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Overview.

e Jackson’s problem on unilateral summation formulae with
Symimetry.

o A generalization of the g¢5 summation with symmetry in
four variables.

o Use of WZ pairs to prove summation formulae and derive
new ones.

o Adaptation of classical methods from the theory of elliptic
functions.

@ Proofs of Ramanujan’s 111 and Bailey’s g1g identity using
theta functions.

e Main result: an analogue of the g1 identity with
symmetry in four variables.

e Some partial fraction expansions.

e Open problems.
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Notation.

The base, g, is fixed such that 0 < |¢| < 1.

The infinite g-Pochhammer symbol:

o0

(CM Q)oo = (a)oo = H (1 _ aqm).

m=0
The finite ¢-Pochhammer symbol:
(@)oo .
(ag™)oo
Write (a, b, c,...)n for (a)n(b)n(c)n .. ..

(a;q)n = (a)n :=

Theta functions:
0(z;q) = 0(x) := (z,q9/T,q)oo-
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Basic hypergeometric series.

Definition

A unilateral basic hypergeometric series is a series y 2 uy, with
the property that the ratio wuy41/u, of two successive terms is a
rational function of ¢". A bilateral basic hypergeometric series
is a series Y 2 u, with the same property.

For non-negative integers r, s, the usual notation is

aip, az a 2. (a1, a2 ar) nno1) s—r+1
Tm( by, ... bs”“”):Zﬁ(( D" ) a”,

) n—=0 q7b17b27"'7 s

0

ai, a2, ..., Qp (a1,a2,...,aT)n p =1 \S=T

: = ~ = =27 (-1 -2 .

7w9( 1 b27 b37q7x) ZOO (bl,bQ,...7bs)n <( )l] : ) r

n—=—
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Three unilateral summations.

1. Cauchy’s (1843) g-binomial theorem:

(]
—
S
~—
S
8
3
—~
IS
8
~—
8

n=0

2. Heine’s (1847) ¢-Gauss identity:

(q,abzx)y, (r,abx) o0

= (a,b)n n azx,br)se
S (@b _ (anbe)

n=0
3. The ¢¢5 summation of Rogers (1895):

=1y (aw, ba, cx, aber) s

i (a,b, c)n(abex)n—1(1—abexq
o (¢, abzx, bex, acz)y, "~ (x,abr, bex, act) oo
Does the pattern continue?
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Jackson’s paper.

Jackson considered this question in his paper Summation of

q-hypergeometric series.
The question arises, are similar summations by Gamma or ¢-
Gamma functions possible for series symmetrical in 3, 4, 5 or
higher number of elements? ...such summations are only possible
for series symmetrical in two elements and for series symmetrical
in three elements, ...such theorems do not exist for 4 or 5 or
higher number of elements. — F.H. Jackson (1921)

In the appendix to his paper, he continued:
The question is settled conclusively by an examination in the case
of four variables of the following product, ...Of course this does
not exclude the possibility of special cases of summation, where

particular specified relations exist among the variables.
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Jackson’s problem (my interpretation).

Problem (Jackson)

Let k be any non-negative integer, let II(k) denote the set of
all products formed from an even number of the variables
ai,az,...,a; and let II,(k) denote the set of all products
formed from an odd number of these variables, with the
understanding that I1,(0) = @ and 1 € Il.(k) for every k. Is
there a rational function Ry, symmetrical in its first k
arguments, such that the equation

[aem, g (02) s
HaGHe(k) (OA’E)OO

o) n—1

n o my
E T HRk(al,ag,...,ak,m,q )=
n=0 m=0

holds identically for |z| < 17
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Jackson’s problem (my interpretation).

For a given k, a solution Ry to this problem need not be
unique. For example, in the case k¥ = 0 one may take
1 y?
or Ro(z,y)= ,
1—qy (1=qy)(1 —zy)

R0($7y) =

corresponding to the two formulae

0 n 1 n—1

" e q”( )™ 1
,;)(Q)n C (T) 7;) (@) (%)so

Using WZ pairs, infinitely many solutions can be constructed
for k < 3 using the g-binomial theorem, the ¢-Gauss identity
and the g¢s summation.
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Solution of Jackson’s problem in the case k = 4.

