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The Partitions of 4 in Standard Notation

@ How many ways can we write n as a sum of positive integers?
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@ How many ways can we write n as a sum of positive integers?
@ As an example, let's partition the number 4.
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The Partitions of 4 in Standard Notation

@ How many ways can we write n as a sum of positive integers?
@ As an example, let's partition the number 4.
Partitions of 4.
4
3+1
242
2+1+1
1+14+1+1

p(4) =5

Definition 1

A partition of a positive integer n is a finite nonincreasing sequence of positive integers
Al,...,Am such that Z:":l Ai = n. The )\; are called the parts of the partition and we
write p(n) to denote the number of partitions of n.
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The Partitions of 4 in Standard Notation

@ How many ways can we write n as a sum of positive integers?

@ As an example, let's partition the number 4.
Partitions of 4.  Partitions of 4 into parts of size at most 2.

4
3+1
242 242
24+1+1 2+1+1
1414141 1414141
p(4) =5 p(4,2) =3

Definition 1

A partition of a positive integer n is a finite nonincreasing sequence of positive integers
Al,...,Am such that Z:n:l Ai = n. The \; are called the parts of the partition and we
write p(n) to denote the number of partitions of n.
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The Partitions of 4 in Multiplicity Based Notation

Definition 2

Let A be a partition of n into parts from the set [m]. We write A in "multiplicity
notation,” so that A = (1€,2%, ..., m®) is the partition with exactly e; parts of size i
for each i € [m].

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



The Partitions of 4 in Multiplicity Based Notation

Definition 2

Let A be a partition of n into parts from the set [m]. We write A in "multiplicity

notation,” so that A = (1€,2%, ..., m®) is the partition with exactly e; parts of size i
for each i € [m].

Partitions of 4. Partitions of 4 into parts of size at most 2.

(10,20,30 41)

(1%,20,31,40)

(10’22’30740) (10’22730740)

(14,20,30,40) (14,20,30,40)
p(4) =5 p(4,2) =3

p(n) p(n. m)
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Partition Numbers and Ramanujan Congruences

Here is the sequence of partition numbers.

{p(nM)}, =1,1,2,3,5,7,11, 15,22, 30,42, 56, 77,101, 135, 176, 231, 297, 385, . ..
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Partition Numbers and Ramanujan Congruences

Here is the sequence of partition numbers.
{p(n)}>y=1,1,2,3,5,7,11,15,22,30,42,56,77,101, 135,176, 231,297,385, . ...

In 1919, Ramanujan proved the following patterns in this sequence.|[6]

For all nonnegative integers k,

p(5k+4)=0 (mod 5) (1)
p(Tk+5)=0 (mod 7) (2)
p(11k+6) =0 (mod 11). (3)
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Partition Numbers and Ramanujan Congruences

Here is the sequence of partition numbers.
{p(n)}>ey=1,1,2,3,5,7,11,15,22,30,42,56,77,101, 135,176,231,297,385, ...

In 1919, Ramanujan proved the following patterns in this sequence.|[6]

For all nonnegative integers k,

p(5k +4)=0 (mod 5) (4)
p(Tk+5)=0 (mod 7) (5)
p(11k+6) =0 (mod 11). (6)
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In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.
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Dyson’s Rank

In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of p(5k +4) =0 (mod 5). By this
I mean, that although we can prove ... that the partitions of 5k + 4 can be divided
into five equally numerous subclasses, it is unsatisfactory to receive from the proofs
no concrete idea of how the division is to be made. We require a proof which will
not appeal to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaustive and

equally numerous subclasses.
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In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of p(5k +4) =0 (mod 5). By this
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Dyson’s Rank

In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of p(5k +4) =0 (mod 5). By this
| mean, that although we can prove ... that the partitions of 5k + 4 can be divided
into five equally numerous subclasses, it is unsatisfactory to receive from the proofs
no concrete idea of how the division is to be made. We require a proof which will
not appeal to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaustive and

equally numerous subclasses.

Dyson proposed ranking partitions.

Definition 4
The rank of a partition is the largest part minus the number of parts.
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Dyson’s Rank

In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of p(5k +4) =0 (mod 5). By this
| mean, that although we can prove ... that the partitions of 5k + 4 can be divided
into five equally numerous subclasses, it is unsatisfactory to receive from the proofs
no concrete idea of how the division is to be made. We require a proof which will
not appeal to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaustive and

equally numerous subclasses.
Dyson proposed ranking partitions.

Definition 4
The rank of a partition is the largest part minus the number of parts.

Dyson's guess was that the rank of a partition would be a concrete demonstration of how the
divisions are to be made for the congruences of 5 and 7.
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Dyson’s Rank

A4 Rank Rank (mod 5)
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Dyson’s Rank

A4 Rank Rank (mod 5)
(1°,203° 4y - 4-1=3 = 3
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Dyson’s Rank

A4 Rank Rank (mod 5)
(1°,203° 4y - 4-1=3 = 3
(1',20.31,4% - 3-2=1 = 1
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Dyson’s Rank

A4 Rank Rank (mod 5)
(1°,2°3°4Yy - 4-1=3 = 3
(11,2°314% - 3-2=1 = 1
(19,22,3°4% - 2-2=0 = 0
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Dyson’s Rank

A4 Rank Rank (mod 5)
(1°9,203° 4y —» 4-1=3 = 3
(11,20.31,4% - 3-2=1 = 1
(1°,22.3°4%) - 2-2=0 = 0
(12,21,30.4% —» 2-3=-1 = 4
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Dyson’s Rank

AF4 Rank Rank (mod 5)
(1°,203°4) - 4-1=3 = 3
(14,20.31,4%) = 3-2=1 = 1
(19,2234 - 2-2=0 = 0
(12,21,3°4%) - 2-3=-1 = 4
(14,2034 5 1-4=-3 = 2
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Dyson’s Rank

AF4 Rank Rank (mod 5)
(1°,203°4) - 4-1=3 = 3
(14,20.31,4%) = 3-2=1 = 1
(19,2234 - 2-2=0 = 0
(12,21,3°4%) - 2-3=-1 = 4
(14,2034 5 1-4=-3 = 2

Thus we have “demonstrated by cross-examination of the partitions
themselves the existence of five exclusive, exhaustive and equally
numerous subclasses.”
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Rank of p(5) modulo 7

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2].
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Rank of p(5) modulo 7

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2].
And, while beautiful, they are still analytic proofs and not combinatorial bijections.
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Rank of p(5) modulo 7

Dyson's rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2].
And, while beautiful, they are still analytic proofs and not combinatorial bijections.
There are still no constructive proofs for Dyson's rank.
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The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
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The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; | shall call this hypothetical coefficient the ‘“crank” of the

partition.
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In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.
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The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; | shall call this hypothetical coefficient the ‘“crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition A, let /(\) denote the largest part of A, w(\) denote the number of ones in A, and u(\)
denote the number of parts of A larger than w(\). The crank is given by

) ifw()) =0,
<) = { 2() —w(N) ifw(d) >0,
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The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; | shall call this hypothetical coefficient the ‘“crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition A, let /(\) denote the largest part of A, w(\) denote the number of ones in A, and u(\)
denote the number of parts of A larger than w(\). The crank is given by

) ifw()) =0,
<) = { 2() —w(N) ifw(d) >0,

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.
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What Constitues A Crank?

Definition 6

Let p(n) denote the set of partitions of n. For a given n, if the
statistic 7 : p(n) — Z is equally distributed over every residue class
modulo ¢, we say that 7 is a crank modulo ¢, witnessing the

(-divisibility of p(n).
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Further Motivation: The Interval Theorem )
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Let ¢ be a prime and consider {p(n,3) (mod ¢)}°°,

1,1,2,3,4,5,7,8,10,12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91,96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
225,234,243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
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Let ¢ be a prime and consider {p(n,3) (mod ¢)}°°,

¢ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
205,234,243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444,456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
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Let ¢ be a prime and consider {p(n,3) (mod ¢)}°°,

¢ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
205,234,243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444,456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

¢ = 5: Again, there are regular intervals of partitions congruent to 0 modulo 5.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
225,234, 243, 252, 261,271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . ..
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Let ¢ be a prime and consider {p(n,3) (mod ¢)}°°,

¢ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
205,234,243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444,456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

¢ = 5: Again, there are regular intervals of partitions congruent to 0 modulo 5.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
225,234, 243, 252, 261,271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . ..
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The Interval Theorem

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime £, any nonnegative integer k, and any
2<m</{¢+1, we have

p(¢-lem(m)k —t,m) =0 (mod ¢) (7)

for0 <t < m22+'", where lcm(m) is the least common multiple
among the numbers from 1 to m.
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The Interval Theorem

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime £, any nonnegative integer k, and any
2<m</{¢+1, we have

p(¢-lem(m)k —t,m) =0 (mod ¢) (7)

for0 <t < m22+'", where lcm(m) is the least common multiple
among the numbers from 1 to m. (Think: “lcm([m])".)
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The Interval Theorem

Theorem 7 (The Interval Theorem. Kronholm (2007))
For any prime £, any nonnegative integer k, and any
2<m< /{41, we have
p(¢-lem(m)k —t,m) =0 (mod ¢) (7)

for0 <t < m22+'", where lcm(m) is the least common multiple
among the numbers from 1 to m. (Think: “lcm([m])".)

Let's look at the previous examples again.
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The Interval Theorem

Theorem 7 (The Interval Theorem. Kronholm (2007))
For any prime £, any nonnegative integer k, and any
2<m< /{41, we have
p(¢-lem(m)k —t,m) =0 (mod ¢) (7)

for0 <t < m22+'", where lcm(m) is the least common multiple
among the numbers from 1 to m. (Think: “lcm([m])".)

Let's look at the previous examples again.
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Let ¢ be a prime and consider {p(n,3) (mod 3)}°°,

¢ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
205,234, 243, 252, 261,271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . ..

{p(n,3) (mod3)},., = p(18k —1,3)=0 (mod3)for0<t<6 (8)
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Let ¢ be a prime and consider {p(n,3) (mod 3)}°°,

¢ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91, 96,102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
205,234, 243, 252, 261,271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . ..

{p(n,3) (mod3)},., = p(18k —1,3)=0 (mod3)for0<t<6 (8)
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Let ¢ be a prime and consider {p(n,3) (mod 5)}°°,

¢ =5: Again, there are regular intervals of partitions congruent to 0 modulo 5.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91,96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
225,234, 243, 252, 261, 271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

{p(n,3) (mod5)},, = p(30k—t,3)=0 (mod5)for0<t<15 (9)
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Let ¢ be a prime and consider {p(n,3) (mod 5)}°°,

¢ =5: Again, there are regular intervals of partitions congruent to 0 modulo 5.

1,1,2,3,4,5,7,8,10,12, 14,16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,
85,91,96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,
225,234, 243, 252, 261, 271,280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,
432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,
705,721,736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

{p(n,3) (mod5)},, = p(30k—t,3)=0 (mod5)for0<t<15 (9)
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4,
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36.
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. Recall by the Interval Theorem we had nine consecutive congruences:
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. Recall by the Interval Theorem we had nine consecutive congruences:
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. Recall by the Interval Theorem we had nine consecutive congruences:

p(35,4) = 441
p(34,4) = 411
p(33,4) = 378
p(32,4) = 351
p(31,4) = 321
p(30,4) = 297
p(29,4) = 270
p(28,4) = 249
p(27,4) = 225
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. By the Interval Theorem we had nine consecutive congruences:

p(35,4) = 441 =0 (mod 3)
p(34,4) =411 =0 (mod 3)
p(33,4) =378 =0 (mod 3)
p(32,4) =351 =0 (mod 3)
p(31,4) =321 =0 (mod 3)
p(30,4) =297 =0 (mod 3)
p(29,4) =270 =0 (mod 3)
p(28,4) =249 =0 (mod 3)
p(27,4) =225 =0 (mod 3)
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. By the Interval Theorem we had nine consecutive congruences:

p(35,4) = 441 =0 (mod 3)
p(34,4) =411 =0 (mod 3)
p(33,4) =378 =0 (mod 3)
p(32,4) =351 =0 (mod 3)
p(31,4) =321 =0 (mod 3)
p(30,4) =297 =0 (mod 3)
p(29,4) =270 =0 (mod 3)
p(28,4) =249 =0 (mod 3)
p(27,4) =225 =0 (mod 3)

But what about the rest of the period?

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. By the Interval Theorem we had nine consecutive congruences:

p(35,4) = 441 =0 (mod 3)
p(34,4) =411 =0 (mod 3)
p(33,4) =378 =0 (mod 3)
p(32,4) =351 =0 (mod 3)
p(31,4) =321 =0 (mod 3)
p(30,4) =297 =0 (mod 3)
p(29,4) =270 =0 (mod 3)
p(28,4) =249 =0 (mod 3)
p(27,4) =225 =0 (mod 3)

But what about the rest of the period? There are 27 other partition numbers that
might be interesting.
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The Interval Theorem: p(n,4) (mod 3)

Let's do an example: let £ = 3 and m = 4, we saw the sequence {p(n,4) (mod 3)},>0
had period 36. By the Interval Theorem we had nine consecutive congruences:

p(35,4) = 441 =0 (mod 3)
p(34,4) =411 =0 (mod 3)
p(33,4) =378 =0 (mod 3)
p(32,4) =351 =0 (mod 3)
p(31,4) =321 =0 (mod 3)
p(30,4) =297 =0 (mod 3)
p(29,4) =270 =0 (mod 3)
p(28,4) =249 =0 (mod 3)
p(27,4) =225 =0 (mod 3)

