Infinite Families of Congruences Modulo
 Powers of 2 for Partitions into Odd Parts

 with Designated Summands```
Infinite Families of
 Congruences
Modulo Powers of
 2 for Partitions
 into Odd Parts
 with Designated
 Summands
 James Sellers
 University of
Minnesota Duluth
```

Background

James Sellers<br>University of Minnesota Duluth

jsellers@d.umn.edu

September 2023

## Opening Comments

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Opening Comments

- Thanks to William Keith for the opportunity to share this talk in today's seminar.

Infinite Families of Congruences
Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Opening Comments

- Thanks to William Keith for the opportunity to share this talk in today's seminar.
- Thanks to my co-author Shane Chern (Dalhousie University) for our very fruitful collaboration; the latter portion of my talk today will cover the material on which Shane and I collaborated. Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Opening Comments

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Opening Comments

- The primary goal of this talk is to discuss some new congruences modulo powers of 2 which are satisfied by the function $P D O(n)$ which counts the number of odd-part partitions with designated parts. Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Opening Comments

- The primary goal of this talk is to discuss some new congruences modulo powers of 2 which are satisfied by the function $P D O(n)$ which counts the number of odd-part partitions with designated parts.
- Along the way, I will provide some historical background regarding this function.

Infinite Families of
Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Opening Comments

- The primary goal of this talk is to discuss some new congruences modulo powers of 2 which are satisfied by the function $P D O(n)$ which counts the number of odd-part partitions with designated parts.
- Along the way, I will provide some historical background regarding this function.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences

- The results in the first part of the talk are proved via straightforward generating function manipulations.


## Opening Comments

- The primary goal of this talk is to discuss some new congruences modulo powers of 2 which are satisfied by the function $P D O(n)$ which counts the number of odd-part partitions with designated parts.
- Along the way, I will provide some historical background regarding this function.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background
Proofs of These Two Infinite Families

Extending The

- The results in the first part of the talk are proved via straightforward generating function manipulations.
- The later results with Shane rely heavily on tools from modular forms as well as an inductive argument.


## Background

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background
Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Background

In 2002, Andrews, Lewis, and Lovejoy introduced the combinatorial objects which they called partitions with designated summands.

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

In 2002, Andrews, Lewis, and Lovejoy introduced the combinatorial objects which they called partitions with designated summands.

These are built by taking unrestricted integer partitions and designating exactly one of each occurrence of a part.

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

In 2002, Andrews, Lewis, and Lovejoy introduced the combinatorial objects which they called partitions with designated summands.

These are built by taking unrestricted integer partitions and designating exactly one of each occurrence of a part.

For example, there are 10 partitions with designated summands of weight 4:

Infinite Families of
Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Background

In 2002, Andrews, Lewis, and Lovejoy introduced the combinatorial objects which they called partitions with designated summands.

These are built by taking unrestricted integer partitions and designating exactly one of each occurrence of a part.

For example, there are 10 partitions with designated summands of weight 4 :

$$
\begin{array}{llll}
4^{\prime}, & 3^{\prime}+1^{\prime}, & 2^{\prime}+2, & 2+2^{\prime},
\end{array} 2^{\prime}+1^{\prime}+1, \quad 2^{\prime}+1+1^{\prime}, ~\left(1+1, ~ 1+1^{\prime}+1+1, \quad 1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime} .\right.
$$

## Background

Andrews, Lewis, and Lovejoy denoted the number of partitions with designated summands of weight $n$ by the function $P D(n)$.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

Andrews, Lewis, and Lovejoy denoted the number of partitions with designated summands of weight $n$ by the function $P D(n)$.

Using this notation and the example above, we know
$P D(4)=10$.

Congruences

## Background

Andrews, Lewis, and Lovejoy denoted the number of partitions with designated summands of weight $n$ by the function $P D(n)$.

Infinite Families of
Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth
Using this notation and the example above, we know $P D(4)=10$.

In the same paper, Andrews, Lewis, and Lovejoy also considered the restricted partitions with designated summands wherein all parts must be odd, and they denoted the corresponding enumeration function by $P D O(n)$.

## Background

Thus, from the example above, we see that $P D O(4)=5$, where we have counted the following five objects:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

Thus, from the example above, we see that $P D O(4)=5$, where we have counted the following five objects:
$3^{\prime}+1^{\prime}, \quad 1^{\prime}+1+1+1, \quad 1+1^{\prime}+1+1, \quad 1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime}$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences

Closing Thoughts

## Background

Thus, from the example above, we see that $P D O(4)=5$, where we have counted the following five objects:
$3^{\prime}+1^{\prime}, \quad 1^{\prime}+1+1+1, \quad 1+1^{\prime}+1+1, \quad 1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime}$

Beginning with Andrews, Lewis, and Lovejoy, a wide variety of Ramanujan-like congruences have been proven for $P D(n)$ and $P D O(n)$.

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

Thus, from the example above, we see that $P D O(4)=5$, where we have counted the following five objects:
$3^{\prime}+1^{\prime}, \quad 1^{\prime}+1+1+1, \quad 1+1^{\prime}+1+1, \quad 1+1+1^{\prime}+1, \quad 1+1+1+1^{\prime}$

Beginning with Andrews, Lewis, and Lovejoy, a wide variety of Ramanujan-like congruences have been proven for $P D(n)$ and $P D O(n)$.

Infinite Families of
Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

Here are some examples of such work:

## Background

- G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), no.1, 51-66.
- W.Y.C. Chen, K. Q. Ji, H.-T. Jin, and E.Y.Y. Shen, On the number of partitions with designated summands, $J$. Number Theory 133 (2013), 2929-2938.
- N. D. Baruah and K. K. Ojah, Partitions with designated summands in which all parts are odd, INTEGERS 15 (2015), A9.

Infinite Families of
Congruences Modulo Powers of 2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Background

- M. S. Mahadeva Naika and D. S. Gireesh, Congruences for 3-regular partitions with designated summands, INTEGERS 16 (2016), \#A25.
- E. X. W. Xia, Arithmetic properties of partitions with designated summands, J. Number Theory 159 (2016), 160-175.
- B. Hemanthkumar, H. S. Sumanth Bharadwaj, and M. S. Mahadeva Naika, Congruences modulo small powers of 2 and 3 for partitions into odd designated summands,

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts J. Integer Seq. 20 (2017), no. 4, Article 17.4.3.

## Background

- R. da Silva and J. A. Sellers, Infinitely many congruences for $k$-regular partitions with designated summands, Bull. Braz. Math. Soc, New Series 51 (2020), 357-370.
- N. D. Baruah and M. Kaur, A note on some recent results of da Silva and Sellers on congruences for $k$-regular partitions with designated summands, INTEGERS 20 (2020), Paper No. A74.
- D. Herden, M. R. Sepanski, J. Stanfill, C. C. Hammon,

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences J. Henningsen, H. Ickes, and I. Ruiz, Partitions with Designated Summands Not Divisible by $2^{\ell}$, 2 , and $3^{\ell}$ Modulo 2, 4, and 3, INTEGERS 23 (2023), A43.

## Background

Herden et al. proved a number of arithmetic properties satisfied by several functions, including $P D O(n)$.

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

Herden et al. proved a number of arithmetic properties satisfied by several functions, including $P D O(n)$.

At the end of their paper, they shared the following conjecture which will serve as the starting point for this talk:

## Background

Herden et al. proved a number of arithmetic properties satisfied by several functions, including $P D O(n)$.

At the end of their paper, they shared the following conjecture which will serve as the starting point for this talk:

Infinite Families of
Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The

$$
\begin{aligned}
P D O(16 n+12) & \equiv 0 \quad(\bmod 4), \\
P D O(24 n+20) & \equiv 0 \quad(\bmod 4), \\
P D O(25 n+5) & \equiv 0 \quad(\bmod 4), \\
P D O(32 n+24) & \equiv 0 \quad(\bmod 4), \\
P D O(48 n+26) & \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

## Background

It is intriguing to note that the fourth arithmetic progression which appears above, $32 n+24$, equals $2(16 n+12)$, i.e., $32 n+24$ is twice the first arithmetic progression above.

Infinite Families of
Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Background

It is intriguing to note that the fourth arithmetic progression which appears above, $32 n+24$, equals $2(16 n+12)$, i.e., $32 n+24$ is twice the first arithmetic progression above.