Theorem
Let p4 denote the polynomial
pa(a,b,c,d;x,y)

_ 1 abexy? abdzy? acdzy? bedxy? abedxy? abedz?y
*1_M<(1_ a )(1_ a )(1_ q )(1_ q )(1_ a )(1_ @ )
q
%;@(1—y)(l—ay)(l—by)(l—cy)(l—dy)(l—Wﬁ%)).
Then, for |z| < 1,

p4(ay b7 Cy d; Z, qn)xn

i (a,b,c,d),(abez, abdz, acdz, bedr, abedg™ 22), 1

= (g, abzx, acx, adz, bex, bdx, cdx),, (abedx)op,

_ (az,bx, cx, dx, abcr, abdz, acdz, bed)oo
"~ (z,abx, acx, adx, bex, bdx, cdr, abedr) oo

When d = 0 this reduces to the g¢s identity.
Moreover, the product on the right-hand side of the equation is
of exactly the form which Jackson considered.
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A limiting case of the identity.

Take x — x/abcd and then let a,b,c,d — oco.

The resulting equation is

0 q2n(n— 1)

2 (@)n()2n

n=0

The series has a combinatorial interpretation in terms of an
n X 2n Durfee rectangle, with x counting the largest part of the
partition.

In 1/(x)c0, ® counts the number of parts. The equation above
therefore holds by conjugation.
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The ordinary hypergeometric limit.

The ¢g-Gauss identity and the g¢s summation are g-analogues of
summation formulae for ordinary hypergeometric series.

The same is true of the summation formula in the previous
theorem. It is a g-analogue of the following identity, valid for
Re(z) > 0.

0o

Z[a,b,c,d]n[a,ervLc+m,a+b+d+m,a+c+d+x,b+c+d+m,a+b+c+d+2m+nf1],1,1
nlla+b+z,a+c+z,a+d+zb+c+ab+d+a,c+d+zapja+b+ce+d+alo,

n=|
« 1
a+b+c+d+r+3n—1

((a+b+c+w+2n71)(a+b+d+w+2nf1)(a+c+d+w+2n71)
x(b+c+d+z+2n—1)(a+b+c+d+z+2n—-1)(a+b+c+d+2x+n—2)

+n(a+n)(b+n)(c+n)(d+n)(2a + 2b+ 2¢+ 2d + 3z + 4n — 3))

_T@T(a+b+a)l(a+c+a)l(a+d+z)T(b+c+z)L(b+d+z)T(c+d+z)T(a+b+c+d+z)
Fla+2)l'(b+2)l(c+a)T(d+a2)T(a+b+c+z)(a+b+d+z)(a+c+d+a)l(b+c+d+a)

Here, [a], = T'(a+n)/T'(a) is the ordinary Pochhammer symbol.
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WZ pairs.

Definition

A WZ pair is a pair (F,G) of functions which satisfy the
relation

F(m+1,n)—F(m,n) =G(m,n+1) — G(m,n).

If f is a function with the property that
f(y) —yflqz,y)

is a symmetrical function of x and y, then the functions
F(m,n) = f(zq™,yq")q"™"z"y"™,
G(m,n) = f(yq",zq™)q""z"y"™

form a WZ pair.

General formulae for WZ pairs can then be used to find

summation formulae involving the function f.
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WZ pairs.