But what about the rest of the period? There are 27 other partition numbers that
might be interesting.
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A Continuation of p(n,4) (mod 3)

p(26,4) = p(0,4) =
p(25,4) = p(1,4) =
P(24, 4) = p(2a 4) =
p(23,4) = p(3,4) =
p(22’ 4) = p(4a 4') =
p(21,4) = p(5,4) =
p(20,4) = p(6,4) =
P(197 4) - P(7, 4) =
p(18, 4) = p(8, 4) =
p(16,4) = p(10,4) =
p(15,4) = p(11,4) =
p(14,4) = p(12,4) =
p(13,4) =
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 p(0,4) =1
p(25,4) = 185 p(1,4) =1
p(24,4) = 169 p(2,4) =2
p(23,4) = 150 p(3,4) =3
p(22,4) =136 p(4,4) =5
p(21,4) = 120 p(5,4) =6
p(20,4) = 108 p(6,4) =9
p(19,4) = 94 p(7,4) =11
p(18,4) = 84 p(8,4) =15
p(17,4) =72 p(9,4) =18
p(16,4) = 64 p(10,4) = 23
p(15,4) = 54 p(11,4) = 27
p(14,4) = 47 p(12,4) = 34
p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4)=1
p(25,4) = 185 p(1,4) =1
p(24,4) = 169 p(2,4) =2
p(23,4) = 150 p(3,4) =3
p(22,4) =136 p(4,4) =5
p(21,4) = 120 p(5,4) =6
p(20,4) = 108 p(6,4) =9
p(19,4) = 94 p(7,4) = 11
p(18,4) = 84 p(8,4) =15
p(17,4) =72 p(9,4) =18
p(16,4) = 64 p(10,4) = 23
p(15,4) = 54 p(11,4) = 27
p(14,4) = 47 p(12,4) = 34
p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 p(1,4) =1
p(24,4) = 169 p(2,4) =2
p(23,4) = 150 p(3,4) =3
p(22,4) =136 p(4,4) =5
p(21,4) = 120 p(5,4) =6
p(20,4) = 108 p(6,4) =9
p(19,4) = 94 p(7,4) = 11
p(18,4) = 84 p(8,4) =15
p(17,4) =72 p(9,4) =18
p(16,4) = 64 p(10,4) = 23
p(15,4) = 54 p(11,4) = 27
p(14,4) = 47 p(12,4) = 34
p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,8) =1 =186 =0 (mod 3)
p(24,4) = 169 p(2,4) =2

p(23,4) = 150 p(3,4) =3

p(22,4) = 136 p(4,4) =5

p(21,4) = 120 p(5,4) =6

p(20,4) = 108 p(6,4) =9

p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 +p(0,4) =1 —207=0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 p(3,4) =3

p(22,4) =136 p(4,4) =5

p(21,4) = 120 p(5,4) =6

p(20,4) = 108 p(6,4) =9

p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 +p(0,4) =1 —207=0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) =136 p(4,4) =5

p(21,4) = 120 p(5.4) = 6

p(20,4) = 108 p(6,4) =9

p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) = 120 p(5.4) = 6

p(20,4) = 108 p(6,4) =9

p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 p(6,4) =9

p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 p(7,4) =11

p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + op(7,4)=11 =105 =0 (mod 3)
p(18,4) = 84 p(8,4) =15

p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + op(7,4)=11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) =72 p(9,4) =18

p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + op(7,4)=11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 p(10,4) = 23

p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + op(7,4)=11 =105=0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 p(11,4) = 27

p(14,4) = 47 p(12,4) = 34

p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) = 27 —81=0 (mod 3)
p(14,4) = 47 p(12,4) = 34

p(13,4) = 39

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) = 27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) = 39
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ¢ be an odd prime. Set n" = llem(m)(k +1) — r — <m2+m> and
n = Llem(m)k + r. Then for

() 1<ttt - (1) (0

and k > 0, we have

p(n',m)+ (=1)"p(n,m) =0 (mod /). (11)
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Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ¢ be an odd prime. Set n" = llem(m)(k +1) — r — <m2+m> and
n = Llem(m)k + r. Then for

() 1<ttt - (1) (0

and k > 0, we have

p(n',m)+ (=1)"p(n,m) =0 (mod /). (11)

Let's look the previous example again.
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Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ¢ be an odd prime. Set n" = llem(m)(k +1) — r — <m2+m> and
n = Llem(m)k + r. Then for

() 1<ttt - (1) (0

and k > 0, we have

p(n',m)+ (=1)"p(n,m) =0 (mod /). (11)

Let's look the previous example again.
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A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(36k + 26, 4) + p(36k+0,4) =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 +op(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) = 27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(36k + 26, 4) + p(36k+0,4) =0 (mod 3)
p(36k + 25, 4) + p(36k+1,4) — 0 (mod 3)
p(24,4) = 169 + p(2,4) = =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



A Continuation of p(n,4) (mod 3)

p(36k + 26,4) + p(36k +0,4) =0 (mod 3)
p(36k + 25, 4) + p(36k+1,4) — 0 (mod 3)
p(36k + 24,4) + p(36k +2 4) — 0 (mod 3)
p(23,4) = 150 + p(3,4) = =153 =0 (mod 3)
p(22,4) = 136 + p(4,4) = 5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 =81 =0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(36k + 26,4)
p(36k + 25,4)
p(36k + 24,4)
p(36k + 23,4)
p(22,4) = 136
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

e i i i i e e S

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)

)

p 6k+3 4

(3
(
(
(
(
(
p(
(
(
(
(
(
(

=0 (mod 3)
=0 (mod 3)
=0 (mod 3)
=0 (mod 3)
=141 =0 (mod 3)
=126 =0 (mod 3)
=117=0 (mod 3)
=105=0 (mod 3)
=99 =0 (mod 3)
=90 =0 (mod 3)
=87=0 (mod 3)
=81 =0 (mod 3)
=81=0 (mod 3)
=39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(36k + 26,4)
p(36k + 25,4)
p(36k + 24,4)
p(36k + 23,4)
p(36k + 22,4)
p(21,4) = 120
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

e i i i i e e S

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)

)

p 6k+44

(3
(
(
(
(
(
p(
(
(
(
(
(
(

=126
=117=0 (mod 3)

—9950 (mod 3)
=90 =0 (mod 3)
=87=0 (mod 3)
=81 =0 (mod 3)
=81=0 (mod 3)
=39 =0 (mod 3)
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A Continuation of p(n,4) (mod 3)

p(36k + 26,4)
p(36k + 25,4)
p(36k + 24,4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(20,4) = 108
p(19,4) = 94
p(18,4) = 84
p(17,4) = 72
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

e e e i s SR S A A

p(36k +0,4)
p(36k +1,4)
p(36k + 2,4)
p(36k + 3,4)
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p(36k + 5, 4)
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p(36k + 26, 4)
p(36k + 25, 4)
p(36k + 24, 4)
p(36k + 23, 4)
p(36k + 22, 4)
p(36k + 21,4)
p(36k + 20, 4)
p(19 4)__94
(
(
(
(
(
(

o]

t++ A+t

A Continuation of p(n,4) (mod 3)

p(36k + 0,4
p(36k + 1,4
p(36k + 2,4
p(36k + 3,4
p(36k + 4,4
p(36k + 5,4
m%k+64
(7,
(8,
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p(36k + 26, 4)
p(36k + 25, 4)
p(36k + 24, 4)
p(36k + 23, 4)
p(36k + 22, 4)
p(36k + 21,4)
p(36k + 20, 4)
p(36k + 19, 4)
(18 4) =84
(
(
(
(
(

o

e e i e S S R

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)
p(36k + 4,4)
p(36k + 5, 4)
p(36k + 6,4)
p(36k +7,4)
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A Continuation of p(n,4) (mod 3)

p(36k + 26, 4) + p(36k +0,4) =0 (mod 3)
p(36k + 25,4) + p(36k+1,4) =0 (mod 3)
p(36k + 24, 4) + p(36k +2,4) =0 (mod 3)
p(36k + 23, 4) + p(36k +3,4) — 0 (mod 3)
p(36k + 22, 4) + p(36k + 4,4) — 0 (mod 3)
p(36k + 21, 4) +  p(36k +5,4) — 0 (mod 3)
p(36k + 20, 4) + p(36k + 6,4) — 0 (mod 3)
p(36k + 19, 4) + p(36k+7,4) — 0 (mod 3)
p(36k + 18, 4) + p(36k +8,4) =0 (mod 3)
p(17,4) =72 + p(9,4)=18 =90 =0 (mod 3)
p(16,4) = 64 + p(10 4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 =81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81=0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24,4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18,4)
p(36k + 17,4)
p(16,4) = 64
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

tH+ A+t

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k +1,4)
p(36k + 2,4)
p(36k + 3,4)
p(36k + 4,4)
p(36k + 5, 4)
p(36k + 6,4)
p(36k +7,4)
p(36k + 8,4)
p(36k +9,4)
p(10,4) = 23
p(11,4) = 27
p(12,4) = 34
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24,4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18,4)
p(36k + 17,4)
p(36k + 16,4)
p(15,4) = 54
p(14,4) = 47
p(13,4) = 39

tH+ A+t

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k +1,4)
p(36k + 2,4)
p(36k + 3,4)
p(36k + 4,4)
p(36k + 5, 4)
p(36k + 6,4)
p(36k +7,4)
p(36k + 8,4)
p(36k +9,4)

p(36k + 10,4)
p(11,4) = 27

p(12,4) = 34
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24, 4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18, 4)
p(36k + 17,4)
p(36k + 16,4)
p(36k + 15,4)
p(14,4) = 47
p(13,4) = 39

T e i e e e s

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)
p(36k +4.,4)
p(36k +5,4)
p(36k + 6, 4)
p(36k +7,4)
p(36k +8,4)
p(36k + 9, 4)
p(36k + 10, 4)
p(36k + 11,4)
p(12,4) = 34
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24, 4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18, 4)
p(36k + 17,4)
p(36k + 16,4)
p(36k + 15,4)
p(36k + 14,4)
p(13,4) = 39

e el s SR S S R A

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)
p(36k +4.,4)
p(36k +5,4)
p(36k + 6, 4)
p(36k +7,4)
p(36k +8,4)
p(36k + 9, 4)
p(36k + 10, 4)
p(36k + 11,4)
p(36k + 12,4)
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24, 4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18, 4)
p(36k + 17,4)
p(36k + 16,4)
p(36k + 15,4)
p(36k + 14,4)
p(36k + 13,4)

e el s SR S S R A

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)
p(36k +4.,4)
p(36k +5,4)
p(36k + 6, 4)
p(36k +7,4)
p(36k +8,4)
p(36k + 9, 4)
p(36k + 10, 4)
p(36k + 11,4)
p(36k + 12,4)
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p(36k + 26,4)
p(36k + 25,4)
p(36k + 24, 4)
p(36k + 23,4)
p(36k + 22,4)
p(36k + 21,4)
p(36k + 20,4)
p(36k + 19,4)
p(36k + 18, 4)
p(36k + 17,4)
p(36k + 16,4)
p(36k + 15,4)
p(36k + 14,4)
p(36k + 13,4)

e el s SR S S R A

A Continuation of p(n,4) (mod 3)

p(36k +0,4)
p(36k + 1,4)
p(36k +2,4)
p(36k + 3,4)
p(36k +4.,4)
p(36k +5,4)
p(36k + 6, 4)
p(36k +7,4)
p(36k +8,4)
p(36k + 9, 4)
p(36k + 10, 4)
p(36k + 11,4)
p(36k + 12,4)

O O O OO OO OOOoOOo o oo
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Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 11

A polynomial of degree d, P(q) = ag + a1q + - - - + aqq, is said to be reciprocal if
dj = dq—j (12)
. Equivalently, if
q?P(q7') = P(q). (13)
v
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Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 11

A polynomial of degree d, P(q) = ag + a1q + - - - + aqq, is said to be reciprocal if
dj = dq—j (12)
. Equivalently, if
q?P(q7') = P(q). (13)
A polynomial of degree d, P(q) = ag + a1q + - - - — agq?, is said to be anti-reciprocal if
dj = —ad—ij (14)
. Equivalently, if
q'P(q7!) = —P(a). (15)

v

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 12

A polynomial of degree d, P(q) = ap + a1q + - - - + a4q?, is said to be reciprocal if
dj = dq—j (16)
. Equivalently, if
q’P(q7') = P(q). (17)
A polynomial of degree d, P(q) = ap +a1q+--- — aqq?, is said to be anti-reciprocal if
di = —ad—j (18)
. Equivalently, if
9?P(q7!) = —P(q). (19)
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Proof by Example of the Sum/Difference Congruence

We will show that

1— q3lcm(4)
P B
(@) (q:9)a

is an anti-reciprocal polynomial of degree 26. i.e.

(mod 3) (20)
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Proof by Example of the Sum/Difference Congruence

We will show that

Pla) = = (n0d 3) (20)
g)=—+—-— (mo
(9:9)4
is an anti-reciprocal polynomial of degree 26. i.e.
p(’>4) = _p(26 - ’74) (mOd 3) (21)
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Proof by Example of the Sum/Difference Congruence

We will show that

Pla) = = (n0d 3) (20)
g)=—+—-— (mo
(9:9)4
is an anti-reciprocal polynomial of degree 26. i.e.
p(’>4) = _p(26 - ’74) (mOd 3) (21)

which in turn gives us the sum theorem,
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Proof by Example of the Sum/Difference Congruence

We will show that

Pla)= =T (od 3) (20)
g)=—+—-— (mo
(CI; Q)4
is an anti-reciprocal polynomial of degree 26. i.e.
p(’>4) = _p(26 - ’74) (mOd 3) (21)
which in turn gives us the sum theorem,
p(i,4) + p(26 —i,4) =0 (mod 3). (22)
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3- lcm(4) = 36. Then P(q) = *:=%_ and
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Proof by Example of the Sum/Difference Theorem

36

Let £ =3 and m = 4 so that 3 - lecm(4) = 36. Then P(q) = ( q) and
F9P(g) = (i ) (23)
T-Ha-HE- 50—
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - lecm(4) = 36. Then P(q) = %;2)35 and
26 1
q°(1 - )
26 p(y—1 q
P(a™) (23)
A-Da-2)a-50-%)
36_
q26(qq361)
= (24)

()(E2) () (L
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - Icm(4) = 36. Then P(q) = %;2)4 and

(1 - )
26P -1y _ q 23
LR Il R o T 8 1 e 8 s e &

26(a*°—1

___Tle) (24)

() EA) ) (Ea
__ 9*%(q* —1)(q)(¢*)(a*)(q*) (25)

q%°(q — 1)(q? — 1)(¢® — 1)(q* — 1)
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - Icm(4) = 36. Then P(q) = %;2)4 and

(1 - )
26P -1y _ q 23
LR Il R o T 8 1 e 8 s e &

260901

___Tle) (24)

() EA) ) (Ea
__ 9*%(q* —1)(q)(¢*)(a*)(q*) (25)

q%°(q — 1)(q? — 1)(¢® — 1)(q* — 1)
_ —(1-4¢*)

ECT) (29)
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - Icm(4) = 36. Then P(q) = %;2)4 and

(1 - )
26P -1y _ 23
LR Il R o T 8 1 e 8 s e &

260901

___Tle) (24)

() EA) ) (Ea
__ 9*%(q* —1)(q)(¢*)(a*)(q*) (25)

q*%(q — 1)(q> = 1)(¢* — 1)(q* — 1)
_ —(1-4¢*)
~ (D@9 20)
= —P(q) (27)/
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - Icm(4) = 36. Then P(q) = %;2)4 and

(1 - )
26P -1y _ q 23
LR Il R o T 8 1 e 8 s e &

260901

___Tle) (24)

(T )
__ 9*%(q* —1)(q)(¢*)(a*)(q*) (25)

q%°(q — 1)(q? — 1)(¢® — 1)(q* — 1)
_ —(1-4¢*)
~ (D@9 20)
= —P(q) (27)

Thus P(q) is anti-reciprocal polynomial and

p(i,4) + p(26 —i,4) =0 (mod 3). (28)
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Proof by Example of the Sum/Difference Theorem

Let £ =3 and m = 4 so that 3 - Icm(4) = 36. Then P(q) = %;2)4 and

(1 - )
26P -1y _ q 23
LR Il R o T 8 1 e 8 s e &

260901

___Tle) (24)

(T )
__ 9*%(q* —1)(q)(¢*)(a*)(q*) (25)

q%°(q — 1)(q? — 1)(¢® — 1)(q* — 1)
_ —(1-4¢*)
~ (D@9 20)
= —P(q) (27)

