Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions

Jena Gregory

University of Texas Rio Grande Valley Joint work with Dr. Brandt Kronholm and Dr. Dennis Eichhorn

Partition Theory, q-Series and Related Topics Seminar Michigan Technology University

October 16, 2025

Dissertation Background and History

Dissertation Background and History

• How many ways can we write n as a sum of positive integers?

- How many ways can we write *n* as a sum of positive integers?
- As an example, let's partition the number 4.

- How many ways can we write *n* as a sum of positive integers?
- As an example, let's partition the number 4.

Partitions of 4.

4

3+1

2+2

2+1+1

1 + 1 + 1 + 1

$$p(4) = 5$$

Definition 1

- How many ways can we write *n* as a sum of positive integers?
- As an example, let's partition the number 4.

Partitions of 4. Partitions of 4 into parts of size at most 2.

Definition 1

- How many ways can we write *n* as a sum of positive integers?
- As an example, let's partition the number 4.

Partitions of 4. Partitions of 4 into parts of size at most 2.

Definition 1

- How many ways can we write *n* as a sum of positive integers?
- As an example, let's partition the number 4.

Partitions of 4. Partitions of 4 into parts of size at most 2.

Definition 1

The Partitions of 4 in Multiplicity Based Notation

Definition 2

Let λ be a partition of n into parts from the set [m]. We write λ in "multiplicity notation," so that $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$ is the partition with exactly e_i parts of size i for each $i \in [m]$.

The Partitions of 4 in Multiplicity Based Notation

p(n)

Definition 2

Let λ be a partition of n into parts from the set [m]. We write λ in "multiplicity notation," so that $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$ is the partition with exactly e_i parts of size i for each $i \in [m]$.

p(n, m)

The Partitions of 4 in Multiplicity Based Notation

p(n)

Definition 2

Let λ be a partition of n into parts from the set [m]. We write λ in "multiplicity notation," so that $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$ is the partition with exactly e_i parts of size i for each $i \in [m]$.

p(n, m)

Here is the sequence of partition numbers.

$${p(n)}_{n=0}^{\infty} = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, \dots$$

Here is the sequence of partition numbers.

$${p(n)}_{n=0}^{\infty} = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, \dots$$

In 1919, Ramanujan proved the following patterns in this sequence.[6]

Theorem 3

For all nonnegative integers k,

$$p(5k+4) \equiv 0 \pmod{5} \tag{1}$$

$$p(7k+5) \equiv 0 \pmod{7} \tag{2}$$

$$p(11k+6) \equiv 0 \pmod{11}. \tag{3}$$

Here is the sequence of partition numbers.

$$\{p(n)\}_{n=0}^{\infty} = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, \dots$$

In 1919, Ramanujan proved the following patterns in this sequence.[6]

Theorem 3

For all nonnegative integers k,

$$p(5k+4) \equiv 0 \pmod{5} \tag{4}$$

$$p(7k+5) \equiv 0 \pmod{7} \tag{5}$$

$$p(11k+6) \equiv 0 \pmod{11}. \tag{6}$$

Here is the sequence of partition numbers.

$$\{p(n)\}_{n=0}^{\infty} = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, \dots$$

In 1919, Ramanujan proved the following patterns in this sequence.[6]

Theorem 3

For all nonnegative integers k,

$$p(5k+4) \equiv 0 \pmod{5} \tag{4}$$

$$p(7k+5) \equiv 0 \pmod{7} \tag{5}$$

$$p(11k+6) \equiv 0 \pmod{11}. \tag{6}$$

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of $p(5k+4) \equiv 0 \pmod{5}$. By this I mean, that although we can prove ... that the partitions of 5k+4 can be divided into five equally numerous subclasses, it is unsatisfactory to receive from the proofs no concrete idea of how the division is to be made. We require a proof which will not appeal to generating functions, but will demonstrate by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses.

Dyson proposed ranking partitions.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of $p(5k+4) \equiv 0 \pmod{5}$. By this I mean, that although we can prove ... that the partitions of 5k+4 can be divided into five equally numerous subclasses, it is unsatisfactory to receive from the proofs no concrete idea of how the division is to be made. We require a proof which will not appeal to generating functions, but will demonstrate by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses.

Dyson proposed ranking partitions.

Definition 4

The rank of a partition is the largest part minus the number of parts.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of $p(5k+4) \equiv 0 \pmod{5}$. By this I mean, that although we can prove ... that the partitions of 5k+4 can be divided into five equally numerous subclasses, it is unsatisfactory to receive from the proofs no concrete idea of how the division is to be made. We require a proof which will not appeal to generating functions, but will demonstrate by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses.

Dyson proposed ranking partitions.

Definition 4

The rank of a partition is the largest part minus the number of parts.

Dyson's guess was that the rank of a partition would be a concrete demonstration of how the divisions are to be made for the congruences of 5 and 7.

In his 1944 paper, *Some Guesses in the Theory of Partitions* [3], Freeman Dyson asks for proofs of Ramanujan's congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of $p(5k+4) \equiv 0 \pmod{5}$. By this I mean, that although we can prove ... that the partitions of 5k+4 can be divided into five equally numerous subclasses, it is unsatisfactory to receive from the proofs no concrete idea of how the division is to be made. We require a proof which will not appeal to generating functions, but will demonstrate by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses.

Dyson proposed ranking partitions.

Definition 4

The rank of a partition is the largest part minus the number of parts.

Dyson's guess was that the rank of a partition would be a concrete demonstration of how the divisions are to be made for the congruences of 5 and 7.

 $\lambda \vdash 4$ Rank (mod 5)

$$\frac{\lambda \vdash 4}{\left(1^0, 2^0, 3^0, 4^1\right)} \rightarrow \frac{\text{Rank}}{4 - 1 = 3} \equiv \frac{\text{Rank (mod 5)}}{3}$$

$$\frac{\lambda \vdash 4}{(1^0, 2^0, 3^0, 4^1)} \to \frac{\text{Rank}}{4 - 1 = 3} \equiv \frac{\text{Rank (mod 5)}}{3}$$

 $(1^1, 2^0, 3^1, 4^0) \to 3 - 2 = 1 \equiv 1$

$\underline{\lambda \vdash 4}$	<u>Rank</u>	Rank (mod 5)
$(1^0,2^0,3^0,4^1) \ \to$	$4-1=3 \equiv$	3
$(1^1,2^0,3^1,4^0)\to$	$3-2=1 \equiv$	1
$(1^0,2^2,3^0,4^0)\to$	2-2=0	0

$\underline{\lambda \vdash 4}$	<u>Rank</u>	Rank (mod 5)
$(1^0,2^0,3^0,4^1) \ \to$	$4-1=3 \equiv$	3
$(1^1,2^0,3^1,4^0)\to$	$3-2=1 \equiv$	1
$(1^0,2^2,3^0,4^0)\to$	$2-2=0$ \equiv	0
$(1^2,2^1,3^0,4^0) \rightarrow$	$2-3=-1 \equiv$	4

$\underline{\lambda \vdash 4}$	<u>Rank</u>	Rank (mod 5)
$(1^0,2^0,3^0,4^1) \ \to$	$4-1=3$ \equiv	3
$(1^1,2^0,3^1,4^0)\to$	$3-2=1$ \equiv	1
$(1^0,2^2,3^0,4^0)\to$	$2-2=0$ \equiv	0
$(1^2,2^1,3^0,4^0)\to$	$2-3=-1$ \equiv	4
$(1^4, 2^0, 3^0, 4^0) \rightarrow$	$1-4=-3 \equiv$	2

$\underline{\lambda \vdash 4}$	<u>Rank</u>	Rank (mod 5)
$(1^0,2^0,3^0,4^1) \ \to$	$4-1=3 \equiv$	3
$(1^1,2^0,3^1,4^0)\to$	3-2=1	1
$(1^0,2^2,3^0,4^0)\to$	$2-2=0$ \equiv	0
$(1^2,2^1,3^0,4^0)\to$	$2-3=-1 \equiv$	4
$(1^4,2^0,3^0,4^0)\to$	$1-4=-3 \equiv$	2

Thus we have "demonstrated by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses."

$\underline{\lambda \vdash 4}$	<u>Rank</u>	Rank (mod 5)
$(1^0,2^0,3^0,4^1) \ \to$	$4-1=3 \equiv$	3
$(1^1,2^0,3^1,4^0)\to$	3-2=1	1
$(1^0,2^2,3^0,4^0)\to$	$2-2=0$ \equiv	0
$(1^2,2^1,3^0,4^0)\to$	$2-3=-1 \equiv$	4
$(1^4,2^0,3^0,4^0)\to$	$1-4=-3 \equiv$	2

Thus we have "demonstrated by cross-examination of the partitions themselves the existence of five exclusive, exhaustive and equally numerous subclasses."

Rank of p(5) modulo 7

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2].

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2]. And, while beautiful, they are still analytic proofs and not combinatorial bijections.

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2]. And, while beautiful, they are still analytic proofs and not combinatorial bijections. There are still no constructive proofs for Dyson's rank.

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2]. And, while beautiful, they are still analytic proofs and not combinatorial bijections. There are still no constructive proofs for Dyson's rank. This is still an open problem.

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2]. And, while beautiful, they are still analytic proofs and not combinatorial bijections. There are still no constructive proofs for Dyson's rank. This is still an open problem.

Dyson made another guess:

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite than, the rank of a partition; I shall call this hypothetical coefficient the "crank" of the partition.

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite than, the rank of a partition; I shall call this hypothetical coefficient the "crank" of the partition.

In 1988, George Andrews and Frank Garvan [1] discovered "the crank".

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite than, the rank of a partition; I shall call this hypothetical coefficient the "crank" of the partition.

In 1988, George Andrews and Frank Garvan [1] discovered "the crank".

Definition 5

For a partition λ , let $I(\lambda)$ denote the largest part of λ , $\omega(\lambda)$ denote the number of ones in λ , and $\mu(\lambda)$ denote the number of parts of λ larger than $\omega(\lambda)$. The crank is given by

$$c(\lambda) = \begin{cases} I(\lambda) & \text{if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \text{if } \omega(\lambda) > 0. \end{cases}$$

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite than, the rank of a partition; I shall call this hypothetical coefficient the "crank" of the partition.

In 1988, George Andrews and Frank Garvan [1] discovered "the crank".

Definition 5

For a partition λ , let $I(\lambda)$ denote the largest part of λ , $\omega(\lambda)$ denote the number of ones in λ , and $\mu(\lambda)$ denote the number of parts of λ larger than $\omega(\lambda)$. The crank is given by

$$c(\lambda) = \begin{cases} I(\lambda) & \text{if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \text{if } \omega(\lambda) > 0. \end{cases}$$

However, any statistic that witnesses a partition congruence that isn't the rank or the Andrews-Garvan crank is often referred to as a "crank".

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite than, the rank of a partition; I shall call this hypothetical coefficient the "crank" of the partition.

In 1988, George Andrews and Frank Garvan [1] discovered "the crank".

Definition 5

For a partition λ , let $I(\lambda)$ denote the largest part of λ , $\omega(\lambda)$ denote the number of ones in λ , and $\mu(\lambda)$ denote the number of parts of λ larger than $\omega(\lambda)$. The crank is given by

$$c(\lambda) = \begin{cases} I(\lambda) & \text{if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \text{if } \omega(\lambda) > 0. \end{cases}$$

However, any statistic that witnesses a partition congruence that isn't the rank or the Andrews-Garvan crank is often referred to as a "crank".

What Constitues A Crank?

Definition 6

Let $\mathfrak{p}(n)$ denote the set of partitions of n. For a given n, if the statistic $\tau:\mathfrak{p}(n)\to\mathbb{Z}$ is equally distributed over every residue class modulo ℓ , we say that τ is a *crank* modulo ℓ , witnessing the ℓ -divisibility of p(n).

What Constitues A Crank?

Definition 6

Let $\mathfrak{p}(n)$ denote the set of partitions of n. For a given n, if the statistic $\tau:\mathfrak{p}(n)\to\mathbb{Z}$ is equally distributed over every residue class modulo ℓ , we say that τ is a *crank* modulo ℓ , witnessing the ℓ -divisibility of p(n).

Further Motivation: The Interval Theorem

Further Motivation: The Interval Theorem

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

 $\ell=3$: We see regular intervals of partitions congruent to 0 modulo 3.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
```

 $\ell = 3$: We see regular intervals of partitions congruent to 0 modulo 3.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, \underbrace{21, 24, 27, 30, 33}, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, \\ 85, 91, \underbrace{96, 102, 108, 114, 120}, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, \\ \underbrace{225, 234, 243, 252, 261}, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, \\ 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, \\ 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, \dots
```

 $\ell=5$: Again, there are regular intervals of partitions congruent to 0 modulo 5.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, \\ 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, \\ 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, \\ 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, \\ 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, \dots
```

 $\ell = 3$: We see regular intervals of partitions congruent to 0 modulo 3.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, \underbrace{21, 24, 27, 30, 33}, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, \\ 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, \\ \underbrace{225, 234, 243, 252, 261}, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, \\ 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, \\ 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, \dots
```

 $\ell=5$: Again, there are regular intervals of partitions congruent to 0 modulo 5.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, \\ 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, \\ 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, \\ 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, \\ 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, \dots
```

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime ℓ , any nonnegative integer k, and any $2 \le m \le \ell + 1$, we have

$$p(\ell \cdot \operatorname{lcm}(m)k - t, m) \equiv 0 \pmod{\ell} \tag{7}$$

for $0 < t < \frac{m^2 + m}{2}$, where lcm(m) is the least common multiple among the numbers from 1 to m.

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime ℓ , any nonnegative integer k, and any $2 \le m \le \ell + 1$, we have

$$p(\ell \cdot \operatorname{lcm}(m)k - t, m) \equiv 0 \pmod{\ell} \tag{7}$$

for $0 < t < \frac{m^2 + m}{2}$, where lcm(m) is the least common multiple among the numbers from 1 to m. (Think: "lcm([m])".)

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime ℓ , any nonnegative integer k, and any $2 \le m \le \ell + 1$, we have

$$p(\ell \cdot \operatorname{lcm}(m)k - t, m) \equiv 0 \pmod{\ell} \tag{7}$$

for $0 < t < \frac{m^2 + m}{2}$, where lcm(m) is the least common multiple among the numbers from 1 to m. (Think: "lcm([m])".)

Let's look at the previous examples again.

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime ℓ , any nonnegative integer k, and any $2 \le m \le \ell + 1$, we have

$$p(\ell \cdot \operatorname{lcm}(m)k - t, m) \equiv 0 \pmod{\ell} \tag{7}$$

for $0 < t < \frac{m^2 + m}{2}$, where lcm(m) is the least common multiple among the numbers from 1 to m. (Think: "lcm([m])".)

Let's look at the previous examples again.

 $\ell = 3$: We see regular intervals of partitions congruent to 0 modulo 3.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, ....
```

$$\{p(n,3) \pmod{3}\}_{n\geq 0} \implies p(18k-t,3) \equiv 0 \pmod{3} \text{ for } 0 < t < 6$$
 (8)

 $\ell = 3$: We see regular intervals of partitions congruent to 0 modulo 3.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, ....
```

$$\{p(n,3) \pmod{3}\}_{n\geq 0} \implies p(18k-t,3) \equiv 0 \pmod{3} \text{ for } 0 < t < 6$$
 (8)

 $\ell = 5$: Again, there are regular intervals of partitions congruent to 0 modulo 5.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
```

$$\{p(n,3) \pmod{5}\}_{n \ge 0} \implies p(30k - t, 3) \equiv 0 \pmod{5} \text{ for } 0 < t < 15$$
 (9)

 $\ell = 5$: Again, there are regular intervals of partitions congruent to 0 modulo 5.

```
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420, 432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690, 705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
```

$$\{p(n,3) \pmod{5}\}_{n \ge 0} \implies p(30k - t, 3) \equiv 0 \pmod{5} \text{ for } 0 < t < 15$$
 (9)

Let's do an example: let $\ell = 3$ and m = 4,

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36.

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod{3}\}_{n \ge 0}$ had period 36. Recall by the Interval Theorem we had nine consecutive congruences:

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36. Recall by the Interval Theorem we had nine consecutive congruences:

```
p(35, 4)
p(34, 4)
p(33, 4)
p(32, 4)
p(31, 4)
p(30, 4)
p(29, 4)
p(28, 4)
p(27, 4)
```

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36. Recall by the Interval Theorem we had nine consecutive congruences:

$$p(35, 4) = 441$$

 $p(34, 4) = 411$
 $p(33, 4) = 378$
 $p(32, 4) = 351$
 $p(31, 4) = 321$
 $p(30, 4) = 297$
 $p(29, 4) = 270$
 $p(28, 4) = 249$
 $p(27, 4) = 225$

Let's do an example: let $\ell=3$ and m=4, we saw the sequence $\{p(n,4) \pmod 3\}_{n\geq 0}$ had period 36. By the Interval Theorem we had nine consecutive congruences:

$$p(35, 4) = 441 \equiv 0 \pmod{3}$$

 $p(34, 4) = 411 \equiv 0 \pmod{3}$
 $p(33, 4) = 378 \equiv 0 \pmod{3}$
 $p(32, 4) = 351 \equiv 0 \pmod{3}$
 $p(31, 4) = 321 \equiv 0 \pmod{3}$
 $p(30, 4) = 297 \equiv 0 \pmod{3}$
 $p(29, 4) = 270 \equiv 0 \pmod{3}$
 $p(28, 4) = 249 \equiv 0 \pmod{3}$
 $p(27, 4) = 225 \equiv 0 \pmod{3}$

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36. By the Interval Theorem we had nine consecutive congruences:

$$p(35, 4) = 441 \equiv 0 \pmod{3}$$

 $p(34, 4) = 411 \equiv 0 \pmod{3}$
 $p(33, 4) = 378 \equiv 0 \pmod{3}$
 $p(32, 4) = 351 \equiv 0 \pmod{3}$
 $p(31, 4) = 321 \equiv 0 \pmod{3}$
 $p(30, 4) = 297 \equiv 0 \pmod{3}$
 $p(29, 4) = 270 \equiv 0 \pmod{3}$
 $p(28, 4) = 249 \equiv 0 \pmod{3}$
 $p(27, 4) = 225 \equiv 0 \pmod{3}$

But what about the rest of the period?

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36. By the Interval Theorem we had nine consecutive congruences:

$$p(35, 4) = 441 \equiv 0 \pmod{3}$$

 $p(34, 4) = 411 \equiv 0 \pmod{3}$
 $p(33, 4) = 378 \equiv 0 \pmod{3}$
 $p(32, 4) = 351 \equiv 0 \pmod{3}$
 $p(31, 4) = 321 \equiv 0 \pmod{3}$
 $p(30, 4) = 297 \equiv 0 \pmod{3}$
 $p(29, 4) = 270 \equiv 0 \pmod{3}$
 $p(28, 4) = 249 \equiv 0 \pmod{3}$
 $p(27, 4) = 225 \equiv 0 \pmod{3}$

But what about the rest of the period? There are 27 other partition numbers that might be interesting.

Let's do an example: let $\ell = 3$ and m = 4, we saw the sequence $\{p(n,4) \pmod 3\}_{n \ge 0}$ had period 36. By the Interval Theorem we had nine consecutive congruences:

$$p(35, 4) = 441 \equiv 0 \pmod{3}$$

 $p(34, 4) = 411 \equiv 0 \pmod{3}$
 $p(33, 4) = 378 \equiv 0 \pmod{3}$
 $p(32, 4) = 351 \equiv 0 \pmod{3}$
 $p(31, 4) = 321 \equiv 0 \pmod{3}$
 $p(30, 4) = 297 \equiv 0 \pmod{3}$
 $p(29, 4) = 270 \equiv 0 \pmod{3}$
 $p(28, 4) = 249 \equiv 0 \pmod{3}$
 $p(27, 4) = 225 \equiv 0 \pmod{3}$

But what about the rest of the period? There are 27 other partition numbers that might be interesting.

