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The Partitions of 4 in Standard Notation

How many ways can we write n as a sum of positive integers?

As an example, let’s partition the number 4.
Partitions of 4. Partitions of 4 into parts of size at most 2.

4 4
3+1 3+1
2+2 2+2

2+1+1 2+1+1
1+1+1+1 1+1+1+1

dfd dfd
p(4) = 5 p(4, 2) = 3
p(n) p(n,m)

Definition 1

A partition of a positive integer n is a finite nonincreasing sequence of positive integers
λ1, . . . , λm such that

∑m
i=1 λi = n. The λi are called the parts of the partition and we

write p(n) to denote the number of partitions of n.
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The Partitions of 4 in Multiplicity Based Notation

Definition 2

Let λ be a partition of n into parts from the set [m]. We write λ in “multiplicity
notation,” so that λ = (1e1 , 2e2 , . . . ,mem) is the partition with exactly ei parts of size i
for each i ∈ [m].

Partitions of 4. Partitions of 4 into parts of size at most 2.
(10, 20, 30, 41) 4
(11, 20, 31, 40) 3+1
(10, 22, 30, 40) (10, 22, 30, 40)
(12, 21, 30, 40) (12, 21, 30, 40)
(14, 20, 30, 40) (14, 20, 30, 40)

dfd dfd
p(4) = 5 p(4, 2) = 3
p(n) p(n,m)
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Partition Numbers and Ramanujan Congruences

Here is the sequence of partition numbers.

{p(n)}∞n=0 = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, . . .

In 1919, Ramanujan proved the following patterns in this sequence.[6]

Theorem 3

For all nonnegative integers k,

p(5k + 4) ≡ 0 (mod 5) (1)

p(7k + 5) ≡ 0 (mod 7) (2)

p(11k + 6) ≡ 0 (mod 11). (3)

Let’s look at divisibility from a different point of view.
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Dyson’s Rank
In his 1944 paper, Some Guesses in the Theory of Partitions [3], Freeman Dyson asks for
proofs of Ramanujan’s congruences in which it is clear to see how the division is made.

It would be satisfying to have a direct proof of p(5k + 4) ≡ 0 (mod 5). By this
I mean, that although we can prove ... that the partitions of 5k + 4 can be divided
into five equally numerous subclasses, it is unsatisfactory to receive from the proofs
no concrete idea of how the division is to be made. We require a proof which will
not appeal to generating functions, but will demonstrate by cross-examination
of the partitions themselves the existence of five exclusive, exhaustive and
equally numerous subclasses.
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Dyson’s Rank

λ ⊢ 4 Rank Rank (mod 5)

(10, 20, 30, 41) → 4− 1 = 3 ≡ 3 N(3, 5, 4)

3 + 1 → 3− 2 = 1 ≡ 1 N(1, 5, 4)

2 + 2 → 0 ≡ 0 N(0, 5, 4)

2 + 1 + 1 → −1 ≡ 4 N(4, 5, 4)

1 + 1 + 1 + 1 → −3 ≡ 2 N(2, 5, 4)

Thus we have “demonstrated by cross-examination of the partitions
themselves the existence of five exclusive, exhaustive and equally
numerous subclasses.”
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Rank of p(5) modulo 7

Dyson’s rank for primes 5 and 7 was proved by Atkin and Swinnerton-Dyer in 1954 [2].

And, while beautiful, they are still analytic proofs and not combinatorial bijections.
There are still no constructive proofs for Dyson’s rank. This is still an open problem.
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The Andrews-Garvan Crank and other Cranks

Dyson made another guess:

I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the “crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.
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For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the “crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the “crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the “crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



The Andrews-Garvan Crank and other Cranks

Dyson made another guess:
I hold in fact: That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the “crank” of the

partition.

In 1988, George Andrews and Frank Garvan [1] discovered “the crank”.

Definition 5

For a partition λ, let l(λ) denote the largest part of λ, ω(λ) denote the number of ones in λ, and µ(λ)
denote the number of parts of λ larger than ω(λ). The crank is given by

c(λ) =

{
l(λ) if ω(λ) = 0,
µ(λ)− ω(λ) if ω(λ) > 0.

However, any statistic that witnesses a partition congruence that isn’t the rank or the
Andrews-Garvan crank is often referred to as a “crank”.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



What Constitues A Crank?

Definition 6

Let p(n) denote the set of partitions of n. For a given n, if the
statistic τ : p(n) → Z is equally distributed over every residue class
modulo ℓ, we say that τ is a crank modulo ℓ, witnessing the
ℓ-divisibility of p(n).
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Let ℓ be a prime and consider {p(n, 3) (mod ℓ)}∞n=0
“Modulo” 5:
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432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,

705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .
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Let ℓ be a prime and consider {p(n, 3) (mod ℓ)}∞n=0

ℓ = 3: We see regular intervals of partitions congruent to 0 modulo 3.
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The Interval Theorem

Theorem 7 (The Interval Theorem. Kronholm (2007))

For any prime ℓ, any nonnegative integer k, and any
2 ≤ m ≤ ℓ+ 1, we have

p(ℓ · lcm(m)k − t,m) ≡ 0 (mod ℓ) (7)

for 0 < t < m2+m
2 , where lcm(m) is the least common multiple

among the numbers from 1 to m.

(Think: “lcm([m])”.)

Let’s look at the previous examples again.
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Let ℓ be a prime and consider {p(n, 3) (mod 3)}∞n=0

ℓ = 3: We see regular intervals of partitions congruent to 0 modulo 3.

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,

85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,

225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,

432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,

705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

Example 8

{p(n, 3) (mod 3)}n≥0 =⇒ p(18k − t, 3) ≡ 0 (mod 3) for 0 < t < 6 (8)
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Let ℓ be a prime and consider {p(n, 3) (mod 5)}∞n=0

ℓ = 5: Again, there are regular intervals of partitions congruent to 0 modulo 5.

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80,

85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217,

225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341, 352, 363, 374, 385, 397, 408, 420,

432, 444, 456, 469, 481, 494, 507, 520, 533, 547, 560, 574, 588, 602, 616, 631, 645, 660, 675, 690,

705, 721, 736, 752, 768, 784, 800, 817, 833, 850, 867, 884, 901, 919, 936, 954, 972, 990, 1008, 1027, . . .

Example 9

{p(n, 3) (mod 5)}n≥0 =⇒ p(30k − t, 3) ≡ 0 (mod 5) for 0 < t < 15 (9)
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The Interval Theorem: p(n, 4) (mod 3)

Let’s do an example: let ℓ = 3 and m = 4,

we saw the sequence {p(n, 4) (mod 3)}n≥0

had period 36. Recall by the Interval Theorem we had nine consecutive congruences:

p(35, 4)= 441 ≡ 0 (mod 3)
p(34, 4)= 411 ≡ 0 (mod 3)
p(33, 4)= 378 ≡ 0 (mod 3)
p(32, 4)= 351 ≡ 0 (mod 3)
p(31, 4)= 321 ≡ 0 (mod 3)
p(30, 4)= 297 ≡ 0 (mod 3)
p(29, 4)= 270 ≡ 0 (mod 3)
p(28, 4)= 249 ≡ 0 (mod 3)
p(27, 4)= 225 ≡ 0 (mod 3)

But what about the rest of the period? There are 27 other partition numbers that
might be interesting.
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p(27, 4) = 225 ≡ 0 (mod 3)