Thus P(q) is anti-reciprocal polynomial and

p(i,4) + p(26 —i,4) =0 (mod 3). (28)
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Cranks Witnessing the Interval Theorem )
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Cranks Witnessing the Interval Theorem )
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1°,2% ... m®"), we define a multiplicity-based statistic (MB statistic)
T=(71,72,...,Tm) € Z™ to be

7'(/\) = ZT,’G,‘.

i—1
7(A) is simply a linear combination of the muItiE)Iicities of the parts of \.
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1°,2% ... m®"), we define a multiplicity-based statistic (MB statistic)
T=(71,72,...,Tm) € Z™ to be

7'(/\) = ZT,’G,‘.

i—1
7(A) is simply a linear combination of the muItiE)Iicities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4.
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1°,2% ... m®"), we define a multiplicity-based statistic (MB statistic)
T=(71,72,...,Tm) € Z™ to be

7'(/\) = ZT,’G,‘.

i—1
7(A) is simply a linear combination of the muItiE)Iicities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1°,2% ... m®"), we define a multiplicity-based statistic (MB statistic)
T=(71,72,...,Tm) € Z™ to be

7'()\) = ZT,’G,‘.

i—1
7(A) is simply a linear combination of the muItiE)Iicities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)

(107 20730’42) (11 207 31’41) (107 227 30741)
(12721,30’41) (14720’30741) (10,21732,40)
(12720,32’40) (11’22’31740) (13’21731740)
(15720,31740) (10)24’30740) (12’23730,40)
(1%,2%,3° 49) (1°,21,39 49) (18,2°,39 49)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=1(0,1,1,1) and calculate 7(\)

(1%,22,31,4%)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=1(0,1,1,1) and calculate 7(\)

7(11,22,31,4°)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=1(0,1,1,1) and calculate 7(\)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=1(0,1,1,1) and calculate 7(\)
0-1+

T( 17 2’ 17 0)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)
0-141-2+

T( 17 2’ 17 0)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)
0-1+1-241-1+

T( 17 2’ 17 0)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)
0-1+1-2+1-141-0

T( 17 2’ 17 O)
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(\)
0-1+1-241-141-0=3

T( 17 2’ 17 O):3
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Multiplicity Based Statistics: p(8,4) =15, 7 =(0,1,1,1)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=1(0,1,1,1) and calculate 7(\)

7(1°,2°, 30 4)=2 7(11,2° 31 4h=2 7(1°2% 30 4hH)=3
7(12,2 ,4h=2 7(1%,2°,3°,41)=1 7(10,2 ?,4%=3
7(17,20,3%,4% =2 7(1},22,31,4%=3 7(1%,2",3"4%)=2
7(15,2 La%=1 7(1°,2%,3°4%)=4 7(12,2 0,49=3
(14,22, 30 4%)=2 7(152%, 30 40)=1 7(1%,2° 30 ,49)=0
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Multiplicity Based Statistics: p(8,4) =15, 7 = (0,1,1,1) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(A\) (mod 3).

7(1°,2°, 30 =2 (11,29 31 AN=2 7(1°,22,3%4)=0
7(12,2 0.4h)=2 7(1%,20,3%,4)=1 7(1°,2",3%4%=0
7(12,2°,32,4% =2 7(1%,22,31,4%=0 7(13,2",3",4%)=2
7(15,2 Lah=1 7(1°,24,3%,4%=1 7(12,23,3°,4%)=0
(14,22, %, 40)=2 7(1%,2%, %, 40)=1 7(1%,2°,3°,4%)=0
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Multiplicity Based Statistics: p(8,4) =15, 7 = (0,1,1,1) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(A\) (mod 3).

7(1°,2°, 30 =2 (11,29 31 AN=2 7(1°,22,3%4)=0
7(12,2 0.4h)=2 7(1%,20,3%,4Y)=1 7(1°2",3%,4%)=0
7(12,2°,32,4% =2 7(1%,22,31,4%=0 7(13,2',3",4%)=2
7(15,2 La%=1 7(1°,24,3%,4%=1 7(12,23,3°,4%)=0
(14,22, %, 40)=2 7(1%,2%, %, 40)=1 7(1%,2°,3°,4%)=0
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Multiplicity Based Statistics: p(8,4) =15, 7 = (0,1,1,1) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(A\) (mod 3).

7(1°,2°, 30 =2 (11,29 31 AN=2 7(1°,22,3%4)=0
7(12,2 04h=2 7(14,2°3° 4%) 7(1°,24,3%,4%=0
7(12,2°,32,49=2 7(1%,22,31,4%9=0 ~7(1%3,2!,3!,4%)=2
7(15,2 149 7(1°,24,30,40) 7(12,23,3%,4%=0
(14,22, %, 40)=2 7(1%,2%, %, ,49) 7(1%,2°,3°,4%=0

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Multiplicity Based Statistics: p(8,4) =15, 7 = (0,1,1,1) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(0,1,1,1) and calculate 7(A\) (mod 3).

7(1%,2°, 30 4%)=2 (11,29 31 Ah)=2 719,22 30 4hH=0
7(12,2 0,4h)=2 7(1%,2°3° 4%) 7(10,2 2,4%=0
T(1%,2°,32,4% =2 7(11,22,3,40=0 7(1°,2',3"4%)="2
7(15,2 149 7(1°,24,30,40) 7(12,2 0,49=0
(14,22, %, ,40)=12 7(1%,2%, %, ,49) 7(1%,2°, %, ,4%9)=0
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

T(/\) = ZT,’G,‘.

i=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(1,1,1,0) and calculate 7(\)

7(1°,2°,3%,4%) (11,2031, 4%) 7(1°,2%,3%,4%)
7(12,21,3°, 4%) 7(14,2°,30, 41) (19,21, 32, 49)
7(12,2°,32,49) 7(1%, 22,31, 49) (13,21, 31,49
7(1%,2°,3%,4) 7(1°,24,30,40) 7(1%,23,3°,4%)
7(1%,22,3°,49) (18,21, 30, 49) (18,29, 3%, 49)
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(1,1,1,0) and calculate 7(\)

7(1°,2°, 30 4%)=0 7(11,2° 31 4h=2 7(1°2% 30 4h)=2
7(12,2 0,4)=3 7(1%,2°,3°,4)=4 7(10,2 ?,49=3
7(17,20,3%,4%) =4 7(1},22,3',4%=14 7(1%,2",3"4%)=5
7(15,2 La%=6 r(1°,2%,3°4%)=4 7(12,2 0,4%=5
(14,22, 30 4%)=6 7(152', 30 A0)=7 7(1%,2° 30 ,4%)=18
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(1,1,1,0) and calculate 7(A) (mod 3).

7(1°,2°, 30 4)=0 7(11,2° 31 AN=2 7(1°,22,3%,41)=2
7(12,2 0.4h)=0 7(1%,2°,3%,4Y)=1 7(1°2",3%4%=0
7(12,2°,32,4% =1 7(1%,22,31,4%=1 7(13,2',3",4%)=2
7(15,2 La%=0 7(1°,2%4,3%,4%=1 7(12,23,3°,4%)=2
(14,22, %, ,40)=0 7(1°,2!, %, 40)=1 7(1%,2°,3°,4%)=2
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(1,1,1,0) and calculate 7(A) (mod 3).

7(1°,2°, 30 4)=0 7(11,2° 31 AN=2 7(1°,22,3%,41)=2
7(12,2 0.4h)=0 7(1%,2°,3%,4)=1 7(1°2",3%4%=0
7(12,2°,32,4% =1 7(1%,22,31,4%=1 7(13,2',3",4%)=2
7(15,2 La%=0 7(1°,2%4,3%,4%=1 7(12,23,3°,4%)=2
(14,22, %, ,40)=0 7(1°,2!, %, 40)=1 7(1%,2°,3°,4%)=2
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0) (mod 3)

Definition 14
Given a partition A\ = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T= (7_177—27~--a7_m) € Z™ to be

m
= E Ti€.

=1
7(A) is simply a linear combination of the mu/ti})/icities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
7=(1,1,1,0) and calculate 7(A) (mod 3).

7(1°,2°, 30 4)=0 7(11,2° 31 =2 7(1°,2% 30 4hH=2
7(12,2 0.4h)=0 7(14,2°,3° 4%) 7(10,2 2.4%=0
7(12,2°,32,49) (11,2231, 49) 7(13,21,31,4%=2
7(15,2 La%=0 7(1°,24 3% 4% 7(12,2 0 4%=12
(14,22, %, ,40)=0 7(1°,2!, %, ,49) (1,29, %, ,4%)=2
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0) (mod 3)

Definition 14
Given a partition A = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T =(T1,T2,...,Tm) € Z™ to be

m
= E Ti€.

i=1
7(\) is simply a linear combination of the mu/tilplicities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
=(1,1,1,0) and calculate 7(A\) (mod 3).

7(1°,2°, 30 A)=0 7(1%,2° 31 A4N=2 7(1°,22,3% 4= 2
7(12,2 =0 7(1%,2°,3%,4) 7(1°,25,3%,4%=0
7(1%,2°,3 0) (11,2231, 49) 7(1%,24,3,4%)=2
7(15,2 La%=0 7(1°2% 3% 40) 7(17,2%,3%,4%)= 2
T(1%,2%, 30 40)=0 7(1%,2!, 30 ,49) 7(18,2°,3°,4%) =2
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Multiplicity Based Statistics: p(8,4) =15, 7 = (1,1,1,0) (mod 3)

Definition 14
Given a partition A = (1%,2% ... m®), we define a multiplicity-based statistic (MB statistic)
T =(T1,T2,...,Tm) € Z™ to be

m
= E Ti€.

i=1
7(\) is simply a linear combination of the mu/tilplicities of the parts of \.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
=(1,1,1,0) and calculate 7(A\) (mod 3).

7(1°,2°, 30 A)=0 7(1%,2° 31 A4N=2 7(1°,22,3% 4= 2
7(12,2 =0 7(1%,2°,3%,4) 7(1°,25,3%,4%=0
7(1%,2°,3 0) (11,2231, 49) 7(1%,24,3,4%)=2
7(15,2 La%=0 7(1°2% 3% 40) 7(17,2%,3%,4%)= 2
T(1%,2%, 30 40)=0 7(1%,2!, 30 ,49) 7(18,2°,3°,4%) =2
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What Constitutes a Crank? M. (r, ¢, n, m)

Definition 15

e For a given partition statistic 7 and a positive integer ¢, we allow 7 to classify the
partitions of n into ¢ subclasses by letting M (r, ¢, n, m) be the set of partitions A of n
into parts from [m] such that 7(\) = r (mod ¢).

e Also, we define M, (r,¢,n,m) = | M,(r,¢,n, m)|. [4]
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What Constitutes a Crank? M. (r, ¢, n, m)

Definition 15

e For a given partition statistic 7 and a positive integer ¢, we allow 7 to classify the
partitions of n into ¢ subclasses by letting M (r, ¢, n, m) be the set of partitions A of n
into parts from [m] such that 7(\) = r (mod ¢).

e Also, we define M, (r,¢,n,m) = | M,(r,¢,n, m)|. [4]

Definition 6

Let p(n) denote the set of partitions of n. For a given n, if the statistic
7 :p(n,m) — Z is equally distributed over every residue class modulo ¢, we say that T
is a crank modulo ¢, witnessing the (-divisibility of p(n, m).
That is, if
p(n, m)

l
for each 0 < | < (¢ —1, then T is a crank modulo ¢.[4]

M-(i, €, n,m) = (29)

V.
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What Constitutes a Crank? M. (r, ¢, n, m)

Definition 15

e For a given partition statistic 7 and a positive integer ¢, we allow 7 to classify the
partitions of n into ¢ subclasses by letting M (r, ¢, n, m) be the set of partitions A of n
into parts from [m] such that 7(\) = r (mod ¢).

e Also, we define M, (r,¢,n,m) = | M,(r,¢,n, m)|. [4]

Definition 6

Let p(n) denote the set of partitions of n. For a given n, if the statistic
7 :p(n,m) — Z is equally distributed over every residue class modulo ¢, we say that T
is a crank modulo ¢, witnessing the (-divisibility of p(n, m).
That is, if
p(n, m)

l
for each 0 < | < (¢ —1, then T is a crank modulo ¢.[4]

M-(i, €, n,m) = (29)

V.
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What Constitutes a Crank? M. (r, ¢, n, m)

Mo,111)(0,3,8,4) = 4
Mo,111)(1,3,8,4) =5
Mo111)(2,3,8,4) =6

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



What Constitutes a Crank? M. (r, ¢, n, m)

Mo,111)(0,3,8,4) = 4
Mo,111)(1,3,8,4) =5
Mo111)(2,3,8,4) =6

Mo,11,1)(7,3,8,4) # @
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What Constitutes a Crank? M. (r, ¢, n, m)

Mo,111)(0,3,8,4) = 4
Mo11.1)(1,3,8,4) =5
M(o 1,1 1)(27 3,8,4)=6
M0.1,11)(7,3,8,4) # £ 2’4)
(0,1,1,1) is not a crank.
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Mo,111)(0,3,8,4) = 4

Mi,110)(0,3,8,4) =5

Mo,111)(1,3,8,4) =5

Mi110/(1,3,8,4) =5

Mo111)(2,3,8,4) =6

Mi110(2,3,8,4) =5

Mo111)(i;3,8,4) # 24

71 b
(0,1,1,1) is not a crank.
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Mo,111)(0,3,8,4) = 4

Mi,110)(0,3,8,4) =5

Mo,111)(1,3,8,4) =5

Mi110/(1,3,8,4) =5

Mo111)(2,3,8,4) =6

Mi110(2,3,8,4) =5

Mo111)(i;3,8,4) # 24

Ma110)(7,3,8,4) = 2G4

71 b
(0,1,1,1) is not a crank.
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Mo,111)(0,3,8,4) = 4

Mi,110)(0,3,8,4) =5

Mo,111)(1,3,8,4) =5

Mi110/(1,3,8,4) =5

Mo111)(2,3,8,4) =6

Mi110(2,3,8,4) =5

Mo111)(i;3,8,4) # 24

Ma110)(7,3,8,4) = 2G4

71 b
(0,1,1,1) is not a crank.

(1,1,1,0) is a crank.
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Mo,111)(0,3,8,4) = 4

Mi,110)(0,3,8,4) =5

Mo,111)(1,3,8,4) =5

Mi110/(1,3,8,4) =5

Mo111)(2,3,8,4) =6

Mi110(2,3,8,4) =5

Mo111)(i;3,8,4) # 24

Ma110)(7,3,8,4) = 2G4

71 b
(0,1,1,1) is not a crank.

(1,1,1,0) is a crank.
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Criteria for a Crank Witnessing the Interval Theorem

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic T is a crank for the congruences of The Interval Theorem (Theorem 7)
—m

if the components of the tuple (l) are distinct modulo ¢, and 7, 0 (mod /) in
I /i=1

the tuple 7 = (11,72, ..., Tm).