If f is continuous and f(z,y) — yf(qx,y) is symmetrical in =
and y, then the series >~ 7 o f(z,y¢")z" is symmetrical in z and
y and this symmetry is made explicit by the formula

o0 (o)

2
> fla,ygat =) (f (xq", yq") + 24" f (yg" ", xq"))q” z"y".
n=0 n=0

If, in addition, f(1,y) =0, then

> fla, g = f(0,1).
n=0

The function

(x, qu, abxy, acxy, adxy, bexy, bdxy, cdry, abedry?, abm LYy

f(x,y) =

pala,b,c,d;z,y)
(az, bx, cx, dz, ay, by, cy, dy, L, ey acdey bedry “b““ LA ) o

has these properties.
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A generalization of the Rogers—Fine identity.

Theorem
For |z| < 1,

(ay, by, cy, dy)n (abcxy, abdzry, acdxy, bedry)n—1(abedr?y?)an o

b,c,d;z, ny,.n
nt1(abzy, aczy, adxy, bexy, bdry, cdry), (abedzy?)a, (abedz?y 71_1]74((17 R )
2 (y)n+1(abry, acry, adzy, bexy

_ 2. (az, bz, cx, dx, ay, by, ¢y, dy) (abexy, abdzy, acdzy, bedzy)an 1 (abedz?y?) 4n o
o (2, Y)nt1(abxy, acxy, adry, bexy, bdry, cdzy)on1(abedz?y)sn 41 (abedry?)sn 41

2
x Py(a,b,¢,d;xq", yq") " =" y".
—_— —m———

a polynomial

The special case b = ¢ = d = 0 is the Rogers—Fine identity.
The special case c=d =0 is

aya by)n (ax bI ay,by) ( 2n 3n\ n? n n
————————— (1 - (a+ b+ ab)xyg™ + abzy(z + y)q >q z"y".
Z (y n+1 ably Z (L y n+1 (ably)2n+l ( ) ( )

This has a combinatorial interpretation involving a Durfee
square.
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Obtaining further results using W7 pairs.

Theorem

Let u = {uy}22, be any non-decreasing sequence of
non-negative integers such that u, — co as n — oco. Let
{u} 192, be the sequence given by

u; = the number of terms of the sequence u which are < n.

Then, for any WZ pair (F,G) (satisfying certain additional
conditions which ensure convergence), the sum

> F(up,n) + Y G(n,up)
n=0 n=0

is independent of the choice of the sequence u.

If u, = [n] then u), = [~n]| + 1.

£
m
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An example based on the ¢g-Gauss identity.

The WZ pair corresponding to the ¢-Gauss identity yields the
following result: the series

namyt

(az,bx)n (¥, Y)un oy, g (az,02)ux (ay, bY)n
Z gty +Z
(w 1 (V) u, (ADTY) it x)u )n+1(abxy)n+u*

is independent of the choice of the sequence u.

Multiplying by y and letting ¥ — 1 then leads to the identity

[ee]

i : (az, bx)p(a,b)y, o +Z (az,bx)y: (a,b)n gy _ (az,bx) oo

n—0 w)n+1(q)un—1(abx)n+un w)u q)n(ab$)n+un B (x:abm)oo7

which holds for arbitrary u.

The special case u, = 2n, u;, = [n/2] + 1 is a summation
formula of the form

2L D (a, b)Y, (ax, br)on 2 ( polynomial of ), _ (az, bx) oo

= (@)n(2)2n(abx)3n degree 10 ¢"/™ ™ (3 abx)o
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Spaces of theta functions.

Definition

For any positive integer n and any non-zero complex number C,
let T,,(C') denote the space of analytic functions f on C\{0}
which satisfy

(=D

Cxn

flqz) = f(x)

for every x € C\{0}.

Lemma (Hermite, 1882)

T, (C) is a vector space of dimension n.

Recall 0(x) = (z,q/x, q)co-
0 c Tl(l).
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Spaces of theta functions.

Theorem (Classical)
Let f: C\{0} — C be analytic. Then f € T,,(C) if and only if

f(x) = A0(c12)0 () . .. O(apx)

for some complex number A and non-zero complex numbers
ai,qs,...,q, such that ajas ... ap = C.