This is a hint of something much larger; Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

It is intriguing to note that the fourth arithmetic progression which appears above, $32 n+24$, equals $2(16 n+12)$, i.e., $32 n+24$ is twice the first arithmetic progression above.

This is a hint of something much larger; indeed, these two congruences are true, and they belong to an easily-described infinite family of congruences modulo 4:

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Background

It is intriguing to note that the fourth arithmetic progression which appears above, $32 n+24$, equals $2(16 n+12)$, i.e., $32 n+24$ is twice the first arithmetic progression above.

This is a hint of something much larger; indeed, these two congruences are true, and they belong to an easily-described infinite family of congruences modulo 4:

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(4 n+3)\right) \equiv 0 \quad(\bmod 4)
$$

## Background

In fact, there is an additional family of congruences modulo 8 which we have also proven.

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

In fact, there is an additional family of congruences modulo 8 which we have also proven.

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Background

In fact, there is an additional family of congruences modulo 8 which we have also proven.

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Our first goal in this talk is to outline proofs of the two theorems above.

Background

Proofs of These
Two Infinite
Families

## Background

In fact, there is an additional family of congruences modulo 8 which we have also proven.

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Background

Proofs of These
Two Infinite
Families

Our first goal in this talk is to outline proofs of the two theorems above.

All of the proof techniques used to prove these two families are elementary, relying on classical $q$-series identites and generating function manipulations.

## Proofs of These Two Infinite Families

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

As noted by Andrews, Lewis, and Lovejoy, the generating function for $P D O(n)$ is given by

$$
\sum_{n=0}^{\infty} P D O(n) q^{n}=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}}
$$

where $f_{r}=\left(1-q^{r}\right)\left(1-q^{2 r}\right)\left(1-q^{3 r}\right)\left(1-q^{4 r}\right) \ldots$ is the usual $q$-Pochhammer symbol.

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

As noted by Andrews, Lewis, and Lovejoy, the generating function for $P D O(n)$ is given by

$$
\sum_{n=0}^{\infty} P D O(n) q^{n}=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}}
$$

where $f_{r}=\left(1-q^{r}\right)\left(1-q^{2 r}\right)\left(1-q^{3 r}\right)\left(1-q^{4 r}\right) \ldots$ is the usual $q$-Pochhammer symbol.

In order to prove our results, we require several elementary generating function dissection tools, most of which are well-known 2-dissection results that allow us to manipulate the generating function for $P D O(n)$ to our advantage.

## Proofs of These Two Infinite Families

Lemma:

$$
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}
$$

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Lemma:

$$
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background
Lemma:

$$
f_{1}^{2}=\frac{f_{2} f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{2} f_{16}^{2}}{f_{8}}
$$

Two Infinite
Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Lemma:

$$
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}
$$ Congruences Modulo Powers of

2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background
Lemma:

$$
f_{1}^{2}=\frac{f_{2} f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{2} f_{16}^{2}}{f_{8}}
$$

Proofs of These
Two Infinite
Families
Extending The
Internal
Lemma:

$$
\begin{aligned}
\frac{1}{f_{1} f_{3}} & =\frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}}+q \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}} \\
f_{1} f_{3} & =\frac{f_{2} f_{8}^{2} f_{12}^{4}}{f_{4}^{2} f_{6} f_{24}^{2}}-q \frac{f_{4}^{4} f_{6} f_{24}^{2}}{f_{2} f_{8}^{2} f_{12}^{2}}
\end{aligned}
$$

## Proofs of These Two Infinite Families

Using the generating function for $\mathrm{PDO}(n)$ given by Andrews, Lewis, and Lovejoy, as well as the lemmas above, it is a straightforward exercise to prove the following:

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Using the generating function for $P D O(n)$ given by Andrews, Lewis, and Lovejoy, as well as the lemmas above, it is a straightforward exercise to prove the following:

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Using the generating function for $P D O(n)$ given by Andrews, Lewis, and Lovejoy, as well as the lemmas above, it is a straightforward exercise to prove the following:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}, \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} & =\frac{f_{2}^{6} f_{12}^{2}}{f_{1}^{4} f_{4}^{2} f_{6}^{2}} .
\end{aligned}
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts
(The above dissections appeared in Andrews, Lewis, and Lovejoy's original paper.)

## Proofs of These Two Infinite Families

One can then 2-dissect once more to obtain the following:

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

One can then 2-dissect once more to obtain the following:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(4 n) q^{n} & =\frac{f_{4}^{4} f_{6}^{8}}{f_{1}^{4} f_{3}^{4} f_{12}^{4}}+q \frac{f_{2}^{12} f_{12}^{4}}{f_{1}^{8} f_{4}^{4} f_{6}^{4}} \\
\sum_{n=0}^{\infty} P D O(4 n+1) q^{n} & =\frac{f_{2}^{12} f_{6}^{2}}{f_{1}^{8} f_{3}^{2} f_{4}^{4}}, \\
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n} & =2 \frac{f_{2}^{6} f_{6}^{2}}{f_{1}^{6} f_{3}^{2}}, \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(4 n+3) q^{n} & =4 \frac{f_{4}^{4} f_{6}^{2}}{f_{1}^{4} f_{3}^{2}}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

One can then 2-dissect once more to obtain the following:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(4 n) q^{n} & =\frac{f_{4}^{4} f_{6}^{8}}{f_{1}^{4} f_{3}^{4} f_{12}^{4}}+q \frac{f_{2}^{12} f_{12}^{4}}{f_{1}^{8} f_{4}^{4} f_{6}^{4}}, \\
\sum_{n=0}^{\infty} P D O(4 n+1) q^{n} & =\frac{f_{2}^{12} f_{6}^{2}}{f_{1}^{8} f_{3}^{2} f_{4}^{4}}, \\
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n} & =2 \frac{f_{2}^{6} f_{6}^{2}}{f_{1}^{6} f_{3}^{2}}, \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(4 n+3) q^{n} & =4 \frac{f_{4}^{4} f_{6}^{2}}{f_{1}^{4} f_{3}^{2}} .
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

With these tools in hand, we can now proceed to proving the $\bmod 4$ and $\bmod 8$ families of congruences we mentioned earlier.

## Proofs of These Two Infinite Families

For now, we focus on the mod 4 family of congruences:
Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(4 n+3)\right) \equiv 0 \quad(\bmod 4)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

For now, we focus on the mod 4 family of congruences:
Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(4 n+3)\right) \equiv 0 \quad(\bmod 4)
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

First, we note that

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & \equiv \frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 4), \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} & \equiv f_{6}^{2} \quad(\bmod 4)
\end{aligned}
$$

## Proofs of These Two Infinite Families

For now, we focus on the mod 4 family of congruences:
Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(4 n+3)\right) \equiv 0 \quad(\bmod 4)
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

First, we note that

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & \equiv \frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}} \quad(\bmod 4), \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} & \equiv f_{6}^{2} \quad(\bmod 4)
\end{aligned}
$$

These are easily seen thanks to the following:

## Proofs of These Two Infinite Families

$$
\sum_{n=0}^{\infty} P D O(2 n) q^{n}=\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \quad(\bmod 4) \\
& =\frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}(\bmod 4) \\
& =\frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}}, \quad \text { and }
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}(\bmod 4) \\
& =\frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}}, \quad \text { and }
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal

$$
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n}=\frac{f_{2}^{6} f_{12}^{2}}{f_{1}^{4} f_{4}^{2} f_{6}^{2}}
$$

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}(\bmod 4) \\
& =\frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}}, \quad \text { and }
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} & =\frac{f_{2}^{6} f_{12}^{2}}{f_{1}^{4} f_{4}^{2} f_{6}^{2}} \\
& \equiv \frac{f_{2}^{6} f_{6}^{4}}{f_{2}^{2} f_{2}^{4} f_{6}^{2}} \quad(\bmod 4)
\end{aligned}
$$

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n) q^{n} & =\frac{f_{4}^{2} f_{6}^{4}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}} \\
& \equiv \frac{f_{4}^{2} f_{12}^{2}}{f_{1}^{2} f_{3}^{2} f_{12}^{2}}(\bmod 4) \\
& =\frac{f_{4}^{2}}{f_{1}^{2} f_{3}^{2}}, \quad \text { and }
\end{aligned}
$$

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} & =\frac{f_{2}^{6} f_{12}^{2}}{f_{1}^{4} f_{4}^{2} f_{6}^{2}} \\
& \equiv \frac{f_{2}^{6} f_{6}^{4}}{f_{2}^{2} f_{2}^{4} f_{6}^{2}}(\bmod 4) \\
& =f_{6}^{2}
\end{aligned}
$$

## Proofs of These Two Infinite Families

Thanks to the fact that $\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} \equiv f_{6}^{2}$ $(\bmod 4)$, which is a function of $q^{6}$, we immediately have the following corollary:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Thanks to the fact that $\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} \equiv f_{6}^{2}$ $(\bmod 4)$, which is a function of $q^{6}$, we immediately have the following corollary:

## Infinite Families of

 Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated SummandsJames Sellers
University of
Minnesota Duluth
Corollary: For all $n \geq 0$,

$$
\begin{array}{lll}
P D O(4 n+3) & \equiv 0 & (\bmod 4), \\
P D O(6 n+3) & \equiv 0 & (\bmod 4), \quad \text { and } \\
P D O(6 n+5) & \equiv 0 & (\bmod 4) .