A Continuation of $p(n, 4) \pmod{3}$

$$p(26, 4) = p(25, 4) = p(1, 4) = p(1, 4) = p(24, 4) = p(23, 4) = p(3, 4) = p(22, 4) = p(21, 4) = p(20, 4) = p(20, 4) = p(19, 4) = p(18, 4) = p(17, 4) = p(17, 4) = p(16, 4) = p(16, 4) = p(16, 4) = p(16, 4) = p(15, 4) = p(14, 4) = p(14, 4) = p(13, 4) = p(14, 4) = p(13, 4) = p(13, 4) = p(12, 4) = p(13, 4) = p(13, 4) = p(12, 4) = p(13, 4) = p$$

p(26,4) = 206
p(25,4)=185
p(24,4) = 169
p(23,4)=150
p(22,4)=136
p(21,4)=120
p(20,4) = 108
p(19,4)=94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

$$p(0,4) = 1$$

$$p(1,4) = 1$$

$$p(2,4) = 2$$

$$p(3,4) = 3$$

$$p(4,4) = 5$$

$$p(5,4) = 6$$

$$p(6,4) = 9$$

$$p(7,4) = 11$$

$$p(8,4) = 15$$

$$p(9,4) = 18$$

$$p(10,4) = 23$$

$$p(11,4) = 27$$

$$p(12,4) = 34$$

$$p(26, 4) = 206$$

 $p(25, 4) = 185$
 $p(24, 4) = 169$
 $p(23, 4) = 150$
 $p(22, 4) = 136$
 $p(21, 4) = 120$
 $p(20, 4) = 108$
 $p(19, 4) = 94$
 $p(18, 4) = 84$
 $p(17, 4) = 72$
 $p(16, 4) = 64$
 $p(15, 4) = 54$
 $p(14, 4) = 47$
 $p(13, 4) = 39$

+
$$p(0,4) = 1$$

 $p(1,4) = 1$
 $p(2,4) = 2$
 $p(3,4) = 3$
 $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

p(26,4) = 206
p(25,4)=185
p(24,4) = 169
p(23,4)=150
p(22,4)=136
p(21,4) = 120
p(20,4) = 108
p(19,4)=94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4)=54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

 $p(1,4) = 1$
 $p(2,4) = 2$
 $p(3,4) = 3$
 $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$=207\equiv 0 \pmod{3}$$

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4)=150
p(22,4)=136
p(21,4)=120
p(20,4)=108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
 $p(2,4) = 2$
 $p(3,4) = 3$
 $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

= 186 \equiv 0 \(\text{mod 3}\)

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4)=136
p(21,4)=120
p(20,4) = 108
p(19,4)=94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
 $p(3,4) = 3$
 $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

= $186 \equiv 0 \pmod{3}$
= $171 \equiv 0 \pmod{3}$

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4)=136
p(21,4)=120
p(20,4) = 108
p(19,4)=94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
 $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

= $186 \equiv 0 \pmod{3}$
= $171 \equiv 0 \pmod{3}$
= $153 \equiv 0 \pmod{3}$

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
$\rho(19,4)=94$
p(18,4) = 84
p(17,4) = 72
p(16,4)=64
p(15,4)=54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
 $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

 $= 186 \equiv 0 \pmod{3}$
 $= 171 \equiv 0 \pmod{3}$
 $= 153 \equiv 0 \pmod{3}$
 $= 141 \equiv 0 \pmod{3}$

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
, ,
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
 $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

```
= 207 \equiv 0 \pmod{3}

= 186 \equiv 0 \pmod{3}

= 171 \equiv 0 \pmod{3}

= 153 \equiv 0 \pmod{3}

= 141 \equiv 0 \pmod{3}

= 126 \equiv 0 \pmod{3}
```

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4)=94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4)=54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
 $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

```
= 207 \equiv 0 \pmod{3}

= 186 \equiv 0 \pmod{3}

= 171 \equiv 0 \pmod{3}

= 153 \equiv 0 \pmod{3}

= 141 \equiv 0 \pmod{3}

= 126 \equiv 0 \pmod{3}

= 117 \equiv 0 \pmod{3}
```

```
p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39
```

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
+ $p(7,4) = 11$
 $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

 $= 186 \equiv 0 \pmod{3}$
 $= 171 \equiv 0 \pmod{3}$
 $= 153 \equiv 0 \pmod{3}$
 $= 141 \equiv 0 \pmod{3}$
 $= 126 \equiv 0 \pmod{3}$
 $= 117 \equiv 0 \pmod{3}$
 $= 105 \equiv 0 \pmod{3}$

```
p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39
```

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
+ $p(7,4) = 11$
+ $p(8,4) = 15$
 $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

```
=207 \equiv 0 \pmod{3}
=186 \equiv 0 \pmod{3}
=171 \equiv 0 \pmod{3}
=153 \equiv 0 \pmod{3}
= 141 \equiv 0 \pmod{3}
=126 \equiv 0 \pmod{3}
=117 \equiv 0 \pmod{3}
=105 \equiv 0 \pmod{3}
=99 \equiv 0 \pmod{3}
```

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
+ $p(7,4) = 11$
+ $p(8,4) = 15$
+ $p(9,4) = 18$
 $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

```
=207 \equiv 0 \pmod{3}
=186 \equiv 0 \pmod{3}
=171 \equiv 0 \pmod{3}
=153 \equiv 0 \pmod{3}
= 141 \equiv 0 \pmod{3}
=126 \equiv 0 \pmod{3}
= 117 \equiv 0 \pmod{3}
=105 \equiv 0 \pmod{3}
=99 \equiv 0 \pmod{3}
=90 \equiv 0 \pmod{3}
```

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
+ $p(7,4) = 11$
+ $p(8,4) = 15$
+ $p(9,4) = 18$
+ $p(10,4) = 23$
 $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

 $= 186 \equiv 0 \pmod{3}$
 $= 171 \equiv 0 \pmod{3}$
 $= 153 \equiv 0 \pmod{3}$
 $= 141 \equiv 0 \pmod{3}$
 $= 126 \equiv 0 \pmod{3}$
 $= 117 \equiv 0 \pmod{3}$
 $= 105 \equiv 0 \pmod{3}$
 $= 99 \equiv 0 \pmod{3}$
 $= 90 \equiv 0 \pmod{3}$
 $= 87 \equiv 0 \pmod{3}$

p(26,4) = 206
p(25,4) = 185
p(24,4) = 169
p(23,4) = 150
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

+
$$p(0,4) = 1$$

+ $p(1,4) = 1$
+ $p(2,4) = 2$
+ $p(3,4) = 3$
+ $p(4,4) = 5$
+ $p(5,4) = 6$
+ $p(6,4) = 9$
+ $p(7,4) = 11$
+ $p(8,4) = 15$
+ $p(9,4) = 18$
+ $p(10,4) = 23$
+ $p(11,4) = 27$
 $p(12,4) = 34$

$$= 207 \equiv 0 \pmod{3}$$

 $= 186 \equiv 0 \pmod{3}$
 $= 171 \equiv 0 \pmod{3}$
 $= 153 \equiv 0 \pmod{3}$
 $= 141 \equiv 0 \pmod{3}$
 $= 126 \equiv 0 \pmod{3}$
 $= 117 \equiv 0 \pmod{3}$
 $= 105 \equiv 0 \pmod{3}$
 $= 99 \equiv 0 \pmod{3}$
 $= 90 \equiv 0 \pmod{3}$
 $= 87 \equiv 0 \pmod{3}$
 $= 81 \equiv 0 \pmod{3}$

A Continuation of p(n, 4) (mod 3)

p(26,4) = 206	+ p(0,4) = 1	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$=186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$=171\equiv 0\pmod{3}$
p(23,4) = 150	+ p(3,4) = 3	$=153\equiv 0\pmod 3$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$=126\equiv 0\pmod 3$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0\pmod 3$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0\pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90\equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$=87\equiv 0\pmod 3$
p(15,4) = 54	+ p(11,4) = 27	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ p(12,4) = 34	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39		

p(26,4) = 206	+ p(0,4) = 1	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$= 186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$=171\equiv 0\pmod 3$
p(23,4) = 150	+ p(3,4) = 3	$=153\equiv 0 \pmod 3$
p(22,4) = 136	+ p(4,4) = 5	$=141\equiv 0 \; (mod\; 3)$
p(21,4) = 120	$+ \rho(5,4) = 6$	$=126\equiv 0\pmod 3$
p(20,4) = 108	$+ \rho(6,4) = 9$	$=117\equiv 0\pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0\pmod 3$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	$+ \rho(9,4) = 18$	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ $p(10,4) = 23$	$=87\equiv 0\pmod 3$
p(15,4) = 54	$+ \rho(11,4) = 27$	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0 \pmod 3$
p(13,4) = 39		$=39\equiv 0 \pmod 3$

p(26,4) = 206	+ p(0,4) = 1	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$= 186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$=171\equiv 0\pmod 3$
p(23,4) = 150	+ p(3,4) = 3	$=153\equiv 0 \pmod 3$
p(22,4) = 136	+ p(4,4) = 5	$=141\equiv 0 \; (mod\; 3)$
p(21,4) = 120	$+ \rho(5,4) = 6$	$=126\equiv 0\pmod 3$
p(20,4) = 108	$+ \rho(6,4) = 9$	$=117\equiv 0\pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0\pmod 3$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	$+ \rho(9,4) = 18$	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ $p(10,4) = 23$	$=87\equiv 0\pmod 3$
p(15,4) = 54	$+ \rho(11,4) = 27$	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0 \pmod 3$
p(13,4) = 39		$=39\equiv 0 \pmod 3$

Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ℓ be an odd prime. Set $n' = \ell lcm(m)(k+1) - r - \left(\frac{m^2+m}{2}\right)$ and $n = \ell lcm(m)k + r$. Then for

$$-\left(\frac{m^2+m}{2}\right)+1\leq r\leq \ell \operatorname{lcm}(m)-\left(\frac{m^2+m}{2}\right) \tag{10}$$

and $k \ge 0$, we have

$$p(n',m) + (-1)^m p(n,m) \equiv 0 \pmod{\ell}.$$
 (11)

Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ℓ be an odd prime. Set $n' = \ell lcm(m)(k+1) - r - \left(\frac{m^2 + m}{2}\right)$ and $n = \ell lcm(m)k + r$. Then for

$$-\left(\frac{m^2+m}{2}\right)+1 \le r \le \ell \operatorname{lcm}(m)-\left(\frac{m^2+m}{2}\right) \tag{10}$$

and $k \ge 0$, we have

$$p(n',m) + (-1)^m p(n,m) \equiv 0 \pmod{\ell}.$$
 (11)

Let's look the previous example again.

Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ℓ be an odd prime. Set $n' = \ell lcm(m)(k+1) - r - \left(\frac{m^2 + m}{2}\right)$ and $n = \ell lcm(m)k + r$. Then for

$$-\left(\frac{m^2+m}{2}\right)+1 \le r \le \ell \operatorname{lcm}(m)-\left(\frac{m^2+m}{2}\right) \tag{10}$$

and $k \ge 0$, we have

$$p(n',m) + (-1)^m p(n,m) \equiv 0 \pmod{\ell}.$$
 (11)

Let's look the previous example again.

p(26,4) = 206	+ p(0,4) = 1	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$= 186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$=171\equiv 0\pmod 3$
p(23,4) = 150	+ p(3,4) = 3	$=153\equiv 0 \pmod 3$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	$+ \rho(5,4) = 6$	$=126\equiv 0\pmod 3$
p(20,4) = 108	$+ \rho(6,4) = 9$	$=117\equiv 0\pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0\pmod 3$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	$+ \rho(9,4) = 18$	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ $p(10,4) = 23$	$=87\equiv 0\pmod 3$
p(15,4) = 54	$+ \rho(11,4) = 27$	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0 \pmod 3$
p(13,4) = 39		$=39\equiv 0 \pmod 3$

p(36k+26,4)	+	p(36k+0,4)	$\equiv 0 \pmod{3}$
p(25,4) = 185	+	p(1,4) = 1	$= 186 \equiv 0 \pmod{3}$
p(24,4) = 169	+	$p(2,4) = \frac{2}{2}$	$= 171 \equiv 0 \pmod{3}$
p(23,4) = 150	+	p(3,4) = 3	$= 153 \equiv 0 \pmod{3}$
p(22,4) = 136	+	p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+	p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+	p(6,4) = 9	$=117\equiv 0\pmod 3$
p(19,4) = 94	+	p(7,4) = 11	$=105\equiv 0 \pmod 3$
p(18,4) = 84	+	p(8,4) = 15	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	+	$p(9,4) = \frac{18}{18}$	$=90\equiv 0\pmod 3$
p(16,4) = 64	+	p(10,4) = 23	$=87\equiv 0\pmod 3$
p(15,4) = 54	+	p(11,4) = 27	$=81\equiv 0\pmod 3$
p(14,4) = 47	+	p(12,4) = 34	$=81\equiv 0\pmod 3$
p(13,4) = 39			$=39\equiv 0\pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ $p(36k+1,4)$	$\equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$=171\equiv 0\pmod 3$
p(23,4) = 150	+ p(3,4) = 3	$=153\equiv 0 \pmod 3$
p(22,4) = 136	+ p(4,4) = 5	$=141\equiv 0 \pmod 3$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0\pmod 3$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0\pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0\pmod 3$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$=87\equiv 0\pmod{3}$
p(15,4) = 54	+ p(11,4) = 27	$=81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ p(12,4) = 34	$=81 \equiv 0 \pmod{3}$
p(13,4) = 39		$=39\equiv 0\pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(23,4) = 150	+ p(3,4) = 3	$= 153 \equiv 0 \pmod{3}$
p(22,4) = 136	+ $p(4,4) = 5$	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ $p(6,4) = 9$	$=117 \equiv 0 \pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ $p(11,4) = 27$	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39	, ,	$=39 \equiv 0 \pmod{3}$
• • •		

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117 \equiv 0 \pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ $p(10,4) = 23$	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ $p(11,4) = 27$	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39	, ,	$=39 \equiv 0 \pmod{3}$
		,

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ $p(36k+2,4)$	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(21,4) = 120	$+ \rho(5,4) = 6$	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	$+ \rho(6,4) = 9$	$=117\equiv 0\pmod 3$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0 \; (mod\; 3)$
p(18,4) = 84	$+ \rho(8,4) = 15$	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	+ p(9,4) = 18	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ p(10,4) = 23	$=87\equiv 0\pmod 3$
p(15,4) = 54	$+ \rho(11,4) = 27$	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0\pmod 3$
p(13,4) = 39		$=39\equiv 0 \pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ $p(36k+1,4)$	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ $p(36k+2,4)$	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ $p(36k+3,4)$	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ $p(36k+4,4)$	$\equiv 0 \pmod{3}$
p(36k+21,4)	+ $p(36k+5,4)$	$\equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0\pmod 3$
p(19,4) = 94	+ p(7,4) = 11	$=105\equiv 0 \pmod 3$
p(18,4) = 84	+ p(8,4) = 15	$=99\equiv 0 \pmod 3$
$p(17,4) = \frac{72}{}$	+ p(9,4) = 18	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ p(10,4) = 23	$=87\equiv 0 \pmod 3$
$p(15,4) = \frac{54}{}$	+ p(11,4) = 27	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0 \pmod 3$
p(13,4) = 39		$=39\equiv 0 \pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k + 22, 4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(36k + 21, 4)	+ p(36k+5,4)	$\equiv 0 \pmod{3}$
p(36k + 20, 4)	+ p(36k+6,4)	$\equiv 0 \pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$= 105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ p(11,4) = 27	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39	,	$=39 \equiv 0 \pmod{3}$
,		,

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ $p(36k+4,4)$	$\equiv 0 \pmod{3}$
p(36k+21,4)	+ $p(36k+5,4)$	$\equiv 0 \pmod{3}$
p(36k+20,4)	$+ \rho(36k+6,4)$	$\equiv 0 \pmod{3}$
p(36k+19,4)	+ p(36k+7,4)	$\equiv 0 \pmod{3}$
p(18,4) = 84	$+ \rho(8,4) = 15$	$=99\equiv 0\pmod 3$
$p(17,4) = \frac{72}{}$	+ p(9,4) = 18	$=90\equiv 0\pmod 3$
p(16,4) = 64	+ $\rho(10,4) = 23$	$=87\equiv 0\pmod 3$
p(15,4) = 54	+ $\rho(11,4) = 27$	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$=81\equiv 0\pmod 3$
$p(13,4) = \frac{39}{1}$		$=39\equiv 0 \pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(36k+21,4)	+ p(36k+5,4)	$\equiv 0 \pmod{3}$
p(36k+20,4)	+ p(36k+6,4)	$\equiv 0 \pmod{3}$
p(36k+19,4)	+ p(36k+7,4)	$\equiv 0 \pmod{3}$
p(36k+18,4)	+ p(36k+8,4)	$\equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90\equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$=87\equiv 0\pmod{3}$
p(15,4) = 54	+ p(11,4) = 27	$=81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ p(12,4) = 34	$=81 \equiv 0 \pmod{3}$
p(13,4) = 39		$=39\equiv 0\pmod 3$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k + 22, 4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(36k+21,4)	+ p(36k+5,4)	$\equiv 0 \pmod{3}$
p(36k + 20, 4)	+ p(36k+6,4)	$\equiv 0 \pmod{3}$
p(36k+19,4)	+ p(36k+7,4)	$\equiv 0 \pmod{3}$
p(36k+18,4)	+ p(36k + 8, 4)	$\equiv 0 \pmod{3}$
p(36k+17,4)	+ p(36k+9,4)	$\equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$=87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ $p(11,4) = 27$	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ p(12,4) = 34	$=81 \equiv 0 \pmod{3}$
p(13,4) = 39	,	$=39 \equiv 0 \pmod{3}$
, ,		,

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ p(36k+1,4)	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(36k+21,4)	+ p(36k+5,4)	$\equiv 0 \pmod{3}$
p(36k+20,4)	+ p(36k+6,4)	$\equiv 0 \pmod{3}$
p(36k+19,4)	+ p(36k+7,4)	$\equiv 0 \pmod{3}$
p(36k+18,4)	+ p(36k+8,4)	$\equiv 0 \pmod{3}$
p(36k+17,4)	+ p(36k+9,4)	$\equiv 0 \pmod{3}$
p(36k+16,4)	+ p(36k+10,4)	$\equiv 0 \pmod{3}$
p(15,4) = 54	+ p(11,4) = 27	$=81\equiv 0\pmod 3$
p(14,4) = 47	+ p(12,4) = 34	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39		$=39\equiv 0\pmod{3}$

p(36k+26,4)	+ p(36k+0,4)	$\equiv 0 \pmod{3}$
p(36k+25,4)	+ $p(36k+1,4)$	$\equiv 0 \pmod{3}$
p(36k+24,4)	+ p(36k+2,4)	$\equiv 0 \pmod{3}$
p(36k+23,4)	+ p(36k+3,4)	$\equiv 0 \pmod{3}$
p(36k+22,4)	+ p(36k+4,4)	$\equiv 0 \pmod{3}$
p(36k + 21, 4)	+ p(36k+5,4)	$\equiv 0 \pmod{3}$
p(36k + 20, 4)	+ p(36k+6,4)	$\equiv 0 \pmod{3}$
p(36k+19,4)	+ p(36k+7,4)	$\equiv 0 \pmod{3}$
p(36k+18,4)	+ p(36k + 8, 4)	$\equiv 0 \pmod{3}$
p(36k+17,4)	+ p(36k+9,4)	$\equiv 0 \pmod{3}$
p(36k+16,4)	+ p(36k + 10, 4)	$\equiv 0 \pmod{3}$
p(36k+15,4)	+ p(36k+11,4)	$\equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$=81 \equiv 0 \pmod{3}$
p(13,4) = 39	. , , , -	$= 39 \equiv 0 \pmod{3}$
r (-))		== (((())

```
+ p(36k + 0, 4)
p(36k + 26, 4)
                                                                   \equiv 0 \pmod{3}
p(36k + 25, 4)
                            + p(36k+1,4)
                                                                   \equiv 0 \pmod{3}
p(36k + 24, 4)
                            + p(36k + 2, 4)
                                                                   \equiv 0 \pmod{3}
p(36k + 23, 4)
                            + p(36k + 3, 4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k+4,4)
p(36k + 22, 4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k+5,4)
p(36k+21,4)
                                                                   \equiv 0 \pmod{3}
p(36k + 20, 4)
                            + p(36k+6,4)
                                                                   \equiv 0 \pmod{3}
p(36k+19,4)
                            + p(36k+7,4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k + 8, 4)
p(36k+18,4)
                                                                   \equiv 0 \pmod{3}
p(36k+17,4)
                            + p(36k + 9, 4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k + 10, 4)
p(36k+16,4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k + 11, 4)
p(36k+15,4)
                                                                   \equiv 0 \pmod{3}
                            + p(36k + 12, 4)
p(36k+14,4)
                                                                   \equiv 0 \pmod{3}
p(13,4) = 39
                                                             =39 \equiv 0 \pmod{3}
```

p(36k+26,4)	+	p(36k+0,4)	≡ 0	(mod 3)
p(36k+25,4)	+	p(36k+1,4)	≡ 0	(mod 3)
p(36k+24,4)	+	p(36k+2,4)	≡ 0	(mod 3)
p(36k+23,4)	+	p(36k+3,4)	≡ 0	(mod 3)
p(36k+22,4)	+	p(36k+4,4)	≡ 0	(mod 3)
p(36k+21,4)	+	p(36k+5,4)	≡ 0	(mod 3)
p(36k+20,4)	+	p(36k+6,4)	≡ 0	(mod 3)
p(36k+19,4)	+	p(36k+7,4)	≡ 0	(mod 3)
p(36k+18,4)	+	p(36k+8,4)	≡ 0	(mod 3)
p(36k+17,4)	+	p(36k+9,4)	≡ 0	(mod 3)
p(36k+16,4)	+	p(36k+10,4)	≡ 0	(mod 3)
p(36k+15,4)	+	p(36k+11,4)	≡ 0	(mod 3)
p(36k+14,4)	+	p(36k+12,4)	≡ 0	(mod 3)
p(36k+13,4)			≡ 0	(mod 3)

p(36k+26,4)	+	p(36k+0,4)	≡ 0	(mod 3)
p(36k+25,4)	+	p(36k+1,4)	≡ 0	(mod 3)
p(36k+24,4)	+	p(36k+2,4)	≡ 0	(mod 3)
p(36k+23,4)	+	p(36k+3,4)	≡ 0	(mod 3)
p(36k+22,4)	+	p(36k+4,4)	≡ 0	(mod 3)
p(36k+21,4)	+	p(36k+5,4)	≡ 0	(mod 3)
p(36k+20,4)	+	p(36k+6,4)	≡ 0	(mod 3)
p(36k+19,4)	+	p(36k+7,4)	≡ 0	(mod 3)
p(36k+18,4)	+	p(36k+8,4)	≡ 0	(mod 3)
p(36k+17,4)	+	p(36k+9,4)	≡ 0	(mod 3)
p(36k+16,4)	+	p(36k+10,4)	≡ 0	(mod 3)
p(36k+15,4)	+	p(36k+11,4)	≡ 0	(mod 3)
p(36k+14,4)	+	p(36k+12,4)	≡ 0	(mod 3)
p(36k+13,4)			≡ 0	(mod 3)

Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 11

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots + a_d q^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{12}$$

. Equivalently, if

$$q^{d}P\left(q^{-1}\right) = P(q). \tag{13}$$

Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 11

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots + a_d q^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{12}$$

. Equivalently, if

$$q^d P\left(q^{-1}\right) = P(q). \tag{13}$$

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots - a_d q^d$, is said to be anti-reciprocal if

$$a_i = -a_{d-i} \tag{14}$$

. Equivalently, if

$$q^{d}P\left(q^{-1}\right) = -P(q). \tag{15}$$

Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 12

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots + a_d q^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{16}$$

. Equivalently, if

$$q^d P\left(q^{-1}\right) = P(q). \tag{17}$$

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots - a_d q^d$, is said to be anti-reciprocal if

$$a_i = -a_{d-i} \tag{18}$$

. Equivalently, if

$$q^{d}P\left(q^{-1}\right) = -P(q). \tag{19}$$

We will show that

$$P(q) = \frac{1 - q^{3lcm(4)}}{(q; q)_4} \pmod{3} \tag{20}$$

is an anti-reciprocal polynomial of degree 26. i.e.

