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The Chu–Vandermonde formula

The Chu–Vandermonde formula is(
x

N

)
=

N∑
n=0

(
a

n

)(
x− a

N − n

)
.

Although this identity appears in work of Vandermonde (1772), its earliest
appearance is in a book by Chu Shih-Chieh (1303). Needham and Ling (1959)
point out that Chu had identities equivalent to

N∑
n=1

(
n+ x− 1

x

)
=

(
N + x

x+ 1

)
and

N∑
n=1

(
n+ x− 1

x

)(
N + a− n

a

)
=

N∑
n=1

(
n+ a+ x− 1

a+ x

)
.

Proofs

By equating coefficients of z on either side of (1 + z)a(1 + z)b = (1 + z)a+b

By induction on N (Vandermonde)

As the terminating case of Gauss’s summation formula for a 2F1 series with
unit argument

The obvious combinatorial argument
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Notation

For 0 < |q| < 1, we define

(x)∞ =

∞∏
n=0

(1−xqn), (x)a =
(x)∞
(xqa)∞

, (x1, x2, . . . , xk)a = (x1)a(x2)a . . . (xk)a.

Thus (x)0 = 1 and, when n is a positive integer,

(x)n = (1− x)(1− qx)(1− q2x) . . . (1− qn−1x).

If n is a negative integer then

1/(x)n = (1− xq−1)(1− xq−2) . . . (1− xqn).

The q-binomial coefficient [ ab ]q is defined by[
a
b

]
q

=
(q)a

(q)b(q)a−b
.
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The q-Vandermonde formula

The q-Vandermonde formula, valid for every integer N ≥ 0, is[
x
N

]
q

=

N∑
n=0

q(N−n)(a−n)

[
a
n

]
q

[
x− a
N − n

]
q

.

In the limit q → 1 it reduces to the Chu–Vandermonde formula.
Proofs

By equating coefficients of z on either side of (az)∞
(z)∞

· (abz)∞
(az)∞

= (abz)∞
(z)∞

By induction on N

As the terminating case of Heine’s q-analogue of Gauss’s 2F1 summation

Combinatorially, by counting partitions
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Sequences of Bender’s type

Definition

A sequence (un)n≥0 will be said to be of Bender’s type if it satisfies the following
conditions

(i) for each n ≥ 0, either un+1 = un or un+1 = un + 1;

(ii) un → ∞ as n → ∞.
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Bender’s generalized q-Vandermonde formula

Theorem (Bender, 1971)

Let (un) be an integer sequence of Bender’s type. Then, for any integer N ≥ 0,[
x
N

]
q

=

N∑
n=0

q(N−n)(un+1−n)

[
un
n

]
q

[
x− un+1

N − n

]
q

When the sequence (un) is constant (for n ≤ N), this is the q-Vandermonde
formula.
Proofs

By counting partitions into distinct parts (Bender)

By counting subspaces of a finite-dimensional vector space over Fq (Bender;
see also Andrews, 1974)

By rearranging the q-Vandermonde formula (Evans, 1978)

By lattice paths (Sulanke, 1981; Gessel, 1984)
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Integer partitions

Let n be any positive integer. A partition of n is an ordered tuple of positive
integers π = (π1, π2, . . . , πk) such that

π1 ≥ π2 ≥ . . . ≥ πk and π1 + π2 + . . .+ πk = n.

Example. There are seven partitions of 5:

(5) (2, 2, 1) (4, 1) (2, 1, 1, 1)

(3, 2) (1, 1, 1, 1, 1) (3, 1, 1)

By convention, there is one partition of 0, known as the empty partition. We write
P for the set of all partitions and D for the set of all partitions into distinct parts.

For a partition π ∈ P, we define the following functions:

σ(π) = the sum of the parts of π,

ν(π) = the number of parts of π,

λ(π) = the largest part of π.
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Generating functions for partitions

The generating function for partitions into distinct parts of size at most n is

(−qx)n =
∑
π∈D

λ(π)≤n

xν(π)qσ(π).

The q-binomial coefficient can also be interpreted as a generating function for
partitions: [

m
n

]
q

=
∑
π∈P

ν(π)≤n
λ(π)≤m−n

qσ(π), q
n(n+1)

2

[
m
n

]
q

=
∑
π∈D

ν(π)=n
λ(π)≤m

qσ(π).
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A combinatorial interpretation of Bender’s formula

The following proof is given in Bender’s paper: First, multiply both sides by
qN(N+1)/2. The identity becomes

q
N(N+1)

2

[
M
N

]
q

=

N∑
n=0

q
n(n+1)

2

[
un
n

]
q

· q
(N−n)(N−n+1)

2
+(N−n)un+1

[
M − un+1

N − n

]
q

.