But what about the rest of the period? There are 27 other partition numbers that
might be interesting.
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A Continuation of p(n, 4) (mod 3)

p(26, 4) = 206 + p(0, 4) = 1 = 207 ≡ 0 (mod 3)
p(25, 4) = 185 + p(1, 4) = 1 = 186 ≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 ≡ 0 (mod 3)
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p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(26, 4) = 206 + p(0, 4) = 1 = 207 ≡ 0 (mod 3)
p(25, 4) = 185 + p(1, 4) = 1 = 186 ≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ℓ be an odd prime. Set n′ = ℓlcm(m)(k + 1)− r −
(
m2+m

2

)
and

n = ℓlcm(m)k + r . Then for

−
(
m2 +m

2

)
+ 1 ≤ r ≤ ℓ lcm(m)−

(
m2 +m

2

)
(10)

and k ≥ 0, we have

p(n′,m) + (−1)mp(n,m) ≡ 0 (mod ℓ). (11)

Let’s look the previous example again.
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Sum and Difference Theorem of Partition Numbers

Theorem 10 (G., Kronholm)

Let ℓ be an odd prime. Set n′ = ℓlcm(m)(k + 1)− r −
(
m2+m

2

)
and

n = ℓlcm(m)k + r . Then for

−
(
m2 +m

2

)
+ 1 ≤ r ≤ ℓ lcm(m)−

(
m2 +m

2

)
(10)

and k ≥ 0, we have

p(n′,m) + (−1)mp(n,m) ≡ 0 (mod ℓ). (11)

Let’s look the previous example again.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



A Continuation of p(n, 4) (mod 3)

p(26, 4) = 206 + p(0, 4) = 1 = 207 ≡ 0 (mod 3)
p(25, 4) = 185 + p(1, 4) = 1 = 186 ≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(25, 4) = 185 + p(1, 4) = 1 = 186 ≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(36k + 20, 4)136 + p(36k + 6, 4)5 = 141≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(36k + 20, 4)136 + p(36k + 6, 4)5 = 141≡ 0 (mod 3)
p(36k + 19, 4)136 + p(36k + 7, 4)5 = 141≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(36k + 20, 4)136 + p(36k + 6, 4)5 = 141≡ 0 (mod 3)
p(36k + 19, 4)136 + p(36k + 7, 4)5 = 141≡ 0 (mod 3)
p(36k + 18, 4)136 + p(36k + 8, 4)5 = 141≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(36k + 20, 4)136 + p(36k + 6, 4)5 = 141≡ 0 (mod 3)
p(36k + 19, 4)136 + p(36k + 7, 4)5 = 141≡ 0 (mod 3)
p(36k + 18, 4)136 + p(36k + 8, 4)5 = 141≡ 0 (mod 3)
p(36k + 17, 4)136 + p(36k + 9, 4)5 = 141≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
p(36k + 21, 4)136 + p(36k + 5, 4)5 = 141≡ 0 (mod 3)
p(36k + 20, 4)136 + p(36k + 6, 4)5 = 141≡ 0 (mod 3)
p(36k + 19, 4)136 + p(36k + 7, 4)5 = 141≡ 0 (mod 3)
p(36k + 18, 4)136 + p(36k + 8, 4)5 = 141≡ 0 (mod 3)
p(36k + 17, 4)136 + p(36k + 9, 4)5 = 141≡ 0 (mod 3)
p(36k + 16, 4)136 + p(36k + 10, 4)5 = 141≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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A Continuation of p(n, 4) (mod 3)

p(36k + 26, 4)206 + p(36k + 0, 4)1 = 207≡ 0 (mod 3)
p(36k + 25, 4)185 + p(36k + 1, 4)1 = 186≡ 0 (mod 3)
p(36k + 24, 4)169 + p(36k + 2, 4)2 = 171≡ 0 (mod 3)
p(36k + 23, 4)150 + p(36k + 3, 4)3 = 153≡ 0 (mod 3)
p(36k + 22, 4)136 + p(36k + 4, 4)5 = 141≡ 0 (mod 3)
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Proof by Example of Theorem 10: Anti/Reciprocal Polynomials

Definition 11

A polynomial of degree d , P(q) = a0 + a1q + · · ·+ adq
d , is said to be reciprocal if

ai = ad−i (12)

. Equivalently, if
qdP

(
q−1

)
= P(q). (13)

A polynomial of degree d , P(q) = a0 + a1q+ · · · − adq
d , is said to be anti-reciprocal if

ai = −ad−i (14)

. Equivalently, if
qdP

(
q−1

)
= −P(q). (15)
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Proof by Example of the Sum/Difference Congruence

We will show that

P(q) =
1− q3lcm(4)

(q; q)4
(mod 3) (20)

is an anti-reciprocal polynomial of degree 26. i.e.

p(i , 4) = −p(26− i , 4) (mod 3) (21)

which in turn gives us the sum theorem,

p(i , 4) + p(26− i , 4) ≡ 0 (mod 3). (22)
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Proof by Example of the Sum/Difference Theorem

Example 13

Let ℓ = 3 and m = 4 so that 3 · lcm(4) = 36. Then P(q) = 1−q36

(q;q)4
and

q26P(q−1) =
q26(1− 1

q36
)

(1− 1
q
)(1− 1

q2
)(1− 1

q3
)(1− 1

q4
)

(23)

=
q26( q

36−1
q36

)

( q−1
q

)( q
2−1
q2

)( q
3−1
q3

)( q
4−1
q4

)
(24)

=
q26(q36 − 1)(q)(q2)(q3)(q4)

q36(q − 1)(q2 − 1)(q3 − 1)(q4 − 1)
(25)

=
−(1− q36)

(−1)4(q; q)4
(26)

= −P(q) (27)

Thus P(q) is anti-reciprocal polynomial and

p(i , 4) + p(26− i , 4) ≡ 0 (mod 3). (28)
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Multiplicity Based Statistics: p(8, 4) = 15, τ = (0, 1, 1, 1)

Definition 14

Given a partition λ = (1e1 , 2e2 , . . . ,mem), we define a multiplicity-based statistic (MB statistic)
τ = (τ1, τ2, . . . , τm) ∈ Zm to be

τ(λ) =
m∑
i=1

τiei .

τ(λ) is simply a linear combination of the multiplicities of the parts of λ.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
τ = (0, 1, 1, 1) and calculate τ(λ)

0 · 1+1 · 2+1 · 1+1 · 0= 3

τ(10, 20, 30, 42)= 8 τ(11, 20, 31, 41)= 8 τ(10, 22, 30, 41)= 8

τ(12, 21, 30, 41)= 8 τ(14, 20, 30, 41)= 8 τ(10, 21, 32, 40)= 8

τ(12, 20, 32, 40)= 8 τ(11, 22, 31, 40)= 8 τ(13, 21, 31, 40)= 8

τ(15, 20, 31, 40)= 8 τ(10, 24, 30, 40)= 8 τ(12, 23, 30, 40)= 8

τ(14, 22, 30, 40)= 8 τ(16, 21, 30, 40)= 8 τ(18, 20, 30, 40)= 8

The MB-statistic β is not a crank in this instance.
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τ(14, 22, 30, 40)= 8 τ(16, 21, 30, 40)= 8 τ(18, 20, 30, 40)= 8

The MB-statistic β is not a crank in this instance.
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Definition 14

Given a partition λ = (1e1 , 2e2 , . . . ,mem), we define a multiplicity-based statistic (MB statistic)
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τ(λ) =
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τiei .

τ(λ) is simply a linear combination of the multiplicities of the parts of λ.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
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Multiplicity Based Statistics: p(8, 4) = 15, τ = (0, 1, 1, 1) (mod 3)
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τ(12, 20, 32, 40)≡ 2 τ(11, 22, 31, 40)≡ 0 τ(13, 21, 31, 40)≡ 2
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Multiplicity Based Statistics: p(8, 4) = 15, τ = (1, 1, 1, 0)

Definition 14

Given a partition λ = (1e1 , 2e2 , . . . ,mem), we define a multiplicity-based statistic (MB statistic)
τ = (τ1, τ2, . . . , τm) ∈ Zm to be

τ(λ) =
m∑
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τiei .