\end{array}
$$

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Thanks to the fact that $\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} \equiv f_{6}^{2}$ $(\bmod 4)$, which is a function of $q^{6}$, we immediately have the following corollary:

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth
Corollary: For all $n \geq 0$,

$$
\begin{array}{lll}
P D O(4 n+3) & \equiv 0 & (\bmod 4), \\
P D O(6 n+3) & \equiv 0 & (\bmod 4), \quad \text { and } \\
P D O(6 n+5) & \equiv 0 & (\bmod 4) .
\end{array}
$$

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

The above congruences, along with several others, appear in the 2015 INTEGERS paper of Baruah and Ojah.

## Proofs of These Two Infinite Families

Thanks to the fact that $\sum_{n=0}^{\infty} P D O(2 n+1) q^{n} \equiv f_{6}^{2}$ $(\bmod 4)$, which is a function of $q^{6}$, we immediately have the following corollary:

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth
Corollary: For all $n \geq 0$,

$$
\begin{array}{lll}
P D O(4 n+3) & \equiv 0 & (\bmod 4), \\
P D O(6 n+3) & \equiv 0 & (\bmod 4), \quad \text { and } \\
P D O(6 n+5) & \equiv 0 & (\bmod 4) .
\end{array}
$$

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

The above congruences, along with several others, appear in the 2015 INTEGERS paper of Baruah and Ojah.

## Proofs of These Two Infinite Families

Using the above results mod 4, we can dissect again in elementary fashion to obtain the following:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Using the above results mod 4, we can dissect again in elementary fashion to obtain the following:

Theorem:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(4 n) q^{n} & \equiv\left(\frac{f_{2}^{3}}{f_{6}}\right)^{2}+q f_{12}^{2} \quad(\bmod 4) \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n} & \equiv 2 f_{2}^{3} f_{6} \quad(\bmod 4)
\end{aligned}
$$ Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Using the above results mod 4, we can dissect again in elementary fashion to obtain the following:

Theorem:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(4 n) q^{n} & \equiv\left(\frac{f_{2}^{3}}{f_{6}}\right)^{2}+q f_{12}^{2} \quad(\bmod 4) \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n} & \equiv 2 f_{2}^{3} f_{6} \quad(\bmod 4)
\end{aligned}
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

Because of the "structure" of the results above, several corollaries follow immediately.

## Proofs of These Two Infinite Families

Corollary: For all $n \geq 0$,

$$
P D O(4(2 n+1)+2)=P D O(8 n+6) \equiv 0 \quad(\bmod 4)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers University of Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Corollary: For all $n \geq 0$,

$$
P D O(4(2 n+1)+2)=P D O(8 n+6) \equiv 0 \quad(\bmod 4)
$$

Corollary:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(8 n) q^{n} & \equiv\left(\frac{f_{1}^{3}}{f_{3}}\right)^{2} \quad(\bmod 4) \text { and } \\
\sum_{n=0}^{\infty} P D O(8 n+4) q^{n} & \equiv f_{6}^{2}(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Corollary: For all $n \geq 0$,

$$
P D O(4(2 n+1)+2)=P D O(8 n+6) \equiv 0 \quad(\bmod 4)
$$

Corollary:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(8 n) q^{n} & \equiv\left(\frac{f_{1}^{3}}{f_{3}}\right)^{2} \quad(\bmod 4) \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(8 n+4) q^{n} & \equiv f_{6}^{2}(\bmod 4)
\end{aligned}
$$ Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

Corollary: For all $n \geq 0$,

$$
P D O(8(2 n+1)+4)=P D O(16 n+12) \equiv 0 \quad(\bmod 4)
$$

## Proofs of These Two Infinite Families

Corollary: For all $n \geq 0$,

$$
P D O(4(2 n+1)+2)=P D O(8 n+6) \equiv 0 \quad(\bmod 4)
$$

Corollary:

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(8 n) q^{n} & \equiv\left(\frac{f_{1}^{3}}{f_{3}}\right)^{2} \quad(\bmod 4) \quad \text { and } \\
\sum_{n=0}^{\infty} P D O(8 n+4) q^{n} & \equiv f_{6}^{2}(\bmod 4)
\end{aligned}
$$ Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

Corollary: For all $n \geq 0$,

$$
P D O(8(2 n+1)+4)=P D O(16 n+12) \equiv 0 \quad(\bmod 4)
$$

## Proofs of These Two Infinite Families

As a quick aside, we note that this last congruence (involving $16 n+12$ ) was the first of the congruences conjectured by Herden et al.

## Proofs of These Two Infinite Families

As a quick aside, we note that this last congruence (involving $16 n+12$ ) was the first of the congruences conjectured by Herden et al. Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth
We now need only one additional tool in order to complete our proof of this infinite family of congruences modulo 4.

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

As a quick aside, we note that this last congruence (involving $16 n+12$ ) was the first of the congruences conjectured by Herden et al.

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth
We now need only one additional tool in order to complete our proof of this infinite family of congruences modulo 4.

The following theorem provides an "internal congruence" modulo 4 which is satisfied by $\operatorname{PDO}(n)$, and this serves as the "engine" for the induction step of our proof.

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(4 n) \equiv P D O(n)(\bmod 4)$.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, \operatorname{PDO}(4 n) \equiv P D O(n)(\bmod 4)$.

This follows immediately from our generating function result for $P D O(4 n)(\bmod 4)($ mentioned above) and the fact that

$$
\sum_{n=0}^{\infty} P D O(n) q^{n} \equiv\left(\frac{f_{2}^{3}}{f_{6}}\right)^{2}+q f_{12}^{2} \quad(\bmod 4)
$$

which was proven by Herden et. al.

James Sellers
University of
Minnesota Duluth

Proofs of These
Two Infinite
FamiliesJames Sellers

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, \operatorname{PDO}(4 n) \equiv \operatorname{PDO}(n)(\bmod 4)$.

This follows immediately from our generating function result for $P D O(4 n)(\bmod 4)(m e n t i o n e d ~ a b o v e) ~ a n d ~ t h e ~ f a c t ~ t h a t ~$

$$
\sum_{n=0}^{\infty} P D O(n) q^{n} \equiv\left(\frac{f_{2}^{3}}{f_{6}}\right)^{2}+q f_{12}^{2} \quad(\bmod 4)
$$

which was proven by Herden et. al.

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite Families

The proof of our infinite family of congruences modulo 4 now follows very quickly.

## Proofs of These Two Infinite Families

Proof: We have already proven the $\alpha=0$ and $\alpha=1$ cases above. These are:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Proof: We have already proven the $\alpha=0$ and $\alpha=1$ cases above. These are:

$$
\begin{aligned}
& P D O(4 n+3) \equiv 0 \quad(\bmod 4), \\
& P D O(8 n+6) \equiv 0 \quad(\bmod 4) .
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Proof: We have already proven the $\alpha=0$ and $\alpha=1$ cases above. These are:

$$
\begin{aligned}
& \operatorname{PDO}(4 n+3) \equiv 0 \quad(\bmod 4), \\
& \operatorname{PDO}(8 n+6) \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
These two will serve as the "basis steps" for our proof by induction.