The hat on the tuple means we're omitting the ¢*" component.
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Criteria for a Crank Witnessing the Interval Theorem

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic T is a crank for the congruences of The Interval Theorem (Theorem 7)

—m

if the components of the tuple (T') are distinct modulo ¢, and 7, 0 (mod /) in
i /i=1

the tuple 7 = (11,72, ..., Tm).

The hat on the tuple means we're omitting the ¢*" component.

Theorem 16 is a very important result for this dissertation and for this talk.
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Criteria for a Crank Witnessing the Interval Theorem

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic T is a crank for the congruences of The Interval Theorem (Theorem 7)
—m
i

if the components of the tuple (1) are distinct modulo ¢, and 7, 0 (mod /) in
i /i=1

the tuple 7 = (11,72, ..., Tm).

The hat on the tuple means we're omitting the ¢*" component.
v

Theorem 16 is a very important result for this dissertation and for this talk. | will refer
to it later on.
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Criteria for a Crank Witnessing the Interval Theorem

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic T is a crank for the congruences of The Interval Theorem (Theorem 7)
—m
i

if the components of the tuple (1) are distinct modulo ¢, and 7, 0 (mod /) in
i /i=1

the tuple 7 = (11,72, ..., Tm).

The hat on the tuple means we're omitting the ¢*" component.
v

Theorem 16 is a very important result for this dissertation and for this talk. | will refer
to it later on.
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7.
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two
universal cranks for Theorem 7.
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two
universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For2<m</{+1, let

o (a1, 0,...,¢y) =(1,1,...,1) ifF2<m</
) (e, an,. . 0up) =(1,1,...,1,0) ifm={+1,

and
B:(ﬁ1762a"'716m): (0717"'7171)'

The MB-statistics ««, the number of parts excluding those of size £ + 1, and (3, the number of
parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

v
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two
universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For2<m</{+1, let

o (a1, 0,...,¢y) =(1,1,...,1) ifF2<m</
) (e, an,. . 0up) =(1,1,...,1,0) ifm={+1,

and
B:(ﬁ1762a"'716m): (0717"'7171)'

The MB-statistics ««, the number of parts excluding those of size £ + 1, and (3, the number of
parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

v

However, there are many more cranks besides ¢ and 3.
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7. Eichhorn, Kronholm, and Larsen showed that there are always two
universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For2<m</{+1, let

o (a1, 0,...,¢y) =(1,1,...,1) ifF2<m</
) (e, an,. . 0up) =(1,1,...,1,0) ifm={+1,

and
B:(ﬁ1762a"'716m): (0717"'7171)'

The MB-statistics ««, the number of parts excluding those of size £ + 1, and (3, the number of
parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

v

However, there are many more cranks besides ¢ and 3.
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Collecting the Data: Two Python Programs )
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Collecting the Data: Two Python Programs )
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be,
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the av and 3 cranks and did not know any others.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list. Statistics that did not satisfy
the theorem were discarded.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list. Statistics that did not satisfy
the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list. Statistics that did not satisfy
the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

Theorem 18 (Eichhorn, Kronholm, and Larsen (2022))

For any prime { > 3 and 3 < m < £+ 1, the number of inequivalent MB statistics generated by

Theorem 2.8 that witness The Interval Theorem is exactly ((5:37))!! for2<m< /¥, and (£ —1)!

for m={,{ + 1 are distinct modulo ¢, and 7y £ 0 (mod /).
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be, they only
specifically knew the v and 8 cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0,0,...,0) to see if
satisfies Theorem 16. It then incremented to (0,0,...,1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list. Statistics that did not satisfy
the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

Theorem 18 (Eichhorn, Kronholm, and Larsen (2022))

For any prime { > 3 and 3 < m < £+ 1, the number of inequivalent MB statistics generated by

Theorem 2.8 that witness The Interval Theorem is exactly ((5:37))!! for2<m< /¥, and (£ —1)!

for m={,{ + 1 are distinct modulo ¢, and 7y £ 0 (mod /).
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.
By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.
By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.
Other equivalent cranks are of the form (0,1,1,1) + (1,2,3,4) = (1,3,4,0)
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.

By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.

Other equivalent cranks are of the form (0,1,1,1) + (1,2,3,4) = (1,3,4,0)

We repeat the process of adding 3 + b(1,2,3,4) (mod 5) to find all the equivalent cranks.
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.

By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.

Other equivalent cranks are of the form (0,1,1,1) + (1,2,3,4) = (1,3,4,0)

We repeat the process of adding 3 + b(1,2,3,4) (mod 5) to find all the equivalent cranks.

For example when ¢ =5 and m = 4 there are 120 total cranks, but sorted by equivalence, there
are 6 distinct crank lists, where each list contains 20 equivalent cranks.
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Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.

By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.

Other equivalent cranks are of the form (0,1,1,1) + (1,2,3,4) = (1,3,4,0)

We repeat the process of adding 3 + b(1,2,3,4) (mod 5) to find all the equivalent cranks.

For example when ¢ =5 and m = 4 there are 120 total cranks, but sorted by equivalence, there
are 6 distinct crank lists, where each list contains 20 equivalent cranks. Let's look at a sample
readout of what the first Python program gives us.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let T = (1, 72,...,7Tm) be an MB statistic. Given a prime ¢ and a constant a # 0(mod/),
define at = (amy,ara,...,atm). Then T and a T are equivalent modulo {. Let b be any integer
and define 7+ b(1,2,...,m) = (11 + b,72 + 2b, ..., Tm + bm). Then 7 and 7 + b(1,2,..., m)
are equivalent modulo /.

For example 3=(0,1,1,1) is a crank.

By Proposition 19, 23 = (0,2,2,2) is an equivalent crank to 3.

Other equivalent cranks are of the form (0,1,1,1) + (1,2,3,4) = (1,3,4,0)
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Equivalent Cranks for £ =5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: 8 =(0,1,1,1),
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Equivalent Cranks for £ =5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: 8= (0,1,1,1), (0,2,2,2),
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Equivalent Cranks for £ =5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: 8 = (0,1,1,1), (0,2,2,2), (0,3,3,3), (0,4,4,4), (1,3,4,0), (1,4,0,1), (1,0,1,2), (1,1,2,3),
(2,0,2,4), ,3,0), (2,2,4,1), (2,3,0,2), (3,2,0,3), (3,3,1,4), (3,4,2,0), (3,0,3,1), (4,4,3,2), (4,0,4,3),
1,0).

(2,1,3,0
(4,1,0,4), (4,2,1,0
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4, 120 cranks - 6 lists of 2
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Example 20

). (1,0,4,3), (1,1,1,1), (2,0,3,1),

:2,4), (4,4,4,4), (4,0,1,2), (4,1,3,0),
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions.
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.

Definition 21
A function f(k) is a quasipolynomial if there exist d polynomials fo(k), fi(k), ..., fa—1(k) such that:
fo(k) if k=0 (mod d),
A(k) ifk=1 (mod d),
f(k) =
fo1(k) fk=d—1 (mod d),

for all k € Z. The polynomials f; are called the constituents of f, and the number of constituents d, is
the period of f.

v
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.

Definition 21
A function f(k) is a quasipolynomial if there exist d polynomials fo(k), fi(k), ..., fa—1(k) such that:
fo(k) if k=0 (mod d),
A(k) ifk=1 (mod d),
f(k) =
fo1(k) fk=d—1 (mod d),

for all k € Z. The polynomials f; are called the constituents of f, and the number of constituents d, is
the period of f.

v

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove
crank results.
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.

Definition 21
A function f(k) is a quasipolynomial if there exist d polynomials fo(k), fi(k), ..., fa—1(k) such that:
fo(k) if k=0 (mod d),
A(k) ifk=1 (mod d),
f(k) =
fo1(k) fk=d—1 (mod d),

for all k € Z. The polynomials f; are called the constituents of f, and the number of constituents d, is
the period of f.

v

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove
crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of
time.
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.

Definition 21
A function f(k) is a quasipolynomial if there exist d polynomials fo(k), fi(k), ..., fa—1(k) such that:
fo(k) if k=0 (mod d),
A(k) ifk=1 (mod d),
f(k) =
fo1(k) fk=d—1 (mod d),

for all k € Z. The polynomials f; are called the constituents of f, and the number of constituents d, is
the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove
crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of
time. Our program allows us to generate and sift through large amounts of experimental data quickly
in order to find results.
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions. These collections of formulas are called
quasipolynomials.

Definition 21
A function f(k) is a quasipolynomial if there exist d polynomials fo(k), fi(k), ..., fa—1(k) such that:
fo(k) if k=0 (mod d),
A(k) ifk=1 (mod d),
f(k) =
fo1(k) fk=d—1 (mod d),

for all k € Z. The polynomials f; are called the constituents of f, and the number of constituents d, is
the period of f.

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove
crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of
time. Our program allows us to generate and sift through large amounts of experimental data quickly
in order to find results.
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

1
q;9)a

> p(n,4)q" = (
n=0

(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
(Ga)s(l+q+a+-+¢" )1+ +a* +®+ P+ )1+ +¢°+¢°)(1+¢* +¢°)
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

1
q;9)a

> p(n,4)q" = (
n=0

(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
(Ga)s(l+q+a+-+¢" )1+ +a* +®+ P+ )1+ +¢°+¢°)(1+¢* +¢°)

_ 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8--~+6q33+5q34+3q35+2q36+q37+q38
- (1—q12)4
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

1
q;9)a

> p(n,4)q" = (
n=0

(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
(Ga)s(l+q+a+-+¢" )1+ +a* +®+ P+ )1+ +¢°+¢°)(1+¢* +¢°)

_ 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8--~+6q33+5q34+3q35+2q36+q37+q38
- (1—q12)4

k—+3
Z ( —:: )qlzk, we now rewrite it as
k>0

: 1
My
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

1
q;9)a

> p(n,4)q" = (
n=0

(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
(Ga)s(l+q+a+-+¢" )1+ +a* +®+ P+ )1+ +¢°+¢°)(1+¢* +¢°)

_ 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8--~+6q33+5q34+3q35+2q36+q37+q38
- (1—q12)4

1 k+3
m = Z ( —:: )qlzk, we now rewrite it as
k>0

With

k+3
(1+q+2q2+3q3+5q4+6q5+9q6+---+6q33+5q34+3q35+2q36+q37+q38)XZ( ; >q12k'
k>0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

1
q;9)a

> p(n,4)q" = (
n=0

(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
(Ga)s(l+q+a+-+¢" )1+ +a* +®+ P+ )1+ +¢°+¢°)(1+¢* +¢°)

_ 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8--~+6q33+5q34+3q35+2q36+q37+q38
- (1—q12)4

1 k+3
m = Z ( —:: )qlzk, we now rewrite it as
k>0

With

k+3
(14+9+29°+3¢>+5¢* +6¢°+9¢°+- - - +6¢°3 +5¢°'+3¢*+2¢%+ 4> +°%) x Y ( 3 >q12k'
k>0
Now we multiply and collect like terms to establish twelve formulas describing p(n,4)
for all n.
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1
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(I+g+¢+-+¢")(1+P+d" +¢°+¢* + )1+ > +¢°+¢°)(1 + ¢* + ¢°)
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_ 1+q+2q2+3q3+5q4+6q5+9q6+11q7+15q8--~+6q33+5q34+3q35+2q36+q37+q38
- (1—q12)4

1 k+3
m = Z ( —:: )qlzk, we now rewrite it as
k>0

With

k+3
(14+9+29°+3¢>+5¢* +6¢°+9¢°+- - - +6¢°3 +5¢°'+3¢*+2¢%+ 4> +°%) x Y ( 3 >q12k'
k>0
Now we multiply and collect like terms to establish twelve formulas describing p(n,4)
for all n.
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢" + 309" + 35¢"° + 399" + 429" + 444" + 48¢"7 + 484¢"° + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)

k+3\ 1

k>0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
k+3
> Z < 3 >q12k
k>0
Multiply and collect like terms:
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

> p(12k +5,4)¢"*?
k=0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

> p(12k+5,4)9" = (64"
k=0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

> p(12k +5,4)q* = (64" + 484"
k=0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

> p(12k+5,4)* = (6¢° + 489" +18¢”)
k=0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0

=S (o KF3) was(KE2) was( KT ) g2
2 3 3 3
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0

= Z <6 <k —:: 3) +48 (k —?i_ 2) +18 <k —:: 1)) q"***®. Hence,
k>0

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

D P12k +5,4)9 = (647 + 4847+ 1847) x 3 (k : 3> -

3
k=0 k>0
:Z 6 k+3 +48 k+2 +18 k+1 q"***®. Hence,
3 3 3
k>0
p(12k +5,4) =
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0

= Z <6 <k+3> + 48 <k+2> + 18 <k+ 1)) q12k+5. Hence,
3 3 3
k>0
p(12k+5,4):6<k§3> +48<k—3’—2) +18<k—3’—1>
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0

= Z <6 <k —:: 3) +48 (k —?i_ 2) +18 <k —:: 1)) q"***®. Hence,
k>0

p(12k+5,4):6<k§3) +48<k’3L2) +18<k—3|—1> = 12k> 4+ 30k> 4 24k + 6.
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
> p(n4)q" = (1+q+2q9°+3¢° +5q¢" +6¢° +9¢° +11q" + 15¢° + 18¢° + 23¢"°
n=0
+27¢™ 4 309" 4 35¢" + 39¢™ + 42¢"° + 444" + 48¢"" + 48¢*® + 50¢"°
+48q20 —|—48q21 +44q22 +42q23 +39q24 +35q25 +30q26 +27q27 +23q28
+18q29+15q30+11q31+9q32+6q33+5q34+3q35+2q36+q37+q38)
y Z <k ;- 3> 7%
k>0
Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 57

- k
D P12k +5,4)9 = (647 + 4847+ 1847) x 3 ( ;3> -
k=0 k>0

= Z <6 <k —:: 3) +48 (k —?i_ 2) +18 <k —:: 1)) q"***®. Hence,
k>0

p(12k+5,4):6<k§3) +48<k’3L2) +18<k—3|—1> = 12k> 4+ 30k> 4 24k + 6.
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Twelve Formulas for p(n,4)

This process allows us to describe p(n,4) with twelve formulas:
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Twelve Formulas for p(n,4)

This process allows us to describe p(n,4) with twelve formulas:

p(12k,4) = 1("13) +30(*%) +39(*3") +2(5) = 12k> + 15Kk% + 6k + 1
p(12k+1,4) =1("3%) +35("3?) +35(" 1) +1(§) = 12k*+18Kk* + 8k +1
p(12k +2,4) =2(*3) +39(*F?) +30("3") +1(5) = 123 + 21K + 12k + 2
p(12k +3,4)  =3(*1%) +42(}?) +27("1h) = 12k +24k* + 15k +3
p(12k +4,4)  =5("1%) +44(3?) +23("1H) = 12k> 4 27TKk* + 20k +5
p(12k +5,4) = 6(*1%) +48("3) +18("11) = 12k> +30k* + 24k + 6
p(12k +6,4) = 9( %) +48(*}%) +15("11) = 12k*+33k* + 30k +9
p(12k +7,4) =11("%3) +50(*1%) + 11(*}Y) = 12k +36k® + 35k + 11
p(12k +8,4) = 15(*1%) +48("3) +9("1h) = 12k* 4+39Kk* + 42k + 15
p(12k +9,4) = 18(*1%) +48("1?) +6("1h) = 12k + 42k% + 48k + 18

p(12k +10,4) = 23(*1%) +44(3?) +5("1h) = 12k®+ 45k + 56k + 23
p(12k +11,4) = 27("%3) +42(*3?) +3(*1h) = 12k® + 48k% + 63k + 27
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Twelve Formulas for p(n,4)