τ(λ) is simply a linear combination of the multiplicities of the parts of λ.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
τ = (1, 1, 1, 0) and calculate τ(λ)

0 · 1+1 · 2+1 · 1+1 · 0= 3

τ(10, 20, 30, 42)= 0 τ(11, 20, 31, 41)= 2 τ(10, 22, 30, 41)= 2
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τ(14, 22, 30, 40)= 6 τ(16, 21, 30, 40)= 7 τ(18, 20, 30, 40)= 8

The MB-statistic β is not a crank in this instance.
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Multiplicity Based Statistics: p(8, 4) = 15, τ = (1, 1, 1, 0) (mod 3)

Definition 14

Given a partition λ = (1e1 , 2e2 , . . . ,mem), we define a multiplicity-based statistic (MB statistic)
τ = (τ1, τ2, . . . , τm) ∈ Zm to be

τ(λ) =
m∑
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τ(λ) is simply a linear combination of the multiplicities of the parts of λ.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
τ = (1, 1, 1, 0) and calculate τ(λ) (mod 3).

0 · 1+1 · 2+1 · 1+1 · 0= 3

τ(10, 20, 30, 42)≡ 0 τ(11, 20, 31, 41)≡ 2 τ(10, 22, 30, 41)≡ 2

τ(12, 21, 30, 41)≡ 0 τ(14, 20, 30, 41)≡ 1 τ(10, 21, 32, 40)≡ 0

τ(12, 20, 32, 40)≡ 1 τ(11, 22, 31, 40)≡ 1 τ(13, 21, 31, 40)≡ 2
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Multiplicity Based Statistics: p(8, 4) = 15, τ = (1, 1, 1, 0) (mod 3)

Definition 14

Given a partition λ = (1e1 , 2e2 , . . . ,mem), we define a multiplicity-based statistic (MB statistic)
τ = (τ1, τ2, . . . , τm) ∈ Zm to be

τ(λ) =
m∑
i=1

τiei .

τ(λ) is simply a linear combination of the multiplicities of the parts of λ.

We list the 15 partitions of 8 into parts of size of at most 4. We apply the MB statistic
τ = (1, 1, 1, 0) and calculate τ(λ) (mod 3).

0 · 1+1 · 2+1 · 1+1 · 0= 3

τ(10, 20, 30, 42)≡ 0 τ(11, 20, 31, 41)≡ 2 τ(10, 22, 30, 41)≡ 2

τ(12, 21, 30, 41)≡ 0 τ(14, 20, 30, 41)≡ 1 τ(10, 21, 32, 40)≡ 0

τ(12, 20, 32, 40)≡ 1 τ(11, 22, 31, 40)≡ 1 τ(13, 21, 31, 40)≡ 2

τ(15, 20, 31, 40)≡ 0 τ(10, 24, 30, 40)≡ 1 τ(12, 23, 30, 40)≡ 2

τ(14, 22, 30, 40)≡ 0 τ(16, 21, 30, 40)≡ 1 τ(18, 20, 30, 40)≡ 2

The MB-statistic τ is a crank in this instance.
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What Constitutes a Crank? Mτ(r , ℓ, n,m)

Definition 15

• For a given partition statistic τ and a positive integer ℓ, we allow τ to classify the
partitions of n into ℓ subclasses by letting Mτ (r , ℓ, n,m) be the set of partitions λ of n
into parts from [m] such that τ(λ) ≡ r (mod ℓ).
• Also, we define Mτ (r , ℓ, n,m) = |Mτ (r , ℓ, n,m)|. [4]

Definition 6

Let p(n) denote the set of partitions of n. For a given n, if the statistic
τ : p(n,m) → Z is equally distributed over every residue class modulo ℓ, we say that τ
is a crank modulo ℓ, witnessing the ℓ-divisibility of p(n,m).
That is, if

Mτ (i , ℓ, n,m) =
p(n,m)

ℓ
(29)

for each 0 ≤ i ≤ ℓ− 1, then τ is a crank modulo ℓ.[4]
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What Constitutes a Crank? Mτ(r , ℓ, n,m)

M(0,1,1,1)(0, 3, 8, 4) = 4 M(1,1,1,0)(0, 3, 8, 4) = 5

M(0,1,1,1)(1, 3, 8, 4) = 5 M(1,1,1,0)(1, 3, 8, 4) = 5

M(0,1,1,1)(2, 3, 8, 4) = 6 M(1,1,1,0)(2, 3, 8, 4) = 5

M(0,1,1,1)(i , 3, 8, 4) ̸= p(8,4)
3 M(1,1,1,0)(i , 3, 8, 4) =

p(8,4)
3

(0,1,1,1) is not a crank. (1,1,1,0) is a crank.
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Criteria for a Crank Witnessing the Interval Theorem

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7)

if the components of the tuple
(̂τi
i

)m

i=1
are distinct modulo ℓ, and τℓ ̸≡ 0 (mod ℓ) in

the tuple τ = (τ1, τ2, . . . , τm).

The hat on the tuple means we’re omitting the ℓth component.

Theorem 16 is a very important result for this dissertation and for this talk. I will refer
to it later on.
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Two Cranks for the Interval Theorem (Cranks for Theorem 7)

Theorem 16 says if you can construct an appropriate tuple that meets the criteria, then you get
cranks for Theorem 7.

Eichhorn, Kronholm, and Larsen showed that there are always two
universal cranks for Theorem 7.

Corollary 17 (Eichhorn, Kronholm, and Larsen (2022))

For 2 ≤ m ≤ ℓ+ 1, let

α =

{
(α1,α2, . . . ,αm) = (1, 1, . . . , 1) if 2 ≤ m ≤ ℓ

(α1,α2, . . . ,αℓ+1) = (1, 1, . . . , 1, 0) if m = ℓ+ 1,

and
β = (β1,β2, . . . ,βm) = (0, 1, . . . , 1, 1).

The MB-statistics α, the number of parts excluding those of size ℓ+ 1, and β, the number of
parts excluding parts of size 1, are cranks witnessing Theorem 7, the Interval Theorem.

However, there are many more cranks besides α and β.
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Collecting the Data: Two Python Programs
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How Many Cranks are There and Where Do We Find Them?

While Eichhorn, Kronholm, and Larsen knew how many total cranks there should be,

they only
specifically knew the α and β cranks and did not know any others. In order to find all the
other cranks, we wrote a Python program that calculates them using Theorem 16 and sorts
them all by equivalence. This allowed us to produce a lot of previously unknown data.

The Python program examined every MB statistic, start with the tuple (0, 0, . . . , 0) to see if
satisfies Theorem 16. It then incremented to (0, 0, . . . , 1) and tried again. Statistics that did
satisfy the theorem, these are the cranks and were kept in a list. Statistics that did not satisfy
the theorem were discarded.

Kronholm, Eichhorn, and Larsen knew how many of these cranks were distinct.

Theorem 18 (Eichhorn, Kronholm, and Larsen (2022))

For any prime ℓ ⩾ 3 and 3 ⩽ m ⩽ ℓ+ 1, the number of inequivalent MB statistics generated by

Theorem 2.8 that witness The Interval Theorem is exactly (ℓ−2)!
(ℓ−m)! for 2 ⩽ m < ℓ, and (ℓ− 1) !

for m = ℓ, ℓ+ 1 are distinct modulo ℓ, and τℓ ̸≡ 0 (mod ℓ).
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(ℓ−m)! for 2 ⩽ m < ℓ, and (ℓ− 1) !

for m = ℓ, ℓ+ 1 are distinct modulo ℓ, and τℓ ̸≡ 0 (mod ℓ).
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How Many Cranks are There and Where Do We Find Them?