We will show that

$$P(q) = \frac{1 - q^{3lcm(4)}}{(q; q)_4} \pmod{3} \tag{20}$$

is an anti-reciprocal polynomial of degree 26. i.e.

$$p(i,4) = -p(26-i,4) \pmod{3}$$
 (21)

We will show that

$$P(q) = \frac{1 - q^{3lcm(4)}}{(q; q)_4} \pmod{3} \tag{20}$$

is an anti-reciprocal polynomial of degree 26. i.e.

$$p(i,4) = -p(26-i,4) \pmod{3} \tag{21}$$

which in turn gives us the sum theorem,

We will show that

$$P(q) = \frac{1 - q^{3lcm(4)}}{(q; q)_4} \pmod{3} \tag{20}$$

is an anti-reciprocal polynomial of degree 26. i.e.

$$p(i,4) = -p(26 - i,4) \pmod{3} \tag{21}$$

which in turn gives us the sum theorem,

$$p(i,4) + p(26-i,4) \equiv 0 \pmod{3}.$$
 (22)

Example 13

Let $\ell=3$ and m=4 so that $3\cdot \operatorname{lcm}(4)=36$. Then $P(q)=\frac{1-q^{36}}{(q;q)_4}$ and

Example 13

Let
$$\ell=3$$
 and $m=4$ so that $3\cdot \operatorname{lcm}(4)=36$. Then $P(q)=\frac{1-q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

Example 13

Let $\ell = 3$ and m = 4 so that $3 \cdot \text{lcm}(4) = 36$. Then $P(q) = \frac{1 - q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

Example 13

Let $\ell=3$ and m=4 so that $3\cdot \operatorname{lcm}(4)=36$. Then $P(q)=\frac{1-q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

$$= \frac{q^{26}(q^{36}-1)(q)(q^2)(q^3)(q^4)}{q^{36}(q-1)(q^2-1)(q^3-1)(q^4-1)}$$
(25)

Example 13

Let $\ell = 3$ and m = 4 so that $3 \cdot \text{lcm}(4) = 36$. Then $P(q) = \frac{1 - q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

$$=\frac{q^{26}(q^{36}-1)(q)(q^2)(q^3)(q^4)}{q^{36}(q-1)(q^2-1)(q^3-1)(q^4-1)}$$
(25)

$$=\frac{-(1-q^{36})}{(-1)^4(q;q)_4}\tag{26}$$

Example 13

Let $\ell = 3$ and m = 4 so that $3 \cdot \text{lcm}(4) = 36$. Then $P(q) = \frac{1 - q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

$$=\frac{q^{26}(q^{36}-1)(q)(q^2)(q^3)(q^4)}{q^{36}(q-1)(q^2-1)(q^3-1)(q^4-1)}$$
(25)

$$=\frac{-(1-q^{36})}{(-1)^4(q;q)_4}\tag{26}$$

$$= -P(q) \tag{27}$$

Example 13

Let $\ell=3$ and m=4 so that $3\cdot \operatorname{lcm}(4)=36$. Then $P(q)=\frac{1-q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

$$=\frac{q^{26}(q^{36}-1)(q)(q^2)(q^3)(q^4)}{q^{36}(q-1)(q^2-1)(q^3-1)(q^4-1)}$$
(25)

$$=\frac{-(1-q^{36})}{(-1)^4(q;q)_4}\tag{26}$$

$$= -P(q) \tag{27}$$

Thus P(q) is anti-reciprocal polynomial and

$$p(i,4) + p(26-i,4) \equiv 0 \pmod{3}.$$
 (28)

Example 13

Let $\ell=3$ and m=4 so that $3\cdot \operatorname{lcm}(4)=36$. Then $P(q)=\frac{1-q^{36}}{(q;q)_4}$ and

$$q^{26}P(q^{-1}) = \frac{q^{26}(1 - \frac{1}{q^{36}})}{(1 - \frac{1}{q})(1 - \frac{1}{q^2})(1 - \frac{1}{q^3})(1 - \frac{1}{q^4})}$$
(23)

$$=\frac{q^{26}(\frac{q^{36}-1}{q^{36}})}{(\frac{q-1}{q})(\frac{q^2-1}{q^2})(\frac{q^3-1}{q^3})(\frac{q^4-1}{q^4})}$$
(24)

$$=\frac{q^{26}(q^{36}-1)(q)(q^2)(q^3)(q^4)}{q^{36}(q-1)(q^2-1)(q^3-1)(q^4-1)}$$
(25)

$$=\frac{-(1-q^{36})}{(-1)^4(q;q)_4}\tag{26}$$

$$= -P(q) \tag{27}$$

Thus P(q) is anti-reciprocal polynomial and

$$p(i,4) + p(26-i,4) \equiv 0 \pmod{3}.$$
 (28)

Cranks Witnessing the Interval Theorem

Cranks Witnessing the Interval Theorem

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a *multiplicity-based statistic* (*MB statistic*) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a *multiplicity-based statistic* (*MB statistic*) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

We list the 15 partitions of 8 into parts of size of at most 4.

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a *multiplicity-based statistic* (*MB statistic*) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$(1^1, 2^2, 3^1, 4^0)$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\tau(1^1,2^2,3^1,4^0)$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\tau(1, 2, 1, 0)$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$0 \cdot 1 +$$

$$\tau(^{1},^{2},^{1},^{0})$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$au(\lambda) = \sum_{i=1}^m au_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$0 \cdot 1 + 1 \cdot 2 +$$

$$\tau(^{1},^{2},^{1},^{0})$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$au(\lambda) = \sum_{i=1}^m au_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$0 \cdot 1 + 1 \cdot 2 + 1 \cdot 1 +$$

$$\tau(^{1},^{2},^{1},^{0})$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^{m} \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$0 \cdot 1 + 1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0$$

$$\tau(^{1},^{2},^{1},^{0})$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$au(\lambda) = \sum_{i=1}^m au_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$0 \cdot 1 + 1 \cdot 2 + 1 \cdot 1 + 1 \cdot 0 = 3$$

$$\tau(^{1},^{2},^{1},^{0})=3$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^{m} \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2) = 2 \quad \tau(1^1,2^0,3^1,4^1) = 2 \quad \tau(1^0,2^2,3^0,4^1) = 3 \\ &\tau(1^2,2^1,3^0,4^1) = 2 \quad \tau(1^4,2^0,3^0,4^1) = 1 \quad \tau(1^0,2^1,3^2,4^0) = 3 \\ &\tau(1^2,2^0,3^2,4^0) = 2 \quad \tau(1^1,2^2,3^1,4^0) = 3 \quad \tau(1^3,2^1,3^1,4^0) = 2 \\ &\tau(1^5,2^0,3^1,4^0) = 1 \quad \tau(1^0,2^4,3^0,4^0) = 4 \quad \tau(1^2,2^3,3^0,4^0) = 3 \\ &\tau(1^4,2^2,3^0,4^0) = 2 \quad \tau(1^6,2^1,3^0,4^0) = 1 \quad \tau(1^8,2^0,3^0,4^0) = 0 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^{m} \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\!\equiv 2 \quad \tau(1^1,2^0,3^1,4^1)\!\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1)\!\!\equiv 0 \\ &\tau(1^2,2^1,3^0,4^1)\!\!\equiv 2 \quad \tau(1^4,2^0,3^0,4^1)\!\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0)\!\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\!\equiv 2 \quad \tau(1^1,2^2,3^1,4^0)\!\!\equiv 0 \quad \tau(1^3,2^1,3^1,4^0)\!\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\!\equiv 1 \quad \tau(1^0,2^4,3^0,4^0)\!\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0)\!\!\equiv 0 \\ &\tau(1^4,2^2,3^0,4^0)\!\!\equiv 2 \quad \tau(1^6,2^1,3^0,4^0)\!\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0)\!\!\equiv 0 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2) \!\!\equiv 2 \quad \tau(1^1,2^0,3^1,4^1) \!\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1) \!\!\equiv 0 \\ &\tau(1^2,2^1,3^0,4^1) \!\!\equiv 2 \quad \tau(1^4,2^0,3^0,4^1) \!\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0) \!\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0) \!\!\equiv 2 \quad \tau(1^1,2^2,3^1,4^0) \!\!\equiv 0 \quad \tau(1^3,2^1,3^1,4^0) \!\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0) \!\!\equiv 1 \quad \tau(1^0,2^4,3^0,4^0) \!\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0) \!\!\equiv 0 \\ &\tau(1^4,2^2,3^0,4^0) \!\!\equiv 2 \quad \tau(1^6,2^1,3^0,4^0) \!\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0) \!\!\equiv 0 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2) \!\!\equiv 2 \quad \tau(1^1,2^0,3^1,4^1) \!\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1) \!\!\equiv 0 \\ &\tau(1^2,2^1,3^0,4^1) \!\!\equiv 2 \quad \tau(1^4,2^0,3^0,4^1) \!\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0) \!\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0) \!\!\equiv 2 \quad \tau(1^1,2^2,3^1,4^0) \!\!\equiv 0 \quad \tau(1^3,2^1,3^1,4^0) \!\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0) \!\!\equiv 1 \quad \tau(1^0,2^4,3^0,4^0) \!\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0) \!\!\equiv 0 \\ &\tau(1^4,2^2,3^0,4^0) \!\!\equiv 2 \quad \tau(1^6,2^1,3^0,4^0) \!\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0) \!\!\equiv 0 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\!\equiv 2 & \tau(1^1,2^0,3^1,4^1)\!\!\equiv 2 & \tau(1^0,2^2,3^0,4^1)\!\!\equiv 0 \\ &\tau(1^2,2^1,3^0,4^1)\!\!\equiv 2 & \tau(1^4,2^0,3^0,4^1)\!\!\equiv 1 & \tau(1^0,2^1,3^2,4^0)\!\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\!\equiv 2 & \tau(1^1,2^2,3^1,4^0)\!\!\equiv 0 & \tau(1^3,2^1,3^1,4^0)\!\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\!\equiv 1 & \tau(1^0,2^4,3^0,4^0)\!\!\equiv 1 & \tau(1^2,2^3,3^0,4^0)\!\!\equiv 0 \\ &\tau(1^4,2^2,3^0,4^0)\!\!\equiv 2 & \tau(1^6,2^1,3^0,4^0)\!\!\equiv 1 & \tau(1^8,2^0,3^0,4^0)\!\!\equiv 0 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{array}{lll} \tau(1^0,2^0,3^0,4^2) & \tau(1^1,2^0,3^1,4^1) & \tau(1^0,2^2,3^0,4^1) \\ \tau(1^2,2^1,3^0,4^1) & \tau(1^4,2^0,3^0,4^1) & \tau(1^0,2^1,3^2,4^0) \\ \tau(1^2,2^0,3^2,4^0) & \tau(1^1,2^2,3^1,4^0) & \tau(1^3,2^1,3^1,4^0) \\ \tau(1^5,2^0,3^1,4^0) & \tau(1^0,2^4,3^0,4^0) & \tau(1^2,2^3,3^0,4^0) \\ \tau(1^4,2^2,3^0,4^0) & \tau(1^6,2^1,3^0,4^0) & \tau(1^8,2^0,3^0,4^0) \end{array}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2) = 0 \quad \tau(1^1,2^0,3^1,4^1) = 2 \quad \tau(1^0,2^2,3^0,4^1) = 2 \\ &\tau(1^2,2^1,3^0,4^1) = 3 \quad \tau(1^4,2^0,3^0,4^1) = 4 \quad \tau(1^0,2^1,3^2,4^0) = 3 \\ &\tau(1^2,2^0,3^2,4^0) = 4 \quad \tau(1^1,2^2,3^1,4^0) = 4 \quad \tau(1^3,2^1,3^1,4^0) = 5 \\ &\tau(1^5,2^0,3^1,4^0) = 6 \quad \tau(1^0,2^4,3^0,4^0) = 4 \quad \tau(1^2,2^3,3^0,4^0) = 5 \\ &\tau(1^4,2^2,3^0,4^0) = 6 \quad \tau(1^6,2^1,3^0,4^0) = 7 \quad \tau(1^8,2^0,3^0,4^0) = 8 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^{m} \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\equiv 0 \quad \tau(1^1,2^0,3^1,4^1)\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1)\!\equiv 2 \\ &\tau(1^2,2^1,3^0,4^1)\!\equiv 0 \quad \tau(1^4,2^0,3^0,4^1)\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0)\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\equiv 1 \quad \tau(1^1,2^2,3^1,4^0)\!\equiv 1 \quad \tau(1^3,2^1,3^1,4^0)\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\equiv 0 \quad \tau(1^0,2^4,3^0,4^0)\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0)\!\equiv 2 \\ &\tau(1^4,2^2,3^0,4^0)\!\equiv 0 \quad \tau(1^6,2^1,3^0,4^0)\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0)\!\equiv 2 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\equiv 0 \quad \tau(1^1,2^0,3^1,4^1)\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1)\!\equiv 2 \\ &\tau(1^2,2^1,3^0,4^1)\!\equiv 0 \quad \tau(1^4,2^0,3^0,4^1)\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0)\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\equiv 1 \quad \tau(1^1,2^2,3^1,4^0)\!\equiv 1 \quad \tau(1^3,2^1,3^1,4^0)\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\equiv 0 \quad \tau(1^0,2^4,3^0,4^0)\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0)\!\equiv 2 \\ &\tau(1^4,2^2,3^0,4^0)\!\equiv 0 \quad \tau(1^6,2^1,3^0,4^0)\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0)\!\equiv 2 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^{m} \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2) \equiv 0 \quad \tau(1^1,2^0,3^1,4^1) \equiv 2 \quad \tau(1^0,2^2,3^0,4^1) \equiv 2 \\ &\tau(1^2,2^1,3^0,4^1) \equiv 0 \quad \tau(1^4,2^0,3^0,4^1) \equiv 1 \quad \tau(1^0,2^1,3^2,4^0) \equiv 0 \\ &\tau(1^2,2^0,3^2,4^0) \equiv 1 \quad \tau(1^1,2^2,3^1,4^0) \equiv 1 \quad \tau(1^3,2^1,3^1,4^0) \equiv 2 \\ &\tau(1^5,2^0,3^1,4^0) \equiv 0 \quad \tau(1^0,2^4,3^0,4^0) \equiv 1 \quad \tau(1^2,2^3,3^0,4^0) \equiv 2 \\ &\tau(1^4,2^2,3^0,4^0) \equiv 0 \quad \tau(1^6,2^1,3^0,4^0) \equiv 1 \quad \tau(1^8,2^0,3^0,4^0) \equiv 2 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\equiv 0 \quad \tau(1^1,2^0,3^1,4^1)\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1)\!\equiv 2 \\ &\tau(1^2,2^1,3^0,4^1)\!\equiv 0 \quad \tau(1^4,2^0,3^0,4^1)\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0)\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\equiv 1 \quad \tau(1^1,2^2,3^1,4^0)\!\equiv 1 \quad \tau(1^3,2^1,3^1,4^0)\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\equiv 0 \quad \tau(1^0,2^4,3^0,4^0)\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0)\!\equiv 2 \\ &\tau(1^4,2^2,3^0,4^0)\!\equiv 0 \quad \tau(1^6,2^1,3^0,4^0)\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0)\!\equiv 2 \end{split}$$

Definition 14

Given a partition $\lambda = (1^{e_1}, 2^{e_2}, \dots, m^{e_m})$, we define a multiplicity-based statistic (MB statistic) $\tau = (\tau_1, \tau_2, \dots, \tau_m) \in \mathbb{Z}^m$ to be

$$\tau(\lambda) = \sum_{i=1}^m \tau_i e_i.$$

 $\tau(\lambda)$ is simply a linear combination of the multiplicities of the parts of λ .

$$\begin{split} &\tau(1^0,2^0,3^0,4^2)\!\equiv 0 \quad \tau(1^1,2^0,3^1,4^1)\!\equiv 2 \quad \tau(1^0,2^2,3^0,4^1)\!\equiv 2 \\ &\tau(1^2,2^1,3^0,4^1)\!\equiv 0 \quad \tau(1^4,2^0,3^0,4^1)\!\equiv 1 \quad \tau(1^0,2^1,3^2,4^0)\!\equiv 0 \\ &\tau(1^2,2^0,3^2,4^0)\!\equiv 1 \quad \tau(1^1,2^2,3^1,4^0)\!\equiv 1 \quad \tau(1^3,2^1,3^1,4^0)\!\equiv 2 \\ &\tau(1^5,2^0,3^1,4^0)\!\equiv 0 \quad \tau(1^0,2^4,3^0,4^0)\!\equiv 1 \quad \tau(1^2,2^3,3^0,4^0)\!\equiv 2 \\ &\tau(1^4,2^2,3^0,4^0)\!\equiv 0 \quad \tau(1^6,2^1,3^0,4^0)\!\equiv 1 \quad \tau(1^8,2^0,3^0,4^0)\!\equiv 2 \end{split}$$

Definition 15

- For a given partition statistic τ and a positive integer ℓ , we allow τ to classify the partitions of n into ℓ subclasses by letting $\mathcal{M}_{\tau}(r,\ell,n,m)$ be the set of partitions λ of n into parts from [m] such that $\tau(\lambda) \equiv r \pmod{\ell}$.
- Also, we define $M_{\tau}(r,\ell,n,m)=|\mathcal{M}_{\tau}(r,\ell,n,m)|$. [4]

Definition 15

- For a given partition statistic τ and a positive integer ℓ , we allow τ to classify the partitions of n into ℓ subclasses by letting $\mathcal{M}_{\tau}(r,\ell,n,m)$ be the set of partitions λ of n into parts from [m] such that $\tau(\lambda) \equiv r \pmod{\ell}$.
- Also, we define $M_{\tau}(r,\ell,n,m) = |\mathcal{M}_{\tau}(r,\ell,n,m)|$. [4]

Definition 6

Let $\mathfrak{p}(n)$ denote the set of partitions of n. For a given n, if the statistic $\tau: \mathfrak{p}(n,m) \to \mathbb{Z}$ is equally distributed over every residue class modulo ℓ , we say that τ is a crank modulo ℓ , witnessing the ℓ -divisibility of $\mathfrak{p}(n,m)$.