This process allows us to describe p(n,4) with twelve formulas:

p(12k,4) = 1("13) +30(*%) +39(*3") +2(5) = 12k> + 15Kk% + 6k + 1
p(12k+1,4) =1("3%) +35("3?) +35(" 1) +1(§) = 12k*+18Kk* + 8k +1
p(12k +2,4) =2(*3) +39(*F?) +30("3") +1(5) = 123 + 21K + 12k + 2
p(12k +3,4)  =3(*1%) +42(}?) +27("1h) = 12k +24k* + 15k +3
p(12k +4,4)  =5("1%) +44(3?) +23("1H) = 12k> 4 27TKk* + 20k +5
p(12k +5,4) = 6(*1%) +48("3) +18("11) = 12k> +30k* + 24k + 6
p(12k +6,4) = 9( %) +48(*}%) +15("11) = 12k*+33k* + 30k +9
p(12k +7,4) =11("%3) +50(*1%) + 11(*}Y) = 12k +36k® + 35k + 11
p(12k +8,4) = 15(*1%) +48("3) +9("1h) = 12k* 4+39Kk* + 42k + 15
p(12k +9,4) = 18(*1%) +48("1?) +6("1h) = 12k + 42k% + 48k + 18

p(12k +10,4) = 23(*1%) +44(3?) +5("1h) = 12k®+ 45k + 56k + 23
p(12k +11,4) = 27("%3) +42(*3?) +3(*1h) = 12k® + 48k% + 63k + 27
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

flz.0) = Z Z Me(r,m4)'a" = (1—-9)(1—2¢%)(1 - 2z43)(1 — zq*)

n=0r=—o0

(30)
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

a0 =2, 2, Malrn 8" = o G )@ o)

n=0r=—o0

35 ) 17 ) 11 ) 8 )
Sa % D) < Y (2%) x 3 (24
_ =0 i=0 i=0 i=0

(1— q3)(1 — 215¢36)(1 — 212¢36)(1 — 29¢30)

(30)
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

o= Z;;m Melrm 28" = i 21— zd)(1 — 24%) (30)
35 17 ) 11 s 8
' (zg?)" x (zg%)' x (zg*)
T R ) A, ) + B(, 0) + 22C(*, ) -

(1— ¢3)(1 — 255¢36)(1 — 212¢36)(1 — 29¢30) (1 — ¢30)(1 — z15¢36)(1 — 212¢36)(1 — z9¢36)
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

oo oo . 1
f2a) =2 2 Malrn )" = (o i ay z)a 2" (30)
35 17 ) 11 s 8
' (zg?)" x (zg%)' x (zg*)
T R ) A, q) + B(2,0) + 2C(,q) -

(1— ¢3)(1 — 255¢36)(1 — 212¢36)(1 — 29¢30) (1 — ¢30)(1 — z15¢36)(1 — 212¢36)(1 — z9¢36)

Set z to be a 3™ root of unity: z = e2™/3 = (.
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

o= Z;;m Melrm 28" = i 21— zd)(1 — 24%) (30)
35 17 ) 11 s 8
' (zg?)" x (zg%)' x (zg*)
T R ) A, ) + B(, 0) + 22C(*, ) -

(1— ¢3)(1 — 255¢36)(1 — 212¢36)(1 — 29¢30) (1 — ¢30)(1 — z15¢36)(1 — 212¢36)(1 — z9¢36)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three

generating functions, one for each crank class.
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

oo oo . 1
flea) = ;;m Melrm 28" = i 21— zd)(1 — 24%) (30)
11 s 8
z ’ zg%)’ zq*
Zq X Z( 7°)" x Z( q°)' X Z( q") A, q) + 2B(z%, q) + 22C(23, q) -

- q36)(1 — 215¢36)(1 — 212q36)(1 —29¢%) (1 — q%)(1 — 25¢%6)(1 — z12¢3%)(1 — 29¢%)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three

generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

2 o)
FGa) = 305 Ml m a)crqr = ALDTELD LD _ (41 )4 o1, q)+ x> (1)

— g36)4
n=0r=0 (1-4a%) k=0
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

M2 =2 3, Melrin 2" = (o o ai)(d — 2" (0
11 s 8
z ’ zq°)’ zq*
Zq X Z( 7°)" x Z( q°)' X Z( q") A, q) + 2B(z%, q) + 22C(23, q) -

- q36)(1 — 215¢36)(1 — 212q36)(1 —29¢%) (1 — q%)(1 — 25¢%6)(1 — z12¢3%)(1 — 29¢%)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three

generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

2 o)
FGa) = 305 Ml m a)crqr = ALDTELD LD _ (41 )4 o1, q)+ x> (1)

— g36)4
n=0r=0 (1-4a%) k=0

A(q)xi(k:3) 36k ZMﬁ (0,3, n, 4)q"
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

M2 =2 3, Melrin 2" = (o o ai)(d — 2" (0
11 s 8
z ’ zq°)’ zq*
Zq X Z( 7°)" x Z( q°)' X Z( q") A, q) + 2B(z%, q) + 22C(23, q) -

- q36)(1 — 215¢36)(1 — 212q36)(1 —29¢%) (1 — q%)(1 — 25¢%6)(1 — z12¢3%)(1 — 29¢%)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three

generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

2 o0
f(C.q) = ZZM@ r,3,n4)C"q" = A(l’qHC(IB(_l’qZZ;C ct.q) = (A(L,9) +¢B(1,9) +¢*C(1,9)) x> (“3) 30k
n=0 r=0 k=0
A(q)xi(k:3) 5 _ 3 M3 (0,3, n, 4)q"
k=0 n= 0
cB@) x> (1) CZMﬁ13”4)

x
Il
o
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

() =0 2, Molon s = ()1 — zad — ) 0

n=0r=—o0

11 8
24) N 2
Zq x Z( a) Z( 7 Z( “ A(Z%,q) + 2B(2*, q) + 2°C(2%,q)

- q36)(1 — 215¢36)(1 — 212q36)(1 —29¢%) (1 — q%)(1 — 25¢%6)(1 — z12¢3%)(1 — 29¢%)

(31)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

2 oo
f(C.q) = ZZM@ r,3,n4)C"q" = A(l’qHC(IB(_l’qZZ;C ct.q) = (A(L,9) +¢B(1,9) +¢*C(1,9)) x> (“3) 30k
n=0 r=0 k=0
A()x§<k+3) 5 _ 3 M3 (0,3, n, 4)q"
k=0 n= 0

]38

(k
(k
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(B(q) x g% = cZ Mg(1,3,n,4)q"
n=0

e
N @Y Ma(2,3,n,4)q"
n=0

x
Il
o

+
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Quasipolynomial Python Program: { =3, m=4, 3= (0,1,1,1)

e} oo 1

() =0 2, Molon s = ()1 — zad — ) 0

n=0r=—o0

11 8
24) N 2
Zq x Z( a) Z( 7 Z( “ A(Z%,q) + 2B(2*, q) + 2°C(2%,q)

- q36)(1 — 215¢36)(1 — 212q36)(1 —29¢%) (1 — q%)(1 — 25¢%6)(1 — z12¢3%)(1 — 29¢%)

(31)

Set z to be a 3 root of unity: z = 2™/3 = (. This allows us to complete a trisection in z of f(z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

2 oo
f(C.q) = ZZM@ r,3,n4)C"q" = A(l’qHC(IB(_l’qZZ;C ct.q) = (A(L,9) +¢B(1,9) +¢*C(1,9)) x> (“3) 30k
n=0 r=0 k=0
A()x§<k+3) 5 _ 3 M3 (0,3, n, 4)q"
k=0 n= 0

]38

(k
(k
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(B(q) x g% = cZ Mg(1,3,n,4)q"
n=0

e
N @Y Ma(2,3,n,4)q"
n=0

x
Il
o

+
3
+

2

C

¢C(q) x 3

8

»
Ii
o



Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Let's take a look at constituents from the second Python program.
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Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Let's take a look at constituents from the second Python program. They are organized
by n’ and n partner pairs.
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Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Let's take a look at constituents from the second Python program. They are organized
by n’ and n partner pairs. Recall

(32)

n' = tlem(m)(k +1) — r — <m2; m)

n={lem(m)k +r. (33)
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Constituents of Quasipolynomials

(=3, m=4 6=(0,1,1,1)

Mpg(0,3,36k,4) = 108k> + 45k% + 6k + 1 Mpg(0, 3,36k + 26,4) = 108k> + 279k + 240k + 68
Mpg(1,3,36k,4) = 108k> + 45k% + 6k + 0 Mg(1,3,36k + 26,4) = 108k> + 279k2 + 240k + 69
Mg(2,3,36k,4) = 108k> + 45k + 6k + 0 Mg(2,3,36k + 26,4) = 108k> + 279k2 + 240k + 69
Mg(0,3,36k + 1,4) = 108k> + 54kZ + 8k + 1 Mg(0,3,36k + 25,4) = 108k> + 270k? + 224k + 61
Mg(1,3,36k + 1,4) = 108k3 + 54k? + 8k + 0 | Mg(1,3,36k + 25,4) = 108k> + 270k> + 224k + 62
Mg(2,3,36k + 1,4) = 108k® + 54k> + 8k + 0 Mg(2,3,36k + 25,4) = 108k3 + 270k? + 224k + 62
Mg(0,3,36k + 2,4) = 108k3 + 63k% + 12k + 1 | Mg(0,3,36k + 24,4) = 108k> + 261k> + 210k + 56
Mg(1,3,36k +2,4) = 108k3 + 63k% + 12k +1 | Mg(1,3,36k + 24,4) = 108k> + 261k> + 210k + 57
Mg(2,3,36k +2,4) = 108k3 + 63k% + 12k + 0 | Mg(2,3,36k + 24,4) = 108k> + 261k? + 210k + 56
Mg(0,3,36k + 3,4) = 108k> + 72k* + 16k + 1 | Mg(0, 3,36k + 23,4) = 108k°> + 252k* + 195k + 50
Mpg(1,3,36k + 3,4) = 108k> + 72k> + 15k +2 | Mg(1,3,36k + 23,4) = 108k> + 252k> + 195k + 51
Mg(2,3,36k + 3,4) = 108k3 + 72k% + 15k + 0 | Mg(2,3,36k + 23,4) = 108k> + 252k> + 195k + 49
Mg(0,3,36k + 4,4) = 108k> + 81k + 20k + 1 | Mg(0,3,36k + 22,4) = 108k> + 243k* + 182k + 46
Mg(1,3,36k + 4,4) = 108k3 + 81k% + 20k + 3 | Mg(L,3,36k + 22,4) = 108k> + 243k> + 182k + 46
(2,3 (2,3 )

,36k +22,4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials

(=3, m=4 6=(0,1,1,1)

Mpg(0,3,36k,4) = 108k> + 45k% + 6k + 1 Mpg(0, 3,36k + 26,4) = 108k> + 279k + 240k + 68
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Mg(0,3,36k + 1,4) = 108k> + 54kZ + 8k + 1 Mg(0,3,36k + 25,4) = 108k> + 270k? + 224k + 61
Mg(1,3,36k + 1,4) = 108k3 + 54k? + 8k + 0 | Mg(1,3,36k + 25,4) = 108k> + 270k> + 224k + 62
Mg(2,3,36k + 1,4) = 108k® + 54k> + 8k + 0 Mg(2,3,36k + 25,4) = 108k3 + 270k? + 224k + 62
Mg(0,3,36k + 2,4) = 108k3 + 63k% + 12k + 1 | Mg(0,3,36k + 24,4) = 108k> + 261k> + 210k + 56
Mg(1,3,36k +2,4) = 108k3 + 63k% + 12k +1 | Mg(1,3,36k + 24,4) = 108k> + 261k> + 210k + 57
Mg(2,3,36k +2,4) = 108k3 + 63k% + 12k + 0 | Mg(2,3,36k + 24,4) = 108k> + 261k? + 210k + 56
Mg(0,3,36k + 3,4) = 108k> + 72k* + 16k + 1 | Mg(0, 3,36k + 23,4) = 108k°> + 252k* + 195k + 50
Mpg(1,3,36k + 3,4) = 108k> + 72k> + 15k +2 | Mg(1,3,36k + 23,4) = 108k> + 252k> + 195k + 51
Mg(2,3,36k + 3,4) = 108k3 + 72k% + 15k + 0 | Mg(2,3,36k + 23,4) = 108k> + 252k> + 195k + 49
Mg(0,3,36k + 4,4) = 108k> + 81k + 20k + 1 | Mg(0,3,36k + 22,4) = 108k> + 243k* + 182k + 46
Mg(1,3,36k + 4,4) = 108k3 + 81k% + 20k + 3 | Mg(L,3,36k + 22,4) = 108k> + 243k> + 182k + 46
(2,3 (2,3 )

,36k +22,4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials:

(=3, m=4 06=(011,1)

Mg(0,3,36k + 5,4) = 108k® + 90k + 24k +1 | Mg(0,3,36k + 21,4) = 108k> + 234k> + 168k + 41
Mpg(1,3,36k + 5,4) = 108k> + 90k? + 24k +3 | Mg(L,3,36k + 21,4) = 108k> + 234k2 + 168k + 40
Mg(2,3,36k +5,4) = 108k3 + 90k? 4 24k + 2 Mg(2,3,36k + 21,4) = 108k> + 234k2 + 168k + 39
Mg(0,3,36k + 6,4) = 108k> + 99kZ + 30k +2 | Mg(0,3,36k + 20,4) = 108k> + 225k? + 156k + 37
Mg(1,3,36k + 6,4) = 108k3 + 99k% + 30k +3 | Mg(1,3,36k + 20,4) = 108k + 225k> + 156k + 35
Mg(2,3,36k +6,4) = 108k3 + 99k> + 30k +4 | Mg(2,3,36k + 20,4) = 108k + 225k> + 156k + 36
Mg(0,3,36k + 7,4) = 108k> + 108k? + 35k +3 | Mg(0,3,36k + 19,4) = 108k> + 216k> + 143k + 32
Mg(1,3,36k + 7,4) = 108k> + 108k> + 35k +3 | Mg(1,3,36k + 19,4) = 108k> + 216k> + 143k + 30
Mg(2,3,36k +7,4) = 108k3 + 108k2 + 35k + 5 | Mg(2,3,36k + 19,4) = 108k3 + 216k> + 143k + 32
Mg(0,3,36k + 8,4) = 108k> + 117k> + 42k+5 | Mg(0, 3,36k + 18,4) = 108k> + 207k? + 132k+28
Mpg(1,3,36k + 8,4) = 108k> + 117k + 42k+4 | Mg(1,3,36k + 18,4) = 108k> + 207k? + 132k+27
Mpg(2,3,36k + 8,4) = 108k3 + 117k? + 42k+6 | Mg(2,3,36k + 18,4) = 108k> + 207k2 + 132k+29
Mg(0,3,36k +9,4) = 108k3 + 126k> + 48k + 7 | Mg(0,3,36k + 17,4) = 108k> + 198k? + 120k + 23
Mg(1,3,36k +9,4) = 108k3 + 126k> + 48k + 5 | Mg(1,3,36k + 17,4) = 108k> + 198k? + 120k + 24
Mg ( (2,3 )