However, for each distinct cranks, there were many “equivalent cranks”.

Proposition 19

Let τ = (τ1, τ2, . . . , τm) be an MB statistic. Given a prime ℓ and a constant a ̸≡ 0(modℓ),
define aτ = (aτ1, aτ2, . . . , aτm). Then τ and a τ are equivalent modulo ℓ. Let b be any integer
and define τ + b(1, 2, . . . ,m) = (τ1 + b, τ2 + 2b, . . . , τm + bm). Then τ and τ + b(1, 2, . . . ,m)
are equivalent modulo ℓ.

For example β=(0,1,1,1) is a crank.
By Proposition 19, 2β = (0, 2, 2, 2) is an equivalent crank to β.
Other equivalent cranks are of the form (0, 1, 1, 1) + (1, 2, 3, 4) = (1, 3, 4, 0)
We repeat the process of adding β + b(1, 2, 3, 4) (mod 5) to find all the equivalent cranks.

For example when ℓ = 5 and m = 4 there are 120 total cranks, but sorted by equivalence, there
are 6 distinct crank lists, where each list contains 20 equivalent cranks. Let’s look at a sample
readout of what the first Python program gives us.
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1),

(0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Equivalent Cranks for ℓ = 5, m = 4, 120 cranks - 6 lists of 20.

Example 20

List 1: β = (0, 1, 1, 1), (0, 2, 2, 2), (0, 3, 3, 3), (0, 4, 4, 4), (1, 3, 4, 0), (1, 4, 0, 1), (1, 0, 1, 2), (1, 1, 2, 3),
(2, 0, 2, 4), (2, 1, 3, 0), (2, 2, 4, 1), (2, 3, 0, 2), (3, 2, 0, 3), (3, 3, 1, 4), (3, 4, 2, 0), (3, 0, 3, 1), (4, 4, 3, 2), (4, 0, 4, 3),
(4, 1, 0, 4), (4, 2, 1, 0).

List 2: (0, 1, 1, 4), (0, 2, 2, 3), (0, 3, 3, 2), (0, 4, 4, 1), (1, 3, 4, 3), (1, 4, 0, 2), (1, 0, 1, 1), (1, 1, 2, 0), (2, 0, 2, 2),
(2, 1, 3, 1), (2, 2, 4, 0), (2, 3, 0, 4), (3, 2, 0, 1), (3, 3, 1, 0), (3, 4, 2, 4), (3, 0, 3, 3), (4, 4, 3, 0), (4, 0, 4, 4), (4, 1, 0, 3),
(4, 2, 1, 2).

List 3: (0, 1, 2, 3), (0, 2, 4, 1), (0, 3, 1, 4), (0, 4, 3, 2), (1, 3, 0, 2), (1, 4, 2, 0), (1, 0, 4, 3), (1, 1, 1, 1), (2, 0, 3, 1),
(2, 1, 0, 4), (2, 2, 2, 2), (2, 3, 4, 0), (3, 2, 1, 0), (3, 3, 3, 3), (3, 4, 0, 1), (3, 0, 2, 4), (4, 4, 4, 4), (4, 0, 1, 2), (4, 1, 3, 0),
(4, 2, 0, 3).

List 4: (0, 1, 2, 4), (0, 2, 4, 3), (0, 3, 1, 2), (0, 4, 3, 1), (1, 3, 0, 3), (1, 4, 2, 2), (1, 0, 4, 1), α = (1, 1, 1, 0),
(2, 0, 3, 2), (2, 1, 0, 1), (2, 2, 2, 0), (2, 3, 4, 4), (3, 2, 1, 1), (3, 3, 3, 0), (3, 4, 0, 4), (3, 0, 2, 3), (4, 4, 4, 0), (4, 0, 1, 4),
(4, 1, 3, 3), (4, 2, 0, 2).

List 5: (0, 1, 3, 1), (0, 2, 1, 2), (0, 3, 4, 3), (0, 4, 2, 4), (1, 3, 1, 0), (1, 4, 4, 1), (1, 0, 2, 2), (1, 1, 0, 3), (2, 0, 4, 4),
(2, 1, 2, 0), (2, 2, 0, 1), (2, 3, 3, 2), (3, 2, 2, 3), (3, 3, 0, 4), (3, 4, 3, 0), (3, 0, 1, 1), (4, 4, 0, 2), (4, 0, 3, 3), (4, 1, 1, 4),
(4, 2, 4, 0).

List 6: (0, 1, 3, 3), (0, 2, 1, 1), (0, 3, 4, 4), (0, 4, 2, 2), (1, 3, 1, 2), (1, 4, 4, 0), (1, 0, 2, 3), (1, 1, 0, 1), (2, 0, 4, 1),
(2, 1, 2, 4), (2, 2, 0, 2), (2, 3, 3, 0), (3, 2, 2, 0), (3, 3, 0, 3), (3, 4, 3, 1), (3, 0, 1, 4), (4, 4, 0, 4), (4, 0, 3, 2), (4, 1, 1, 0),
(4, 2, 4, 3).
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Quasipolynomial Python Program

We have written a second Python program into which we input a crank and receive as output a
collection of polynomial formulas for partition functions.

These collections of formulas are called
quasipolynomials.

Definition 21

A function f (k) is a quasipolynomial if there exist d polynomials f0(k), f1(k), . . . , fd−1(k) such that:

f (k) =


f0(k) if k ≡ 0 (mod d),

f1(k) if k ≡ 1 (mod d),
...

...

fd−1(k) if k ≡ d − 1 (mod d),

for all k ∈ Z. The polynomials fi are called the constituents of f , and the number of constituents d , is
the period of f .

Since we compute quasipolynomials for each crank class, we can examine the constituents to prove
crank results. Again, calculating these quasipolynomials by hand would take impossible amounts of
time. Our program allows us to generate and sift through large amounts of experimental data quickly
in order to find results.
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What the Quasipolynomial Program Does: Formulas for p(n, 4)

∞∑
n=0

p(n, 4)qn =
1

(q; q)4

=
(1 + q + q2 + · · ·+ q11)(1 + q2 + q4 + q6 + q8 + q10)(1 + q3 + q6 + q9)(1 + q4 + q8)

(q; q)4(1 + q + q2 + · · ·+ q11)(1 + q2 + q4 + q6 + q8 + q10)(1 + q3 + q6 + q9)(1 + q4 + q8)

=
1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8 · · ·+ 6q33 + 5q34 + 3q35 + 2q36 + q37 + q38

(1− q12)4

With
1

(1− q12)4
=

∑
k≥0

(
k + 3

3

)
q12k , we now rewrite it as

(1+q+2q2+3q3+5q4+6q5+9q6+· · ·+6q33+5q34+3q35+2q36+q37+q38)×
∑
k≥0

(
k + 3

3

)
q12k .