That is, if

$$M_{\tau}(i,\ell,n,m) = \frac{p(n,m)}{\ell} \tag{29}$$

for each $0 \le i \le \ell - 1$, then τ is a crank modulo ℓ .[4]

Definition 15

- For a given partition statistic τ and a positive integer ℓ , we allow τ to classify the partitions of n into ℓ subclasses by letting $\mathcal{M}_{\tau}(r,\ell,n,m)$ be the set of partitions λ of n into parts from [m] such that $\tau(\lambda) \equiv r \pmod{\ell}$.
- Also, we define $M_{\tau}(r,\ell,n,m) = |\mathcal{M}_{\tau}(r,\ell,n,m)|$. [4]

Definition 6

Let $\mathfrak{p}(n)$ denote the set of partitions of n. For a given n, if the statistic $\tau: \mathfrak{p}(n,m) \to \mathbb{Z}$ is equally distributed over every residue class modulo ℓ , we say that τ is a crank modulo ℓ , witnessing the ℓ -divisibility of $\mathfrak{p}(n,m)$.

That is, if

$$M_{\tau}(i,\ell,n,m) = \frac{p(n,m)}{\ell} \tag{29}$$

for each $0 \le i \le \ell - 1$, then τ is a crank modulo ℓ .[4]

$M_{(0,1,1,1)}(0,3,8,4)=4$	
$M_{(0,1,1,1)}(1,3,8,4)=5$	
$M_{(0,1,1,1)}(2,3,8,4)=6$	

$M_{(0,1,1,1)}(0,3,8,4)=4$	
$M_{(0,1,1,1)}(1,3,8,4)=5$	
$M_{(0,1,1,1)}(2,3,8,4)=6$	
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	

$M_{(0,1,1,1)}(0,3,8,4)=4$	
$M_{(0,1,1,1)}(1,3,8,4)=5$	
$M_{(0,1,1,1)}(2,3,8,4)=6$	
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	
(0,1,1,1) is not a crank.	

$M_{(0,1,1,1)}(0,3,8,4)=4$	$M_{(1,1,1,0)}(0,3,8,4)=5$
$M_{(0,1,1,1)}(1,3,8,4)=5$	$M_{(1,1,1,0)}(1,3,8,4)=5$
$M_{(0,1,1,1)}(2,3,8,4)=6$	$M_{(1,1,1,0)}(2,3,8,4)=5$
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	
(0,1,1,1) is not a crank.	

$M_{(0,1,1,1)}(0,3,8,4)=4$	$M_{(1,1,1,0)}(0,3,8,4)=5$
$M_{(0,1,1,1)}(1,3,8,4)=5$	$M_{(1,1,1,0)}(1,3,8,4)=5$
$M_{(0,1,1,1)}(2,3,8,4)=6$	$M_{(1,1,1,0)}(2,3,8,4)=5$
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	$M_{(1,1,1,0)}(i,3,8,4) = \frac{p(8,4)}{3}$
(0,1,1,1) is not a crank.	

$M_{(0,1,1,1)}(0,3,8,4)=4$	$M_{(1,1,1,0)}(0,3,8,4)=5$
$M_{(0,1,1,1)}(1,3,8,4)=5$	$M_{(1,1,1,0)}(1,3,8,4)=5$
$M_{(0,1,1,1)}(2,3,8,4)=6$	$M_{(1,1,1,0)}(2,3,8,4)=5$
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	$M_{(1,1,1,0)}(i,3,8,4) = \frac{p(8,4)}{3}$
(0,1,1,1) is not a crank.	(1,1,1,0) is a crank.

$M_{(0,1,1,1)}(0,3,8,4)=4$	$M_{(1,1,1,0)}(0,3,8,4)=5$
$M_{(0,1,1,1)}(1,3,8,4)=5$	$M_{(1,1,1,0)}(1,3,8,4)=5$
$M_{(0,1,1,1)}(2,3,8,4)=6$	$M_{(1,1,1,0)}(2,3,8,4)=5$
$M_{(0,1,1,1)}(i,3,8,4) \neq \frac{p(8,4)}{3}$	$M_{(1,1,1,0)}(i,3,8,4) = \frac{p(8,4)}{3}$
(0,1,1,1) is not a crank.	(1,1,1,0) is a crank.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$ in the tuple $\tau = (\tau_1, \tau_2, \dots, \tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$ in the tuple $\tau = (\tau_1, \tau_2, \dots, \tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

Theorem 16 is a very important result for this dissertation and for this talk.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$ in the tuple $\tau = (\tau_1, \tau_2, \dots, \tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

Theorem 16 is a very important result for this dissertation and for this talk. I will refer to it later on.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$ in the tuple $\tau = (\tau_1, \tau_2, \dots, \tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

Theorem 16 is a very important result for this dissertation and for this talk. I will refer to it later on.

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get cranks for Theorem 7.

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two universal cranks for Theorem 7.

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For $2 < m < \ell + 1$, let

$$oldsymbol{lpha} = \left\{ egin{array}{ll} (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_m) &= (1, 1, \ldots, 1) & ext{if } 2 \leq m \leq \ell \ (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_{\ell+1}) &= (1, 1, \ldots, 1, 0) & ext{if } m = \ell+1, \end{array}
ight.$$

and

$$\beta = (\beta_1, \beta_2, \dots, \beta_m) = (0, 1, \dots, 1, 1).$$

The MB-statistics α , the number of parts excluding those of size $\ell + 1$, and β , the number of parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For $2 < m < \ell + 1$, let

$$oldsymbol{lpha} = \left\{ egin{array}{ll} (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_m) &= (1, 1, \ldots, 1) & ext{if } 2 \leq m \leq \ell \ (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_{\ell+1}) &= (1, 1, \ldots, 1, 0) & ext{if } m = \ell+1, \end{array}
ight.$$

and

$$\beta = (\beta_1, \beta_2, \dots, \beta_m) = (0, 1, \dots, 1, 1).$$

The MB-statistics α , the number of parts excluding those of size $\ell + 1$, and β , the number of parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

However, there are many more cranks besides α and β .

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For $2 < m < \ell + 1$, let

$$oldsymbol{lpha} = \left\{ egin{array}{ll} (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_m) &= (1, 1, \ldots, 1) & ext{if } 2 \leq m \leq \ell \ (oldsymbol{lpha}_1, oldsymbol{lpha}_2, \ldots, oldsymbol{lpha}_{\ell+1}) &= (1, 1, \ldots, 1, 0) & ext{if } m = \ell+1, \end{array}
ight.$$

and

$$\beta = (\beta_1, \beta_2, \dots, \beta_m) = (0, 1, \dots, 1, 1).$$

The MB-statistics α , the number of parts excluding those of size $\ell + 1$, and β , the number of parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

However, there are many more cranks besides α and β .

Collecting the Data: Two Python Programs

Collecting the Data: Two Python Programs

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be,

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16.

Jena Gregory

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again. Statistics that did satisfy the theorem, these are the *cranks* and were kept in a list.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again. Statistics that did satisfy the theorem, these are the *cranks* and were kept in a list. Statistics that did not satisfy the theorem were discarded.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again. Statistics that did satisfy the theorem, these are the *cranks* and were kept in a list. Statistics that did not satisfy the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again. Statistics that did satisfy the theorem, these are the *cranks* and were kept in a list. Statistics that did not satisfy the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

Theorem 18 (Eichhorn, Kronholm, and Larsen (2022))

For any prime $\ell \geqslant 3$ and $3 \leqslant m \leqslant \ell+1$, the number of inequivalent MB statistics generated by Theorem 2.8 that witness The Interval Theorem is exactly $\frac{(\ell-2)!}{(\ell-m)!}$ for $2 \leqslant m < \ell$, and $(\ell-1)$! for $m=\ell,\ell+1$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$.

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only specifically knew the α and β cranks and did not know any others. In order to find all the other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple $(0,0,\ldots,0)$ to see if satisfies Theorem 16. It then incremented to $(0,0,\ldots,1)$ and tried again. Statistics that did satisfy the theorem, these are the *cranks* and were kept in a list. Statistics that did not satisfy the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

Theorem 18 (Eichhorn, Kronholm, and Larsen (2022))

For any prime $\ell \geqslant 3$ and $3 \leqslant m \leqslant \ell+1$, the number of inequivalent MB statistics generated by Theorem 2.8 that witness The Interval Theorem is exactly $\frac{(\ell-2)!}{(\ell-m)!}$ for $2 \leqslant m < \ell$, and $(\ell-1)$! for $m=\ell,\ell+1$ are distinct modulo ℓ , and $\tau_\ell \not\equiv 0 \pmod{\ell}$.

However, for each distinct cranks, there were many "equivalent cranks".

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and $a\tau$ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, ..., m) = (\tau_1 + b, \tau_2 + 2b, ..., \tau_m + bm)$. Then τ and $\tau + b(1, 2, ..., m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

Jena Gregory

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example β =(0,1,1,1) is a crank. By Proposition 19, 2β = (0,2,2,2) is an equivalent crank to β .

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

By Proposition 19, $2\beta = (0, 2, 2, 2)$ is an equivalent crank to β .

Other equivalent cranks are of the form (0,1,1,1)+(1,2,3,4)=(1,3,4,0)

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

By Proposition 19, $2\beta = (0, 2, 2, 2)$ is an equivalent crank to β .

Other equivalent cranks are of the form (0, 1, 1, 1) + (1, 2, 3, 4) = (1, 3, 4, 0)

We repeat the process of adding $\beta + b(1,2,3,4) \pmod{5}$ to find all the equivalent cranks.

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

By Proposition 19, $2\beta = (0, 2, 2, 2)$ is an equivalent crank to β .

Other equivalent cranks are of the form (0, 1, 1, 1) + (1, 2, 3, 4) = (1, 3, 4, 0)

We repeat the process of adding $\beta + b(1,2,3,4) \pmod{5}$ to find all the equivalent cranks.

For example when $\ell=5$ and m=4 there are 120 total cranks, but sorted by equivalence, there are 6 distinct crank lists, where each list contains 20 equivalent cranks.

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

By Proposition 19, $2\beta = (0, 2, 2, 2)$ is an equivalent crank to β .

Other equivalent cranks are of the form (0, 1, 1, 1) + (1, 2, 3, 4) = (1, 3, 4, 0)

We repeat the process of adding $\beta + b(1,2,3,4) \pmod{5}$ to find all the equivalent cranks.

For example when $\ell=5$ and m=4 there are 120 total cranks, but sorted by equivalence, there are 6 distinct crank lists, where each list contains 20 equivalent cranks. Let's look at a sample readout of what the first Python program gives us.

However, for each distinct cranks, there were many "equivalent cranks".

Proposition 19

Let $\tau = (\tau_1, \tau_2, \dots, \tau_m)$ be an MB statistic. Given a prime ℓ and a constant $a \not\equiv 0 \pmod{\ell}$, define $a\tau = (a\tau_1, a\tau_2, \dots, a\tau_m)$. Then τ and a τ are equivalent modulo ℓ . Let b be any integer and define $\tau + b(1, 2, \dots, m) = (\tau_1 + b, \tau_2 + 2b, \dots, \tau_m + bm)$. Then τ and $\tau + b(1, 2, \dots, m)$ are equivalent modulo ℓ .

For example $\beta = (0,1,1,1)$ is a crank.

By Proposition 19, $2\beta = (0, 2, 2, 2)$ is an equivalent crank to β .

Other equivalent cranks are of the form (0, 1, 1, 1) + (1, 2, 3, 4) = (1, 3, 4, 0)

We repeat the process of adding $\beta + b(1,2,3,4) \pmod{5}$ to find all the equivalent cranks.

For example when $\ell=5$ and m=4 there are 120 total cranks, but sorted by equivalence, there are 6 distinct crank lists, where each list contains 20 equivalent cranks. Let's look at a sample readout of what the first Python program gives us.

List 1: $\beta = (0, 1, 1, 1)$,

Example 20

List 1: $\beta = (0, 1, 1, 1), (0, 2, 2, 2),$

Example 20

List 1: $\beta = (0,1,1,1)$, (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).

Example 20

```
List 1: \beta = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

Example 20

```
List 1: \beta = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

```
List 3: (0,1,2,3), (0,2,4,1), (0,3,1,4), (0,4,3,2), (1,3,0,2), (1,4,2,0), (1,0,4,3), (1,1,1,1), (2,0,3,1), (2,1,0,4), (2,2,2,2), (2,3,4,0), (3,2,1,0), (3,3,3,3), (3,4,0,1), (3,0,2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0), (4,2,0,3).
```

Example 20

```
List 1: \beta = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3), (2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3), (4, 1, 0, 4), (4, 2, 1, 0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

List 3: (0,1,2,3), (0,2,4,1), (0,3,1,4), (0,4,3,2), (1,3,0,2), (1,4,2,0), (1,0,4,3), (1,1,1,1), (2,0,3,1), (2,1,0,4), (2,2,2,2), (2,3,4,0), (3,2,1,0), (3,3,3,3), (3,4,0,1), (3,0,2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0), (4,2,0,3).

```
List 4: (0,1,2,4), (0,2,4,3), (0,3,1,2), (0,4,3,1), (1,3,0,3), (1,4,2,2), (1,0,4,1), \alpha=(1,1,1,0), (2,0,3,2), (2,1,0,1), (2,2,2,0), (2,3,4,4), (3,2,1,1), (3,3,3,0), (3,4,0,4), (3,0,2,3), (4,4,4,0), (4,0,1,4), (4,1,3,3), (4,2,0,2).
```

Example 20

```
List 1: \beta = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

List 3: (0,1,2,3), (0,2,4,1), (0,3,1,4), (0,4,3,2), (1,3,0,2), (1,4,2,0), (1,0,4,3), (1,1,1,1), (2,0,3,1), (2,1,0,4), (2,2,2,2), (2,3,4,0), (3,2,1,0), (3,3,3,3), (3,4,0,1), (3,0,2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0), (4,2,0,3).

```
List 4: (0,1,2,4), (0,2,4,3), (0,3,1,2), (0,4,3,1), (1,3,0,3), (1,4,2,2), (1,0,4,1), \alpha=(1,1,1,0), (2,0,3,2), (2,1,0,1), (2,2,2,0), (2,3,4,4), (3,2,1,1), (3,3,3,0), (3,4,0,4), (3,0,2,3), (4,4,4,0), (4,0,1,4), (4,1,3,3), (4,2,0,2).
```

List 5: (0,1,3,1), (0,2,1,2), (0,3,4,3), (0,4,2,4), (1,3,1,0), (1,4,4,1), (1,0,2,2), (1,1,0,3), (2,0,4,4), (2,1,2,0), (2,2,0,1), (2,3,3,2), (3,2,2,3), (3,3,0,4), (3,4,3,0), (3,0,1,1), (4,4,0,2), (4,0,3,3), (4,1,1,4), (4,2,4,0).

```
Example 20
```

```
List 1: \beta = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

List 3: (0,1,2,3), (0,2,4,1), (0,3,1,4), (0,4,3,2), (1,3,0,2), (1,4,2,0), (1,0,4,3), (1,1,1,1), (2,0,3,1), (2,1,0,4), (2,2,2,2), (2,3,4,0), (3,2,1,0), (3,3,3,3), (3,4,0,1), (3,0,2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0), (4,2,0,3).

```
List 4: (0,1,2,4), (0,2,4,3), (0,3,1,2), (0,4,3,1), (1,3,0,3), (1,4,2,2), (1,0,4,1), \alpha=(1,1,1,0), (2,0,3,2), (2,1,0,1), (2,2,2,0), (2,3,4,4), (3,2,1,1), (3,3,3,0), (3,4,0,4), (3,0,2,3), (4,4,4,0), (4,0,1,4), (4,1,3,3), (4,2,0,2).
```

List 5: (0,1,3,1), (0,2,1,2), (0,3,4,3), (0,4,2,4), (1,3,1,0), (1,4,4,1), (1,0,2,2), (1,1,0,3), (2,0,4,4), (2,1,2,0), (2,2,0,1), (2,3,3,2), (3,2,2,3), (3,3,0,4), (3,4,3,0), (3,0,1,1), (4,4,0,2), (4,0,3,3), (4,1,1,4), (4,2,4,0).

List 6: (0,1,3,3), (0,2,1,1), (0,3,4,4), (0,4,2,2), (1,3,1,2), (1,4,4,0), (1,0,2,3), (1,1,0,1), (2,0,4,1), (2,1,2,4), (2,2,0,2), (2,3,3,0), (3,2,2,0), (3,3,0,3), (3,4,3,1), (3,0,1,4), (4,4,0,4), (4,0,3,2), (4,1,1,0), (4,2,4,3).

```
Example 20
```

```
List 1: \beta = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3), (2,0,2,4), (2,1,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3), (4,1,0,4), (4,2,1,0).
```

```
List 2: (0,1,1,4), (0,2,2,3), (0,3,3,2), (0,4,4,1), (1,3,4,3), (1,4,0,2), (1,0,1,1), (1,1,2,0), (2,0,2,2), (2,1,3,1), (2,2,4,0), (2,3,0,4), (3,2,0,1), (3,3,1,0), (3,4,2,4), (3,0,3,3), (4,4,3,0), (4,0,4,4), (4,1,0,3), (4,2,1,2).
```

List 3: (0,1,2,3), (0,2,4,1), (0,3,1,4), (0,4,3,2), (1,3,0,2), (1,4,2,0), (1,0,4,3), (1,1,1,1), (2,0,3,1), (2,1,0,4), (2,2,2,2), (2,3,4,0), (3,2,1,0), (3,3,3,3), (3,4,0,1), (3,0,2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0), (4,2,0,3).