Extending The
Internal
Congruences

## Proofs of These Two Infinite Families

Proof: We have already proven the $\alpha=0$ and $\alpha=1$ cases above. These are:

$$
\begin{aligned}
& P D O(4 n+3) \equiv 0 \quad(\bmod 4), \\
& P D O(8 n+6)
\end{aligned} \equiv 0 \quad(\bmod 4) .
$$ Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
These two will serve as the "basis steps" for our proof by induction.

Extending The
Internal
Congruences

Closing Thoughts

Thanks to our internal congruence modulo 4, we have the following:

## Proofs of These Two Infinite Families

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands

$$
0 \equiv P D O(4 n+3) \quad(\bmod 4)
$$

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(4 n+3) \quad(\bmod 4) \\
& \equiv P D O(4(4 n+3)) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(4 n+3) \quad(\bmod 4) \\
& \equiv P D O(4(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2}(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(4 n+3) \quad(\bmod 4) \\
& \equiv P D O(4(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2}(4 n+3)\right) \quad(\bmod 4) \\
& \equiv P D O\left(4^{3}(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(4 n+3) \quad(\bmod 4) \\
& \equiv P D O(4(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2}(4 n+3)\right) \quad(\bmod 4) \\
& \equiv P D O\left(4^{3}(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(4 n+3) \quad(\bmod 4) \\
& \equiv P D O(4(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2}(4 n+3)\right) \quad(\bmod 4) \\
& \equiv P D O\left(4^{3}(4 n+3)\right) \quad(\bmod 4) \\
& \vdots
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
This gives our result when the values of $\alpha$ are even.

## Proofs of These Two Infinite Families

Similarly,

$$
0 \equiv P D O(8 n+6) \quad(\bmod 4)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O(4 \cdot 2(4 n+3)) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O(4 \cdot 2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2} \cdot 2(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of

2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O(4 \cdot 2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2} \cdot 2(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O(4 \cdot 2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2} \cdot 2(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

This gives our result when the values of $\alpha$ are odd.

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(8 n+6) \quad(\bmod 4) \\
& \equiv P D O(2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O(4 \cdot 2(4 n+3)) \quad(\bmod 4) \\
& \equiv P D O\left(4^{2} \cdot 2(4 n+3)\right) \quad(\bmod 4)
\end{aligned}
$$

This gives our result when the values of $\alpha$ are odd. Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

And that completes our proof of this infinite family of mod 4 congruences.

## Proofs of These Two Infinite Families

Before we move on to our infinite family of congruences modulo 8, we note in passing that we also now have the following infinite families of congruences modulo 4:

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Before we move on to our infinite family of congruences modulo 8, we note in passing that we also now have the following infinite families of congruences modulo 4:

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
\begin{aligned}
& P D O\left(4^{\alpha}(6 n+3)\right) \equiv 0 \quad(\bmod 4) \\
& P D O\left(4^{\alpha}(6 n+5)\right) \equiv 0 \quad(\bmod 4)
\end{aligned}
$$ Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

We now transition to a sketch of the proof of the infinite family of congruences modulo 8 :

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

We now transition to a sketch of the proof of the infinite family of congruences modulo 8 :

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
The proof idea here is identical to the proof for the family of congruences modulo 4.

Extending The
Internal
Congruences

## Proofs of These Two Infinite Families

We now transition to a sketch of the proof of the infinite family of congruences modulo 8 :

Theorem: For all $\alpha \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8)
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families
The proof idea here is identical to the proof for the family of congruences modulo 4.

Extending The
Internal
Congruences

Closing Thoughts

We prove the first few cases individually, and then prove an internal congruence that takes care of the proof by induction.

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(8 n+7) \equiv 0(\bmod 8)$.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(8 n+7) \equiv 0(\bmod 8)$.

Proof: From our earlier work, we know

$$
\sum_{n=0}^{\infty} P D O(4 n+3) q^{n}=4 \frac{f_{4}^{4} f_{6}^{2}}{f_{1}^{4} f_{3}^{2}}
$$

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(8 n+7) \equiv 0(\bmod 8)$.

Proof: From our earlier work, we know

$$
\sum_{n=0}^{\infty} P D O(4 n+3) q^{n}=4 \frac{f_{4}^{4} f_{6}^{2}}{f_{1}^{4} f_{3}^{2}} \equiv 4 \frac{f_{4}^{4} f_{6}^{2}}{f_{2}^{2} f_{6}} \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(8 n+7) \equiv 0(\bmod 8)$.

Proof: From our earlier work, we know

$$
\sum_{n=0}^{\infty} P D O(4 n+3) q^{n}=4 \frac{f_{4}^{4} f_{6}^{2}}{f_{1}^{4} f_{3}^{2}} \equiv 4 \frac{f_{4}^{4} f_{6}^{2}}{f_{2}^{2} f_{6}} \quad(\bmod 8) .
$$

Because the function $\frac{f_{f_{2}^{4}}^{4} f_{6}^{2}}{f_{2}^{2} f_{6}}=\frac{f_{4}^{4} f_{6}}{f_{2}^{2}}$ is an even function of $q$, we immediately conclude that, for all $n \geq 0$,

$$
P D O(4(2 n+1)+3)=P D O(8 n+7) \equiv 0 \quad(\bmod 8) .
$$

## Proofs of These Two Infinite Families

Next, we prove the $\alpha=1$ case of this infinite family of congruences.

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Next, we prove the $\alpha=1$ case of this infinite family of congruences.

Theorem: For all $n \geq 0, P D O(16 n+14) \equiv 0(\bmod 8)$.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Next, we prove the $\alpha=1$ case of this infinite family of congruences.

Theorem: For all $n \geq 0, P D O(16 n+14) \equiv 0(\bmod 8)$.

Proof: From our earlier work, we know
Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

$$
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n}=2 \frac{f_{2}^{6} f_{6}^{2}}{f_{1}^{6} f_{3}^{2}}
$$

## Proofs of These Two Infinite Families

Next, we prove the $\alpha=1$ case of this infinite family of congruences.

Theorem: For all $n \geq 0, P D O(16 n+14) \equiv 0(\bmod 8)$.

Proof: From our earlier work, we know

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(4 n+2) q^{n} & =2 \frac{f_{2}^{6} f_{6}^{2}}{f_{1}^{6} f_{3}^{2}} \\
& =2 f_{2}^{6} f_{6}^{2}\left(\frac{1}{f_{1}^{4}}\right)\left(\frac{1}{f_{1} f_{3}}\right)^{2}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Using our dissection lemmas and collecting those terms wherein the powers of $q$ are odd, we can conclude

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P D O(8 n+6) q^{2 n+1} \\
\equiv & 2\left(\frac{f_{4}^{14} f_{6}^{2}}{f_{2}^{8} f_{8}^{4}}\right)\left(2 q \frac{f_{8}^{2} f_{12}^{5}}{f_{2}^{2} f_{4} f_{6}^{4} f_{24}^{2}} \cdot \frac{f_{4}^{5} f_{24}^{2}}{f_{2}^{4} f_{6}^{2} f_{8}^{2} f_{12}}\right) \\
\equiv & 4 q \frac{f_{4}^{18} f_{12}^{4}}{f_{2}^{14} f_{6}^{4} f_{8}^{4}} \quad(\bmod 8)
\end{aligned}
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

## This implies

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(8 n+6) q^{n} & \equiv 4 \frac{f_{2}^{18} f_{6}^{4}}{f_{1}^{14} f_{3}^{4} f_{4}^{4}} \quad(\bmod 8) \\
& \equiv 4 \frac{f_{2}^{11} f_{6}^{2}}{f_{4}^{4}} \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

This implies

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(8 n+6) q^{n} & \equiv 4 \frac{f_{2}^{18} f_{6}^{4}}{f_{1}^{14} f_{3}^{4} f_{4}^{4}} \quad(\bmod 8) \\
& \equiv 4 \frac{f_{2}^{11} f_{6}^{2}}{f_{4}^{4}} \quad(\bmod 8)
\end{aligned}
$$

Since the last expression above is an even function of $q$, we immediately know that, for all $n \geq 0$,

$$
P D O(8(2 n+1)+6)=P D O(16 n+14) \equiv 0 \quad(\bmod 8) .