Now we multiply and collect like terms to establish twelve formulas describing p(n, 4)
for all n.
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What the Quasipolynomial Program Does: Formulas for p(n, 4)
∞∑
n=0

p(n, 4)qn = (1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8 + 18q9 + 23q10

+27q11 + 30q12 + 35q13 + 39q14 + 42q15 + 44q16 + 48q17 + 48q18 + 50q19

+48q20 + 48q21 + 44q22 + 42q23 + 39q24 + 35q25 + 30q26 + 27q27 + 23q28

+18q29 + 15q30 + 11q31 + 9q32 + 6q33 + 5q34 + 3q35 + 2q36 + q37 + q38)

×
∑
k≥0

(
k + 3

3

)
q12k

Multiply and collect like terms: For example, how many ways are there to get an exponent of 12k + 5?
∞∑
k=0

p(12k + 5, 4)q12k+5 =
(
6q5 + 48q17 + 18q29

)
×
∑
k≥0

(
k + 3

3

)
q12k

=
∑
k≥0

(
6

(
k + 3

3

)
+ 48

(
k + 2

3

)
+ 18

(
k + 1

3

))
q12k+5. Hence,

p(12k + 5, 4) = 6

(
k + 3

3

)
+ 48

(
k + 2

3

)
+ 18

(
k + 1

3

)
= 12k3 + 30k2 + 24k + 6.
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Twelve Formulas for p(n, 4)
This process allows us to describe p(n, 4) with twelve formulas:

p(12k, 4) = 1
(
k+3
3

)
+ 30

(
k+2
3

)
+ 39

(
k+1
3

)
+ 2

(
k
3

)
= 12k3 + 15k2 + 6k + 1

p(12k + 1, 4) = 1
(
k+3
3

)
+ 35

(
k+2
3

)
+ 35

(
k+1
3

)
+ 1

(
k
3

)
= 12k3 + 18k2 + 8k + 1

p(12k + 2, 4) = 2
(
k+3
3

)
+ 39

(
k+2
3

)
+ 30

(
k+1
3

)
+ 1

(
k
3

)
= 12k3 + 21k2 + 12k + 2

p(12k + 3, 4) = 3
(
k+3
3

)
+ 42

(
k+2
3

)
+ 27

(
k+1
3

)
= 12k3 + 24k2 + 15k + 3

p(12k + 4, 4) = 5
(
k+3
3

)
+ 44

(
k+2
3

)
+ 23

(
k+1
3

)
= 12k3 + 27k2 + 20k + 5

p(12k + 5, 4) = 6
(
k+3
3

)
+ 48

(
k+2
3

)
+ 18

(
k+1
3

)
= 12k3 + 30k2 + 24k + 6

p(12k + 6, 4) = 9
(
k+3
3

)
+ 48

(
k+2
3

)
+ 15

(
k+1
3

)
= 12k3 + 33k2 + 30k + 9

p(12k + 7, 4) = 11
(
k+3
3

)
+ 50

(
k+2
3

)
+ 11

(
k+1
3

)
= 12k3 + 36k2 + 35k + 11

p(12k + 8, 4) = 15
(
k+3
3

)
+ 48

(
k+2
3

)
+ 9

(
k+1
3

)
= 12k3 + 39k2 + 42k + 15

p(12k + 9, 4) = 18
(
k+3
3

)
+ 48

(
k+2
3

)
+ 6

(
k+1
3

)
= 12k3 + 42k2 + 48k + 18

p(12k + 10, 4) = 23
(
k+3
3

)
+ 44

(
k+2
3

)
+ 5

(
k+1
3

)
= 12k3 + 45k2 + 56k + 23

p(12k + 11, 4) = 27
(
k+3
3

)
+ 42

(
k+2
3

)
+ 3

(
k+1
3

)
= 12k3 + 48k2 + 63k + 27
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞

Mβ(r , n, 4)z
rqn =

1

(1− q)(1− zq2)(1− zq3)(1− zq4)
(30)

=

35∑
i=0

qi ×
17∑
i=0

(zq2)i ×
11∑
i=0

(zq3)i ×
8∑

i=0

(zq4)i

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
=

A(z3, q) + zB(z3, q) + z2C(z3, q)

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
n=0

2∑
r=0

Mβ(r , 3, n, 4)ζ
rqn =

A(1, q) + ζB(1, q) + ζ2C(1, q)

(1− q36)4
=

(
A(1, q) + ζB(1, q) + ζ2C(1, q)

)
×

∞∑
k=0

(k + 3

3

)
q36k

A(q)×
∞∑
k=0

(k + 3

3

)
q36k =

∞∑
n=0

Mβ(0, 3, n, 4)q
n

ζB(q)×
∞∑
k=0

(k + 3

3

)
q36k = ζ

∞∑
n=0

Mβ(1, 3, n, 4)q
n

ζ2C(q)×
∞∑
k=0

(k + 3

3

)
q36k = ζ2

∞∑
n=0

Mβ(2, 3, n, 4)q
n
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generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
n=0

2∑
r=0

Mβ(r , 3, n, 4)ζ
rqn =

A(1, q) + ζB(1, q) + ζ2C(1, q)

(1− q36)4
=

(
A(1, q) + ζB(1, q) + ζ2C(1, q)

)
×

∞∑
k=0

(k + 3

3

)
q36k

A(q)×
∞∑
k=0

(k + 3

3

)
q36k =

∞∑
n=0

Mβ(0, 3, n, 4)q
n
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∞∑
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q36k = ζ

∞∑
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Mβ(1, 3, n, 4)q
n
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∞∑
k=0

(k + 3

3

)
q36k = ζ2

∞∑
n=0

Mβ(2, 3, n, 4)q
n
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞
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(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ.

This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:
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∞∑
n=0

Mβ(1, 3, n, 4)q
n

ζ2C(q)×
∞∑
k=0

(k + 3

3

)
q36k = ζ2

∞∑
n=0

Mβ(2, 3, n, 4)q
n

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)
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Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class.
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
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(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞
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(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
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r=0
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞

Mβ(r , n, 4)z
rqn =

1

(1− q)(1− zq2)(1− zq3)(1− zq4)
(30)

=

35∑
i=0

qi ×
17∑
i=0

(zq2)i ×
11∑
i=0

(zq3)i ×
8∑

i=0

(zq4)i

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
=

A(z3, q) + zB(z3, q) + z2C(z3, q)

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
n=0

2∑
r=0

Mβ(r , 3, n, 4)ζ
rqn =

A(1, q) + ζB(1, q) + ζ2C(1, q)
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=
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞

Mβ(r , n, 4)z
rqn =

1

(1− q)(1− zq2)(1− zq3)(1− zq4)
(30)

=

35∑
i=0

qi ×
17∑
i=0

(zq2)i ×
11∑
i=0

(zq3)i ×
8∑

i=0

(zq4)i

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
=

A(z3, q) + zB(z3, q) + z2C(z3, q)

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
n=0

2∑
r=0

Mβ(r , 3, n, 4)ζ
rqn =

A(1, q) + ζB(1, q) + ζ2C(1, q)

(1− q36)4
=

(
A(1, q) + ζB(1, q) + ζ2C(1, q)

)
×

∞∑
k=0

(k + 3

3

)
q36k

A(q)×
∞∑
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(k + 3
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)
q36k =

∞∑
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Mβ(0, 3, n, 4)q
n

ζB(q)×
∞∑
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(k + 3

3

)
q36k = ζ

∞∑
n=0

Mβ(1, 3, n, 4)q
n

ζ2C(q)×
∞∑
k=0
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3

)
q36k = ζ2

∞∑
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Mβ(2, 3, n, 4)q
n
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Quasipolynomial Python Program: ℓ = 3, m = 4, β = (0, 1, 1, 1)

f (z, q) =
∞∑
n=0

∞∑
r=−∞

Mβ(r , n, 4)z
rqn =

1

(1− q)(1− zq2)(1− zq3)(1− zq4)
(30)

=

35∑
i=0

qi ×
17∑
i=0

(zq2)i ×
11∑
i=0

(zq3)i ×
8∑

i=0

(zq4)i

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
=

A(z3, q) + zB(z3, q) + z2C(z3, q)

(1− q36)(1− z15q36)(1− z12q36)(1− z9q36)
(31)

Set z to be a 3rd root of unity: z = e2πi/3 = ζ. This allows us to complete a trisection in z of f (z, q) into three
generating functions, one for each crank class. Rewriting the denominator as a power series, we have:

f (ζ, q) =
∞∑
n=0

2∑
r=0

Mβ(r , 3, n, 4)ζ
rqn =

A(1, q) + ζB(1, q) + ζ2C(1, q)

(1− q36)4
=

(
A(1, q) + ζB(1, q) + ζ2C(1, q)

)
×

∞∑
k=0

(k + 3

3

)
q36k

A(q)×
∞∑
k=0

(k + 3

3

)
q36k =

∞∑
n=0

Mβ(0, 3, n, 4)q
n

ζB(q)×
∞∑
k=0

(k + 3

3

)
q36k = ζ

∞∑
n=0

Mβ(1, 3, n, 4)q
n

ζ2C(q)×
∞∑
k=0

(k + 3

3

)
q36k = ζ2

∞∑
n=0

Mβ(2, 3, n, 4)q
n
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Let’s take a look at constituents from the second Python program.