This may be interpreted as

∑
π∈D

ν(π)=N
λ(π)≤M

qσ(π) =

N∑
n=0

( ∑
π∈D

ν(π)=n
λ(π)≤un

qσ(π)
)( ∑

π∈D
ν(π)=N−n

each πj ∈ [un+1 + 1,M ]

qσ(π)
)

︸ ︷︷ ︸
This counts partitions π ∈ D with πn ≤ un

and πn+1 > un+1. (Writing π1 ≤ π2 ≤ . . .)

.
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The non-terminating extension of Bender’s formula

Theorem (B.T., 2023)

Let (un) be an integer sequence of Bender’s type. Then, for |x| < 1,
∞∑
n=0

(ax)un+1−n−1(a)un(b)n

(a)un−n(q)n(abx)un+1−1
xn =

(ax, bx)∞
(x, abx)∞

.

The special case in which un = n for every n is the q-Gauss identity,
∞∑
n=0

(a, b)n
(q, abx)n

xn =
(ax, bx)∞
(x, abx)∞

.

The series terminates when b = q−N for some integer N ≥ 0. The identity is then

N∑
n=0

(ax)un+1−n−1(a)un(q
−N )n

(a)un−n(q)n(axq−N )un+1−1
xn =

(xq−N )N
(axq−N )N

.

After making the substitution (a, x) 7→ (qa+1, qN−x), this reduces to Bender’s
formula, with a+ un in place of un.
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A further extension of Bender’s formula

The q-Gauss identity is a special case of the 6ϕ5 summation, which may be written
in the form

∞∑
n=0

(a, b, c)n(abcx)n−1

(q, abx, acx, bcx)n
(1− abcxq2n−1)xn =

(ax, bx, cx, abcx)∞
(x, abx, acx, bcx)∞

.

A natural question to ask is whether this formula admits a generalization of
Bender’s type.

Theorem (B.T., 2025)

Let (un) be an integer sequence of Bender’s type. Then, for |x| < 1,

∞∑
n=0

(ax)un+1−n−1(a)un(b, c)n(abcx)un−1

(a)un−n(q, bcx)n(abx, acx)un+1−1

(
1− abcx(un+1 − un)q

n+un−1
)
xn =

(ax, bx, cx, abcx)∞
(x, abx, acx, bcx)∞

.
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The terminating case

Corollary (B.T., 2025)

Let (un) be a sequence of Bender’s type. Then

N∑
n=0

q(N−n)(un+1−n)[
b+N − x+ un+1

N

]
q

[
un
n

]
q

[
x− un+1

N − n

]
q

[
b+ n
x

]
q

1− (un+1 − un)q
b−x+n+un+1

1− (un+1 − un)qb−x+un+1

=

[
b

x−N

]
q

The special case of this formula when un is constant for n ≤ N is the
q-Saalschütz summation.

In the limit b → ∞, the formula reduces to Bender’s summation.
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The proof in outline

Suppose we take the differences un+1 − un to equal 1 for all n ≥ N . Then
un = n−N + uN for n ≥ N and the formula to be proved becomes

N−1∑
n=0

(ax)un+1−n−1(a)un(b, c)n(abcx)un−1

(a)un−n(q, bcx)n(abx, acx)un+1−1

(
1− abcx(un+1 − un)q

n+un−1
)
xn

+
(ax)uN−N

(a)uN−N

∞∑
n=N

(a)n+uN−N (b, c)n(abcx)n+uN−N−1

(q, bcx)n(abx, acx)n+uN−N
(1− abcxq2n+uN−N−1)xn =

(ax, bx, cx, abcx)∞
(x, abx, acx, bcx)∞

.

We can prove this by induction on N . The case N = 0 is just the 6ϕ5

summation, slightly rewritten. The induction step requires that un+1 − un
equals 0 or 1 for each n.

The general case follows by letting N → ∞. Tannery’s theorem may be used
to show that the second term on the left-hand side is O(|x|uN ) in this limit.
Since |x| < 1 and uN → ∞, the sum must tend to zero.
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A special case related to the q-binomial theorem

When b = c = 0, the formula becomes

∞∑
n=0

(ax)un+1−n−1(a)un

(a)un−n(q)n
xn =

(ax)∞
(x)∞

.

This identity contains the q-binomial theorem as its special case un = n. When
a = q it may be written in the form

∞∑
n=0

(−1)n(−qx)un+1−n

[
un
n

]
q

(qx)n = 1.

There is really no loss of generality in specializing the value of a since rescaling a
just amounts to shifting the terms of (un). When the un are positive integers, this
identity can be proved combinatorially.
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Overpartitions

The set of overpartitions is given formally by P(1) = P ×D. Informally, an
overpartition is a partition in which some parts are ‘marked’ and all of the marked
parts are distinct from one another.