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences

## Proofs of These Two Infinite Families

We can also prove the $\alpha=2$ and $\alpha=3$ cases of the theorem using similar techniques:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

We can also prove the $\alpha=2$ and $\alpha=3$ cases of the theorem using similar techniques:

Theorem: For all $n \geq 0$,

$$
\begin{aligned}
& P D O(32 n+28) \equiv 0 \quad(\bmod 8), \\
& P D O(64 n+56) \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

We can also prove the $\alpha=2$ and $\alpha=3$ cases of the theorem using similar techniques:

Theorem: For all $n \geq 0$,

$$
\begin{aligned}
& P D O(32 n+28) \equiv 0 \quad(\bmod 8), \\
& P D O(64 n+56) \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

We can also prove the $\alpha=2$ and $\alpha=3$ cases of the theorem using similar techniques:

Theorem: For all $n \geq 0$,

$$
\begin{aligned}
& P D O(32 n+28) \equiv 0 \quad(\bmod 8), \\
& P D O(64 n+56) \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

Theorem: For all $n \geq 0, P D O(16 n) \equiv P D O(4 n)(\bmod 8)$.

## Proofs of These Two Infinite Families

We can also prove the $\alpha=2$ and $\alpha=3$ cases of the theorem using similar techniques:

Theorem: For all $n \geq 0$,

$$
\begin{aligned}
& P D O(32 n+28) \equiv 0 \quad(\bmod 8), \\
& P D O(64 n+56) \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Theorem: For all $n \geq 0, P D O(16 n) \equiv P D O(4 n)(\bmod 8)$.

Proof: Using the same kind of dissection techniques on $P D O(8 n)$, we can show that

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(16 n) q^{2 n} & \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{2}^{24} f_{24}^{4}}{f_{2}^{8} f_{12}^{4} f_{4}^{8}} \quad(\bmod 8) \\
& \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{2}^{24} f_{24}^{4}}{f_{2}^{8} f_{12}^{4} f_{2}^{16}} \quad(\bmod 8) \\
& \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{24}^{4}}{f_{12}^{4}} \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(16 n) q^{2 n} & \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{2}^{24} f_{24}^{4}}{f_{2}^{8} f_{12}^{4} f_{4}^{8}} \quad(\bmod 8) \\
& \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{2}^{24} f_{24}^{4}}{f_{2}^{8} f_{12}^{4} f_{2}^{16}} \quad(\bmod 8) \\
& \equiv \frac{f_{8}^{4}}{f_{2}^{4} f_{6}^{4}}+q^{2} \frac{f_{24}^{4}}{f_{12}^{4}} \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\sum_{n=0}^{\infty} P D O(16 n) q^{n} \equiv \frac{f_{4}^{4}}{f_{1}^{4} f_{3}^{4}}+q \frac{f_{12}^{4}}{f_{6}^{4}} \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(16 n) q^{n} & \equiv \frac{f_{4}^{4}}{f_{1}^{4} f_{3}^{4}}+q \frac{f_{12}^{4}}{f_{6}^{4}} \quad(\bmod 8) \\
& \equiv \sum_{n=0}^{\infty} P D O(4 n) q^{n}(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(16 n) q^{n} & \equiv \frac{f_{4}^{4}}{f_{1}^{4} f_{3}^{4}}+q \frac{f_{12}^{4}}{f_{6}^{4}} \quad(\bmod 8) \\
& \equiv \sum_{n=0}^{\infty} P D O(4 n) q^{n} \quad(\bmod 8)
\end{aligned}
$$

thanks to the generating function for $P D O(4 n)$ which we proved earlier.

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
\sum_{n=0}^{\infty} P D O(16 n) q^{n} & \equiv \frac{f_{4}^{4}}{f_{1}^{4} f_{3}^{4}}+q \frac{f_{12}^{4}}{f_{6}^{4}} \quad(\bmod 8) \\
& \equiv \sum_{n=0}^{\infty} P D O(4 n) q^{n} \quad(\bmod 8)
\end{aligned}
$$

thanks to the generating function for $P D O(4 n)$ which we proved earlier.

Infinite Families of
Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

This now gives us all the tools we need to prove this infinite family of congruences modulo 8 .

## Proofs of These Two Infinite Families

Proof: We have already seen the $\alpha=0,1,2,3$ cases above. These are:

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

Proof: We have already seen the $\alpha=0,1,2,3$ cases above. These are:

$$
\begin{aligned}
P D O(8 n+7) & \equiv 0 \quad(\bmod 8), \\
P D O(16 n+14) & \equiv 0 \quad(\bmod 8), \\
P D O(32 n+28) & \equiv 0 \quad(\bmod 8), \\
P D O(64 n+56) & \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Proof: We have already seen the $\alpha=0,1,2,3$ cases above.
These are:

$$
\begin{aligned}
P D O(8 n+7) & \equiv 0 \quad(\bmod 8), \\
P D O(16 n+14) & \equiv 0 \quad(\bmod 8), \\
P D O(32 n+28) & \equiv 0 \quad(\bmod 8), \\
P D O(64 n+56) & \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
The last two congruences above will serve as the "basis steps" for our proof by induction.

## Proofs of These Two Infinite Families

Proof: We have already seen the $\alpha=0,1,2,3$ cases above. These are:

$$
\begin{aligned}
P D O(8 n+7) & \equiv 0 \quad(\bmod 8), \\
P D O(16 n+14) & \equiv 0 \quad(\bmod 8), \\
P D O(32 n+28) & \equiv 0 \quad(\bmod 8), \\
P D O(64 n+56) & \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

Infinite Families of
Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
The last two congruences above will serve as the "basis steps" for our proof by induction.

Thanks to our internal congruence modulo 8, we have the following:

## Proofs of These Two Infinite Families

$$
0 \equiv P D O(32 n+28) \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(32 n+28) \quad(\bmod 8) \\
& =P D O(4(8 n+7))
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers University of Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(32 n+28) \quad(\bmod 8) \\
& =P D O(4(8 n+7)) \\
& \equiv P D O\left(4^{2}(8 n+7)\right) \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(32 n+28) \quad(\bmod 8) \\
& =P D O(4(8 n+7)) \\
& \equiv P D O\left(4^{2}(8 n+7)\right) \quad(\bmod 8) \\
& \equiv P D O\left(4^{3}(8 n+7)\right)(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of

2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

## Extending The

Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(32 n+28) \quad(\bmod 8) \\
& =P D O(4(8 n+7)) \\
& \equiv P D O\left(4^{2}(8 n+7)\right) \quad(\bmod 8) \\
& \equiv P D O\left(4^{3}(8 n+7)\right) \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

$$
\begin{aligned}
0 & \equiv P D O(32 n+28) \quad(\bmod 8) \\
& =P D O(4(8 n+7)) \\
& \equiv P D O\left(4^{2}(8 n+7)\right) \quad(\bmod 8) \\
& \equiv P D O\left(4^{3}(8 n+7)\right) \quad(\bmod 8) \\
& \vdots
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of

2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
This gives our result when the values of $\alpha$ are even.

## Proofs of These Two Infinite Families

Similarly,

$$
0 \equiv P D O(64 n+56) \quad(\bmod 8)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7)))
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7))) \\
& \equiv P D O\left(4^{2}(2(8 n+7))\right) \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7))) \\
& \equiv P D O\left(4^{2}(2(8 n+7))\right) \quad(\bmod 8) \\
& \equiv \operatorname{PDO}\left(4^{3}(2(8 n+7))\right) \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of

2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7))) \\
& \equiv P D O\left(4^{2}(2(8 n+7))\right) \quad(\bmod 8) \\
& \equiv P D O\left(4^{3}(2(8 n+7))\right) \quad(\bmod 8)
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 \equiv & P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7))) \\
\equiv & P D O\left(4^{2}(2(8 n+7))\right) \quad(\bmod 8) \\
\equiv & P D O\left(4^{3}(2(8 n+7))\right) \quad(\bmod 8) \\
& \vdots
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
This gives our result when the values of $\alpha$ are odd.

## Proofs of These Two Infinite Families

Similarly,

$$
\begin{aligned}
0 & \equiv P D O(64 n+56) \quad(\bmod 8) \\
& =P D O(4(2(8 n+7))) \\
\equiv & P D O\left(4^{2}(2(8 n+7))\right) \quad(\bmod 8) \\
\equiv & P D O\left(4^{3}(2(8 n+7))\right) \quad(\bmod 8) \\
& \vdots
\end{aligned}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families

This gives our result when the values of $\alpha$ are odd.

This manuscript is currently under review at INTEGERS (basically as a follow-up to the Herden et al. paper which appeared in INTEGERS).

## Extending The Internal Congruences

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

We close our conversation today by highlighting our joint work with Shane Chern.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

We close our conversation today by highlighting our joint work with Shane Chern.