1
2,3,36k +9,4) = 108k3 + 126k? + 48k + 6

,3,36k + 17,4) = 108k3 4 198k2 + 120k + 25
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Constituents of Quasipolynomials:

(=3, m=4 06=(011,1)

Mg(0,3,36k + 5,4) = 108k® + 90k + 24k +1 | Mg(0,3,36k + 21,4) = 108k> + 234k> + 168k + 41
Mpg(1,3,36k + 5,4) = 108k> + 90k? + 24k +3 | Mg(L,3,36k + 21,4) = 108k> + 234k2 + 168k + 40
Mg(2,3,36k +5,4) = 108k3 + 90k? 4 24k + 2 Mg(2,3,36k + 21,4) = 108k> + 234k2 + 168k + 39
Mg(0,3,36k + 6,4) = 108k> + 99kZ + 30k +2 | Mg(0,3,36k + 20,4) = 108k> + 225k? + 156k + 37
Mg(1,3,36k + 6,4) = 108k3 + 99k% + 30k +3 | Mg(1,3,36k + 20,4) = 108k + 225k> + 156k + 35
Mg(2,3,36k +6,4) = 108k3 + 99k> + 30k +4 | Mg(2,3,36k + 20,4) = 108k + 225k> + 156k + 36
Mg(0,3,36k + 7,4) = 108k> + 108k? + 35k +3 | Mg(0,3,36k + 19,4) = 108k> + 216k> + 143k + 32
Mg(1,3,36k + 7,4) = 108k> + 108k> + 35k +3 | Mg(1,3,36k + 19,4) = 108k> + 216k> + 143k + 30
Mg(2,3,36k +7,4) = 108k3 + 108k2 + 35k + 5 | Mg(2,3,36k + 19,4) = 108k3 + 216k> + 143k + 32
Mg(0,3,36k + 8,4) = 108k> + 117k> + 42k+5 | Mg(0, 3,36k + 18,4) = 108k> + 207k? + 132k+28
Mpg(1,3,36k + 8,4) = 108k> + 117k + 42k+4 | Mg(1,3,36k + 18,4) = 108k> + 207k? + 132k+27
Mpg(2,3,36k + 8,4) = 108k3 + 117k? + 42k+6 | Mg(2,3,36k + 18,4) = 108k> + 207k2 + 132k+29
Mg(0,3,36k +9,4) = 108k3 + 126k> + 48k + 7 | Mg(0,3,36k + 17,4) = 108k> + 198k? + 120k + 23
Mg(1,3,36k +9,4) = 108k3 + 126k> + 48k + 5 | Mg(1,3,36k + 17,4) = 108k> + 198k? + 120k + 24
Mg ( (2,3 )

1
2,3,36k +9,4) = 108k3 + 126k? + 48k + 6

,3,36k + 17,4) = 108k3 4 198k2 + 120k + 25
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Mg(0, 3,36k + 10,4) = 108k> + 135k + 56k + 9
Mg(1, 3,36k + 10,4) = 108k> + 135k% + 56k + 7
Mpg(2,3,36k + 10,4) = 108k 4 135k + 56k + 7

Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Mg(0, 3,36k + 16,4) = 108k> + 189k2 + 110k + 20
Mg(1,3,36k + 16,4) = 108k + 189k> + 110k + 22
Mg(2,3,36k + 16,4) = 108k% + 189k? + 110k + 22

Mp(0, 3,36k + 11,4) = 108k3 + 144k% + 63k + 10
Mg(1,3,36k + 11,4) = 108k3 4 144k + 63k + 9
Mp(2,3,36k + 11,4) = 108k3 4 144k> + 63k + 8

Mg(0,3,36k + 15,4) = 108k> + 180k% + 99k + 17
Mpg(1,3,36k + 15,4) = 108k> + 180k + 99k + 19
Mg(2,3,36k + 15,4) = 108k3 + 180k> + 99k + 18

Mg(0,3,36k + 12,4) = 108k3 + 153k% + 72k + 12
Mpg(1,3,36k + 12,4) = 108k® + 153k? + 72k + 12
Mp(2,3,36k + 12,4) = 108k® + 153k? + 72k + 10

Mg(0,3,36k + 14,4) = 108k® + 171k% + 90k + 15
Mg(1,3,36k + 14,4) = 108k® + 171k? + 90k + 17
Mg(2,3,36k + 14,4) = 108k® + 171k? 4 90k + 15

Ms(0,3, 36k + 13,4) = 108k> + 162k* + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k + 80k + 14
Mg(2,3,36k + 13,4) = 108k> + 162k + 80k + 12

Mg(0,3,36k + 13,4) = 108k> + 162k> + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k + 80k + 14
Mg(2,3,36k + 13,4) = 108k® + 162k + 80k + 12
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Mg(0, 3,36k + 10,4) = 108k> + 135k + 56k + 9
Mg(1, 3,36k + 10,4) = 108k> + 135k% + 56k + 7
Mpg(2,3,36k + 10,4) = 108k 4 135k + 56k + 7

Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Mg(0, 3,36k + 16,4) = 108k> + 189k2 + 110k + 20
Mg(1,3,36k + 16,4) = 108k + 189k> + 110k + 22
Mg(2,3,36k + 16,4) = 108k% + 189k? + 110k + 22

Mp(0, 3,36k + 11,4) = 108k3 + 144k% + 63k + 10
Mg(1,3,36k + 11,4) = 108k3 4 144k + 63k + 9
Mp(2,3,36k + 11,4) = 108k3 4 144k> + 63k + 8

Mg(0,3,36k + 15,4) = 108k> + 180k% + 99k + 17
Mpg(1,3,36k + 15,4) = 108k> + 180k + 99k + 19
Mg(2,3,36k + 15,4) = 108k3 + 180k> + 99k + 18

Mg(0,3,36k + 12,4) = 108k3 + 153k% + 72k + 12
Mpg(1,3,36k + 12,4) = 108k® + 153k? + 72k + 12
Mp(2,3,36k + 12,4) = 108k® + 153k? + 72k + 10

Mg(0,3,36k + 14,4) = 108k® + 171k% + 90k + 15
Mg(1,3,36k + 14,4) = 108k® + 171k? + 90k + 17
Mg(2,3,36k + 14,4) = 108k® + 171k? 4 90k + 15

Ms(0,3, 36k + 13,4) = 108k> + 162k* + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k + 80k + 14
Mg(2,3,36k + 13,4) = 108k> + 162k + 80k + 12

Mg(0,3,36k + 13,4) = 108k> + 162k> + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k + 80k + 14
Mg(2,3,36k + 13,4) = 108k® + 162k + 80k + 12
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Constituents of Quasipolynomials: ¢

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 32,4) = 108k> + 333k? + 342k + 117
Mg(1,3,36k + 32,4) = 108k> + 333k + 342k + 117
Mpg(2,3,36k + 32,4) = 108k3 + 333k2 + 342k + 117

M3(0,3, 36k + 30,4) = 108k> + 315k% + 306k + 99
Mg(1,3, 36k + 30,4) = 108k + 315k + 306k + 99
Mg(2,3,36k + 30,4) = 108k3 + 315k2 + 306k + 99

Mg(0,3,36k + 33,4) = 108k> + 342k? + 360k + 126
Mpg(1,3,36k + 33,4) = 108k3 + 342k? + 360k + 126
Mpg(2,3,36k + 33,4) = 108k3 + 342k? + 360k + 126

Mg(0,3,36k + 29,4) = 108k3 + 306k> + 288k + 90
Mpg(1,3,36k + 29,4) = 108k3 + 306k + 288k + 90
Mpg(2,3,36k + 29,4) = 108k3 + 306k> + 288k + 90

Mg(0, 3,36k + 34,4) = 108k3 + 351k> + 380k + 137
Mpg(1,3,36k + 34,4) = 108k3 + 351k + 380k + 137
Mg(2,3,36k + 34,4) = 108k3 + 351k2 + 380k + 137

Mg(0, 3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mpg(1,3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mg(2,3,36k + 28,4) = 108k> + 297k? + 272k + 83

Mg(0,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(1,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(2,3,36k + 35,4) = 108k® + 360k + 399k + 147

Mg(0,3,36k + 27,4) = 108k> + 288k> + 255k + 75
Mg(1,3,36k + 27,4) = 108k> + 288k? + 255k + 75
Mg(2,3,36k + 27,4) = 108k> + 288k2 + 255k + 75
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Constituents of Quasipolynomials: ¢

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 32,4) = 108k> + 333k? + 342k + 117
Mg(1,3,36k + 32,4) = 108k> + 333k + 342k + 117
Mpg(2,3,36k + 32,4) = 108k3 + 333k2 + 342k + 117

M3(0,3, 36k + 30,4) = 108k> + 315k% + 306k + 99
Mg(1,3, 36k + 30,4) = 108k + 315k + 306k + 99
Mg(2,3,36k + 30,4) = 108k3 + 315k2 + 306k + 99

Mg(0,3,36k + 33,4) = 108k> + 342k? + 360k + 126
Mpg(1,3,36k + 33,4) = 108k3 + 342k? + 360k + 126
Mpg(2,3,36k + 33,4) = 108k3 + 342k? + 360k + 126

Mg(0,3,36k + 29,4) = 108k3 + 306k> + 288k + 90
Mpg(1,3,36k + 29,4) = 108k3 + 306k + 288k + 90
Mpg(2,3,36k + 29,4) = 108k3 + 306k> + 288k + 90

Mg(0, 3,36k + 34,4) = 108k3 + 351k> + 380k + 137
Mpg(1,3,36k + 34,4) = 108k3 + 351k + 380k + 137
Mg(2,3,36k + 34,4) = 108k3 + 351k2 + 380k + 137

Mg(0, 3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mpg(1,3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mg(2,3,36k + 28,4) = 108k> + 297k? + 272k + 83

Mg(0,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(1,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(2,3,36k + 35,4) = 108k® + 360k + 399k + 147

Mg(0,3,36k + 27,4) = 108k> + 288k> + 255k + 75
Mg(1,3,36k + 27,4) = 108k> + 288k? + 255k + 75
Mg(2,3,36k + 27,4) = 108k> + 288k2 + 255k + 75
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Crank Class Behavior |
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Recall: A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) = 84 + p(8,4)=15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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Recall: A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) =84 + p(8,4) =15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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Recall: A Continuation of p(n,4) (mod 3)

p(26,4) = 206 + p(0,4) =1 — 207 =0 (mod 3)
p(25,4) = 185 + p(1,4)=1 =186 =0 (mod 3)
p(24,4) = 169 + p(2,4)=2 =171 =0 (mod 3)
p(23,4) = 150 + p(3,4)=3 =153 =0 (mod 3)
p(22,4) = 136 + p(4,4)=5 =141 =0 (mod 3)
p(21,4) =120 + p(5,4)=6 =126 =0 (mod 3)
p(20,4) = 108 + p(6,4)=9 =117=0 (mod 3)
p(19,4) = 94 + p(7,4) =11 =105 =0 (mod 3)
p(18,4) =84 + p(8,4) =15 =99 =0 (mod 3)
p(17,4) = 72 + p(9,4) =18 —90=0 (mod 3)
p(16,4) = 64 + p(10,4) =23 =87 =0 (mod 3)
p(15,4) = 54 + p(11,4) =27 —81=0 (mod 3)
p(14,4) = 47 + p(12,4) =34 =81 =0 (mod 3)
p(13,4) =39 =39 =0 (mod 3)
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,18,4) = 28 + Mgs(0,3,8,4) =5

4
2845 =33
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,18,4) = 28 + Ms(0,3,8,4) =5
i3
28 +5=33
Mg(1,3,18,4) = 27 + Ms(2,3,8,4) =6
U
27 +6 =33
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,18,4) = 28 + Ms(0,3,8,4) =5
i3
28 +5=33
Mg(1,3,18,4) = 27 + Ms(2,3,8,4) =6
U
27 +6 =33
Mg(2,3,18,4) = 29 + Ms(1,3,8,4) = 4
U
20 +4 =33
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“Fixed” and “Flipped” Crank Classes

p(18,4) = 84 and p(8,4) = 15 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,18,4) = 28 + Ms(0,3,8,4) =5
i3
28 +5=33
Mg(1,3,18,4) = 27 + Ms(2,3,8,4) =6
U
27 +6 =33
Mg(2,3,18,4) = 29 + Ms(1,3,8,4) = 4
U
20 +4 =33
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Another “Fixed" and “Flipped” Crank Class Example

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
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Another “Fixed" and “Flipped” Crank Class Example

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.
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Another “Fixed" and “Flipped” Crank Class Example

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,19,4) = 32 + Ms(0,3,7,4) =3

4
324+3=35
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Another “Fixed" and “Flipped” Crank Class Example

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mg(0,3,19,4) = 32 + Mg(0,3,7,4) =3
i3
324+3=35
Mp(1,3,19,4) = 30 + Ms(2,3,7,4) =5
U
30+5=35
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Another “Fixed" and “Flipped” Crank Class Example

p(19,4) = 94 and p(7,4) = 11 organize into 3 unbalanced crank classes under 3 = (0,1,1,1).
Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ¢) under the MB crank 3.

Mp(0,3,19,4) = 32 + Ms(0,3,7,4) =3
i3
324+3=35
Mp(1,3,19,4) = 30 + Ms(2,3,7,4) =5
U
30+5=235
Mga(2,3,19,4) = 32 + Ms(1,3,7,4) =3
U
32+3=35
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Recall that Mg(r, ¢, n, m) is the number of partitions of n into parts not larger than m whose
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Mp(0,3,19,4) = 32 + Ms(0,3,7,4) =3
i3
324+3=35
Mp(1,3,19,4) = 30 + Ms(2,3,7,4) =5
U
30+5=235
Mga(2,3,19,4) = 32 + Ms(1,3,7,4) =3
U
32+3=35

The “fixing" and “flipping” of the crank classes is consistent over the entire period.
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The “fixing” and “flipping” of the crank classes is consistent over the entire period. We
observed this for all cases run by the second Python program.
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Dissertation Conjecture

This brings us to our dissertation conjecture.
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Dissertation Conjecture

This brings us to our dissertation conjecture.
Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem.
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Dissertation Conjecture

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem. Then T also witnesses the congruences of the Sum and
Difference Theorem in the following way:
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Dissertation Conjecture

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem. Then T also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i € {0,1,...,¢— 1},

Mo(i, 0,1l m) & My(—i — o(7), 6, n, m) = 2L Z p(n. m) (34)
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Dissertation Conjecture

This brings us to our dissertation conjecture.
Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem. Then T also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i € {0,1,...,¢— 1},

p(n’, m) + p(n, m)
l

M (i, €, n',m) & Mo(—i — o(7),4,n,m) =

Definition 23
Let 7 = (71, 72,...,Tm) be an MB statistic with each component 0 < 7, < £ — 1.
We define a function ZT’” (mod £). (35)
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
7(0,1,1) =2 (mod 3)
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
7(0,1,1) =2 (mod 3)
0(0,2,2) =1 (mod 3).
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
#(0,1,1) = 2 (mod 3)
0(0,2,2) =1 (mod 3).