Example. Let π =
(
(5, 4, 4, 1), (4, 3, 1)

)
. We represent this with a Ferrers diagram:

It is conventional to list the marked and unmarked parts together—so here we may
write

π = (5, 4, 4, 4, 3, 1, 1).

By identifying a partition π ∈ P with the overpartition (π,∅) ∈ P(1), we may
regard P as a subset of P(1). It matters which parts are marked. For example,

(5, 4, 4, 4, 3, 1, 1)

is different from the overpartition π shown above.
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Generating functions for overpartitions

Let us write
σ(π) = the sum of all of the parts of π,

νu(π) = the number of unmarked parts of π,

νm(π) = the number of marked parts of π.

It is well known that ∑
π∈P(1)

aνm(π)xνu(π)qσ(π) =
(−aq)∞
(qx)∞

and we can use this to give a combinatorial interpretation of the q-binomial
theorem. If we also introduce

λu(π) = the largest unmarked part of π,

λm(π) = the largest marked part of π,

then ∑
π∈P(1)

νu(π)=n
λu(π)≤ℓ, λm(π)≤m

xνm(π)qσ(π) =

( ∑
π∈P

ν(π)=n
λ(π)≤ℓ

qσ(π)
)( ∑

π∈D
λ(π)≤m

xν(π)qσ(π)
)

= qn
[
ℓ+ n− 1

n

]
q

(−qx)m.
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A combinatorial interpretation

When the un are positive integers, the identity

∞∑
n=0

(−1)n(−qx)un+1−n

[
un
n

]
q

(qx)n = 1

admits the following interpretation.

Theorem (B.T., 2025)

Let (un)n≥0 be any sequence of positive integers of Bender’s type. Let M and N
be positive integers. Let A(M,N) denote the number of overpartitions of N into
exactly M parts such that νu(π) is even and

νu(π) + λu(π) ≤ uνu(π) + 1, νu(π) + λm(π) ≤ uνu(π)+1.

Let B(M,N) denote the number of overpartitions of N into exactly M parts such
that νu(π) is odd and these same inequalities hold. Then A(M,N) = B(M,N).
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An example

Suppose we take M = 3 and N = 8, and the sequence (un) begins

u0 = u1 = 4, u2 = u3 = 5, u4 = 6.

The overpartitions of 8 into 3 parts are shown in the following table:

Overpartitions satisfying
both inequalities

Overpartitions satisfying the
first inequality but not the
second

Overpartitions satisfying the
second inequality but not the
first

νu(π) even νu(π) odd

(4, 3, 1) (4, 3, 1) (6, 1, 1) (6, 1, 1)
(4, 3, 1) (4, 3, 1) (6, 1, 1) (6, 1, 1)
(4, 3, 1) (4, 3, 1) (5, 2, 1) (5, 2, 1)
(4, 2, 2) (4, 2, 2) (5, 2, 1) (5, 2, 1)
(3, 3, 2) (3, 3, 2) (5, 2, 1) (5, 2, 1)
(3, 3, 2) (3, 3, 2) (5, 2, 1) (5, 2, 1)

(4, 3, 1) (4, 3, 1)
(4, 2, 2) (4, 2, 2)
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Another example

Suppose now we take M = 3 and N = 10, the sequence (un) being the same as
before. The overpartitions of 10 into 3 parts are shown in the following table:

Overpartitions
satisfying both
inequalities

Overpartitions satisfying
the first inequality but not
the second

Overpartitions satisfying
the second inequality but
not the first

Overpartitions
satisfying neither
inequality

νu(π) even νu(π) odd

(4, 4, 2) (4, 4, 2) (8, 1, 1) (8, 1, 1) (8, 1, 1) (8, 1, 1) (5, 4, 1)
(4, 3, 3) (4, 3, 3) (7, 2, 1) (7, 2, 1) (7, 2, 1) (7, 2, 1)

(7, 2, 1) (7, 2, 1) (7, 2, 1) (7, 2, 1)
(6, 3, 1) (6, 3, 1) (6, 3, 1) (6, 3, 1)
(6, 3, 1) (6, 3, 1) (6, 3, 1) (6, 3, 1)
(6, 2, 2) (6, 2, 2) (6, 2, 2) (6, 2, 2)
(5, 4, 1) (5, 4, 1) (5, 4, 1)
(5, 4, 1) (5, 4, 1) (5, 4, 1) (5, 4, 1)
(5, 3, 2) (5, 3, 2) (5, 3, 2) (5, 3, 2)
(5, 3, 2) (5, 3, 2) (5, 3, 2) (5, 3, 2)
(4, 4, 2) (4, 3, 3) (4, 4, 2) (4, 3, 3)
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A bijective proof

Let S denote the set of overpartitions of N into M parts which satisfy the two
inequalities

νu(π) + λu(π) ≤ uνu(π) + 1 and νu(π) + λm(π) ≤ uνu(π)+1.