Theorem (Appell, 1884)

Let f,g € T,(C). Let x1, x9, ..., z,, be non-zero complex
numbers such that

i) None of the ratios Tm /[ Tj is an integer power of q.
J q
ii) The product CLIZ‘lIL‘Q R %Y is not an integer power of q.
g

If f(xm) = g(zy) for m =1,2,...,n then the functions f and ¢
are identically equal.

v
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The connection with the theory of elliptic functions.

Suppose f,g € T,,(C) are such that their zeros are distinct and
2miw:

let ¢ =e “1 where Im(wa/wy) > 0. Then the function

= 1E5)
o)

is an elliptic function with n zeros and n poles within each
period parallelogram (counted with multiplicity).

It is meromorphic and satisfies
Flu+w)=F(u+ws) = F(u).

The converse is also true: every elliptic function can be written
in this form.
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An example of the use of finite dimensionality:.

Regarded as functions of z, the two products 6(ax)f(bczr) and
0(bz)0(acx) are clearly linearly independent.

They therefore form a basis for the two-dimensional space
Ts(abe).

0(cx)0(abx) = A(ax)0(bex) + BO(bx)b(acx)
—_——
€T (abc)
Since 6(1) = 0, the values of A and B can be found by setting
x=1/a, x=1/b:

A /i) B/t

~ 0(a/b)b(c)’ 0(b/a)b(c)

The resulting equation is Weierstrass’s three-term identity for
theta functions. This proof is due to Gutzmer (1892).
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Theta functions and bilateral basic hypergeometric
series.

Given any convergent bilateral basic hypergeometric series, it is
always possible to insert an extra parameter in such a way as to
obtain a theta function.

Lemma

Let r, s and ¢ be non-negative integers, not all equal to zero,
such that r +¢ > s, and let p be a polynomial. Considered as a
function of the variable y, with all other variables held fixed,
the function

0o tn tn(n=1

)
-1)"q 2 (ay, a2y, -, ary)
9 g q ( 1Y, a2y, .-, rY)n
(m,@,m,m,bwﬁzy,---7bsy)oo Z (019, b2, - bsy)m
e Yy ooy sl

n, tn

pyg")z"y

belongs to the space T, 1¢(ajasg ... ax).
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Example: the 111 summation in terms of theta
functions.

Let = be such that |¢/a| < |z| < 1 and let

o) = (Lay), S qu

n=—oo

Then f € Ti(ax) and

F1) = (2.q) Y Wapn _ (a6 80)eo

n:i)(q)n (7) oo

The space Tj(az) is one-dimensional; each of its elements is a
multiple of f(azy). Hence

_ fMlazy)  (§)oc O(azy)
fly) = o) (@ D)m

This is Ramanujan’s 1107 summation.
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A theta-function proof of Bailey’s 41/ summation
formula.

Theorem (Bailey, 1936)
For 0 < |z] < 1,
2
Z LG abmy)n (1—abexy?q®~")a" (& & az b2, ez, H(abc%)
- = 2
w==3 (qy7 (lny, acry, bcmy)n (z? qY, @7 @7 @7 a‘bzy7 acry, bCiEy, ach.’zy )oo
Proof
Let
be:
D@m= WWMWwawﬂm%Mwmwww 2: a%@m%“”%
sHanY (Z, o c,az,bw,cz)m (qy, abzy, acxy, bexy),
(1 abexy?¢®~ 1)
then
63(a’b7c’x’qy): (abc)+z.2y4®3(avb7cvxyy) (n'—)n*i’].)
9 ¢ 1
@3(07 FoiLd @) = abczy ————03(a,b,c,,y). (n— —n)
v
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A theta function proof of Bailey’s 41/ summation
formula.

Proof (continued).

for 8 different values of y. By Appell’s theorem, these two
functions are identically equal. 0
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Appell’s formula

Theorem (Appell, 1884)

Let f € T,,(C). Let z1, x9, ..
numbers such that

., T, be non-zero complex

(i) None of the ratios x,,/x; is an integer power of ¢.
(ii) The product Cxizy...x, is not an integer power of q.
Then

1 n
flx) = 0(Cara 20 77;_:lf(acm) 0(Cry...Tm—1Tmt1 ... TnT)
y 0(%) .- 0(z5)0(557) ---0(5%)
0(%e) - 0(52)0(5m) - 0(32)
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An analogue of Bailey’s 14 identity.