```
List 4: (0,1,2,4), (0,2,4,3), (0,3,1,2), (0,4,3,1), (1,3,0,3), (1,4,2,2), (1,0,4,1), \alpha=(1,1,1,0), (2,0,3,2), (2,1,0,1), (2,2,2,0), (2,3,4,4), (3,2,1,1), (3,3,3,0), (3,4,0,4), (3,0,2,3), (4,4,4,0), (4,0,1,4), (4,1,3,3), (4,2,0,2).
```

List 5: (0,1,3,1), (0,2,1,2), (0,3,4,3), (0,4,2,4), (1,3,1,0), (1,4,4,1), (1,0,2,2), (1,1,0,3), (2,0,4,4), (2,1,2,0), (2,2,0,1), (2,3,3,2), (3,2,2,3), (3,3,0,4), (3,4,3,0), (3,0,1,1), (4,4,0,2), (4,0,3,3), (4,1,1,4), (4,2,4,0).

List 6: (0,1,3,3), (0,2,1,1), (0,3,4,4), (0,4,2,2), (1,3,1,2), (1,4,4,0), (1,0,2,3), (1,1,0,1), (2,0,4,1), (2,1,2,4), (2,2,0,2), (2,3,3,0), (3,2,2,0), (3,3,0,3), (3,4,3,1), (3,0,1,4), (4,4,0,4), (4,0,3,2), (4,1,1,0), (4,2,4,3).

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions.

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

Definition 21

A function f(k) is a quasipolynomial if there exist d polynomials $f_0(k), f_1(k), \dots, f_{d-1}(k)$ such that:

$$f(k) = \begin{cases} f_0(k) & \text{if } k \equiv 0 \pmod{d}, \\ f_1(k) & \text{if } k \equiv 1 \pmod{d}, \\ \vdots & \vdots & \vdots \\ f_{d-1}(k) & \text{if } k \equiv d-1 \pmod{d}, \end{cases}$$

for all $k \in \mathbb{Z}$. The polynomials f_i are called the constituents of f, and the number of constituents d, is the period of f.

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

Definition 21

A function f(k) is a quasipolynomial if there exist d polynomials $f_0(k), f_1(k), \dots, f_{d-1}(k)$ such that:

$$f(k) = \begin{cases} f_0(k) & \text{if } k \equiv 0 \pmod{d}, \\ f_1(k) & \text{if } k \equiv 1 \pmod{d}, \\ \vdots & \vdots & \vdots \\ f_{d-1}(k) & \text{if } k \equiv d-1 \pmod{d}, \end{cases}$$

for all $k \in \mathbb{Z}$. The polynomials f_i are called the constituents of f, and the number of constituents d, is the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove crank results

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

Definition 21

A function f(k) is a quasipolynomial if there exist d polynomials $f_0(k), f_1(k), \dots, f_{d-1}(k)$ such that:

$$f(k) = \begin{cases} f_0(k) & \text{if } k \equiv 0 \pmod{d}, \\ f_1(k) & \text{if } k \equiv 1 \pmod{d}, \\ \vdots & \vdots & \vdots \\ f_{d-1}(k) & \text{if } k \equiv d-1 \pmod{d}, \end{cases}$$

for all $k \in \mathbb{Z}$. The polynomials f_i are called the constituents of f, and the number of constituents d, is the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of time.

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

Definition 21

A function f(k) is a quasipolynomial if there exist d polynomials $f_0(k), f_1(k), \dots, f_{d-1}(k)$ such that:

$$f(k) = \begin{cases} f_0(k) & \text{if } k \equiv 0 \pmod{d}, \\ f_1(k) & \text{if } k \equiv 1 \pmod{d}, \\ \vdots & \vdots & \vdots \\ f_{d-1}(k) & \text{if } k \equiv d-1 \pmod{d}, \end{cases}$$

for all $k \in \mathbb{Z}$. The polynomials f_i are called the constituents of f, and the number of constituents d, is the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of time. Our program allows us to generate and sift through large amounts of experimental data quickly in order to find results.

We have written a second Python program into which we input a crank and receive as output a collection of polynomial formulas for partition functions. These collections of formulas are called quasipolynomials.

Definition 21

A function f(k) is a quasipolynomial if there exist d polynomials $f_0(k), f_1(k), \dots, f_{d-1}(k)$ such that:

$$f(k) = \begin{cases} f_0(k) & \text{if } k \equiv 0 \pmod{d}, \\ f_1(k) & \text{if } k \equiv 1 \pmod{d}, \\ \vdots & \vdots & \vdots \\ f_{d-1}(k) & \text{if } k \equiv d-1 \pmod{d}, \end{cases}$$

for all $k \in \mathbb{Z}$. The polynomials f_i are called the constituents of f, and the number of constituents d, is the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of time. Our program allows us to generate and sift through large amounts of experimental data quickly in order to find results.

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$=\frac{(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}{(q;q)_4(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = \frac{1}{(q;q)_{4}}$$

$$= \frac{(1+q+q^{2}+\cdots+q^{11})(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})(1+q^{3}+q^{6}+q^{9})(1+q^{4}+q^{8})}{(q;q)_{4}(1+q+q^{2}+\cdots+q^{11})(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})(1+q^{3}+q^{6}+q^{9})(1+q^{4}+q^{8})}$$

$$= \frac{1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}}{(1-q^{12})^{4}}$$

$$\sum_{n=0}^{55} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$= \frac{(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}{(q;q)_4(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}$$

$$= \frac{1+q+2q^2+3q^3+5q^4+6q^5+9q^6+11q^7+15q^8\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}}{(1-q^{12})^4}$$
With $\frac{1}{(1-q^{12})^4} = \sum_{k>0} \binom{k+3}{3} q^{12k}$, we now rewrite it as

$$\sum_{n=0}^{50} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$= \frac{(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}{(q;q)_4(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}$$

$$=\frac{1+q+2q^2+3q^3+5q^4+6q^5+9q^6+11q^7+15q^8\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}}{(1-q^{12})^4}$$

With
$$\frac{1}{(1-q^{12})^4} = \sum_{k>0} {k+3 \choose 3} q^{12k}$$
, we now rewrite it as

$$(1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})\times\sum_{k>0}\binom{k+3}{3}q^{12k}$$

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$=\frac{(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}{(q;q)_4(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}$$

$$=\frac{1+q+2q^2+3q^3+5q^4+6q^5+9q^6+11q^7+15q^8\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}}{(1-q^{12})^4}$$

With
$$\frac{1}{(1-q^{12})^4} = \sum_{k \ge 0} {k+3 \choose 3} q^{12k}$$
, we now rewrite it as

$$(1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})\times\sum_{k>0}\binom{k+3}{3}q^{12k}$$

Now we multiply and collect like terms to establish twelve formulas describing p(n, 4) for all n.

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4}$$

$$=\frac{(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}{(q;q)_4(1+q+q^2+\cdots+q^{11})(1+q^2+q^4+q^6+q^8+q^{10})(1+q^3+q^6+q^9)(1+q^4+q^8)}$$

$$=\frac{1+q+2q^2+3q^3+5q^4+6q^5+9q^6+11q^7+15q^8\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}}{(1-q^{12})^4}$$

With
$$\frac{1}{(1-q^{12})^4} = \sum_{k \ge 0} {k+3 \choose 3} q^{12k}$$
, we now rewrite it as

$$(1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})\times\sum_{k>0}\binom{k+3}{3}q^{12k}$$

Now we multiply and collect like terms to establish twelve formulas describing p(n, 4) for all n.

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

Multiply and collect like terms:

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 5?

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5}$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5\right)$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17}\right)$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right)$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} {k+3 \choose 3}q^{12k}$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} \rho(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} {k+3 \choose 3}q^{12k}$$
$$= \sum_{k\geq 0} \left(6{k+3 \choose 3} + 48{k+2 \choose 3} + 18{k+1 \choose 3}\right)q^{12k+5}.$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} {k+3 \choose 3} q^{12k}$$

$$=\sum_{k>0}\left(6\binom{k+3}{3}+48\binom{k+2}{3}+18\binom{k+1}{3}\right)q^{12k+5}.$$
 Hence,

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} \binom{k+3}{3}q^{12k}$$

$$= \sum_{k\geq 0} \left(6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3}\right)q^{12k+5}. \quad \text{Hence,}$$

$$p(12k+5,4) =$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} \binom{k+3}{3}q^{12k}$$

$$= \sum_{k\geq 0} \left(6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3}\right)q^{12k+5}. \quad \text{Hence,}$$

$$p(12k+5,4) = 6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3}$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\begin{split} &\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} \binom{k+3}{3}q^{12k} \\ &= \sum_{k\geq 0} \left(6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3}\right)q^{12k+5}. \quad \text{Hence,} \end{split}$$

$$p(12k+5,4) = 6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3} = 12k^3 + 30k^2 + 24k + 6.$$

$$\sum_{n=0}^{\infty} p(n,4)q^{n} = (1+q+2q^{2}+3q^{3}+5q^{4}+6q^{5}+9q^{6}+11q^{7}+15q^{8}+18q^{9}+23q^{10}$$

$$+27q^{11}+30q^{12}+35q^{13}+39q^{14}+42q^{15}+44q^{16}+48q^{17}+48q^{18}+50q^{19}$$

$$+48q^{20}+48q^{21}+44q^{22}+42q^{23}+39q^{24}+35q^{25}+30q^{26}+27q^{27}+23q^{28}$$

$$+18q^{29}+15q^{30}+11q^{31}+9q^{32}+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38})$$

$$\times \sum_{k>0} \binom{k+3}{3} q^{12k}$$

$$\begin{split} &\sum_{k=0}^{\infty} p(12k+5,4)q^{12k+5} = \left(6q^5 + 48q^{17} + 18q^{29}\right) \times \sum_{k\geq 0} \binom{k+3}{3}q^{12k} \\ &= \sum_{k\geq 0} \left(6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3}\right)q^{12k+5}. \quad \text{Hence,} \end{split}$$

$$p(12k+5,4) = 6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3} = 12k^3 + 30k^2 + 24k + 6.$$

Twelve Formulas for p(n, 4)

This process allows us to describe p(n,4) with twelve formulas:

Twelve Formulas for p(n, 4)

This process allows us to describe p(n,4) with twelve formulas:

$$p(12k,4) = 1\binom{k+3}{3} + 30\binom{k+2}{3} + 39\binom{k+1}{3} + 2\binom{k}{3} = 12k^3 + 15k^2 + 6k + 1$$

$$p(12k+1,4) = 1\binom{k+3}{3} + 35\binom{k+2}{3} + 35\binom{k+1}{3} + 1\binom{k}{3} = 12k^3 + 18k^2 + 8k + 1$$

$$p(12k+2,4) = 2\binom{k+3}{3} + 39\binom{k+2}{3} + 30\binom{k+1}{3} + 1\binom{k}{3} = 12k^3 + 21k^2 + 12k + 2$$

$$p(12k+3,4) = 3\binom{k+3}{3} + 42\binom{k+2}{3} + 27\binom{k+1}{3} = 12k^3 + 24k^2 + 15k + 3$$

$$p(12k+4,4) = 5\binom{k+3}{3} + 44\binom{k+2}{3} + 23\binom{k+1}{3} = 12k^3 + 27k^2 + 20k + 5$$

$$p(12k+5,4) = 6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3} = 12k^3 + 30k^2 + 24k + 6$$

$$p(12k+6,4) = 9\binom{k+3}{3} + 48\binom{k+2}{3} + 15\binom{k+1}{3} = 12k^3 + 33k^2 + 30k + 9$$

$$p(12k+7,4) = 11\binom{k+3}{3} + 50\binom{k+2}{3} + 11\binom{k+1}{3} = 12k^3 + 36k^2 + 35k + 11$$

$$p(12k+8,4) = 15\binom{k+3}{3} + 48\binom{k+2}{3} + 9\binom{k+1}{3} = 12k^3 + 39k^2 + 42k + 15$$

$$p(12k+9,4) = 18\binom{k+3}{3} + 48\binom{k+2}{3} + 6\binom{k+1}{3} = 12k^3 + 42k^2 + 48k + 18$$

$$p(12k+10,4) = 23\binom{k+3}{3} + 44\binom{k+2}{3} + 5\binom{k+1}{3} = 12k^3 + 45k^2 + 56k + 23$$

$$p(12k+11,4) = 27\binom{k+3}{3} + 42\binom{k+2}{3} + 3\binom{k+1}{3} = 12k^3 + 48k^2 + 63k + 27$$

Twelve Formulas for p(n, 4)

This process allows us to describe p(n,4) with twelve formulas:

$$p(12k,4) = 1\binom{k+3}{3} + 30\binom{k+2}{3} + 39\binom{k+1}{3} + 2\binom{k}{3} = 12k^3 + 15k^2 + 6k + 1$$

$$p(12k+1,4) = 1\binom{k+3}{3} + 35\binom{k+2}{3} + 35\binom{k+1}{3} + 1\binom{k}{3} = 12k^3 + 18k^2 + 8k + 1$$

$$p(12k+2,4) = 2\binom{k+3}{3} + 39\binom{k+2}{3} + 30\binom{k+1}{3} + 1\binom{k}{3} = 12k^3 + 21k^2 + 12k + 2$$

$$p(12k+3,4) = 3\binom{k+3}{3} + 42\binom{k+2}{3} + 27\binom{k+1}{3} = 12k^3 + 24k^2 + 15k + 3$$

$$p(12k+4,4) = 5\binom{k+3}{3} + 44\binom{k+2}{3} + 23\binom{k+1}{3} = 12k^3 + 27k^2 + 20k + 5$$

$$p(12k+5,4) = 6\binom{k+3}{3} + 48\binom{k+2}{3} + 18\binom{k+1}{3} = 12k^3 + 30k^2 + 24k + 6$$

$$p(12k+6,4) = 9\binom{k+3}{3} + 48\binom{k+2}{3} + 15\binom{k+1}{3} = 12k^3 + 33k^2 + 30k + 9$$

$$p(12k+7,4) = 11\binom{k+3}{3} + 50\binom{k+2}{3} + 11\binom{k+1}{3} = 12k^3 + 36k^2 + 35k + 11$$

$$p(12k+8,4) = 15\binom{k+3}{3} + 48\binom{k+2}{3} + 9\binom{k+1}{3} = 12k^3 + 39k^2 + 42k + 15$$

$$p(12k+9,4) = 18\binom{k+3}{3} + 48\binom{k+2}{3} + 6\binom{k+1}{3} = 12k^3 + 42k^2 + 48k + 18$$

$$p(12k+10,4) = 23\binom{k+3}{3} + 44\binom{k+2}{3} + 5\binom{k+1}{3} = 12k^3 + 45k^2 + 56k + 23$$

$$p(12k+11,4) = 27\binom{k+3}{3} + 42\binom{k+2}{3} + 3\binom{k+1}{3} = 12k^3 + 48k^2 + 63k + 27$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^{r} q^{n} = \frac{1}{(1-q)(1-zq^{2})(1-zq^{3})(1-zq^{4})}$$
(30)

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\displaystyle\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

Set z to be a 3^{rd} root of unity: $z = e^{2\pi i/3} = \zeta$.

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

Set z to be a 3^{rd} root of unity: $z=e^{2\pi i/3}=\zeta$. This allows us to complete a trisection in z of f(z,q) into three generating functions, one for each crank class.

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^{r} q^{n} = \frac{1}{(1-q)(1-zq^{2})(1-zq^{3})(1-zq^{4})}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(\zeta,q) = \sum_{n=0}^{\infty} \sum_{r=0}^{2} M_{\beta}(r,3,n,4) \zeta^{r} q^{n} = \frac{A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)}{(1-q^{36})^{4}} = \left(A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)\right) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k}$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(\zeta,q) = \sum_{n=0}^{\infty} \sum_{r=0}^{2} M_{\beta}(r,3,n,4) \zeta^{r} q^{n} = \frac{A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)}{(1-q^{36})^{4}} = \left(A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)\right) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k}$$

$$A(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \sum_{n=0}^{\infty} M_{\beta}(0,3,n,4) q^{n}$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^r q^n = \frac{1}{(1-q)(1-zq^2)(1-zq^3)(1-zq^4)}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(\zeta,q) = \sum_{n=0}^{\infty} \sum_{r=0}^{2} M_{\beta}(r,3,n,4) \zeta^{r} q^{n} = \frac{A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)}{(1-q^{36})^{4}} = (A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k}$$

$$A(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \sum_{n=0}^{\infty} M_{\beta}(0,3,n,4) q^{n}$$

$$\zeta B(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \zeta \sum_{n=0}^{\infty} M_{\beta}(1,3,n,4) q^{n}$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^{r} q^{n} = \frac{1}{(1-q)(1-zq^{2})(1-zq^{3})(1-zq^{4})}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(\zeta,q) = \sum_{n=0}^{\infty} \sum_{r=0}^{2} M_{\beta}(r,3,n,4) \zeta^{r} q^{n} = \frac{A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)}{(1-q^{36})^{4}} = (A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k}$$

$$A(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \sum_{n=0}^{\infty} M_{\beta}(0,3,n,4) q^{n}$$

$$\zeta B(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \zeta \sum_{n=0}^{\infty} M_{\beta}(1,3,n,4) q^{n}$$

$$\zeta^{2} C(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \zeta^{2} \sum_{n=0}^{\infty} M_{\beta}(2,3,n,4) q^{n}$$

$$f(z,q) = \sum_{n=0}^{\infty} \sum_{r=-\infty}^{\infty} M_{\beta}(r,n,4) z^{r} q^{n} = \frac{1}{(1-q)(1-zq^{2})(1-zq^{3})(1-zq^{4})}$$
(30)

$$=\frac{\sum_{i=0}^{35}q^{i}\times\sum_{i=0}^{17}(zq^{2})^{i}\times\sum_{i=0}^{11}(zq^{3})^{i}\times\sum_{i=0}^{8}(zq^{4})^{i}}{(1-q^{36})(1-z^{15}q^{36})(1-z^{12}q^{36})(1-z^{9}q^{36})}=\frac{A(z^{3},q)+zB(z^{3},q)+z^{2}C(z^{3},q)}{(1-q^{36})(1-z^{15}q^{36})(1-z^{9}q^{36})}$$
(31)

$$f(\zeta,q) = \sum_{n=0}^{\infty} \sum_{r=0}^{2} M_{\beta}(r,3,n,4) \zeta^{r} q^{n} = \frac{A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)}{(1-q^{36})^{4}} = (A(1,q) + \zeta B(1,q) + \zeta^{2} C(1,q)) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k}$$

$$A(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \sum_{n=0}^{\infty} M_{\beta}(0,3,n,4) q^{n}$$

$$\zeta B(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \zeta \sum_{n=0}^{\infty} M_{\beta}(1,3,n,4) q^{n}$$

$$\zeta^{2} C(q) \times \sum_{k=0}^{\infty} {k+3 \choose 3} q^{36k} = \zeta^{2} \sum_{n=0}^{\infty} M_{\beta}(2,3,n,4) q^{n}$$

Let's take a look at constituents from the second Python program.

Let's take a look at constituents from the second Python program. They are organized by n' and n partner pairs.

Let's take a look at constituents from the second Python program. They are organized by n' and n partner pairs. Recall

$$n' = \ell \operatorname{lcm}(m)(k+1) - r - \left(\frac{m^2 + m}{2}\right)$$
(32)

$$n = \ell lcm(m)k + r. (33)$$

```
M_{\rm G}(0,3,36k+26,4)=108k^3+279k^2+240k+68
M_{\beta}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
M_{\beta}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
                                                   M_{\rm G}(2,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
M_{\mathcal{B}}(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
M_{\rm G}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
                                                   M_{\rm G}(0,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 61
M_{\mathcal{B}}(1,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\mathcal{B}}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\beta}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(2,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\rm G}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(0,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\rm B}(1,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(1,3,36k+24,4)=108k^3+261k^2+210k+57
                                                   M_{\rm G}(2,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\mathcal{B}}(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
                                                   M_{\mathcal{B}}(0,3,36k+23,4) = 108k^3 + 252k^2 + 195k + 50
M_{G}(0,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 1
M_{\rm B}(1,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 2
                                                   M_{\rm B}(1,3,36k+23,4)=108k^3+252k^2+195k+51
M_{B}(2,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 0
                                                   M_{\rm G}(2,3,36k+23,4)=108k^3+252k^2+195k+49
M_{\beta}(0,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 1
                                                   M_{\rm G}(0,3,36k+22,4) = 108k^3 + 243k^2 + 182k + 46
M_{\rm G}(1,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 3
                                                   M_{\rm B}(1,3,36k+22,4)=108k^3+243k^2+182k+46
M_{B}(2,3,36k+4,4) = 108k^{3} + 81k^{2} + 20k + 1
                                                   M_{\rm B}(2,3,36k+22,4)=108k^3+243k^2+182k+44
```

```
M_{\rm G}(0,3,36k+26,4)=108k^3+279k^2+240k+68
M_{\beta}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
M_{\beta}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
                                                   M_{\rm G}(2,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
M_{\mathcal{B}}(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
M_{\rm G}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
                                                   M_{\rm G}(0,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 61
M_{\mathcal{B}}(1,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\mathcal{B}}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\beta}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(2,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\rm G}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(0,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\rm B}(1,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(1,3,36k+24,4)=108k^3+261k^2+210k+57
                                                   M_{\rm G}(2,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\mathcal{B}}(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
                                                   M_{\mathcal{B}}(0,3,36k+23,4) = 108k^3 + 252k^2 + 195k + 50
M_{G}(0,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 1
M_{\rm B}(1,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 2
                                                   M_{\rm B}(1,3,36k+23,4)=108k^3+252k^2+195k+51
M_{B}(2,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 0
                                                   M_{\rm G}(2,3,36k+23,4)=108k^3+252k^2+195k+49
M_{\beta}(0,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 1
                                                   M_{\rm G}(0,3,36k+22,4) = 108k^3 + 243k^2 + 182k + 46
M_{\rm G}(1,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 3
                                                   M_{\rm B}(1,3,36k+22,4)=108k^3+243k^2+182k+46
M_{B}(2,3,36k+4,4) = 108k^{3} + 81k^{2} + 20k + 1
                                                   M_{\rm B}(2,3,36k+22,4)=108k^3+243k^2+182k+44
```

```
M_{\rm G}(0,3,36k+21,4)=108k^3+234k^2+168k+41
M_{\mathcal{S}}(0,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 1
M_{\alpha}(1,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 3
                                                     M_{\rm G}(1,3,36k+21,4)=108k^3+234k^2+168k+40
M_{\rm G}(2,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 2
                                                     M_{\rm G}(2,3,36k+21,4) = 108k^3 + 234k^2 + 168k + 39
M_{\beta}(0,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 2
                                                     M_{B}(0,3,36k+20,4) = 108k^{3} + 225k^{2} + 156k + 37
M_{\beta}(1,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 3
                                                     M_{\mathcal{B}}(1,3,36k+20,4) = 108k^3 + 225k^2 + 156k + 35
M_{\beta}(2,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 4
                                                     M_{\rm B}(2,3,36k+20,4)=108k^3+225k^2+156k+36
M_{\alpha}(0,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                     M_{\rm B}(0,3,36k+19,4)=108k^3+216k^2+143k+32
M_{\rm B}(1,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                     M_{\rm G}(1,3,36k+19,4) = 108k^3 + 216k^2 + 143k + 30
M_{B}(2,3,36k+7,4) = 108k^{3} + 108k^{2} + 35k + 5
                                                     M_{\rm B}(2,3,36k+19,4)=108k^3+216k^2+143k+32
                                                     M_{\mathcal{B}}(0,3,36k+18,4) = 108k^3 + 207k^2 + 132k+28
M_{\rm G}(0,3,36k+8,4) = 108k^3 + 117k^2 + 42k+5
M_{\rm G}(1,3,36k+8,4) = 108k^3 + 117k^2 + 42k+4
                                                     M_{\rm B}(1,3,36k+18,4) = 108k^3 + 207k^2 + 132k+27
M_{\rm G}(2,3,36k+8,4) = 108k^3 + 117k^2 + 42k+6
                                                     M_{\rm G}(2,3,36k+18,4) = 108k^3 + 207k^2 + 132k+29
                                                     M_{\mathcal{B}}(0, \overline{3,36k+17,4}) = 108k^3 + 198k^2 + 120k + 23
M_{\rm G}(0,3,36k+9,4) = 108k^3 + 126k^2 + 48k + 7
M_{B}(1,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 5
                                                     M_{\rm G}(1,3,36k+17,4)=108k^3+198k^2+120k+24
M_{B}(2,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 6
                                                     M_{\rm G}(2,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 25
```