On the set of all overpartitions, let ι : π 7→ π̃ be defined by the condition that π
and π̃ are identical except that if largest part of π is marked then the largest part
of π̃ is unmarked and vice versa. It suffices to show that π̃ ∈ S whenever π ∈ S.
Suppose first that π ∈ S and the largest part of π is marked. Then

νu(π̃) = νu(π) + 1, λu(π̃) = λm(π), λm(π̃) ≤ λm(π)− 1,

so
νu(π̃) + λu(π̃) = νu(π) + λm(π) + 1 ≤ uνu(π)+1 + 1 = uνu(π̃) + 1

and
νu(π̃) + λm(π̃) ≤ νu(π) + λm(π) ≤ uνu(π)+1 = uνu(π̃) ≤ uνu(π̃)+1

so π̃ ∈ S.
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A bijective proof

Suppose now that π ∈ S and the largest part of π is unmarked. Then

νu(π̃) = νu(π)− 1, λu(π̃) ≤ λu(π), λm(π̃) = λu(π),

so
νu(π̃) + λu(π̃) ≤ νu(π) + λu(π)− 1 ≤ uνu(π) = uνu(π̃)+1 ≤ uνu(π̃) + 1

and
νu(π̃) + λm(π̃) = νu(π) + λu(π)− 1 ≤ uνu(π) = uνu(π̃)+1

so again π̃ ∈ S, as required.
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WZ pairs

A WZ pair is a pair of functions F,G : Z2
≥0 → C which satisfy identically the

relation
F (m+ 1, n)− F (m,n) = G(m,n+ 1)−G(m,n).

Let U denote the set of non-negative integer sequences (un)n≥0 which are
non-decreasing and for which un → ∞ as n → ∞. For any given sequence (un) in
U , let us write u∗n for the number of terms which are ≤ n.

Theorem (Amdeberhan and Zeilberger, 1997 (special case); B.T., 2023)

Let (F,G) be a WZ pair. Suppose moreover that F and G satisfy

lim
m→∞

F (m,n) = lim
m→∞

G(n,m) = 0

for every n ≥ 0, and that there is a sequence of positive numbers (cn)n≥0 such that
|F (m,n)| ≤ cn and |G(m,n)| ≤ cm for all integers m,n ≥ 0 and the series

∑∞
n=0 cn

converges. Then ∞∑
n=0

F (0, n) =

∞∑
n=0

F (un, n) +

∞∑
n=0

G(n, u∗n)

for any u ∈ U .
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A general theorem of Bender’s type

If in this result we take (un) to be a sequence of Bender’s type, then

∞∑
n=0

G(n, u∗n) =

∞∑
n=0

(un+1 − un)G(un, n+ 1)

so, for a WZ pair (F,G) we have (under suitable conditions) that

∞∑
n=0

F (0, n) =

∞∑
n=0

F (un, n) +

∞∑
n=0

(un+1 − un)G(un, n+ 1).

For example, consider the WZ pair

F (m,n) =
(a)n−m+1(ax)1−mxn

(a)1−m(q)n
, G(m,n) =

aq−m(a)n−m(ax)−mxn

(a)1−m(q)n−1
.

For an integer sequence of Bender’s type, this yields
∞∑
n=0

(a)n
(q)n

xn =

∞∑
n=0

(a)n+1−un(ax)1−un

(a)1−un(q)n
xn+a

∞∑
n=0

(a)n+1−un(ax)−un

(a)1−un(q)n
(un+1−un)q

−unxn+1.
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A general theorem of Bender’s type

This can be simplified by combining the two series into one:

(ax)∞
(x)∞

=

∞∑
n=0

(a)n+1−un(ax)−un

(a)1−un(q)n

(
(1− axq−un) + ax(un+1 − un)q

−un

)
xn

=

∞∑
n=0

(a)n+1−un(ax)1−un+1

(a)1−un(q)n
xn.

This is the same as the q-binomial-type summation obtained previously, but with
un 7→ n+ 1− un.
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A procedure for generating more such identities

Suppose we begin with a q-series summation formula (finite or infinite) involving
the variable a. We may write it in the form

∞∑
n=0

fn(a) = g(a).

Let

F (m,n) =
fn(aq

m)

g(aqm)
.

We can follow the q-WZ method to produce a function G such that (F,G) is a WZ
pair. We may then deduce from the foregoing that

∞∑
n=0

F (un, n) +

∞∑
n=0

(un+1 − un)G(un, n+ 1) = 1

for any sequence (un) of Bender’s type.
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