return to the function

PD(n) of Andrews, Lewis, and Lovejoy, where there are

no parity restrictions on the parts in question, then we

see that ∑
n≥0

PD(n)qn =
∑
k≥0

Ak(q).

It is not clear whether this can be utilized in any

beneficial way; even so, it’s worth highlighting as this

yields (in analogous fashion) a refinement of the

function PD(n) by the number of parts present in each

such partition.
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see that ∑
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PD(n)qn =
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beneficial way; even so, it’s worth highlighting as this
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I’ll close with a few comments:

▶ In essence, our proofs reduce to proving a few

trigonometric identities (which are, at their core,

statements about Chebyshev polynomials). For the

most part, once we have reduced the work to these

identities, their proofs are relatively straightforward.



A New View of

Odd-Part

Partitions with

Designated

Summands

James Sellers

University of

Minnesota Duluth

Background

A Different View

of the Generating

Function

Our Refinements

Closing Thoughts

Closing Thoughts

I’ll close with a few comments:

▶ When Shishuo and I began our discussions at the

Andrews–Berndt conference in June 2024, our primary

goal was to find a purely bijective / combinatorial proof

of the original identity that I shared at the beginning of

this talk. Unfortunately, such a proof has proven

elusive. Nevertheless, we are very happy to have proven

these refinements of the original identity.
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And with that I will close.

Thanks very much for attending
today.
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