```
M_{\rm G}(0,3,36k+21,4)=108k^3+234k^2+168k+41
M_{\mathcal{S}}(0,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 1
M_{\alpha}(1,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 3
                                                     M_{\rm G}(1,3,36k+21,4)=108k^3+234k^2+168k+40
M_{\rm G}(2,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 2
                                                     M_{\rm G}(2,3,36k+21,4) = 108k^3 + 234k^2 + 168k + 39
M_{\beta}(0,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 2
                                                     M_{B}(0,3,36k+20,4) = 108k^{3} + 225k^{2} + 156k + 37
M_{\beta}(1,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 3
                                                     M_{\mathcal{B}}(1,3,36k+20,4) = 108k^3 + 225k^2 + 156k + 35
M_{\beta}(2,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 4
                                                     M_{\rm B}(2,3,36k+20,4)=108k^3+225k^2+156k+36
M_{\alpha}(0,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                     M_{\rm B}(0,3,36k+19,4)=108k^3+216k^2+143k+32
M_{\rm B}(1,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                     M_{\rm G}(1,3,36k+19,4) = 108k^3 + 216k^2 + 143k + 30
M_{B}(2,3,36k+7,4) = 108k^{3} + 108k^{2} + 35k + 5
                                                     M_{\rm B}(2,3,36k+19,4)=108k^3+216k^2+143k+32
                                                     M_{\mathcal{B}}(0,3,36k+18,4) = 108k^3 + 207k^2 + 132k+28
M_{\rm G}(0,3,36k+8,4) = 108k^3 + 117k^2 + 42k+5
M_{\rm G}(1,3,36k+8,4) = 108k^3 + 117k^2 + 42k+4
                                                     M_{\rm B}(1,3,36k+18,4) = 108k^3 + 207k^2 + 132k+27
M_{\rm G}(2,3,36k+8,4) = 108k^3 + 117k^2 + 42k+6
                                                     M_{\rm G}(2,3,36k+18,4) = 108k^3 + 207k^2 + 132k+29
                                                     M_{\mathcal{B}}(0, \overline{3,36k+17,4}) = 108k^3 + 198k^2 + 120k + 23
M_{\rm G}(0,3,36k+9,4) = 108k^3 + 126k^2 + 48k + 7
M_{B}(1,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 5
                                                     M_{\rm G}(1,3,36k+17,4)=108k^3+198k^2+120k+24
M_{B}(2,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 6
                                                     M_{\rm G}(2,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 25
```

```
M_{\rm B}(0,3,36k+16,4)=108k^3+189k^2+110k+20
M_{\mathcal{B}}(0,3,36k+10,4) = 108k^3 + 135k^2 + 56k + 9
M_{\rm B}(1,3,36k+10,4)=108k^3+135k^2+56k+7
                                                     M_{\rm B}(1,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(2,3,36k+10,4)=108k^3+135k^2+56k+7
                                                     M_{\rm G}(2,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(0,3,36k+11,4)=108k^3+144k^2+63k+10
                                                     M_{\rm G}(0,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 17
M_{\rm B}(1,3,36k+11,4)=108k^3+144k^2+63k+9
                                                     M_{\rm G}(1,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 19
M_{\rm B}(2,3,36k+11,4)=108k^3+144k^2+63k+8
                                                     M_{\alpha}(2.3,36k+15.4) = 108k^3 + 180k^2 + 99k + 18
M_{\rm B}(0,3,36k+12,4)=108k^3+153k^2+72k+12
                                                     M_{\rm G}(0,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 15
M_{\mathcal{B}}(1,3,36k+12,4) = 108k^3 + 153k^2 + 72k + 12
                                                     M_{\rm G}(1,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 17
M_{B}(2,3,36k+12,4) = 108k^{3} + 153k^{2} + 72k + 10
                                                     M_{\rm G}(2,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 15
M_{\mathcal{O}}(0,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 13
                                                     M_{\rm G}(0,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 13
M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
                                                     M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
M_{\rm B}(2,3,36k+13,4)=108k^3+162k^2+80k+12
                                                     M_{\rm G}(2,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 12
```

```
M_{\rm B}(0,3,36k+16,4)=108k^3+189k^2+110k+20
M_{\mathcal{B}}(0,3,36k+10,4) = 108k^3 + 135k^2 + 56k + 9
M_{\rm B}(1,3,36k+10,4)=108k^3+135k^2+56k+7
                                                     M_{\rm B}(1,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(2,3,36k+10,4)=108k^3+135k^2+56k+7
                                                     M_{\rm G}(2,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(0,3,36k+11,4)=108k^3+144k^2+63k+10
                                                     M_{\rm G}(0,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 17
M_{\rm B}(1,3,36k+11,4)=108k^3+144k^2+63k+9
                                                     M_{\rm G}(1,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 19
M_{\rm B}(2,3,36k+11,4)=108k^3+144k^2+63k+8
                                                     M_{\alpha}(2.3,36k+15.4) = 108k^3 + 180k^2 + 99k + 18
M_{\rm B}(0,3,36k+12,4)=108k^3+153k^2+72k+12
                                                     M_{\rm G}(0,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 15
M_{\mathcal{B}}(1,3,36k+12,4) = 108k^3 + 153k^2 + 72k + 12
                                                     M_{\rm G}(1,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 17
M_{B}(2,3,36k+12,4) = 108k^{3} + 153k^{2} + 72k + 10
                                                     M_{\rm G}(2,3,36k+14,4) = 108k^3 + 171k^2 + 90k + 15
M_{\mathcal{O}}(0,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 13
                                                     M_{\rm G}(0,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 13
M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
                                                     M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
M_{\rm B}(2,3,36k+13,4)=108k^3+162k^2+80k+12
                                                     M_{\rm G}(2,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 12
```

```
M_{\mathcal{B}}(0,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
                                                        M_{\rm G}(0,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
                                                        M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(2,3,36k+31,4)=108k^3+324k^2+323k+107
                                                        M_{\rm G}(2,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
M_{\rm B}(0,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                        M_{\rm G}(0,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\alpha}(1,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                        M_{\alpha}(1,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\rm B}(2,3,36k+32,4)=108k^3+333k^2+342k+117
                                                        M_{\rm G}(2,3,36k+30,4)=108k^3+315k^2+306k+99
                                                        M_{\rm G}(0,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\alpha}(0,3,36k+33,4) = 108k^3 + 342k^2 + 360k + 126
M_B(1, 3, 36k + 33, 4) = 108k^3 + 342k^2 + 360k + 126
                                                        M_{\rm G}(1,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
                                                        M_{\rm G}(2,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\rm B}(2,3,36k+33,4)=108k^3+342k^2+360k+126
M_{\rm B}(0,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(0,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_B(1.3.36k + 34.4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(1,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm B}(2,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(2,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm G}(0,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm G}(0,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm G}(1,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm G}(1,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm B}(2,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm B}(2,3,36k+27,4)=108k^3+288k^2+255k+75
```

```
M_{\mathcal{B}}(0,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
                                                        M_{\rm G}(0,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
                                                        M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(2,3,36k+31,4)=108k^3+324k^2+323k+107
                                                        M_{\rm G}(2,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
M_{\rm B}(0,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                        M_{\rm G}(0,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\alpha}(1,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                        M_{\alpha}(1,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\rm B}(2,3,36k+32,4)=108k^3+333k^2+342k+117
                                                        M_{\rm G}(2,3,36k+30,4)=108k^3+315k^2+306k+99
                                                        M_{\rm G}(0,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\alpha}(0,3,36k+33,4) = 108k^3 + 342k^2 + 360k + 126
M_B(1, 3, 36k + 33, 4) = 108k^3 + 342k^2 + 360k + 126
                                                        M_{\rm G}(1,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
                                                        M_{\rm G}(2,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\rm B}(2,3,36k+33,4)=108k^3+342k^2+360k+126
M_{\rm B}(0,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(0,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_B(1.3.36k + 34.4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(1,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm B}(2,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                        M_{\rm G}(2,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm G}(0,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm G}(0,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm G}(1,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm G}(1,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm B}(2,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                        M_{\rm B}(2,3,36k+27,4)=108k^3+288k^2+255k+75
```

Crank Class Behavior

Crank Class Behavior

Recall: A Continuation of $p(n, 4) \pmod{3}$

p(26,4) = 206	$+ \rho(0,4) = 1$	$=207\equiv 0\pmod 3$
p(25,4) = 185	+ p(1,4) = 1	$=186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$= 171 \equiv 0 \pmod{3}$
p(23,4) = 150	+ p(3,4) = 3	$= 153 \equiv 0 \pmod{3}$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0\pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ p(11,4) = 27	$=81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ p(12,4) = 34	$=81 \equiv 0 \pmod{3}$
p(13,4) = 39	- , ,	$=39 \equiv 0 \pmod{3}$
• •		,

Recall: A Continuation of $p(n, 4) \pmod{3}$

p(26,4) = 206	+ $p(0,4) = 1$	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$=186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$= 171 \equiv 0 \pmod{3}$
p(23,4) = 150	+ p(3,4) = 3	$= 153 \equiv 0 \pmod{3}$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0 \pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ $p(11,4) = 27$	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39	. ($=39 \equiv 0 \pmod{3}$
		,

Recall: A Continuation of $p(n, 4) \pmod{3}$

p(26,4) = 206	+ $p(0,4) = 1$	$=207\equiv 0 \pmod{3}$
p(25,4) = 185	+ p(1,4) = 1	$=186 \equiv 0 \pmod{3}$
p(24,4) = 169	+ p(2,4) = 2	$= 171 \equiv 0 \pmod{3}$
p(23,4) = 150	+ p(3,4) = 3	$= 153 \equiv 0 \pmod{3}$
p(22,4) = 136	+ p(4,4) = 5	$= 141 \equiv 0 \pmod{3}$
p(21,4) = 120	+ p(5,4) = 6	$= 126 \equiv 0 \pmod{3}$
p(20,4) = 108	+ p(6,4) = 9	$=117\equiv 0 \pmod{3}$
p(19,4) = 94	+ p(7,4) = 11	$=105 \equiv 0 \pmod{3}$
p(18,4) = 84	+ p(8,4) = 15	$=99 \equiv 0 \pmod{3}$
p(17,4) = 72	+ p(9,4) = 18	$=90 \equiv 0 \pmod{3}$
p(16,4) = 64	+ p(10,4) = 23	$= 87 \equiv 0 \pmod{3}$
p(15,4) = 54	+ $p(11,4) = 27$	$= 81 \equiv 0 \pmod{3}$
p(14,4) = 47	+ $p(12,4) = 34$	$= 81 \equiv 0 \pmod{3}$
p(13,4) = 39	. ($=39 \equiv 0 \pmod{3}$
		,

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under $\beta = (0,1,1,1)$.

$$M_{\beta}(0,3,18,4) = 28$$
 + $M_{\beta}(0,3,8,4) = 5$
 $28 + 5 = 33$

$$M_{\beta}(0,3,18,4) = 28$$
 + $M_{\beta}(0,3,8,4) = 5$
 $28 + 5 = 33$
 $M_{\beta}(1,3,18,4) = 27$ + $M_{\beta}(2,3,8,4) = 6$
 $27 + 6 = 33$

$$M_{\beta}(0,3,18,4) = 28$$
 + $M_{\beta}(0,3,8,4) = 5$
 $28 + 5 = 33$
 $M_{\beta}(1,3,18,4) = 27$ + $M_{\beta}(2,3,8,4) = 6$
 $27 + 6 = 33$
 $M_{\beta}(2,3,18,4) = 29$ + $M_{\beta}(1,3,8,4) = 4$
 $29 + 4 = 33$

$$M_{\beta}(0,3,18,4) = 28$$
 + $M_{\beta}(0,3,8,4) = 5$
 $28 + 5 = 33$
 $M_{\beta}(1,3,18,4) = 27$ + $M_{\beta}(2,3,8,4) = 6$
 $27 + 6 = 33$
 $M_{\beta}(2,3,18,4) = 29$ + $M_{\beta}(1,3,8,4) = 4$
 $29 + 4 = 33$

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under $\beta = (0,1,1,1)$.

$$M_{\beta}(0, 3, 19, 4) = 32$$
 + $M_{\beta}(0, 3, 7, 4) = 3$
 $32 + 3 = 35$

$$M_{\beta}(0,3,19,4) = 32$$
 + $M_{\beta}(0,3,7,4) = 3$
 $32 + 3 = 35$
 $M_{\beta}(1,3,19,4) = 30$ + $M_{\beta}(2,3,7,4) = 5$
 $30 + 5 = 35$
 $M_{\beta}(2,3,19,4) = 32$ + $M_{\beta}(1,3,7,4) = 3$
 $32 + 3 = 35$

p(19,4)=94 and p(7,4)=11 organize into 3 unbalanced crank classes under $\beta=(0,1,1,1)$. Recall that $M_{\beta}(r,\ell,n,m)$ is the number of partitions of n into parts not larger than m whose crank values are congruent to $r\pmod{\ell}$ under the MB crank β .

$$M_{\beta}(0,3,19,4) = 32$$
 + $M_{\beta}(0,3,7,4) = 3$
 $32 + 3 = 35$
 $M_{\beta}(1,3,19,4) = 30$ + $M_{\beta}(2,3,7,4) = 5$
 $30 + 5 = 35$
 $M_{\beta}(2,3,19,4) = 32$ + $M_{\beta}(1,3,7,4) = 3$
 $32 + 3 = 35$

The "fixing" and "flipping" of the crank classes is consistent over the entire period.

p(19,4)=94 and p(7,4)=11 organize into 3 unbalanced crank classes under $\boldsymbol{\beta}=(0,1,1,1)$. Recall that $M_{\boldsymbol{\beta}}(r,\ell,n,m)$ is the number of partitions of n into parts not larger than m whose crank values are congruent to $r\pmod{\ell}$ under the MB crank $\boldsymbol{\beta}$.

$$M_{\beta}(0,3,19,4) = 32$$
 + $M_{\beta}(0,3,7,4) = 3$
 $32 + 3 = 35$
 $M_{\beta}(1,3,19,4) = 30$ + $M_{\beta}(2,3,7,4) = 5$
 $30 + 5 = 35$
 $M_{\beta}(2,3,19,4) = 32$ + $M_{\beta}(1,3,7,4) = 3$
 $32 + 3 = 35$

The "fixing" and "flipping" of the crank classes is consistent over the entire period. We observed this for all cases run by the second Python program.

p(19,4)=94 and p(7,4)=11 organize into 3 unbalanced crank classes under $\boldsymbol{\beta}=(0,1,1,1)$. Recall that $M_{\boldsymbol{\beta}}(r,\ell,n,m)$ is the number of partitions of n into parts not larger than m whose crank values are congruent to $r\pmod{\ell}$ under the MB crank $\boldsymbol{\beta}$.

$$M_{\beta}(0,3,19,4) = 32$$
 + $M_{\beta}(0,3,7,4) = 3$
 $32 + 3 = 35$
 $M_{\beta}(1,3,19,4) = 30$ + $M_{\beta}(2,3,7,4) = 5$
 $30 + 5 = 35$
 $M_{\beta}(2,3,19,4) = 32$ + $M_{\beta}(1,3,7,4) = 3$
 $32 + 3 = 35$

The "fixing" and "flipping" of the crank classes is consistent over the entire period. We observed this for all cases run by the second Python program.

This brings us to our dissertation conjecture.

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem.

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way:

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(34)

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(34)

Definition 23

Let $\tau=(\tau_1,\tau_2,\ldots,\tau_m)$ be an MB statistic with each component $0\leq \tau_a\leq \ell-1$. We define a function $\sigma(\tau)=\sum_{a=1}^m \tau_a\pmod{\ell}. \tag{35}$

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(34)

Definition 23

Let $\tau=(\tau_1,\tau_2,\ldots,\tau_m)$ be an MB statistic with each component $0\leq \tau_a\leq \ell-1$. We define a function $\sigma(\tau)=\sum_{a=1}^m \tau_a\pmod{\ell}. \tag{35}$

Recall the first Python program found distinct cranks and listed them by equivalency.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank $oldsymbol{eta}=(0,1,1)$ and equivalent crank $oldsymbol{ au}=(0,2,2)$

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank
$$m{\beta}=(0,1,1)$$
 and equivalent crank $m{ au}=(0,2,2)$ $\sigma(0,1,1)\equiv 2\pmod 3$

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank $\beta=(0,1,1)$ and equivalent crank $\tau=(0,2,2)$ $\sigma(0,1,1)\equiv 2\pmod 3$ $\sigma(0,2,2)\equiv 1\pmod 3$.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

```
Choose crank \beta=(0,1,1) and equivalent crank \tau=(0,2,2) \sigma(0,1,1)\equiv 2\pmod 3 \sigma(0,2,2)\equiv 1\pmod 3.
```

We see these two equivalent cranks differ from each other in their σ -value and we learned this is what was important to the crank class behavior.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank $\beta=(0,1,1)$ and equivalent crank $\tau=(0,2,2)$ $\sigma(0,1,1)\equiv 2\pmod 3$ $\sigma(0,2,2)\equiv 1\pmod 3$.

We see these two equivalent cranks differ from each other in their σ -value and we learned this is what was important to the crank class behavior.

Remark

Given prime ℓ , and a MB crank τ , we have observed empirically that $(\frac{\ell-1}{2})\sigma(\tau)$ is the "fixed" crank class.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank
$$\beta=(0,1,1)$$
 and equivalent crank $\tau=(0,2,2)$ $\sigma(0,1,1)\equiv 2\pmod 3$ $\sigma(0,2,2)\equiv 1\pmod 3$.

We see these two equivalent cranks differ from each other in their σ -value and we learned this is what was important to the crank class behavior.

Remark

Given prime ℓ , and a MB crank τ , we have observed empirically that $(\frac{\ell-1}{2})\sigma(\tau)$ is the "fixed" crank class. In other words, the crank classes have a mirror symmetry around the $(\frac{\ell-1}{2})\sigma(\tau)^{th}$ crank class.

Recall the first Python program found distinct cranks and listed them by equivalency. At first we thought equivalency was very important to our work. However, we soon discovered $\sigma(\tau)$ was affecting our crank classes. For example,

Example 24

Choose crank
$$\beta=(0,1,1)$$
 and equivalent crank $\tau=(0,2,2)$ $\sigma(0,1,1)\equiv 2\pmod 3$ $\sigma(0,2,2)\equiv 1\pmod 3$.

We see these two equivalent cranks differ from each other in their σ -value and we learned this is what was important to the crank class behavior.

Remark

Given prime ℓ , and a MB crank τ , we have observed empirically that $(\frac{\ell-1}{2})\sigma(\tau)$ is the "fixed" crank class. In other words, the crank classes have a mirror symmetry around the $(\frac{\ell-1}{2})\sigma(\tau)^{th}$ crank class.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(36)

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(36)

Let's look at our tables of constituents again, this time paying attention to how they fix and flip.