In the work above, the key results that we needed to prove the infinite family of congruences were the following internal congruences:

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

We close our conversation today by highlighting our joint work with Shane Chern.

In the work above, the key results that we needed to prove the infinite family of congruences were the following internal congruences:

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
For all $n \geq 0$,

$$
\begin{aligned}
P D O(4 n) & \equiv P D O(n) \quad(\bmod 4) \\
P D O(16 n) & \equiv P D O(4 n) \quad(\bmod 8)
\end{aligned}
$$

Extending The

## Extending The Internal Congruences

We close our conversation today by highlighting our joint work with Shane Chern.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth
In the work above, the key results that we needed to prove the infinite family of congruences were the following internal congruences:

Background
Proofs of These
Two Infinite
Families
For all $n \geq 0$,

$$
\begin{aligned}
P D O(4 n) & \equiv P D O(n) \quad(\bmod 4) \\
P D O(16 n) & \equiv P D O(4 n) \quad(\bmod 8)
\end{aligned}
$$

The second of these two internal congruences is part of an infinite family of internal congruences!

## Extending The Internal Congruences

Theorem: For all $k \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{2 k+3} n\right) \equiv P D O\left(2^{2 k+1} n\right) \quad\left(\bmod 2^{2 k+3}\right)
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Theorem: For all $k \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{2 k+3} n\right) \equiv P D O\left(2^{2 k+1} n\right) \quad\left(\bmod 2^{2 k+3}\right)
$$

Note that, when $n$ is replaced by $2 n$, we have

$$
P D O\left(2^{2 k+4} n\right) \equiv P D O\left(2^{2 k+2} n\right) \quad\left(\bmod 2^{2 k+3}\right)
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

Theorem: For all $k \geq 0$ and all $n \geq 0$,

$$
P D O\left(2^{2 k+3} n\right) \equiv P D O\left(2^{2 k+1} n\right) \quad\left(\bmod 2^{2 k+3}\right)
$$

Note that, when $n$ is replaced by $2 n$, we have

$$
P D O\left(2^{2 k+4} n\right) \equiv P D O\left(2^{2 k+2} n\right) \quad\left(\bmod 2^{2 k+3}\right)
$$

The $k=0$ case of this result is

Background

Proofs of These Two Infinite Families

Extending The
Internal
Congruences

$$
P D O\left(2^{4} n\right) \equiv P D O\left(2^{2} n\right) \quad\left(\bmod 2^{3}\right)
$$

Closing Thoughts
which is the second of our results above.

## Extending The Internal Congruences

We utilize several classical tools to prove this family of internal congruences, including:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

We utilize several classical tools to prove this family of internal congruences, including:

- generating function dissections via the $U$ operator,


## Extending The Internal Congruences

We utilize several classical tools to prove this family of internal congruences, including:

- generating function dissections via the $U$ operator,
- various modular relations and recurrences involving a Hauptmodul on the classical modular curve $X_{0}(6)$,

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

We utilize several classical tools to prove this family of internal congruences, including:

- generating function dissections via the $U$ operator,
- various modular relations and recurrences involving a Hauptmodul on the classical modular curve $X_{0}(6)$,
- and an induction argument which provides the final step in proving the necessary divisibilities.

Proofs of These
Two Infinite Families

Extending The

## Extending The Internal Congruences

In order to prove this family of internal congruences, we introduce the following auxiliary functions:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

In order to prove this family of internal congruences, we introduce the following auxiliary functions:

$$
\begin{aligned}
\delta=\delta(q) & :=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}} \\
\gamma=\gamma(q) & :=\frac{f_{1}^{5} f_{2}^{5} f_{6}^{5}}{f_{3}^{15}} \\
\xi=\xi(q) & :=\frac{f_{2}^{5} f_{6}}{f_{1} f_{3}^{5}} \\
\kappa=\kappa(q) & :=\frac{\gamma\left(q^{2}\right)^{2}}{\gamma(q)}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

In order to prove this family of internal congruences, we introduce the following auxiliary functions:

$$
\begin{aligned}
\delta=\delta(q) & :=\frac{f_{4} f_{6}^{2}}{f_{1} f_{3} f_{12}} \\
\gamma=\gamma(q) & :=\frac{f_{1}^{5} f_{2}^{5} f_{6}^{5}}{f_{3}^{15}} \\
\xi=\xi(q) & :=\frac{f_{2}^{5} f_{6}}{f_{1} f_{3}^{5}} \\
\kappa=\kappa(q) & :=\frac{\gamma\left(q^{2}\right)^{2}}{\gamma(q)}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

Note that

$$
\delta(q)=\sum_{n=0}^{\infty} P D O(n) q^{n}
$$

## Extending The Internal Congruences

We further define for $k \geq 2$,

$$
\Lambda_{k}=\Lambda_{k}(q):=\gamma(q)^{2^{k-2}} \sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

We further define for $k \geq 2$,

$$
\Lambda_{k}=\Lambda_{k}(q):=\gamma(q)^{2^{k-2}} \sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}
$$

Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background
We let $U$ be the unitizing operator of degree two, given by

$$
U\left(\sum_{n} a_{n} q^{n}\right):=\sum_{n} a_{2 n} q^{n}
$$

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

These allow us to represent each 2-dissection slice of the generating function of $P D O(n)$, accompanied by a certain multiplier:

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

These allow us to represent each 2-dissection slice of the generating function of $P D O(n)$, accompanied by a certain multiplier:

$$
\lambda_{k} \sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}
$$

as a polynomial in the Hauptmodul $\xi$ on the classical modular curve $X_{0}(6)$ of genus 0 .

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite Families

Extending The Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

These allow us to represent each 2-dissection slice of the generating function of $P D O(n)$, accompanied by a certain multiplier:

$$
\lambda_{k} \sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}
$$

as a polynomial in the Hauptmodul $\xi$ on the classical modular curve $X_{0}(6)$ of genus 0 .

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

We now summarize the approach to completing the proof of our result.

## Extending The Internal Congruences

Modular relation for $\gamma$ and $\xi$ :

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma$ and $\xi$ :

$$
\begin{aligned}
\gamma^{6}= & 59049 \xi^{10}-262440 \xi^{11}+466560 \xi^{12}-414720 \xi^{13} \\
& +184320 \xi^{14}-32768 \xi^{15}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma$ and $\xi$ :

$$
\begin{aligned}
\gamma^{6}= & 59049 \xi^{10}-262440 \xi^{11}+466560 \xi^{12}-414720 \xi^{13} \\
& +184320 \xi^{14}-32768 \xi^{15}
\end{aligned}
$$

Congruences

2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relations for $\kappa$ and $\xi$ : Initial cases:

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relations for $\kappa$ and $\xi$ : Initial cases:

$$
\begin{aligned}
U(\kappa) & =5 \xi^{3}-20 \xi^{4}+16 \xi^{5} \\
U(\xi) & =5 \xi-4 \xi^{2} \\
U\left(\kappa^{2}\right) & =-\xi^{5}+50 \xi^{6}-400 \xi^{7}+1120 \xi^{8}-1280 \xi^{9}+512 \xi^{10} \\
U(\kappa \xi) & =3 \xi^{3}-18 \xi^{4}+16 \xi^{5} \\
U\left(\xi^{2}\right) & =-9 \xi+58 \xi^{2}-80 \xi^{3}+32 \xi^{4}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences

## Extending The Internal Congruences

Modular relations for $\kappa$ and $\xi$ : Initial cases:

$$
\begin{aligned}
U(\kappa) & =5 \xi^{3}-20 \xi^{4}+16 \xi^{5} \\
U(\xi) & =5 \xi-4 \xi^{2} \\
U\left(\kappa^{2}\right) & =-\xi^{5}+50 \xi^{6}-400 \xi^{7}+1120 \xi^{8}-1280 \xi^{9}+512 \xi^{10} \\
U(\kappa \xi) & =3 \xi^{3}-18 \xi^{4}+16 \xi^{5} \\
U\left(\xi^{2}\right) & =-9 \xi+58 \xi^{2}-80 \xi^{3}+32 \xi^{4}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

Each of the above can be shown using cusp analysis. We opted to "automate" the proof using a combination of
Smoot's Mathematica implementation of Radu's algorithm as well as Garvan's Maple package ETA.