They are organized
by n′ and n partner pairs. Recall

n′ = ℓlcm(m)(k + 1)− r −
(
m2 +m

2

)
(32)

n = ℓlcm(m)k + r . (33)
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Recall
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Let’s take a look at constituents from the second Python program. They are organized
by n′ and n partner pairs. Recall

n′ = ℓlcm(m)(k + 1)− r −
(
m2 +m

2

)
(32)

n = ℓlcm(m)k + r . (33)
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k, 4) = 108k3 + 45k2 + 6k + 1 Mβ(0, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 68
Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k, 4) = 108k3 + 45k2 + 6k + 1 Mβ(0, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 68
Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 1 Mβ(0, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 41
Mβ(1, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 3 Mβ(1, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 40
Mβ(2, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 2 Mβ(2, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 39
Mβ(0, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 2 Mβ(0, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 37
Mβ(1, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 3 Mβ(1, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 35
Mβ(2, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 4 Mβ(2, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 36
Mβ(0, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(0, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(1, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(1, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 30
Mβ(2, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 5 Mβ(2, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(0, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+5 Mβ(0, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+28
Mβ(1, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+4 Mβ(1, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+27
Mβ(2, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+6 Mβ(2, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+29
Mβ(0, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 7 Mβ(0, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 23
Mβ(1, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 5 Mβ(1, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 24
Mβ(2, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 6 Mβ(2, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 25

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 1 Mβ(0, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 41
Mβ(1, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 3 Mβ(1, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 40
Mβ(2, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 2 Mβ(2, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 39
Mβ(0, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 2 Mβ(0, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 37
Mβ(1, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 3 Mβ(1, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 35
Mβ(2, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 4 Mβ(2, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 36
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 9 Mβ(0, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 20
Mβ(1, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(1, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(2, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(2, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(0, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 10 Mβ(0, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 17
Mβ(1, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 9 Mβ(1, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 19
Mβ(2, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 8 Mβ(2, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 18
Mβ(0, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(0, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(1, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(1, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 17
Mβ(2, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 10 Mβ(2, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(0, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(0, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(1, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(1, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(2, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(2, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(0, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(0, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(1, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(1, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(2, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(2, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(0, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(0, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(1, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(1, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(2, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(2, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(0, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(0, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(1, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(1, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(2, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(2, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(0, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(0, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(1, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(1, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(2, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(2, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(0, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(0, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(1, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(1, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(2, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(2, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(0, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(0, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(1, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(1, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(2, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(2, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(0, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(0, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(1, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(1, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(2, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(2, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Crank Class Behavior

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Crank Class Behavior

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Recall: A Continuation of p(n, 4) (mod 3)

p(26, 4) = 206 + p(0, 4) = 1 = 207 ≡ 0 (mod 3)
p(25, 4) = 185 + p(1, 4) = 1 = 186 ≡ 0 (mod 3)
p(24, 4) = 169 + p(2, 4) = 2 = 171 ≡ 0 (mod 3)
p(23, 4) = 150≡ 0 (mod 3) + p(3, 4) = 3≡ 0 (mod 3) = 153 ≡ 0 (mod 3)
p(22, 4) = 136 + p(4, 4) = 5 = 141 ≡ 0 (mod 3)
p(21, 4) = 120≡ 0 (mod 3) + p(5, 4) = 6≡ 0 (mod 3) = 126 ≡ 0 (mod 3)
p(20, 4) = 108≡ 0 (mod 3) + p(6, 4) = 9≡ 0 (mod 3) = 117 ≡ 0 (mod 3)
p(19, 4) = 94 + p(7, 4) = 11 = 105 ≡ 0 (mod 3)
p(18, 4) = 84≡ 0 (mod 3) + p(8, 4) = 15≡ 0 (mod 3) = 99 ≡ 0 (mod 3)
p(17, 4) = 72≡ 0 (mod 3) + p(9, 4) = 18≡ 0 (mod 3) = 90 ≡ 0 (mod 3)
p(16, 4) = 64 + p(10, 4) = 23 = 87 ≡ 0 (mod 3)
p(15, 4) = 54≡ 0 (mod 3) + p(11, 4) = 27≡ 0 (mod 3) = 81 ≡ 0 (mod 3)
p(14, 4) = 47 + p(12, 4) = 34 = 81 ≡ 0 (mod 3)
p(13, 4) = 39 = 39 ≡ 0 (mod 3)
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“Fixed” and “Flipped” Crank Classes

p(18, 4) = 84 and p(8, 4) = 15 organize into 3 unbalanced crank classes under β = (0, 1, 1, 1).

Recall that Mβ(r , ℓ, n,m) is the number of partitions of n into parts not larger than m whose
crank values are congruent to r (mod ℓ) under the MB crank β.

Mβ(0, 3, 18, 4) = 28 + Mβ(0, 3, 8, 4) = 5
⇓

28 + 5 = 33

Mβ(1, 3, 18, 4) = 27 + Mβ(2, 3, 8, 4) = 6
⇓

27 + 6 = 33

Mβ(2, 3, 18, 4) = 29 + Mβ(1, 3, 8, 4) = 4
⇓

29 + 4 = 33

The “fixing” and “flipping” of the crank classes is consistent over the entire period. We
observed this for all cases run by the second Python program.
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The “fixing” and “flipping” of the crank classes is consistent over the entire period. We
observed this for all cases run by the second Python program.
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Dissertation Conjecture

This brings us to our dissertation conjecture.

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of
the Interval Theorem. Then τ also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i ∈ {0, 1, . . . , ℓ− 1},

Mτ (i , ℓ, n
′,m)±Mτ (−i − σ(τ ), ℓ, n,m) =

p(n′,m) + p(n,m)

ℓ
(34)

Definition 23

Let τ = (τ1, τ2, . . . , τm) be an MB statistic with each component 0 ≤ τa ≤ ℓ− 1.
We define a function

σ(τ) =
m∑

a=1

τa (mod ℓ). (35)
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Crucial Information - Definition σ(τ)

Recall the first Python program found distinct cranks and listed them by equivalency.

At first we thought equivalency was very important to our work. However, we soon
discovered σ(τ) was affecting our crank classes. For example,

Example 24

Choose crank β = (0, 1, 1) and equivalent crank τ = (0, 2, 2)
σ(0, 1, 1) ≡ 2 (mod 3)
σ(0, 2, 2) ≡ 1 (mod 3).

We see these two equivalent cranks differ from each other in their σ-value and we
learned this is what was important to the crank class behavior.