```
M_{\rm G}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
                                                   M_{\rm B}(0,3,36k+26,4)=108k^3+279k^2+240k+68
M_{\rm B}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
M_B(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(2,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
                                                   M_{\rm G}(0,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 61
M_{\alpha}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
M_{B}(1,3,36k+1,4) = 108k^{3} + 54k^{2} + 8k + 0
                                                   M_{\rm B}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\rm G}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(2,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
                                                   M_{\alpha}(0,3,36k+24,4) = 108k^3 + 261k^2 + 210k + 56
M_{\rm G}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
M_B(1, 3, 36k + 2, 4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(1,3,36k+24,4) = 108k^3 + 261k^2 + 210k + 57
                                                   M_{\rm G}(2,3,36k+24,4)=108k^3+261k^2+210k+56
M_B(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
```

```
M_{\rm G}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
                                                   M_{\rm B}(0,3,36k+26,4)=108k^3+279k^2+240k+68
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
M_{\rm G}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
M_{\beta}(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm B}(2,3,36k+26,4)=108k^3+279k^2+240k+69
                                                   M_{\rm G}(0,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 61
M_{\alpha}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
M_{\mathcal{B}}(1,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\rm B}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm G}(2,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\beta}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm B}(0,3,36k+24,4)=108k^3+261k^2+210k+56
M_{B}(1,3,36k+2,4) = 108k^{3} + 63k^{2} + 12k + 1
                                                   M_{\rm B}(1,3,36k+24,4)=108k^3+261k^2+210k+57
M_{\rm G}(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
                                                  M_{\rm G}(2,3,36k+24,4) = 108k^3 + 261k^2 + 210k + 56
M_{G}(0,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 1
                                                   M_{\beta}(0,3,36k+23,4) = 108k^3 + 252k^2 + 195k + 50
M_{\rm G}(1,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 2
                                                   M_{\rm B}(1,3,36k+23,4)=108k^3+252k^2+195k+51
M_{\rm B}(2,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 0
                                                   M_{\rm B}(2,3,36k+23,4)=108k^3+252k^2+195k+49
```

```
M_{\rm G}(0,3,36k+26,4)=108k^3+279k^2+240k+68
M_{\beta}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
M_{\beta}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
                                                   M_{\rm G}(2,3,36k+26,4)=108k^3+279k^2+240k+69
M_{\mathcal{B}}(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
M_{\rm G}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
                                                   M_{\rm B}(0,3,36k+25,4)=108k^3+270k^2+224k+61
M_{\beta}(1,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\mathcal{B}}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\beta}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(2,3,36k+25,4)=108k^3+270k^2+224k+62
M_{\rm B}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{B}(0, 3, 36k + 24, 4) = 108k^{3} + 261k^{2} + 210k + 56
M_{\rm B}(1,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm G}(1,3,36k+24,4) = 108k^3 + 261k^2 + 210k + 57
                                                   M_{\rm G}(2,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\mathcal{B}}(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
                                                   M_{\mathcal{B}}(0,3,36k+23,4) = 108k^3 + 252k^2 + 195k + 50
M_{G}(0,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 1
M_{\rm B}(1,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 2
                                                   M_{\rm B}(1,3,36k+23,4)=108k^3+252k^2+195k+51
M_{B}(2,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 0
                                                   M_{\rm G}(2,3,36k+23,4)=108k^3+252k^2+195k+49
M_{\beta}(0,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 1
                                                   M_{\rm G}(0,3,36k+22,4)=108k^3+243k^2+182k+46
M_{\rm G}(1,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 3
                                                   M_{\rm B}(1,3,36k+22,4)=108k^3+243k^2+182k+46
M_{B}(2,3,36k+4,4) = 108k^{3} + 81k^{2} + 20k + 1
                                                   M_{\rm B}(2,3,36k+22,4)=108k^3+243k^2+182k+44
```

```
M_{\rm G}(0,3,36k+26,4)=108k^3+279k^2+240k+68
M_{\beta}(0,3,36k,4) = 108k^3 + 45k^2 + 6k + 1
M_{\beta}(1,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
                                                   M_{\rm G}(1,3,36k+26,4) = 108k^3 + 279k^2 + 240k + 69
                                                   M_{\rm G}(2,3,36k+26,4)=108k^3+279k^2+240k+69
M_{\mathcal{B}}(2,3,36k,4) = 108k^3 + 45k^2 + 6k + 0
M_{\rm G}(0,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 1
                                                   M_{\rm B}(0,3,36k+25,4)=108k^3+270k^2+224k+61
M_{\beta}(1,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\mathcal{B}}(1,3,36k+25,4) = 108k^3 + 270k^2 + 224k + 62
M_{\beta}(2,3,36k+1,4) = 108k^3 + 54k^2 + 8k + 0
                                                   M_{\rm B}(2,3,36k+25,4)=108k^3+270k^2+224k+62
M_{\rm B}(0,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{B}(0, 3, 36k + 24, 4) = 108k^{3} + 261k^{2} + 210k + 56
M_{\rm B}(1,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 1
                                                   M_{\rm G}(1,3,36k+24,4) = 108k^3 + 261k^2 + 210k + 57
                                                   M_{\rm G}(2,3,36k+24,4)=108k^3+261k^2+210k+56
M_{\mathcal{B}}(2,3,36k+2,4) = 108k^3 + 63k^2 + 12k + 0
                                                   M_{\mathcal{B}}(0,3,36k+23,4) = 108k^3 + 252k^2 + 195k + 50
M_{G}(0,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 1
M_{\rm B}(1,3,36k+3,4) = 108k^3 + 72k^2 + 15k + 2
                                                   M_{\rm B}(1,3,36k+23,4)=108k^3+252k^2+195k+51
M_{B}(2,3,36k+3,4) = 108k^{3} + 72k^{2} + 15k + 0
                                                   M_{\rm G}(2,3,36k+23,4)=108k^3+252k^2+195k+49
M_{\beta}(0,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 1
                                                   M_{\rm G}(0,3,36k+22,4)=108k^3+243k^2+182k+46
M_{\rm G}(1,3,36k+4,4) = 108k^3 + 81k^2 + 20k + 3
                                                   M_{\rm B}(1,3,36k+22,4)=108k^3+243k^2+182k+46
M_{B}(2,3,36k+4,4) = 108k^{3} + 81k^{2} + 20k + 1
                                                   M_{\rm B}(2,3,36k+22,4)=108k^3+243k^2+182k+44
```

```
M_{\rm G}(0,3,36k+21,4)=108k^3+234k^2+168k+41
M_{\mathcal{S}}(0,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 1
M_{\alpha}(1,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 3
                                                   M_{\rm B}(1,3,36k+21,4)=108k^3+234k^2+168k+40
M_{\rm G}(2,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 2
                                                   M_{\rm G}(2,3,36k+21,4)=108k^3+234k^2+168k+39
M_{\beta}(0,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 2
                                                   M_{B}(0,3,36k+20,4) = 108k^{3} + 225k^{2} + 156k + 37
M_{\beta}(1,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 3
                                                   M_{\rm B}(1,3,36k+20,4)=108k^3+225k^2+156k+35
M_{\beta}(2,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 4
                                                   M_{\rm B}(2,3,36k+20,4)=108k^3+225k^2+156k+36
M_{\rm G}(0,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                   M_{\rm B}(0,3,36k+19,4)=108k^3+216k^2+143k+32
M_{\rm B}(1,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                   M_{\rm G}(1,3,36k+19,4) = 108k^3 + 216k^2 + 143k + 30
                                                   M_{\rm G}(2,3,36k+19,4)=108k^3+216k^2+143k+32
M_{B}(2,3,36k+7,4) = 108k^{3} + 108k^{2} + 35k + 5
                                                   M_{\rm G}(0,3,36k+18,4) = 108k^3 + 207k^2 + 132k+28
M_{\rm G}(0,3,36k+8,4) = 108k^3 + 117k^2 + 42k+5
M_{\rm B}(1,3,36k+8,4) = 108k^3 + 117k^2 + 42k+4
                                                   M_{\rm B}(1,3,36k+18,4) = 108k^3 + 207k^2 + 132k+27
M_{B}(2,3,36k+8,4) = 108k^{3} + 117k^{2} + 42k+6
                                                   M_{\rm G}(2,3,36k+18,4) = 108k^3 + 207k^2 + 132k+29
                                                   M_{\rm G}(0,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 23
M_{\rm G}(0,3,36k+9,4) = 108k^3 + 126k^2 + 48k + 7
M_{B}(1,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 5
                                                   M_{\rm G}(1,3,36k+17,4)=108k^3+198k^2+120k+24
M_{B}(2,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 6
                                                   M_{\rm G}(2,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 25
```

```
M_{\rm G}(0,3,36k+21,4)=108k^3+234k^2+168k+41
M_{\mathcal{S}}(0,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 1
M_{\alpha}(1,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 3
                                                   M_{\rm B}(1,3,36k+21,4)=108k^3+234k^2+168k+40
M_{\rm G}(2,3,36k+5,4) = 108k^3 + 90k^2 + 24k + 2
                                                   M_{\rm G}(2,3,36k+21,4)=108k^3+234k^2+168k+39
M_{\beta}(0,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 2
                                                   M_{B}(0,3,36k+20,4) = 108k^{3} + 225k^{2} + 156k + 37
M_{\beta}(1,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 3
                                                   M_{\rm B}(1,3,36k+20,4)=108k^3+225k^2+156k+35
M_{\beta}(2,3,36k+6,4) = 108k^3 + 99k^2 + 30k + 4
                                                   M_{\rm B}(2,3,36k+20,4)=108k^3+225k^2+156k+36
M_{\rm G}(0,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                   M_{\rm B}(0,3,36k+19,4)=108k^3+216k^2+143k+32
M_{\rm B}(1,3,36k+7,4) = 108k^3 + 108k^2 + 35k + 3
                                                   M_{\rm G}(1,3,36k+19,4) = 108k^3 + 216k^2 + 143k + 30
                                                   M_{\rm G}(2,3,36k+19,4)=108k^3+216k^2+143k+32
M_{B}(2,3,36k+7,4) = 108k^{3} + 108k^{2} + 35k + 5
                                                   M_{\rm G}(0,3,36k+18,4) = 108k^3 + 207k^2 + 132k+28
M_{\rm G}(0,3,36k+8,4) = 108k^3 + 117k^2 + 42k+5
M_{\rm B}(1,3,36k+8,4) = 108k^3 + 117k^2 + 42k+4
                                                   M_{\rm B}(1,3,36k+18,4) = 108k^3 + 207k^2 + 132k+27
M_{B}(2,3,36k+8,4) = 108k^{3} + 117k^{2} + 42k+6
                                                   M_{\rm G}(2,3,36k+18,4) = 108k^3 + 207k^2 + 132k+29
                                                   M_{\rm G}(0,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 23
M_{\rm G}(0,3,36k+9,4) = 108k^3 + 126k^2 + 48k + 7
M_{B}(1,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 5
                                                   M_{\rm G}(1,3,36k+17,4)=108k^3+198k^2+120k+24
M_{B}(2,3,36k+9,4) = 108k^{3} + 126k^{2} + 48k + 6
                                                   M_{\rm G}(2,3,36k+17,4) = 108k^3 + 198k^2 + 120k + 25
```

```
M_{\rm G}(0,3,36k+16,4)=108k^3+189k^2+110k+20
M_{\rm B}(0,3,36k+10,4)=108k^3+135k^2+56k+9
M_{\rm B}(1,3,36k+10,4)=108k^3+135k^2+56k+7
                                                  M_{\rm B}(1,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(2,3,36k+10,4)=108k^3+135k^2+56k+7
                                                  M_{\rm G}(2,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm B}(0,3,36k+11,4)=108k^3+144k^2+63k+10
                                                  M_{\rm G}(0,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 17
M_{\rm G}(1,3,36k+11,4)=108k^3+144k^2+63k+9
                                                  M_{\rm G}(1,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 19
M_{\rm B}(2,3,36k+11,4)=108k^3+144k^2+63k+8
                                                  M_{\alpha}(2.3.36k + 15.4) = 108k^3 + 180k^2 + 99k + 18
M_{\rm B}(0,3,36k+12,4)=108k^3+153k^2+72k+12
                                                  M_{\rm G}(0,3,36k+14,4)=108k^3+171k^2+90k+15
M_{\mathcal{B}}(1,3,36k+12,4) = 108k^3 + 153k^2 + 72k + 12
                                                  M_{\rm B}(1,3,36k+14,4)=108k^3+171k^2+90k+17
M_{B}(2,3,36k+12,4) = 108k^{3} + 153k^{2} + 72k + 10
                                                  M_{\rm G}(2,3,36k+14,4)=108k^3+171k^2+90k+15
M_{\rm G}(0,3,36k+13,4)=108k^3+162k^2+80k+13
                                                  M_{\rm G}(0,3,36k+13,4)=108k^3+162k^2+80k+13
M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
                                                  M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
M_{\rm B}(2,3,36k+13,4)=108k^3+162k^2+80k+12
                                                  M_{\rm G}(2,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 12
```

```
M_{\rm G}(0,3,36k+16,4)=108k^3+189k^2+110k+20
M_{\rm B}(0,3,36k+10,4)=108k^3+135k^2+56k+9
M_{\rm B}(1,3,36k+10,4)=108k^3+135k^2+56k+7
                                                  M_{\rm B}(1,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm G}(2,3,36k+10,4)=108k^3+135k^2+56k+7
                                                  M_{\rm G}(2,3,36k+16,4) = 108k^3 + 189k^2 + 110k + 22
M_{\rm B}(0,3,36k+11,4)=108k^3+144k^2+63k+10
                                                  M_{\rm G}(0,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 17
M_{\rm G}(1,3,36k+11,4)=108k^3+144k^2+63k+9
                                                  M_{\rm G}(1,3,36k+15,4) = 108k^3 + 180k^2 + 99k + 19
M_{\rm B}(2,3,36k+11,4)=108k^3+144k^2+63k+8
                                                  M_{\alpha}(2.3.36k + 15.4) = 108k^3 + 180k^2 + 99k + 18
M_{\rm B}(0,3,36k+12,4)=108k^3+153k^2+72k+12
                                                  M_{\rm G}(0,3,36k+14,4)=108k^3+171k^2+90k+15
M_{\mathcal{B}}(1,3,36k+12,4) = 108k^3 + 153k^2 + 72k + 12
                                                  M_{\rm B}(1,3,36k+14,4)=108k^3+171k^2+90k+17
M_{B}(2,3,36k+12,4) = 108k^{3} + 153k^{2} + 72k + 10
                                                  M_{\rm G}(2,3,36k+14,4)=108k^3+171k^2+90k+15
M_{\rm G}(0,3,36k+13,4)=108k^3+162k^2+80k+13
                                                  M_{\rm G}(0,3,36k+13,4)=108k^3+162k^2+80k+13
M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
                                                  M_{\rm B}(1,3,36k+13,4)=108k^3+162k^2+80k+14
M_{\rm B}(2,3,36k+13,4)=108k^3+162k^2+80k+12
                                                  M_{\rm G}(2,3,36k+13,4) = 108k^3 + 162k^2 + 80k + 12
```

```
M_{\mathcal{B}}(0,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
                                                      M_{\rm G}(0,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
                                                      M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(2,3,36k+31,4)=108k^3+324k^2+323k+107
                                                      M_{\rm G}(2,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
M_{\rm B}(0,3,36k+32,4)=108k^3+333k^2+342k+117
                                                      M_{\rm G}(0,3,36k+30,4)=108k^3+315k^2+306k+99
M_{\alpha}(1,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                      M_{\alpha}(1,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\rm B}(2,3,36k+32,4)=108k^3+333k^2+342k+117
                                                      M_{\rm G}(2,3,36k+30,4)=108k^3+315k^2+306k+99
                                                      M_{\rm G}(0,3,36k+29,4)=108k^3+306k^2+288k+90
M_{\alpha}(0,3,36k+33,4) = 108k^3 + 342k^2 + 360k + 126
M_B(1, 3, 36k + 33, 4) = 108k^3 + 342k^2 + 360k + 126
                                                      M_{\rm B}(1,3,36k+29,4)=108k^3+306k^2+288k+90
                                                      M_{\rm G}(2,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\rm B}(2,3,36k+33,4)=108k^3+342k^2+360k+126
M_{\rm B}(0,3,36k+34,4)=108k^3+351k^2+380k+137
                                                      M_{\rm G}(0,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_B(1.3.36k + 34.4) = 108k^3 + 351k^2 + 380k + 137
                                                      M_{\rm G}(1,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm B}(2,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                      M_{\rm G}(2,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm G}(0,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                      M_{\rm G}(0,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm G}(1,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                      M_{\rm G}(1,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm B}(2,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                      M_{\rm B}(2,3,36k+27,4)=108k^3+288k^2+255k+75
```