## Extending The Internal Congruences

## Overarching result:

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Overarching result:
Theorem: For any $i, j \geq 0, U\left(\kappa^{i} \xi^{j}\right) \in \mathbb{Z}[\xi]$.

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Overarching result:
Theorem: For any $i, j \geq 0, U\left(\kappa^{i} \xi^{j}\right) \in \mathbb{Z}[\xi]$.
To prove this, we define for $i, j \geq 0$,

$$
\zeta_{i, j}:=U\left(\kappa^{i} \xi^{j}\right) .
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Overarching result:
Theorem: For any $i, j \geq 0, U\left(\kappa^{i} \xi^{j}\right) \in \mathbb{Z}[\xi]$.
To prove this, we define for $i, j \geq 0$,

$$
\zeta_{i, j}:=U\left(\kappa^{i} \xi^{j}\right) .
$$

We then prove the following recurrences:

Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

Overarching result:
Theorem: For any $i, j \geq 0, U\left(\kappa^{i} \xi^{j}\right) \in \mathbb{Z}[\xi]$.
To prove this, we define for $i, j \geq 0$,

$$
\zeta_{i, j}:=U\left(\kappa^{i} \xi^{j}\right)
$$

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences

$$
\zeta_{i, j}=\left(10 \xi^{3}-40 \xi^{4}+32 \xi^{5}\right) \cdot \zeta_{i-1, j}-\left(\xi^{5}\right) \cdot \zeta_{i-2, j} .
$$

Closing Thoughts

Also, for any $i \geq 0$ and $j \geq 2$,

$$
\zeta_{i, j}=\left(10 \xi-8 \xi^{2}\right) \cdot \zeta_{i, j-1}-\left(9 \xi-8 \xi^{2}\right) \cdot \zeta_{i, j-2}
$$

## Extending The Internal Congruences

We can combine the two recurrences above and derive that for $i, j \geq 2$,

$$
\begin{aligned}
\zeta_{i, j}= & \left(10 \xi-8 \xi^{2}\right)\left(10 \xi^{3}-40 \xi^{4}+32 \xi^{5}\right) \cdot \zeta_{i-1, j-1} \\
& -\left(9 \xi-8 \xi^{2}\right)\left(10 \xi^{3}-40 \xi^{4}+32 \xi^{5}\right) \cdot \zeta_{i-1, j-2} \\
& -\left(10 \xi-8 \xi^{2}\right)\left(\xi^{5}\right) \cdot \zeta_{i-2, j-1} \\
& +\left(9 \xi-8 \xi^{2}\right)\left(\xi^{5}\right) \cdot \zeta_{i-2, j-2}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

We can combine the two recurrences above and derive that for $i, j \geq 2$,

$$
\begin{aligned}
\zeta_{i, j}= & \left(10 \xi-8 \xi^{2}\right)\left(10 \xi^{3}-40 \xi^{4}+32 \xi^{5}\right) \cdot \zeta_{i-1, j-1} \\
& -\left(9 \xi-8 \xi^{2}\right)\left(10 \xi^{3}-40 \xi^{4}+32 \xi^{5}\right) \cdot \zeta_{i-1, j-2} \\
& -\left(10 \xi-8 \xi^{2}\right)\left(\xi^{5}\right) \cdot \zeta_{i-2, j-1} \\
& +\left(9 \xi-8 \xi^{2}\right)\left(\xi^{5}\right) \cdot \zeta_{i-2, j-2}
\end{aligned}
$$

With the initial cases that we demonstrated, along with this recurrence, we can prove in straightforward fashion that $U\left(\kappa^{i} \xi^{j}\right) \in \mathbb{Z}[\xi]$ for any $i, j \geq 0$.

Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma\left(q^{2}\right) \delta(q)^{2}$ and $\xi(q)$ :

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma\left(q^{2}\right) \delta(q)^{2}$ and $\xi(q)$ :

$$
U\left(\gamma\left(q^{2}\right) \delta(q)^{2}\right)=3 \xi(q)^{2}-2 \xi(q)^{3} .
$$

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma\left(q^{2}\right) \delta(q)^{2}$ and $\xi(q)$ :

$$
U\left(\gamma\left(q^{2}\right) \delta(q)^{2}\right)=3 \xi(q)^{2}-2 \xi(q)^{3} .
$$

This can be proven in the same fashion as some of the results above.

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma\left(q^{2}\right) \delta(q)^{2}$ and $\xi(q)$ :

$$
U\left(\gamma\left(q^{2}\right) \delta(q)^{2}\right)=3 \xi(q)^{2}-2 \xi(q)^{3} .
$$

This can be proven in the same fashion as some of the results above.

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Modular relations for $\Lambda_{k}$ and $\xi$ :

Extending The Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Modular relation for $\gamma\left(q^{2}\right) \delta(q)^{2}$ and $\xi(q)$ :

$$
U\left(\gamma\left(q^{2}\right) \delta(q)^{2}\right)=3 \xi(q)^{2}-2 \xi(q)^{3}
$$

This can be proven in the same fashion as some of the results above.

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These Two Infinite Families
Modular relations for $\Lambda_{k}$ and $\xi$ :
Theorem: For any $k \geq 2$,

$$
\Lambda_{k} \in \mathbb{Z}[\xi] .
$$

## Extending The Internal Congruences

More precisely, if we write

$$
\Lambda_{k}:=\sum_{m} c_{k}(m) \xi^{m}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth
then

$$
\Lambda_{2}=3 \xi^{2}-2 \xi^{3}
$$

Background

Proofs of These
Two Infinite
Families
and for $k \geq 3$, we recursively have

$$
\Lambda_{k}=\sum_{\ell} c_{k-1}(\ell) \cdot \zeta_{2^{k-3}, \ell}
$$

Extending The
Internal
Congruences
Closing Thoughts
where $\zeta_{i, j}$ is given above.

## Extending The Internal Congruences

In order to handle the "internal" nature of the results in question, we then define a new family of auxiliary functions for $k \geq 3$ :
$\Phi_{k}(q):=\gamma(q)^{2^{k}}\left(\sum_{n=0}^{\infty} P D O\left(2^{k+2} n\right) q^{n}-\sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}\right)$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

In order to handle the "internal" nature of the results in question, we then define a new family of auxiliary functions for $k \geq 3$ :
$\Phi_{k}(q):=\gamma(q)^{2^{k}}\left(\sum_{n=0}^{\infty} P D O\left(2^{k+2} n\right) q^{n}-\sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}\right)$
In light of earlier work, we have

$$
\begin{aligned}
\Phi_{k} & =\Lambda_{k+2}-\gamma^{3 \cdot 2^{k-2}} \Lambda_{k} \\
& =\Lambda_{k+2}-\left(\gamma^{6}\right)^{2^{k-3}} \Lambda_{k} .
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Extending The Internal Congruences

In order to handle the "internal" nature of the results in question, we then define a new family of auxiliary functions for $k \geq 3$ :
$\Phi_{k}(q):=\gamma(q)^{2^{k}}\left(\sum_{n=0}^{\infty} P D O\left(2^{k+2} n\right) q^{n}-\sum_{n=0}^{\infty} P D O\left(2^{k} n\right) q^{n}\right)$
In light of earlier work, we have

$$
\begin{aligned}
\Phi_{k} & =\Lambda_{k+2}-\gamma^{3 \cdot 2^{k-2}} \Lambda_{k} \\
& =\Lambda_{k+2}-\left(\gamma^{6}\right)^{2^{k-3}} \Lambda_{k}
\end{aligned}
$$

Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

We can then show the following:

## Extending The Internal Congruences

Theorem: For any $k \geq 3$,

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands

$$
\Phi_{k} \in \mathbb{Z}_{s}[\xi]
$$

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Theorem: For any $k \geq 3$,

$$
\Phi_{k} \in \mathbb{Z}[\xi]
$$

More precisely, if we write

$$
\Phi_{k}:=\sum_{m} F_{k}(m) \xi^{m}
$$

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

Theorem: For any $k \geq 3$,

$$
\Phi_{k} \in \mathbb{Z}[\xi] .
$$

More precisely, if we write

$$
\Phi_{k}:=\sum_{m} F_{k}(m) \xi^{m}
$$

then
Infinite Families of Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Proofs of These Two Infinite Families

Extending The Internal
Congruences

$$
\begin{aligned}
\Phi_{3}= & 34012224 \xi^{14}-396809280 \xi^{15}+2061728640 \xi^{16} \\
& -6195823488 \xi^{17}+11887534080 \xi^{18}-15250636800 \xi^{19} \\
& +13309968384 \xi^{20}-7840727040 \xi^{21}+2994733056 \xi^{22} \\
& -671088640 \xi^{23}+67108864 \xi^{24}, \quad \text { and } \ldots
\end{aligned}
$$

## Extending The Internal Congruences

... for $k \geq 4$, we recursively have

$$
\Phi_{k}=\sum_{\ell} F_{k-1}(\ell) \cdot \zeta_{2^{k-1}, \ell}
$$

Infinite Families of Congruences Modulo Powers of
2 for Partitions
into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth
where $\zeta_{i, j}$ is given above.