Theorem
Let
O4(a,b,c,d;z,y)

= g(abclzisz:’) (e(abcqzyQ)e(abdqzyZ)0(acd(;vy2)9(bcdql‘y2)6<abc(;xy2)0(abcj;zy>

abedz?
+ 3 &
q

e(yw(ay)ewy)o(cy)e(dy)e(W)).

Then, for 0 < |z| < 1,

o)

abcxry abdry acdxy bedx abeda?y?
(ay, by, cy, dy, 5, S, S, 2 (),

abcdz y) (

n

pafa,b, e, d, z,yq")x

qy, abxy, acxy, adxy, bexy, bdxy, cdzry, abedry?)an

n=-—0oo (

B (2,4, %, ax, bz, cx, dr) 04(abcd z,y)

T (zqy, L L L 9 ghe 7 T 2 abeda’y a
(q)w(a,,qy, a5 by e dy,aba,y,acxy,adzgh beay, bdry, cdxy, ab”y T ,abedxy?, m)

Method of proof: define ©4 by the second equation and then
show that it can be expressed in terms of theta functions as in

the first equation.
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An analogue of Bailey’s 14 identity.

Proof.

The function ©4 satisfies the two relations

b d4 6,8 1
Oula.bediay) = DTV g (4, 4 4 1, 1)

q6 b$7a7%am7@
q7
@4(0,, b7 C, d,.’L’7 qy) = W@4(av b7 C, d7x7y)‘

The second of these asserts that, as a function of y, ©4 belongs
to the 12-dimensional space Ti2((abed)®2%/¢"). It also satisfies

st PN

This gives rise to 16 special values — enough to determine ©4
in closed form via Appell’s formula.
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An analogue of Bailey’s 14 identity.

Proof.

O4(a,b,c,d,x,y)

0(y)0(ay)0(by)(cy)(dy)0(222) 0 (2222 ) o (2 ) g bz ) p (2w (e  (abetrv)

- 0(abedga) ! : :
N ( 0(&1);.).)0(&24.}.)0(&? )0(bﬂdl)9(abdq£y)
0(@PI(I(D)0(52)0(25) (%) 0 (%) 0(*3) 0 (<G ) oy
) 0("0—(1) (a%bedqay) + 6'( )G(abzcdqary)
DOR()0(D0(5)0(5)0(F) (e 9&)%)%)%)@9%%%%W@w
‘ 0(“5")0 (abc*dgzy) 0(%e2) 0 (abed?qry)
I 0(0E)IE)Z)oe)  ID(E)0 (0 (050 () 00d)
0(<)0 ()0 (a*b?cday) . g(%)g(% 0(a?be?day)
F a0 a)otabe) 0(2)0(5)0(D)0(5)0(%)0() — Olam)le)0(aca)0(2)0(2)0(2)0(2)0(*)0(*5)
0(5)0(5)0(cbed’a?y) " (§)0(%)0 (ab*c*duy)
¥ o) 0d)0adz)o (D0(D)o(5)0(o(52)0(=F)  o(bw)o(cr)o( pr)e(%)e(g)e( Jo()o (=)0 (")
0(5)0(4)0 (ab*cd’a?y) " 0(%)0(%7)6 (ab*d*zy)
A (3)0(3)0(5)0(2)0 ()0 () Dea i e (2)0(3)0(2)0 (3) ()0 (22)
‘ 0(4#1;%?%%,)
‘ G(aba:)ﬂ(acz)O(adx)9(bc;t)€(bdx)9(cdz)€<%1)
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An analogue of Bailey’s 14 identity.