We see these two equivalent cranks differ from each other in their o-value and we
learned this is what was important to the crank class behavior.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
#(0,1,1) = 2 (mod 3)
0(0,2,2) =1 (mod 3).

We see these two equivalent cranks differ from each other in their o-value and we
learned this is what was important to the crank class behavior.

Given prime ¢, and a MB crank T, we have observed empirically that (‘5%)o(7) is the
“fixed” crank class.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
At first we thought equivalency was very important to our work. However, we soon
discovered o(7) was affecting our crank classes. For example,

Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
#(0,1,1) = 2 (mod 3)
0(0,2,2) =1 (mod 3).

We see these two equivalent cranks differ from each other in their g-value and we
learned this is what was important to the crank class behavior.

Given prime ¢, and a MB crank T, we have observed empirically that (‘5%)o(7) is the
“fixed” crank class. In other words, the crank classes have a mirror symmetry around
the (552)a(7)t crank class.
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Crucial Information - Definition o(7)

Recall the first Python program found distinct cranks and listed them by equivalency.
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Example 24

Choose crank 8 = (0,1,1) and equivalent crank 7 = (0, 2,2)
#(0,1,1) = 2 (mod 3)
0(0,2,2) =1 (mod 3).

We see these two equivalent cranks differ from each other in their g-value and we
learned this is what was important to the crank class behavior.

Given prime ¢, and a MB crank T, we have observed empirically that (‘5%)o(7) is the
“fixed” crank class. In other words, the crank classes have a mirror symmetry around
the (552)a(7)t crank class.
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Dissertation Conjecture

Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem. Then T also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i € {0,1,...,¢ — 1},

MGGy, m) £ My(—i = o(7), £, m,m) = 22 ; p(n, m) (36)
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Dissertation Conjecture

Conjecture 22 (G., Kronholm)

Let ¢ and m be given, and suppose T is any MB crank witnessing the congruences of
the Interval Theorem. Then T also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i € {0,1,...,¢ — 1},

p(r/,m) + p(n, m)
{

M (i, €, n',m) + Mp(—i — o(7),4,n,m) = (36)

Let's look at our tables of constituents again, this time paying attention to how they
fix and flip.
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Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Mg(0,3,36k,4) = 108k> + 45k + 6k + 1 Mg(0,3,36k + 26,4) = 108k3 + 279k2 + 240k + 68
Mg(1,3,36k,4) = 108k> + 45k + 6k + 0 Mg(1,3,36k + 26,4) = 108k3 + 279k? + 240k + 69
Mg(2,3,36k,4) = 108k> + 45k> 4+ 6k + 0 Mp(2,3,36k + 26,4) = 108k> + 279k + 240k + 69
Mg(0,3,36k + 1,4) = 108k> + 54k% + 8k + 1 Mg(0, 3,36k + 25,4) = 108k> + 270k? + 224k + 61
Mg(1,3,36k + 1,4) = 108k3 + 54k% + 8k +0 | Mg(1,3,36k + 25,4) = 108k> + 270k> + 224k + 62
Mg(2,3,36k + 1,4) = 108k> + 54k + 8k + 0 Mp(2,3,36k + 25,4) = 108k3 + 270k? + 224k + 62
Mg(0,3,36k + 2,4) = 108k> + 63k*> + 12k + 1 | Mg(0, 3,36k + 24,4) = 108k> + 261k> + 210k + 56
Mpg(1,3,36k + 2,4) = 108k> + 63k> + 12k + 1 | Mg(1,3,36k + 24,4) = 108k> + 261k> + 210k + 57
Mg(2,3,36k +2,4) = 108k> + 63k% + 12k + 0 | Mg(2,3,36k + 24,4) = 108k> + 261k> + 210k + 56
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Mg(1,3,36k +2,4) = 108k3 + 63k% + 12k + 1 | Mg(1,3,36k + 24,4) = 108k> + 261k> 4 210k + 57
Mg(2,3,36k +2,4) = 108k3 + 63k + 12k + 0 | Mg(2,3,36k + 24,4) = 108k> + 261k> 4 210k + 56
Mg(0,3,36k + 3,4) = 108k> + 72k? + 15k + 1 | Mg(0, 3,36k + 23,4) = 108k> + 252k + 195k + 50
Mg(1,3,36k + 3,4) = 108k3 + 72k% + 15k + 2 | Mg(1,3,36k + 23,4) = 108k> + 252k> + 195k + 51
Mg(2,3,36k + 3,4) = 108k3 + 72k? + 15k + 0 | Mg(2,3,36k + 23,4) = 108k> + 252k + 195k + 49
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Constituents of Quasipolynomials

(=3, m=4 6=(0,1,1,1)

Mpg(0,3,36k,4) = 108k> + 45k% + 6k + 1 Mpg(0, 3,36k + 26,4) = 108k> + 279k2 + 240k + 68
Mpg(1,3,36k,4) = 108k + 45k% + 6k + 0 Mpg(1,3,36k + 26,4) = 108k> + 279k? + 240k + 69
Mg(2,3,36k,4) = 108k> + 45k + 6k + 0 Mg(2,3,36k + 26,4) = 108k> + 279k2 + 240k + 69
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Mg(2,3,36k +1,4) = 108k3 + 54k + 8k + 0 Mg(2,3,36k + 25,4) = 108k3 + 270k? + 224k + 62
Mg(0,3,36k + 2,4) = 108k> + 63k% + 12k + 1 | Mg(0,3,36k + 24,4) = 108k> + 261k> + 210k + 56
Mg(1,3,36k +2,4) = 108k3 + 63k% + 12k + 1 | Mg(1,3,36k + 24,4) = 108k> + 261k> + 210k + 57
Mg(2,3,36k +2,4) = 108k3 + 63k% + 12k + 0 | Mg(2,3,36k + 24,4) = 108k> + 261k> + 210k + 56
Mg(0,3,36k + 3,4) = 108k> + 72k* + 16k + 1 | Mg(0, 3,36k + 23,4) = 108k°> + 252k* + 195k + 50
Mpg(1,3,36k + 3,4) = 108k> + 72k + 15k +2 | Mg(1,3,36k + 23,4) = 108k + 252k> + 195k + 51
Mg(2,3,36k + 3,4) = 108k3 + 72k% + 15k + 0 | Mg(2,3,36k + 23,4) = 108k> + 252k> + 195k + 49
Mg(0,3,36k + 4,4) = 108k> + 81k% + 20k + 1 | Mg(0,3,36k + 22,4) = 108k> + 243k + 182k + 46
Mg(1,3,36k + 4,4) = 108k3 + 81k% + 20k + 3 | Mg(1,3,36k + 22,4) = 108k> + 243k> + 182k + 46
(2,3 (2,3 )

,36k +22,4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

36k 4 5,4) = 108k> + 90k? +- 24k +1 | Mg
,3,36k 4 5,4) = 108k® + 90k? 4 24k + 3 Mg

Mg(0,3, ,3,36k + 21,4) = 108k> + 234k% + 168k + 41
Mpg(1,3,
Mg(2,3,36k + 5,4) = 108k> + 90k? + 24k + 2 Mg
Ms(0,3,
Mpg(1,3,

2

,3,36k + 21,4) = 108k3 + 234k? + 168k + 40
,3,36k + 21,4) = 108k3 + 234k? + 168k + 39
,3,36k + 20,4) = 108k3 + 225k% + 156k + 37
,3,36k +20,4) = 108k3 + 225k? 4 156k + 35

)

,3,36k + 6,4) = 108k> + 99k? + 30k + 2 Mg

,3,36k +6,4) = 108k3 + 99k> + 30k +3 | Mg
Mg(2,3,36k +6,4) = 108k3 + 99k> + 30k +4 | Mg(2,3,36k + 20,4) = 108k> + 225k2 + 156k + 36
Mg(0,3,36k + 7,4) = 108k> + 108k? + 35k + 3 | Mg(0,3,36k + 19,4) = 108k> + 216k> + 143k + 32

(0,3 )
(1,3 )
(2,3 )
(0,3 )
(1,3 )
(2,3 )
(0,3 )
Mg(1,3,36k + 7,4) = 108k> + 108k> + 35k +3 | Mg(1,3,36k + 19,4) = 108k> + 216k> + 143k + 30
(2,3 )
(0,3 )
(1,3 )
(2,3 )
(0,3 )
(1,3 )
(2,3 )

Mg(2,3,36k +7,4) = 108k3 + 108k2 + 35k + 5 | Mg(2,3,36k + 19,4) = 108k3 + 216k> + 143k + 32
,3,36k + 18,4) = 108k> + 207k? 4 132k+28
,3,36k +18,4) = 108k3 + 207k? 4 132k+27
,3,36k + 18,4) = 108k3 4 207k? 4 132k+29
,3,36k + 17,4) = 108k3 + 198k%Z + 120k + 23

Mg(0,3,36k + 8,4) = 108k> + 117k? + 42k+5 | Mg
Mg(1,3,36k + 8,4) = 108k + 117k> + 42k+4 | Mg
Mg(2,3,36k + 8,4) = 108k + 117k + 42k+6 | Mg
Mg(0,3,36k +9,4) = 108k> + 126k? + 48k +7 | Mg
Mg(1,3,36k +9,4) = 108k3 + 126k? + 48k +5 | Mg
Mg(2,3,36k +9,4) = 108k3 + 126k? + 48k + 6 | Mg

,36k +17,4) = 108k3 + 198k2 + 120k + 24
,36k +17,4) = 108k3 4 198k2 + 120k + 25
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Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)
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(2,3 )
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(2,3 )
(0,3 )
(1,3 )
(2,3 )

Mg(2,3,36k +7,4) = 108k3 + 108k2 + 35k + 5 | Mg(2,3,36k + 19,4) = 108k3 + 216k> + 143k + 32
,3,36k + 18,4) = 108k> + 207k? 4 132k+28
,3,36k +18,4) = 108k3 + 207k? 4 132k+27
,3,36k + 18,4) = 108k3 4 207k? 4 132k+29
,3,36k + 17,4) = 108k3 + 198k%Z + 120k + 23

Mg(0,3,36k + 8,4) = 108k> + 117k? + 42k+5 | Mg
Mg(1,3,36k + 8,4) = 108k + 117k> + 42k+4 | Mg
Mg(2,3,36k + 8,4) = 108k + 117k + 42k+6 | Mg
Mg(0,3,36k +9,4) = 108k> + 126k? + 48k +7 | Mg
Mg(1,3,36k +9,4) = 108k3 + 126k? + 48k +5 | Mg
Mg(2,3,36k +9,4) = 108k3 + 126k? + 48k + 6 | Mg

,36k +17,4) = 108k3 + 198k2 + 120k + 24
,36k +17,4) = 108k3 4 198k2 + 120k + 25
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Mg(0, 3,36k + 10,4) = 108k> + 135k + 56k + 9
Mg(1, 3,36k + 10,4) = 108k> + 135k? + 56k + 7
Mpg(2,3,36k + 10,4) = 108k 4 135k 4 56k + 7

Constituents of Quasipolynomials: ¢ =3, m=4, 3=(0,1,1,1)

Mg(0, 3,36k + 16,4) = 108k> + 189k2 + 110k + 20
Mg(1,3,36k + 16,4) = 108k> + 189k2 + 110k + 22
Mg(2,3,36k + 16,4) = 108k% + 189k? + 110k + 22

Mp(0, 3,36k + 11,4) = 108Kk3 + 144k% + 63k + 10
Mg(1,3,36k + 11,4) = 108k3 4 144k + 63k + 9
Mp(2,3,36k + 11,4) = 108k3 4 144k + 63k + 8

Mg(0,3,36k + 15,4) = 108k> + 180k% + 99k + 17
Mpg(1,3,36k + 15,4) = 108k3 + 180k + 99k + 19
Mg(2,3,36k + 15,4) = 108k3 + 180k> + 99k + 18

Mg(0,3,36k + 12,4) = 108k3 + 153k% + 72k + 12
Mpg(1,3,36k + 12,4) = 108k® + 153k? + 72k + 12
Mp(2,3,36k + 12,4) = 108k> + 153k? + 72k + 10

Mg(0,3,36k + 14,4) = 108k> + 171k% + 90k + 15
Mg(1,3,36k + 14,4) = 108k® + 171k? + 90k + 17
Mg(2,3,36k + 14,4) = 108k® + 171k? 4 90k + 15

Ms(0,3, 36k + 13,4) = 108k> + 162k> + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k? + 80k + 14
Mg(2,3,36k + 13,4) = 108k> + 162k + 80k + 12

Mg(0,3, 36k + 13,4) = 108k> + 162k> + 80k + 13
Mg(1,3,36k + 13,4) = 108k> + 162k + 80k + 14
Mg(2,3,36k + 13,4) = 108k® + 162k + 80k + 12
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Constituents of Quasipolynomials: ¢

Mg(0, 3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 32,4) = 108k> + 333k? + 342k + 117
Mg(1,3,36k + 32,4) = 108k3 + 333k + 342k + 117
Mg(2,3,36k + 32,4) = 108k3 + 333k2 + 342k + 117

Mg(0,3,36k + 30,4) = 108k> + 315k* + 306k + 99
Mg(1,3, 36k + 30,4) = 108k + 315k + 306k + 99
Mg(2,3,36k + 30,4) = 108k3 + 315k2 + 306k + 99

Mg(0,3,36k + 33,4) = 108k> + 342k? + 360k + 126
Mpg(1,3,36k + 33,4) = 108k3 + 342k? + 360k + 126
Mpg(2,3,36k + 33,4) = 108k3 + 342k? + 360k + 126

Mg(0,3,36k + 29,4) = 108k3 + 306k> + 288k + 90
Mpg(1,3,36k + 29,4) = 108k3 + 306k + 288k + 90
Mpg(2,3,36k + 29,4) = 108k3 + 306k> + 288k + 90

Mg(0, 3,36k + 34,4) = 108k3 + 351k> + 380k + 137
Mpg(1,3,36k + 34,4) = 108k3 + 351k + 380k + 137
Mg(2,3,36k + 34,4) = 108k3 + 351k2 + 380k + 137

Mg(0, 3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mpg(1,3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mg(2,3,36k + 28,4) = 108k> + 297k? + 272k + 83

Mg(0,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(1,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(2,3,36k + 35,4) = 108k® + 360k + 399k + 147

Mg(0,3,36k + 27,4) = 108k> + 288k> + 255k + 75
Mg(1,3,36k + 27,4) = 108k> + 288k? + 255k + 75
Mg(2,3,36k + 27,4) = 108k> + 288k2 + 255k + 75