Remark

Given prime ℓ, and a MB crank τ , we have observed empirically that ( ℓ−1
2 )σ(τ) is the

“fixed” crank class. In other words, the crank classes have a mirror symmetry around
the ( ℓ−1

2 )σ(τ)th crank class.
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Dissertation Conjecture

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of
the Interval Theorem. Then τ also witnesses the congruences of the Sum and
Difference Theorem in the following way: For i ∈ {0, 1, . . . , ℓ− 1},

Mτ (i , ℓ, n
′,m)±Mτ (−i − σ(τ ), ℓ, n,m) =

p(n′,m) + p(n,m)

ℓ
(36)

Let’s look at our tables of constituents again, this time paying attention to how they
fix and flip.
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k, 4) = 108k3 + 45k2 + 6k + 1 Mβ(0, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 68
Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k+1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k+50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k+2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k+51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k+0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k+49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+44
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Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k+1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k+44
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k, 4) = 108k3 + 45k2 + 6k + 1 Mβ(0, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 68
Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k, 4) = 108k3 + 45k2 + 6k + 1 Mβ(0, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 68
Mβ(1, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(1, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(2, 3, 36k, 4) = 108k3 + 45k2 + 6k + 0 Mβ(2, 3, 36k + 26, 4) = 108k3 + 279k2 + 240k + 69
Mβ(0, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 1 Mβ(0, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 61
Mβ(1, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(1, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(2, 3, 36k + 1, 4) = 108k3 + 54k2 + 8k + 0 Mβ(2, 3, 36k + 25, 4) = 108k3 + 270k2 + 224k + 62
Mβ(0, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(0, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(1, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 1 Mβ(1, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 57
Mβ(2, 3, 36k + 2, 4) = 108k3 + 63k2 + 12k + 0 Mβ(2, 3, 36k + 24, 4) = 108k3 + 261k2 + 210k + 56
Mβ(0, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 1 Mβ(0, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 50
Mβ(1, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 2 Mβ(1, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 51
Mβ(2, 3, 36k + 3, 4) = 108k3 + 72k2 + 15k + 0 Mβ(2, 3, 36k + 23, 4) = 108k3 + 252k2 + 195k + 49
Mβ(0, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(0, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(1, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 3 Mβ(1, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 46
Mβ(2, 3, 36k + 4, 4) = 108k3 + 81k2 + 20k + 1 Mβ(2, 3, 36k + 22, 4) = 108k3 + 243k2 + 182k + 44
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 1 Mβ(0, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 41
Mβ(1, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 3 Mβ(1, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 40
Mβ(2, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 2 Mβ(2, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 39
Mβ(0, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 2 Mβ(0, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 37
Mβ(1, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 3 Mβ(1, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 35
Mβ(2, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 4 Mβ(2, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 36
Mβ(0, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(0, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(1, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(1, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 30
Mβ(2, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 5 Mβ(2, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(0, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+5 Mβ(0, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+28
Mβ(1, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+4 Mβ(1, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+27
Mβ(2, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+6 Mβ(2, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+29
Mβ(0, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 7 Mβ(0, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 23
Mβ(1, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 5 Mβ(1, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 24
Mβ(2, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 6 Mβ(2, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 25
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 1 Mβ(0, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 41
Mβ(1, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 3 Mβ(1, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 40
Mβ(2, 3, 36k + 5, 4) = 108k3 + 90k2 + 24k + 2 Mβ(2, 3, 36k + 21, 4) = 108k3 + 234k2 + 168k + 39
Mβ(0, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 2 Mβ(0, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 37
Mβ(1, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 3 Mβ(1, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 35
Mβ(2, 3, 36k + 6, 4) = 108k3 + 99k2 + 30k + 4 Mβ(2, 3, 36k + 20, 4) = 108k3 + 225k2 + 156k + 36
Mβ(0, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(0, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(1, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 3 Mβ(1, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 30
Mβ(2, 3, 36k + 7, 4) = 108k3 + 108k2 + 35k + 5 Mβ(2, 3, 36k + 19, 4) = 108k3 + 216k2 + 143k + 32
Mβ(0, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+5 Mβ(0, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+28
Mβ(1, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+4 Mβ(1, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+27
Mβ(2, 3, 36k + 8, 4) = 108k3 + 117k2 + 42k+6 Mβ(2, 3, 36k + 18, 4) = 108k3 + 207k2 + 132k+29
Mβ(0, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 7 Mβ(0, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 23
Mβ(1, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 5 Mβ(1, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 24
Mβ(2, 3, 36k + 9, 4) = 108k3 + 126k2 + 48k + 6 Mβ(2, 3, 36k + 17, 4) = 108k3 + 198k2 + 120k + 25
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 9 Mβ(0, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 20
Mβ(1, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(1, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(2, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(2, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(0, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 10 Mβ(0, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 17
Mβ(1, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 9 Mβ(1, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 19
Mβ(2, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 8 Mβ(2, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 18
Mβ(0, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(0, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(1, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(1, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 17
Mβ(2, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 10 Mβ(2, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 9 Mβ(0, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 20
Mβ(1, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(1, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(2, 3, 36k + 10, 4) = 108k3 + 135k2 + 56k + 7 Mβ(2, 3, 36k + 16, 4) = 108k3 + 189k2 + 110k + 22
Mβ(0, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 10 Mβ(0, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 17
Mβ(1, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 9 Mβ(1, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 19
Mβ(2, 3, 36k + 11, 4) = 108k3 + 144k2 + 63k + 8 Mβ(2, 3, 36k + 15, 4) = 108k3 + 180k2 + 99k + 18
Mβ(0, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(0, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(1, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 12 Mβ(1, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 17
Mβ(2, 3, 36k + 12, 4) = 108k3 + 153k2 + 72k + 10 Mβ(2, 3, 36k + 14, 4) = 108k3 + 171k2 + 90k + 15
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13 Mβ(0, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 13
Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14 Mβ(1, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 14
Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12 Mβ(2, 3, 36k + 13, 4) = 108k3 + 162k2 + 80k + 12
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(0, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(0, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(1, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(1, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(2, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(2, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(0, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(0, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(1, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(1, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(2, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(2, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(0, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(0, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(1, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(1, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(2, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(2, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(0, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(0, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(1, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(1, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(2, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(2, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
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Constituents of Quasipolynomials: ℓ = 3, m = 4, β = (0, 1, 1, 1)

Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(0, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(1, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107 Mβ(2, 3, 36k + 31, 4) = 108k3 + 324k2 + 323k + 107
Mβ(0, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(0, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(1, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(1, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(2, 3, 36k + 32, 4) = 108k3 + 333k2 + 342k + 117 Mβ(2, 3, 36k + 30, 4) = 108k3 + 315k2 + 306k + 99
Mβ(0, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(0, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(1, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(1, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(2, 3, 36k + 33, 4) = 108k3 + 342k2 + 360k + 126 Mβ(2, 3, 36k + 29, 4) = 108k3 + 306k2 + 288k + 90
Mβ(0, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(0, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(1, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(1, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(2, 3, 36k + 34, 4) = 108k3 + 351k2 + 380k + 137 Mβ(2, 3, 36k + 28, 4) = 108k3 + 297k2 + 272k + 83
Mβ(0, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(0, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(1, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(1, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
Mβ(2, 3, 36k + 35, 4) = 108k3 + 360k2 + 399k + 147 Mβ(2, 3, 36k + 27, 4) = 108k3 + 288k2 + 255k + 75
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Another Example

For ℓ = 5, m = 4, τ = (0, 2, 2, 2), σ(τ ) = 6 ≡ 1 (mod 5), n′ = 37, n = 13,

our fixed
crank class will be

(
ℓ−1
2

)
σ(τ) =

(
5−1
2

)
· 1 = 2

Mτ (0, 5, 37, 4)= 104 +Mτ (0, 5, 13, 4)= 7 = 110

Mτ (1, 5, 37, 4)= 99 +Mτ (1, 5, 13, 4)= 10 = 110

Mτ (2, 5, 37, 4)= 105 −−−→ +Mτ (2, 5, 13, 4)= 5 = 110

Mτ (3, 5, 37, 4)= 100 +Mτ (3, 5, 13, 4)= 11 = 110

Mτ (4, 5, 37, 4)= 103 +Mτ (4, 5, 13, 4)= 6 = 110

We see the 2 crank class is fixed, crank classes 1 and 3 flip, and 0 and 4 flip as in the
Sum and Difference Theorem.
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Progress Toward Proving the Dissertation Conjecture

the h∗-Vector: aka The Ehrhart MB Statistic Numerator
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Proving cranks witness these congruences

We examine what we call an Ehrhart MB Statistic numerator, the coefficients of which
are otherwise known to Richard Stanley as the h∗-vector [7].
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Recasting the Generating Function for p(n,m)

Recall it is possible to recast the generating function for p(n,m) so that it is in terms
of binomial coefficients. For example

∞∑
n=0

p(n, 4)qn =
1

(q; q)4
= (1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + · · ·

· · ·+ 6q33 + 5q34 + 3q35 + 2q36 + q37 + q38)×
∑
k≥0

(
k + 3

3

)
q12k

The polynomial above, is an example of what we call an Ehrhart numerator.