```
M_{\mathcal{B}}(0,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
                                                       M_{\rm G}(0,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
                                                       M_{\rm B}(1,3,36k+31,4)=108k^3+324k^2+323k+107
M_{\rm B}(2,3,36k+31,4)=108k^3+324k^2+323k+107
                                                       M_{\rm G}(2,3,36k+31,4) = 108k^3 + 324k^2 + 323k + 107
M_{\rm B}(0,3,36k+32,4)=108k^3+333k^2+342k+117
                                                       M_{\rm G}(0,3,36k+30,4)=108k^3+315k^2+306k+99
M_{\alpha}(1,3,36k+32,4) = 108k^3 + 333k^2 + 342k + 117
                                                       M_{\alpha}(1,3,36k+30,4) = 108k^3 + 315k^2 + 306k + 99
M_{\rm B}(2,3,36k+32,4)=108k^3+333k^2+342k+117
                                                       M_{\rm G}(2,3,36k+30,4)=108k^3+315k^2+306k+99
                                                       M_{\rm G}(0,3,36k+29,4)=108k^3+306k^2+288k+90
M_{\alpha}(0,3,36k+33,4) = 108k^3 + 342k^2 + 360k + 126
M_B(1, 3, 36k + 33, 4) = 108k^3 + 342k^2 + 360k + 126
                                                       M_{\rm B}(1,3,36k+29,4)=108k^3+306k^2+288k+90
                                                       M_{\rm G}(2,3,36k+29,4) = 108k^3 + 306k^2 + 288k + 90
M_{\rm B}(2,3,36k+33,4)=108k^3+342k^2+360k+126
M_{\rm B}(0,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                       M_{\rm G}(0,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_B(1.3.36k + 34.4) = 108k^3 + 351k^2 + 380k + 137
                                                       M_{\rm G}(1,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm B}(2,3,36k+34,4) = 108k^3 + 351k^2 + 380k + 137
                                                       M_{\rm G}(2,3,36k+28,4) = 108k^3 + 297k^2 + 272k + 83
M_{\rm G}(0,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                       M_{\rm G}(0,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm G}(1,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                       M_{\rm G}(1,3,36k+27,4) = 108k^3 + 288k^2 + 255k + 75
M_{\rm B}(2,3,36k+35,4) = 108k^3 + 360k^2 + 399k + 147
                                                       M_{\rm B}(2,3,36k+27,4)=108k^3+288k^2+255k+75
```

For
$$\ell = 5$$
, $m = 4$, $\tau = (0, 2, 2, 2)$, $\sigma(\tau) = 6 \equiv 1 \pmod{5}$, $n' = 37$, $n = 13$,

For $\ell = 5$, m = 4, $\tau = (0, 2, 2, 2)$, $\sigma(\tau) = 6 \equiv 1 \pmod{5}$, n' = 37, n = 13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau) = \left(\frac{5-1}{2}\right)\cdot 1 = 2$

For
$$\ell=5$$
, $m=4$, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, $n'=37$, $n=13$, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

$$M_{\tau}(0,5,37,4) = 104$$
 $+M_{\tau}(0,5,13,4) = 7$
 $M_{\tau}(1,5,37,4) = 99$ $+M_{\tau}(1,5,13,4) = 10$
 $M_{\tau}(2,5,37,4) = 105$ $+M_{\tau}(2,5,13,4) = 5$
 $M_{\tau}(3,5,37,4) = 100$ $+M_{\tau}(3,5,13,4) = 11$
 $M_{\tau}(4,5,37,4) = 103$ $+M_{\tau}(4,5,13,4) = 6$

For $\ell=5$, m=4, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, n'=37, n=13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

For $\ell = 5$, m = 4, $\tau = (0,2,2,2)$, $\sigma(\tau) = 6 \equiv 1 \pmod{5}$, n' = 37, n = 13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau) = \left(\frac{5-1}{2}\right)\cdot 1 = 2$

$$M_{\tau}(0,5,37,4) = 104$$
 $+M_{\tau}(0,5,13,4) = 7$ $\neq 110$ $M_{\tau}(1,5,37,4) = 99$ $+M_{\tau}(1,5,13,4) = 10$ $+M_{\tau}(2,5,37,4) = 105$ $+M_{\tau}(2,5,13,4) = 5$ $+M_{\tau}(3,5,37,4) = 100$ $+M_{\tau}(3,5,37,4) = 103$ $+M_{\tau}(4,5,37,4) = 6$

For $\ell = 5$, m = 4, $\tau = (0, 2, 2, 2)$, $\sigma(\tau) = 6 \equiv 1 \pmod{5}$, n' = 37, n = 13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau) = \left(\frac{5-1}{2}\right)\cdot 1 = 2$

$$M_{\tau}(0,5,37,4) = 104$$
 $+M_{\tau}(0,5,13,4) = 7$ $+M_{\tau}(1,5,37,4) = 99$ $+M_{\tau}(1,5,13,4) = 10$ $+M_{\tau}(2,5,37,4) = 105$ $+M_{\tau}(2,5,13,4) = 5$ $+M_{\tau}(3,5,37,4) = 100$ $+M_{\tau}(3,5,13,4) = 11$ $+M_{\tau}(4,5,37,4) = 103$ $+M_{\tau}(4,5,13,4) = 6$ $= 110$

For $\ell=5$, m=4, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, n'=37, n=13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

For $\ell = 5$, m = 4, $\tau = (0, 2, 2, 2)$, $\sigma(\tau) = 6 \equiv 1 \pmod{5}$, n' = 37, n = 13, our fixed crank class will be $\left(\frac{\ell - 1}{2}\right)\sigma(\tau) = \left(\frac{5 - 1}{2}\right)\cdot 1 = 2$

$$M_{\tau}(0,5,37,4) = 104$$
 $+M_{\tau}(0,5,13,4) = 7$ $+M_{\tau}(1,5,37,4) = 99$ $+M_{\tau}(1,5,13,4) = 10$ $+M_{\tau}(2,5,37,4) = 105$ $+M_{\tau}(2,5,13,4) = 5$ $+M_{\tau}(3,5,37,4) = 100$ $+M_{\tau}(3,5,37,4) = 103$ $+M_{\tau}(4,5,37,4) = 6$ $+M_{\tau}(4,5,13,4) = 6$ $+M_{\tau}(4,5,13,4) = 6$

For $\ell=5$, m=4, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, n'=37, n=13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

For $\ell=5$, m=4, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, n'=37, n=13, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

For
$$\ell=5$$
, $m=4$, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, $n'=37$, $n=13$, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

We see the 2 crank class is fixed,

For
$$\ell=5$$
, $m=4$, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, $n'=37$, $n=13$, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

We see the 2 crank class is fixed, crank classes 1 and 3 flip,

For
$$\ell=5$$
, $m=4$, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, $n'=37$, $n=13$, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

We see the 2 crank class is fixed, crank classes 1 and 3 flip, and 0 and 4 flip as in the Sum and Difference Theorem.

For
$$\ell=5$$
, $m=4$, $\tau=(0,2,2,2)$, $\sigma(\tau)=6\equiv 1\pmod 5$, $n'=37$, $n=13$, our fixed crank class will be $\left(\frac{\ell-1}{2}\right)\sigma(\tau)=\left(\frac{5-1}{2}\right)\cdot 1=2$

We see the 2 crank class is fixed, crank classes 1 and 3 flip, and 0 and 4 flip as in the Sum and Difference Theorem.

Progress Toward Proving the Dissertation Conjecture the h^* -Vector: aka *The Ehrhart MB Statistic Numerator*

Progress Toward Proving the Dissertation Conjecture the h^* -Vector: aka *The Ehrhart MB Statistic Numerator*

Proving cranks witness these congruences

We examine what we call an *Ehrhart MB Statistic numerator*, the coefficients of which are otherwise known to Richard Stanley as the h^* -vector [7].

Proving cranks witness these congruences

We examine what we call an *Ehrhart MB Statistic numerator*, the coefficients of which are otherwise known to Richard Stanley as the h^* -vector [7].

Recasting the Generating Function for p(n, m)

Recall it is possible to recast the generating function for p(n, m) so that it is in terms of binomial coefficients. For example

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4} = (1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots$$
$$\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}) \times \sum_{k>0} {k+3 \choose 3} q^{12k}$$

The polynomial above, is an example of what we call an Ehrhart numerator.

Recasting the Generating Function for p(n, m)

Recall it is possible to recast the generating function for p(n, m) so that it is in terms of binomial coefficients. For example

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4} = (1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots$$
$$\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}) \times \sum_{k\geq 0} {k+3 \choose 3} q^{12k}$$

The polynomial above, is an example of what we call an *Ehrhart numerator*. We hope to prove our conjecture by analyzing a two variable version of this that we call the *Ehrhart MB statistic numerator*.

Recasting the Generating Function for p(n, m)

Recall it is possible to recast the generating function for p(n, m) so that it is in terms of binomial coefficients. For example

$$\sum_{n=0}^{\infty} p(n,4)q^n = \frac{1}{(q;q)_4} = (1+q+2q^2+3q^3+5q^4+6q^5+9q^6+\cdots$$
$$\cdots+6q^{33}+5q^{34}+3q^{35}+2q^{36}+q^{37}+q^{38}) \times \sum_{k\geq 0} {k+3 \choose 3} q^{12k}$$

The polynomial above, is an example of what we call an *Ehrhart numerator*. We hope to prove our conjecture by analyzing a two variable version of this that we call the *Ehrhart MB statistic numerator*.

Definition 25

Given ℓ an odd prime, ζ a primitive ℓ^{th} root of unity, $m, j \geq 1$, and MB statistic $\tau = (\tau_1, \tau_2, \dots, \tau_m)$, we call the polynomial below the "Ehrhart MB statistic numerator":

$$E_{\tau}(\zeta, q) = \prod_{j=1}^{m} \sum_{i=0}^{\frac{|\operatorname{cm}(m)-j}{j}} \left(\zeta^{\tau_{i}} q^{j}\right)^{i} = \prod_{j=1}^{m} \frac{1 - \zeta^{\tau_{j}} (\frac{|\operatorname{cm}(m)-j}{j} + 1)}{1 - \zeta^{\tau_{j}} q^{j}}$$
(37)

Definition 25

Given ℓ an odd prime, ζ a primitive ℓ^{th} root of unity, $m, j \geq 1$, and MB statistic $\tau = (\tau_1, \tau_2, \dots, \tau_m)$, we call the polynomial below the "Ehrhart MB statistic numerator":

$$E_{\tau}(\zeta, q) = \prod_{j=1}^{m} \sum_{i=0}^{\frac{|cm(m)-j|}{j}} \left(\zeta^{\tau_{i}} q^{j}\right)^{i} = \prod_{j=1}^{m} \frac{1 - \zeta^{\tau_{j}} (\frac{|cm(m)-j|}{j} + 1) q^{\left(\frac{|cm(m)-j|}{j} + 1\right) j}}{1 - \zeta^{\tau_{j}} q^{j}}$$
(37)

With the goal of exploring the dissertation conjecture, we set out to analyze $E_{\tau}(\zeta,q)$, the Ehrhart MB statistic numerator. We will show that it is a *flipped reciprocal* polynomial.

Definition 25

Given ℓ an odd prime, ζ a primitive ℓ^{th} root of unity, $m, j \geq 1$, and MB statistic $\tau = (\tau_1, \tau_2, \dots, \tau_m)$, we call the polynomial below the "Ehrhart MB statistic numerator":

$$E_{\tau}(\zeta, q) = \prod_{j=1}^{m} \sum_{i=0}^{\frac{|\operatorname{cm}(m)-j}{j}} \left(\zeta^{\tau_{i}} q^{j}\right)^{i} = \prod_{j=1}^{m} \frac{1 - \zeta^{\tau_{j}} (\frac{|\operatorname{cm}(m)-j}{j} + 1)}{1 - \zeta^{\tau_{j}} q^{j}} q^{j}$$
(37)

With the goal of exploring the dissertation conjecture, we set out to analyze $E_{\tau}(\zeta, q)$, the Ehrhart MB statistic numerator. We will show that it is a *flipped reciprocal* polynomial. We require the following definitions.

Definition 25

Given ℓ an odd prime, ζ a primitive ℓ^{th} root of unity, $m, j \geq 1$, and MB statistic $\tau = (\tau_1, \tau_2, \dots, \tau_m)$, we call the polynomial below the "Ehrhart MB statistic numerator":

$$E_{\tau}(\zeta, q) = \prod_{j=1}^{m} \sum_{i=0}^{\frac{|\operatorname{cm}(m)-j}{j}} \left(\zeta^{\tau_{i}} q^{j}\right)^{i} = \prod_{j=1}^{m} \frac{1 - \zeta^{\tau_{j}} (\frac{|\operatorname{cm}(m)-j}{j} + 1)}{1 - \zeta^{\tau_{j}} q^{j}} q^{j}$$
(37)

With the goal of exploring the dissertation conjecture, we set out to analyze $E_{\tau}(\zeta, q)$, the Ehrhart MB statistic numerator. We will show that it is a *flipped reciprocal* polynomial. We require the following definitions.

Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, $P(q) = a_0 + a_1q + \cdots + a_dq^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{38}$$

. Equivalently, if

$$q^{d}P\left(q^{-1}\right) = P(q). \tag{39}$$

Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, $P(q) = a_0 + a_1q + \cdots + a_dq^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{38}$$

. Equivalently, if

$$q^{d}P\left(q^{-1}\right) = P(q). \tag{39}$$

A polynomial of degree d, $P(q) = a_0 + a_1q + \cdots - a_dq^d$, is said to be anti-reciprocal if

$$a_i = -a_{d-i} \tag{40}$$

. Equivalently, if

$$q^d P\left(q^{-1}\right) = -P(q).$$

Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, $P(q) = a_0 + a_1q + \cdots + a_dq^d$, is said to be reciprocal if

$$a_i = a_{d-i} \tag{38}$$

. Equivalently, if

$$q^d P\left(q^{-1}\right) = P(q). \tag{39}$$

A polynomial of degree d, $P(q) = a_0 + a_1 q + \cdots - a_d q^d$, is said to be anti-reciprocal if

$$a_i = -a_{d-i} \tag{40}$$

. Equivalently, if

$$q^{d}P(q^{-1}) = -P(q).$$
 (41)

A polynomial of degree d, with complex coefficients $\{a_i\}$, $P(q) = \sum_{i=1}^{n} a_i q^i = a_0 + a_1 q + \dots + a_d q^d$, is said to

be conjugate reciprocal if

$$a_i = \overline{a_{d-i}}. (42)$$

Equivalently, if

$$q^d P(q^{-1}) = \overline{P(q)}. (43)$$

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓ^{th} root of unity, and y be a complex number. Given a polynomial

$$P(\zeta, q) = \sum_{i=0}^{d} \zeta^{R} y_{i} q^{i}, \tag{44}$$

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓ^{th} root of unity, and y be a complex number. Given a polynomial

$$P(\zeta, q) = \sum_{i=0}^{d} \zeta^{R} y_{i} q^{i}, \tag{44}$$

we say $P(\zeta, q)$ is a flipped reciprocal polynomial if whenever the coefficient on q^i is $\zeta^R y_i$,

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓ^{th} root of unity, and y be a complex number. Given a polynomial

$$P(\zeta, q) = \sum_{i=0}^{d} \zeta^{R} y_{i} q^{i}, \tag{44}$$

we say $P(\zeta, q)$ is a flipped reciprocal polynomial if whenever the coefficient on q^i is $\zeta^R y_i$, then the coefficient on q^{d-i} is $\zeta^R \overline{y_i}$.

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓ^{th} root of unity, and y be a complex number. Given a polynomial

$$P(\zeta, q) = \sum_{i=0}^{d} \zeta^{R} y_{i} q^{i}, \tag{44}$$

we say $P(\zeta, q)$ is a flipped reciprocal polynomial if whenever the coefficient on q^i is $\zeta^R y_i$, then the coefficient on q^{d-i} is $\zeta^R \overline{y_i}$.

We need to prove that given a MB crank witnessing the Interval Theorem, the associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓ^{th} root of unity, and y be a complex number. Given a polynomial

$$P(\zeta, q) = \sum_{i=0}^{d} \zeta^{R} y_{i} q^{i}, \tag{44}$$

we say $P(\zeta, q)$ is a flipped reciprocal polynomial if whenever the coefficient on q^i is $\zeta^R y_i$, then the coefficient on q^{d-i} is $\zeta^R \overline{y_i}$.

We need to prove that given a MB crank witnessing the Interval Theorem, the associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.

$$\sum_{i=0}^{35} q^i \times \sum_{i=0}^{17} (\zeta q^2)^i \times \sum_{i=0}^{11} (\zeta q^3)^i \times \sum_{i=0}^{8} (\zeta q^4)^i$$

$$= 1 + q + q^2 + e^{\frac{2i\pi}{3}} q^2 + q^3 + 2e^{\frac{2i\pi}{3}} q^3 + q^4 + e^{-\frac{2i\pi}{3}} q^4 + 3e^{\frac{2i\pi}{3}} q^4 + q^5 + 2e^{-\frac{2i\pi}{3}} q^5 + 3e^{\frac{2i\pi}{3}} q^5 + 2q^6 + 4e^{-\frac{2i\pi}{3}} q^6 + 3e^{\frac{2i\pi}{3}} q^6 + 3q^7 + 5e^{-\frac{2i\pi}{3}} q^7 + 3e^{\frac{2i\pi}{3}} q^7 + 5q^8 + 6e^{-\frac{2i\pi}{3}} q^8 + 4e^{\frac{2i\pi}{3}} q^8 + 7q^9 + 6e^{-\frac{2i\pi}{3}} q^9 + 5e^{\frac{2i\pi}{3}} q^9 + 9q^{10} + 7e^{-\frac{2i\pi}{3}} q^{10} + 7e^{\frac{2i\pi}{3}} q^{10} + 10q^{11} + 8e^{-\frac{2i\pi}{3}} q^{11} + 12q^{12} + 10e^{-\frac{2i\pi}{3}} q^{12} + 12e^{\frac{2i\pi}{3}} q^{12} + 13q^{13} + 12e^{-\frac{2i\pi}{3}} q^{13} + 14e^{\frac{2i\pi}{3}} q^{13} + 15q^{14} + 15e^{-\frac{2i\pi}{3}} q^{14} + 17q^{15} + 18e^{-\frac{2i\pi}{3}} q^{15} + 19e^{\frac{2i\pi}{3}} q^{15} + 20q^{16} + 22e^{-\frac{2i\pi}{3}} q^{16} + 22e^{\frac{2i\pi}{3}} q^{16} + 23q^{17} + 25e^{-\frac{2i\pi}{3}} q^{17} + 24e^{\frac{2i\pi}{3}} q^{17} + 4e^{\frac{2i\pi}{3}} q^{12} + 15e^{\frac{2i\pi}{3}} q^{120} + 15e^{\frac{2i\pi}{3}} q^{120} + 13q^{121} + 14e^{-\frac{2i\pi}{3}} q^{121} + 12e^{\frac{2i\pi}{3}} q^{121} + 12q^{122} + 12e^{-\frac{2i\pi}{3}} q^{122} + 10e^{\frac{2i\pi}{3}} q^{122} + 10e^{\frac{2i\pi}{3}} q^{123} + 8e^{\frac{2i\pi}{3}} q^{123} + 9q^{124} + 7e^{-\frac{2i\pi}{3}} q^{124} + 7e^{\frac{2i\pi}{3}} q^{125} + 5e^{-\frac{2i\pi}{3}} q^{125} + 6e^{\frac{2i\pi}{3}} q^{126} + 4e^{-\frac{2i\pi}{3}} q^{126} + 6e^{\frac{2i\pi}{3}} q^{126} + 3q^{127} + 3e^{-\frac{2i\pi}{3}} q^{127} + 5e^{\frac{2i\pi}{3}} q^{127} + 2q^{128} + 3e^{-\frac{2i\pi}{3}} q^{128} + 4e^{\frac{2i\pi}{3}} q^{128} + e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi}{3}} q^{130} + e^{\frac{2i\pi}{3}} q^{130} + e^{\frac{2i\pi}{3}} q^{131} + 2e^{-\frac{2i\pi}{3}} q^{131} + 2e^{-\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{123} + e^{\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{132} + 2e^{\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi$$

$$\sum_{i=0}^{35} q^i \times \sum_{i=0}^{17} (\zeta q^2)^i \times \sum_{i=0}^{11} (\zeta q^3)^i \times \sum_{i=0}^{8} (\zeta q^4)^i$$

$$= 1 + q + q^2 + e^{\frac{2i\pi}{3}} q^2 + q^3 + 2e^{\frac{2i\pi}{3}} q^3 + q^4 + e^{-\frac{2i\pi}{3}} q^4 + 3e^{\frac{2i\pi}{3}} q^4 + q^5 + 2e^{-\frac{2i\pi}{3}} q^5 + 3e^{\frac{2i\pi}{3}} q^5 + 2q^6 + 4e^{-\frac{2i\pi}{3}} q^6 + 3e^{\frac{2i\pi}{3}} q^6 + 3q^7 + 5e^{-\frac{2i\pi}{3}} q^7 + 3e^{\frac{2i\pi}{3}} q^7 + 5q^8 + 6e^{-\frac{2i\pi}{3}} q^8 + 4e^{\frac{2i\pi}{3}} q^8 + 7q^9 + 6e^{-\frac{2i\pi}{3}} q^9 + 5e^{\frac{2i\pi}{3}} q^9 + 9q^{10} + 7e^{-\frac{2i\pi}{3}} q^{10} + 7e^{\frac{2i\pi}{3}} q^{10} + 10q^{11} + 8e^{-\frac{2i\pi}{3}} q^{11} + 12q^{12} + 10e^{-\frac{2i\pi}{3}} q^{12} + 12e^{\frac{2i\pi}{3}} q^{12} + 13q^{13} + 12e^{-\frac{2i\pi}{3}} q^{13} + 14e^{\frac{2i\pi}{3}} q^{13} + 15q^{14} + 15e^{-\frac{2i\pi}{3}} q^{14} + 17q^{15} + 18e^{-\frac{2i\pi}{3}} q^{15} + 19e^{\frac{2i\pi}{3}} q^{15} + 20q^{16} + 22e^{-\frac{2i\pi}{3}} q^{16} + 22e^{\frac{2i\pi}{3}} q^{16} + 23q^{17} + 25e^{-\frac{2i\pi}{3}} q^{17} + 24e^{\frac{2i\pi}{3}} q^{17} + 4e^{\frac{2i\pi}{3}} q^{12} + 15e^{\frac{2i\pi}{3}} q^{120} + 15e^{\frac{2i\pi}{3}} q^{120} + 13q^{121} + 14e^{-\frac{2i\pi}{3}} q^{121} + 12e^{\frac{2i\pi}{3}} q^{121} + 12q^{122} + 12e^{-\frac{2i\pi}{3}} q^{122} + 10e^{\frac{2i\pi}{3}} q^{122} + 10e^{\frac{2i\pi}{3}} q^{123} + 8e^{\frac{2i\pi}{3}} q^{123} + 9q^{124} + 7e^{-\frac{2i\pi}{3}} q^{124} + 7e^{\frac{2i\pi}{3}} q^{125} + 5e^{-\frac{2i\pi}{3}} q^{125} + 6e^{\frac{2i\pi}{3}} q^{126} + 4e^{-\frac{2i\pi}{3}} q^{126} + 6e^{\frac{2i\pi}{3}} q^{126} + 3q^{127} + 3e^{-\frac{2i\pi}{3}} q^{127} + 5e^{\frac{2i\pi}{3}} q^{127} + 2q^{128} + 3e^{-\frac{2i\pi}{3}} q^{128} + 4e^{\frac{2i\pi}{3}} q^{128} + e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi}{3}} q^{130} + e^{\frac{2i\pi}{3}} q^{130} + e^{\frac{2i\pi}{3}} q^{131} + 2e^{-\frac{2i\pi}{3}} q^{131} + 2e^{-\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{123} + e^{\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{132} + 2e^{\frac{2i\pi}{3}} q^{132} + e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi}{3}} q^{129} + 2e^{\frac{2i\pi$$

$$\sum_{i=0}^{35} q^i \times \sum_{i=0}^{17} (\zeta q^2)^i \times \sum_{i=0}^{11} (\zeta q^3)^i \times \sum_{i=0}^{8} (\zeta q^4)^i$$

$$7q^9 + 6e^{-\frac{2i\pi}{3}}q^9 + 5e^{\frac{2i\pi}{3}}q^9$$

$$7q^{125} + 5e^{-\frac{2i\pi}{3}}q^{125} + 6e^{\frac{2i\pi}{3}}q^{125}$$

Current Work

Remark

Reciprocal and anti-reciprocal polynomials played a key role in the proof of the Sum and Difference Theorem.

Current Work

Remark

Reciprocal and anti-reciprocal polynomials played a key role in the proof of the Sum and Difference Theorem.

Remark (Future Work)

How might these generalizations, namely flipped reciprocal polynomials, apply to a proof that there are cranks witnessing the Sum and Difference Theorem?

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m) + p(n,m)}{\ell}$$
(45)

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m)+p(n,m)}{\ell}$$
(45)

① Our evidence from the Python programs prompts us to conjecture that MB cranks witnessing the Interval Theorem also witness the Sum and Difference Theorem.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic au is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $au_\ell \not\equiv 0 \pmod{\ell}$ in the tuple $au = (au_1, au_2, \dots, au_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m)+p(n,m)}{\ell}$$
(45)

① Our evidence from the Python programs prompts us to conjecture that MB cranks witnessing the Interval Theorem also witness the Sum and Difference Theorem.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell\not\equiv 0\pmod{\ell}$ in the tuple $\tau=(\tau_1,\tau_2,\ldots,\tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

2 We must continue to look at the constituents and how they are made.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem. Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For $i \in \{0,1,\ldots,\ell-1\}$,

$$M_{\tau}(i,\ell,n',m) \pm M_{\tau}(-i-\sigma(\tau),\ell,n,m) = \frac{p(n',m)+p(n,m)}{\ell}$$
(45)

① Our evidence from the Python programs prompts us to conjecture that MB cranks witnessing the Interval Theorem also witness the Sum and Difference Theorem.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the tuple $\left(\frac{\widehat{\tau_i}}{i}\right)_{i=1}^m$ are distinct modulo ℓ , and $\tau_\ell\not\equiv 0\pmod{\ell}$ in the tuple $\tau=(\tau_1,\tau_2,\ldots,\tau_m)$.

The hat on the tuple means we're omitting the ℓ^{th} component.

2 We must continue to look at the constituents and how they are made.

References

Andrews, G.E., Garvan, F.G. et al., Dyson's crank of a partition, Bulletin (New Series) of the American Mathematical Society, 18 (1988), pp. 167-171.

Atkin, A.O.L.; Swinnerton-Dyer, H.P.F. "Some theorems about partition congruences". Proceedings of the London Mathematical Society, vol. 4, 1954, pp. 84-106.

Dyson, F.J. (1944) Some guesses in the theory of partitions., Eureka

Eichhorn, D., Kronholm, B., Larsen, A. (2022) Cranks for partitions with bounded largest part.,

Kronholm, Brandt. On congruence properties of consecutive values of p(n,m), INTEGERS 7 (2007), A16.

Ramanujan, S. Collected Papers, Cambridge University Press, London, 1927; reprinted: AMS, Chelsea, 2000 with new preface and extensive commentary by B. Berndt.

Stanley, R. P. (1986). Enumerative Combinatorics, Volume 1. Wadsworth & Brooks/Cole Mathematics Series.

Thank you for your time today

jena.gregory01@utrgv.edu