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Constituents of Quasipolynomials: ¢

Mg(0, 3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mpg(1,3,36k + 31,4) = 108k3 + 324k? + 323k + 107
Mg(2,3,36k + 31,4) = 108k3 + 324k2 + 323k + 107

Mg(0,3,36k + 32,4) = 108k> + 333k? + 342k + 117
Mg(1,3,36k + 32,4) = 108k3 + 333k + 342k + 117
Mg(2,3,36k + 32,4) = 108k3 + 333k2 + 342k + 117

Mg(0,3,36k + 30,4) = 108k> + 315k* + 306k + 99
Mg(1,3, 36k + 30,4) = 108k + 315k + 306k + 99
Mg(2,3,36k + 30,4) = 108k3 + 315k2 + 306k + 99

Mg(0,3,36k + 33,4) = 108k> + 342k? + 360k + 126
Mpg(1,3,36k + 33,4) = 108k3 + 342k? + 360k + 126
Mpg(2,3,36k + 33,4) = 108k3 + 342k? + 360k + 126

Mg(0,3,36k + 29,4) = 108k3 + 306k> + 288k + 90
Mpg(1,3,36k + 29,4) = 108k3 + 306k + 288k + 90
Mpg(2,3,36k + 29,4) = 108k3 + 306k> + 288k + 90

Mg(0, 3,36k + 34,4) = 108k3 + 351k> + 380k + 137
Mpg(1,3,36k + 34,4) = 108k3 + 351k + 380k + 137
Mg(2,3,36k + 34,4) = 108k3 + 351k2 + 380k + 137

Mg(0, 3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mpg(1,3,36k + 28,4) = 108k> + 297k? + 272k + 83
Mg(2,3,36k + 28,4) = 108k> + 297k? + 272k + 83

Mg(0,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(1,3,36k + 35,4) = 108k> + 360k> + 399k + 147
Mg(2,3,36k + 35,4) = 108k® + 360k + 399k + 147

Mg(0,3,36k + 27,4) = 108k> + 288k> + 255k + 75
Mg(1,3,36k + 27,4) = 108k> + 288k? + 255k + 75
Mg(2,3,36k + 27,4) = 108k> + 288k2 + 255k + 75

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Another Example

For{=5 m=4,1=(0,2,2,2),0(r)=6=1 (mod 5), ' =37, n=13,
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Another Example

For¢{ =5 m=4,1=(0,2,2,2), o(7) 1 (mod 5), n =37, n =13, our fixed
)

crank class will be () o(7) = (351) -1 =2
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be () o(7) = (351) -1 =2

M, (0,5,37,4)= 104 +M.(0,5,13,4)=7

My (1,5,37,4)= 99 +M-(1,5,13,4)= 10

M-(2,5,37,4)= 105 +M,(2,5,13,4)= 5

M-(3,5,37,4)= 100 +M,(3,5,13,4)= 11

M (4,5,37,4)= 103 +M,(4,5,13,4)= 6
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M, (0,5,37,4)= 104 +M.(0,5,13,4)=7
M. (1,5,37,4)= 99 +M-(1,5,13,4)= 10
M.(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
M-(3,5,37,4)= 100 +M,(3,5,13,4)= 11
M, (4,5,37,4)= 103 +M,(4,5,13,4)= 6
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M-(0,5,37,4)= 104 +M(0,5,13,4)=7
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Another Example

1 (mod 5), n =37, n =13, our fixed

For{ =5 m=47=(0,2,2,2), o(t)=6=
crank class will be (1) o(7) = (35) -1 =2
M,-(0, 5, 37, 4)= 104 +
M, (1,5,13,4)= 10 —~ 110
M,(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
My (3,5,37,4)= 100 +
M, (4,5,13,4)= 6 — 110
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M-(0,5,37,4)= 104 +M,(4,5,13,4)= 6 — 110
_|_
M.(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
M-(3,5,37,4)= 100 +M,(1,5,13,4)= 10 — 110
_|_
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M-(0,5,37,4)= 104 +M,(4,5,13,4)= 6 — 110
_|_
M.(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
M-(3,5,37,4)= 100 +M,(1,5,13,4)= 10 — 110
_|_

We see the 2 crank class is fixed,
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M-(0,5,37,4)= 104 +M,(4,5,13,4)= 6 — 110
_|_
M.(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
M-(3,5,37,4)= 100 +M,(1,5,13,4)= 10 — 110
_|_

We see the 2 crank class is fixed, crank classes 1 and 3 flip,
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Another Example

For{ =5 m=4,1=(0,2,2,2), 0(tr)=6=1 (mod 5), n" =37, n=13, our fixed
crank class will be (1) o(7) = (35) -1 =2
M-(0,5,37,4)= 104 +M,(4,5,13,4)= 6 — 110
_|_
M.(2,5,37,4)= 105 — +M,(2,5,13,4)=5 — 110
M-(3,5,37,4)= 100 +M,(1,5,13,4)= 10 — 110
_|_

We see the 2 crank class is fixed, crank classes 1 and 3 flip, and 0 and 4 flip as in the
Sum and Difference Theorem.
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Progress Toward Proving the Dissertation Conjecture
the h*-Vector: aka The Ehrhart MB Statistic Numerator
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Progress Toward Proving the Dissertation Conjecture
the h*-Vector: aka The Ehrhart MB Statistic Numerator
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Proving cranks witness these congruences

We examine what we call an Ehrhart MB Statistic numerator, the coefficients of which
are otherwise known to Richard Stanley as the h*-vector [7].
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Proving cranks witness these congruences

We examine what we call an Ehrhart MB Statistic numerator, the coefficients of which
are otherwise known to Richard Stanley as the h*-vector [7].
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Recasting the Generating Function for p(n, m)

Recall it is possible to recast the generating function for p(n, m) so that it is in terms
of binomial coefficients. For example

=(1+q+2¢°+3¢>+5¢*+6q°+9¢° + -

2 P(n4)a" =
n=0

k+3
...+6q33+5q34+3q35+2q36+q37+q38)XZ( ; )an
k>0

q;9)a

The polynomial above, is an example of what we call an Ehrhart numerator.
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Recasting the Generating Function for p(n, m)

Recall it is possible to recast the generating function for p(n, m) so that it is in terms
of binomial coefficients. For example

=(1+q+2¢°+3¢>+5¢*+6q°+9¢° + -

2 P(n4)a" =
n=0

k+3
...+6q33+5q34+3q35+2q36+q37+q38)XZ( ; )an
k>0

q;9)a

The polynomial above, is an example of what we call an Ehrhart numerator. We hope
to prove our conjecture by analyzing a two variable version of this that we call the
Ehrhart MB statistic numerator.
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to prove our conjecture by analyzing a two variable version of this that we call the
Ehrhart MB statistic numerator.
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Ehrhart MB Statistic Numerator Formula

Definition 25
Given £ an odd prime,¢ a primitive £t root of unity, m,j > 1, and MB statistic
T = (11,72,...,Tm), we call the polynomial below the “Ehrhart MB statistic
numerator” :
fem( m) = |cm(m —j lem( m) =]
@ moq_ CT( +1) ( +1)Ji
T/ —
=[]l (SEO || o (37)
j=1 i=0 Jj=1
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Ehrhart MB Statistic Numerator Formula

Definition 25
Given £ an odd prime,¢ a primitive £t root of unity, m,j > 1, and MB statistic
T = (11,72,...,Tm), we call the polynomial below the “Ehrhart MB statistic
numerator” :
fem( m) = |cm(m —j lem( m) =]
@ moq_ CT( +1) ( +1)Ji
T/ —
=[]l (SEO || o (37)
j=1 i=0 Jj=1

With the goal of exploring the dissertation conjecture, we set out to analyze E;((, q),
the Ehrhart MB statistic numerator. We will show that it is a flipped reciprocal
polynomial.
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Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, P(q) = ap + aiq + -+ + aqq?, is said to be reciprocal if

aj = ad—j (38)

. Equivalently, if
q’P(q7") = P(q). (39)
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Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, P(q) = ap + aiq + -+ + aqq?, is said to be reciprocal if

ai = ag_; (38)
. Equivalently, if
q’P(q7") = P(q). (39)
A polynomial of degree d, P(q) = ap + aiq + -+ — aqq?, is said to be anti-reciprocal if
ai=—aq_ (40)

. Equivalently, if
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Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, P(q) = ap + aiq + -+ + aqq?, is said to be reciprocal if
aj = ad—j (38)
. Equivalently, if
q?P(q7") = P(q). (39)
A polynomial of degree d, P(q) = ap + aiq + -+ — aqq?, is said to be anti-reciprocal if
aj = —aq_; (40)
. Equivalently, if
d -1\ _
q°P(q7') = —P(a). (41)
d
A polynomial of degree d, with complex coefficients {a;}, P(q) = Z aiq' = ag+ aiq+ - + agq?, is said to
i=0
be conjugate reciprocal if
aj =ag_;- (42)
Equivalently, if
q’P(a") = P(a). (43)
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Definition of a “Flipped” Reciprocal Polynomial

Definition 26 (Flipped Reciprocal Polynomial)

Let ¢ be an odd prime and ¢ be a primitive £ root of unity, and y be a complex
number. Given a polynomial

d
P(¢a) =) ¢Fyid, (44)
i=0
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Definition of a “Flipped” Reciprocal Polynomial

Definition 26 (Flipped Reciprocal Polynomial)

Let ¢ be an odd prime and ¢ be a primitive £ root of unity, and y be a complex
number. Given a polynomial

d
P(¢a) =) ¢Fyid, (44)
i=0

we say P((, q) is a flipped reciprocal polynomial if whenever the coefficient on g’ is
¢Ryi,
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Definition of a “Flipped” Reciprocal Polynomial

Definition 26 (Flipped Reciprocal Polynomial)

Let ¢ be an odd prime and ¢ be a primitive £ root of unity, and y be a complex
number. Given a polynomial

d
P(¢a) =) ¢Fyid, (44)
i=0

we say P((, q) is a flipped reciprocal polynomial if whenever the coefficient on g’ is
¢Ry;, then the coefficient on g9~ is (Ry;.
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Definition of a “Flipped” Reciprocal Polynomial

Definition 26 (Flipped Reciprocal Polynomial)

Let ¢ be an odd prime and ¢ be a primitive £ root of unity, and y be a complex
number. Given a polynomial

d
P(¢a) =) ¢Fyid, (44)
i=0

we say P((, q) is a flipped reciprocal polynomial if whenever the coefficient on g’ is
¢Ry;, then the coefficient on g9~ is (Ry;.

We need to prove that given a MB crank witnessing the Interval Theorem, the
associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.
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Let ¢ be an odd prime and ¢ be a primitive £ root of unity, and y be a complex
number. Given a polynomial
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P(¢a) =) ¢Fyid, (44)
i=0

we say P((, q) is a flipped reciprocal polynomial if whenever the coefficient on g’ is
¢Ry;, then the coefficient on g9~ is (Ry;.

We need to prove that given a MB crank witnessing the Interval Theorem, the
associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Funct



Example: “Flipped” Reciprocal Polynomial

Given £ =3, m=4,(= e% ,7=(0,1,1,1), here is the Ehrhart numerator we get by recasting the crank
generating function.
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Example: “Flipped” Reciprocal Polynomial

Ll

Given Z:3,m:4,(:e2T77—:

(0,1,1,1), here is the Ehrhart numerator we get by recasting the crank
generating function.

35 17
Zq’XZ(Cq’XZCq Zéq)
i=0 i=0 =

_ 2, 2m 2m 4, —2m 4 27 4 5 _2m g 2m g
=14+qg+q*+e3 ¢®>+q°4+2e3 ¢°+q*+e 3 g*+3e73 g*+q°+2e7 3 ¢°43e3 g

be™ & q +3e%q7+5q8+6e_¥q8+4e2%q8+7q9+6e_%q9+5e%q9+9q10+7e_2fTﬂq10+7e¥q10+10q11+

g2 4127 124133 112 T g3 1146 T 13 +15¢4 115~ 5 g1+

2im 2im
+2¢0%+4e™ 3 ¢%+3e3 %4397+

8e™ = q' +9e% g+ 12q12+ 10e™

175 g4 1175 +18e~ 25" 154196 5" q'%+20416 4226~

T q10122e T q16 4231+ 256 T g1+ 246 g1 =
+e
+15q10 4176 5 g0 4 155 120 +13¢' + 146~ T g1 126 g2

+12¢'2 4 12~ A q122+10eTﬁ 122
+10q123+9e*%q123+8e¥q123+9q124+7ef%q124+7e¥q124+7q125+5e 4z q125+6e% 125

2im 2im 2im 2im 2im i
+5q126+467 3 126+6e 3 26+3q127+367T 127+5e 3 q127+2q128+3e =3 ql28+4equZ8+
_2im 2im _2im 2im 2im 2im
1436 %5 1201265 1291 130 1 3= 5 g130 4 e *F 1304 131 1 0e— 5 q131+q132+e 5 gl324 133 o134
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Example: “Flipped” Reciprocal Polynomial

27

Given{=3,m=4,{(=e 3 ,7=(0,1,1,1), here is the Ehrhart numerator we get by recasting the crank
generating function.

35 17 8
Zq’XZ(Cq’XZCq x> (¢q")
i=0 i=0 i=0
7q9+6e = q +56% q9

™

7q125+5e77 125+68’T 125
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Reciprocal and anti-reciprocal polynomials played a key role in the proof of the Sum
and Difference Theorem.
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Reciprocal and anti-reciprocal polynomials played a key role in the proof of the Sum
and Difference Theorem.

Remark (Future Work)

How might these generalizations, namely flipped reciprocal polynomials, apply to a
proof that there are cranks witnessing the Sum and Difference Theorem?
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Conjecture 22 (G., Kronholm)

Let £ and m be given, and suppose T is any MB crank witnessing the congruences of the Interval Theorem.
Then T also witnesses the congruences of the Sum and Difference Theorem in the following way: For
ie{0,1,...,0—1},

p(n', m) + p(n, m)
/

M (i, €, n',m) + My (=i — o(7),4,n,m) = (45)
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Conjecture 22 (G., Kronholm)

Let £ and m be given, and suppose T is any MB crank witnessing the congruences of the Interval Theorem.
Then T also witnesses the congruences of the Sum and Difference Theorem in the following way: For
ie{0,1,...,0—1},

M (5,6, 1 m) £ Mo (—i — o(7), £, n, m) = PLT2™) Z p(n, m) (45)

@ Our evidence from the Python programs prompts us to conjecture that MB cranks witnessing the Interval
Theorem also witness the Sum and Difference Theorem.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic T is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the
—— m

tuple (l) are distinct modulo ¢, and 7, Z 0 (mod ¢) in the tuple T = (T1,72,...,Tm).
i/i=1

The hat on the tuple means we're omitting the £th component.
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—— m

tuple (l) are distinct modulo ¢, and 7, Z 0 (mod ¢) in the tuple T = (T1,72,...,Tm).
i/i=1

The hat on the tuple means we're omitting the £th component.

@ We must continue to look at the constituents and how they are made.
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Thank you for your time today

jena.gregory01@utrgv.edu
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