We hope
to prove our conjecture by analyzing a two variable version of this that we call the
Ehrhart MB statistic numerator.
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Ehrhart MB Statistic Numerator Formula

Definition 25

Given ℓ an odd prime,ζ a primitive ℓth root of unity, m, j ≥ 1, and MB statistic
τ = (τ1, τ2, . . . , τm), we call the polynomial below the “Ehrhart MB statistic
numerator”:

Eτ (ζ, q) =
m∏
j=1

lcm(m)−j
j∑

i=0

(
ζτiqj

)i
=

m∏
j=1

1− ζ
τj (

lcm(m)−j
j

+1)q(
lcm(m)−j

j
+1)j

1− ζτjqj
(37)

With the goal of exploring the dissertation conjecture, we set out to analyze Eτ (ζ, q),
the Ehrhart MB statistic numerator. We will show that it is a flipped reciprocal
polynomial. We require the following definitions.
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Conjugate Reciprocal Polynomials

Definition 12

A polynomial of degree d, P(q) = a0 + a1q + · · ·+ adq
d , is said to be reciprocal if

ai = ad−i (38)

. Equivalently, if
qdP

(
q−1

)
= P(q). (39)

A polynomial of degree d, P(q) = a0 + a1q + · · · − adq
d , is said to be anti-reciprocal if

ai = −ad−i (40)

. Equivalently, if
qdP

(
q−1

)
= −P(q). (41)

A polynomial of degree d, with complex coefficients {ai}, P(q) =
d∑

i=0

aiq
i = a0 + a1q + · · ·+ adq

d , is said to

be conjugate reciprocal if
ai = ad−i . (42)

Equivalently, if
qdP(q−1) = P(q). (43)
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Definition of a “Flipped” Reciprocal Polynomial

Definition 26 (Flipped Reciprocal Polynomial)

Let ℓ be an odd prime and ζ be a primitive ℓth root of unity, and y be a complex
number. Given a polynomial

P(ζ, q) =
d∑

i=0

ζRyiq
i , (44)

we say P(ζ, q) is a flipped reciprocal polynomial if whenever the coefficient on qi is
ζRyi , then the coefficient on qd−i is ζRyi .

We need to prove that given a MB crank witnessing the Interval Theorem, the
associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.
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We need to prove that given a MB crank witnessing the Interval Theorem, the
associated Ehrhart MB statistic numerator is, in fact, a flipped reciprocal polynomial.

Jena Gregory Cranks Witnessing an Infinite Family of Congruences for a Sum of Partition Functions



Example: “Flipped” Reciprocal Polynomial
Given ℓ = 3,m = 4, ζ = e

2πi
3 , τ = (0, 1, 1, 1), here is the Ehrhart numerator we get by recasting the crank

generating function.

35∑
i=0

qi ×
17∑
i=0

(ζq2)i ×
11∑
i=0

(ζq3)i ×
8∑

i=0

(ζq4)i

= 1+q+q2+e
2iπ
3 q2+q3+2e

2iπ
3 q3+q4+e−

2iπ
3 q4+3e

2iπ
3 q4+q5+2e−

2iπ
3 q5+3e

2iπ
3 q5+2q6+4e−

2iπ
3 q6+3e

2iπ
3 q6+3q7+

5e−
2iπ
3 q7+3e

2iπ
3 q7+5q8+6e−

2iπ
3 q8+4e

2iπ
3 q8+7q9+6e−

2iπ
3 q9+5e

2iπ
3 q9+9q10+7e−

2iπ
3 q10+7e

2iπ
3 q10+10q11+

8e−
2iπ
3 q11+9e

2iπ
3 q11+12q12+10e−

2iπ
3 q12+12e

2iπ
3 q12+13q13+12e−

2iπ
3 q13+14e

2iπ
3 q13+15q14+15e−

2iπ
3 q14+

17e
2iπ
3 q14+17q15+18e−

2iπ
3 q15+19e

2iπ
3 q15+20q16+22e−

2iπ
3 q16+22e

2iπ
3 q16+23q17+25e−

2iπ
3 q17+24e

2iπ
3 q17 =

+ · · ·+

+15q120+17e−
2iπ
3 q120+15e

2iπ
3 q120+13q121+14e−

2iπ
3 q121+12e

2iπ
3 q121+12q122+12e−

2iπ
3 q122+10e

2iπ
3 q122

+ 10q123 + 9e−
2iπ
3 q123 + 8e

2iπ
3 q123 + 9q124 + 7e−

2iπ
3 q124 + 7e

2iπ
3 q124 + 7q125 + 5e−

2iπ
3 q125 + 6e

2iπ
3 q125

+ 5q126 + 4e−
2iπ
3 q126 + 6e

2iπ
3 q126 + 3q127 + 3e−

2iπ
3 q127 + 5e

2iπ
3 q127 + 2q128 + 3e−

2iπ
3 q128 + 4e

2iπ
3 q128+

q129+3e−
2iπ
3 q129+2e

2iπ
3 q129+q130+3e−

2iπ
3 q130+e

2iπ
3 q130+q131+2e−

2iπ
3 q131+q132+e−

2iπ
3 q132+q133+q134
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Current Work

Remark

Reciprocal and anti-reciprocal polynomials played a key role in the proof of the Sum
and Difference Theorem.

Remark (Future Work)

How might these generalizations, namely flipped reciprocal polynomials, apply to a
proof that there are cranks witnessing the Sum and Difference Theorem?
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Future Work

Conjecture 22 (G., Kronholm)

Let ℓ and m be given, and suppose τ is any MB crank witnessing the congruences of the Interval Theorem.

Then τ also witnesses the congruences of the Sum and Difference Theorem in the following way: For

i ∈ {0, 1, . . . , ℓ− 1},

Mτ (i , ℓ, n
′,m)±Mτ (−i − σ(τ ), ℓ, n,m) =

p(n′,m) + p(n,m)

ℓ
(45)

1 Our evidence from the Python programs prompts us to conjecture that MB cranks witnessing the Interval
Theorem also witness the Sum and Difference Theorem.

Theorem 16 (Eichhorn, Kronholm, and Larsen (2022))

A MB statistic τ is a crank for the congruences of The Interval Theorem (Theorem 7) if the components of the

tuple
(̂ τi

i

)m

i=1
are distinct modulo ℓ, and τℓ ̸≡ 0 (mod ℓ) in the tuple τ = (τ1, τ2, . . . , τm).

The hat on the tuple means we’re omitting the ℓth component.

2 We must continue to look at the constituents and how they are made.
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Thank you for your time today

jena.gregory01@utrgv.edu
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