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

... for $k \geq 4$, we recursively have

$$
\Phi_{k}=\sum_{\ell} F_{k-1}(\ell) \cdot \zeta_{2^{k-1}, \ell}
$$

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth
where $\zeta_{i, j}$ is given above.

We then complete an EXTENSIVE set of 2-adic analysis on the appropriate $\zeta_{i, j}{ }^{\prime} s$, which in turn leads to the appropriate 2-adic analysis of $\Phi_{k} \ldots$

Proofs of These
Two Infinite Families

Extending The Internal
Congruences

## Extending The Internal Congruences

... for $k \geq 4$, we recursively have

$$
\Phi_{k}=\sum_{\ell} F_{k-1}(\ell) \cdot \zeta_{2^{k-1}, \ell}
$$

where $\zeta_{i, j}$ is given above.
Background
Proofs of These
Two Infinite
We then complete an EXTENSIVE set of 2-adic analysis on the appropriate $\zeta_{i, j}{ }^{\prime} s$, which in turn leads to the appropriate 2-adic analysis of $\Phi_{k} \ldots$
... and our infinite family of internal congruences modulo $2^{2 k+3}$ follows.

## Extending The Internal Congruences

For those of you who feel like this is what just happened ...

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Extending The Internal Congruences

For those of you who feel like this is what just happened ...

Infinite Families of Congruences
Modulo Powers of 2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

## Extending The Internal Congruences

For those of you who feel like this is what just happened ...

Infinite Families of Congruences
Modulo Powers of 2 for Partitions
into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts
... I encourage you to see the details in our manuscript:
https://arxiv.org/abs/2308.04348

## Closing Thoughts

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Closing Thoughts

I'll close with two sets of comments.

Infinite Families of Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Closing Thoughts

I'll close with two sets of comments.

First, remember that the original reason for wanting such internal congruences was to provide the "engine" for the induction step for the proofs of the following:

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

I'll close with two sets of comments.

First, remember that the original reason for wanting such internal congruences was to provide the "engine" for the induction step for the proofs of the following:

Congruences Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families
Extending The

$$
\begin{aligned}
& P D O\left(2^{\alpha}(4 n+3)\right) \equiv 0 \quad(\bmod 4), \\
& P D O\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 8) .
\end{aligned}
$$

## Closing Thoughts

It would be gratifying to see other cases of our family of internal congruences used to assist in proving divisibility properties satisfied by $\operatorname{PDO}(n)$ for higher powers of 2 (similar to the results above).

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

It would be gratifying to see other cases of our family of internal congruences used to assist in proving divisibility properties satisfied by $\operatorname{PDO}(n)$ for higher powers of 2 (similar to the results above).

This would mean we would need to find the appropriate "basis step" Ramanujan-like congruences that are satisfied by $P D O$ modulo some higher power of 2 . Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

It would be gratifying to see other cases of our family of internal congruences used to assist in proving divisibility properties satisfied by $\operatorname{PDO}(n)$ for higher powers of 2 (similar to the results above).

This would mean we would need to find the appropriate "basis step" Ramanujan-like congruences that are satisfied by $P D O$ modulo some higher power of 2 .

I'd be happy to chat with anyone interested in such an endeavor! Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

Second, in the course of proving congruences modulo arbitrary powers for the coefficients of an eta-product

$$
\mathrm{H}(q)=\sum_{n=0}^{\infty} h(n) q^{n},
$$

Infinite Families of
Congruences
Modulo Powers of
2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background
the usual strategy is to find a suitable basis $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{L}\right\}$ of the corresponding modular space such that each dissection slice, accompanied by a certain multiplier (usually an eta-product),

$$
\lambda_{m} \sum_{n=0}^{\infty} h\left(p^{m} n+t_{m}\right) q^{n}
$$

can be represented as a polynomial in $\mathbb{Z}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{L}\right]$.

## Closing Thoughts

For example, when proving the congruences modulo powers of 5 for the partition function (e.g., see Watson, 1938), two specific multipliers take turns showing up, i.e., $\lambda_{2 M-1}=\lambda$ and $\lambda_{2 M}=\lambda^{\prime}$ for two certain series $\lambda$ and $\lambda^{\prime}$.

Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated Summands

James Sellers
University of
Minnesota Duluth

Background

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

For example, when proving the congruences modulo powers of 5 for the partition function (e.g., see Watson, 1938), two specific multipliers take turns showing up, i.e., $\lambda_{2 M-1}=\lambda$ and $\lambda_{2 M}=\lambda^{\prime}$ for two certain series $\lambda$ and $\lambda^{\prime}$. Congruences Modulo Powers of 2 for Partitions into Odd Parts with Designated

Summands
James Sellers
University of
Minnesota Duluth

Background
However, in this work, the multipliers $\gamma, \gamma^{2}, \gamma^{4}, \gamma^{8}, \ldots$ never overlap.

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences

Closing Thoughts

## Closing Thoughts

For example, when proving the congruences modulo powers of 5 for the partition function (e.g., see Watson, 1938), two specific multipliers take turns showing up, i.e., $\lambda_{2 M-1}=\lambda$ and $\lambda_{2 M}=\lambda^{\prime}$ for two certain series $\lambda$ and $\lambda^{\prime}$.

Infinite Families of Congruences Modulo Powers of 2 for Partitions
into Odd Parts
with Designated
Summands
James Sellers
University of
Minnesota Duluth

Background
However, in this work, the multipliers $\gamma, \gamma^{2}, \gamma^{4}, \gamma^{8}, \ldots$ never overlap.

Meanwhile, an important outcome of cycling the multipliers in the previous studies is that it is typically sufficient to represent each degree $p$ unitization $U_{p}\left(\kappa^{i} \xi^{j}\right)$ as a polynomial in $\xi$ for a certain series $\kappa$, with the exponent $i \in\{0,1\}$.

## Closing Thoughts

In contrast, when there are endless possibilities for the multipliers, we have to extend the consideration of $i$ to infinity, thereby substantially increasing the amount of required $p$-adic analysis.

## Closing Thoughts

In contrast, when there are endless possibilities for the multipliers, we have to extend the consideration of $i$ to infinity, thereby substantially increasing the amount of required $p$-adic analysis.

This manuscript is currently under review at Acta Arithmetica.

Proofs of These
Two Infinite
Families

Extending The
Internal
Congruences
Closing Thoughts

## Closing Thoughts

In contrast, when there are endless possibilities for the multipliers, we have to extend the consideration of $i$ to infinity, thereby substantially increasing the amount of required $p$-adic analysis.

Background

This manuscript is currently under review at Acta Arithmetica.

Proofs of These
Two Infinite
Families

Extending The
Internal
And with that I will close.

Congruences
Closing Thoughts

## Closing Thoughts

In contrast, when there are endless possibilities for the multipliers, we have to extend the consideration of $i$ to infinity, thereby substantially increasing the amount of required $p$-adic analysis.

This manuscript is currently under review at Acta Arithmetica.

Proofs of These
Two Infinite
Families

Extending The
Internal
And with that I will close.
Congruences
Closing Thoughts

Thanks very much for attending today.

## Infinite Families of Congruences Modulo <br> Powers of 2 for Partitions into Odd Parts

 with Designated Summands```
Infinite Families of
    Congruences
Modulo Powers of
    2 for Partitions
    into Odd Parts
    with Designated
        Summands
    James Sellers
    University of
Minnesota Duluth
```

Background

James Sellers
University of Minnesota Duluth

jsellers@d.umn.edu

September 2023