Proof.
From this formula for Oy, it follows that
q5
64(GQ7 ba c, d7 €, y) = W@4(aa b: c, d? x, y)’
7
) _ q )
@4(a, b, c,d; qivay) = W&L(a, b, c, d,:v,y).

Consider now the function
O(t) = @4(%,17, c, d; tw,y).

From the relations above, it follows that

3

") = ey
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An analogue of Bailey’s 14 identity.

Proof.
Hence
a(1) = A0(5) ({2 1) 4 po(edeug) g betni’y)

for some A, B independent of t. Set t = ay and t = ¢?/abedx?y
to determine the values of A and B. O
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A property of the functions py and ©y.

The polynomial py(a, b, c,d; x,y) is of degree 8 in its final
argument, y. The coefficients of y, y* and y” are zero.

The function ©4 can be expanded as a Laurent series in powers
of y:
O4(a,b,c,d;x,y) Z upy".
n=—oo

The coefficients u,, satisfy ug,+1 = 0.
Compare this with Bailey’s g1 identity, in which the

polynomial factor is p3(a, b, c;x,y) = 1 — abcxy?/q and the
theta function is ©3(a, b, ¢; z,y) = 0(abcxy?/q).
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The ordinary hypergeometric limit.

i la+y,b+y,ct+y,d+ylpla+tb+ctr+y,a+b+d+r+yatct+d+r+yb+ect+d+a+yla

l+ya+b+taz+y,at+tc+zt+yatd+ae+ybtectaz+ybtd+aztyctd+z+yl,

P
[a+b+c+d+ 22+ 2ylan—2 N 1
a+bt+ctd+2r+ylpalatbtcet+d+a+2yln,  a+btcectd+az+3y+3n—1

X
[
x((a+b+c+x+2y+2n—1)(a+b+d+r+2y+2n—1)(a+c+d+m+2y+2n—1)

x(b+tec+d+z+2y+2n—1)(a+b+c+d+az+2y+2n—1)(a+b+c+d+2z+y+n—2)

+y+n)a+n)(b+y+n)ct+y+n)(d+y+mn)(2a+2b+2c+2d+ 3z + 4y + 4n — 3))

. T@rA+ il —a—y)TA—-b—yl1—c—y)T(l —d—y)
T (1 —a)T(1 - b)I(1 —)T(1 — d)I(a +z)['(b+x)T(c+ 2)T(d + x)

xTa+b+az+y)lat+ct+az+ylla+d+z+y)lb+c+a+y)lb+d+a+yl(c+d+z+y)
xI'l—a—b—c—az—y)ll—a-b—d—z—y)ll—-a—-c—d—-z—y)l'l-b—c—d—z—y)
xTa+b+c+d+2e+y)lla+b+c+d+a+2y)T(1-—a—b—c—d—2x—2y)

XLef27ri(2(a+b+c+d)+3z+4y)p4 (ezmv b p2mic 2mid  2miz EZWiy)'

32
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Lambert series.

As observed by Andrews, Lewis and Liu (2001), Bailey’s 16
identity reduces to a Lambert series identity when x = ¢, ¢ = 1,

" ag" b abq" 0(a)0(b)0(aby*)(q)3,
2 (1 ayq® 1 - byg" ) 0(y)0(ay)0(by)0(aby)

L 1—abyq") ~

This formula is originally due to Jacobi (1836); it can be
written in the alternative form
d (0(ax)0(ba:)> ~ 0(a)0(b)0(aba?)(q)3,

6(z)6(abx) 0(z)?0(abx)? '
Analogous to this, the special case x = ¢, d = 1 of the bilateral
summation with symmetry in four variables is (with y — x)

d (9(&x)0(bx)9(cx)9(abcx))
0(x)0(abzx)0(acz)d(bex)

dz

dz
_ 0(a)0(b)0(c)(q)3, (G(abx2)9(acx2)0(bcac2)H(abcx)ﬁ(abcxz)
0(abx)20(acz)?6(bcx)?0(abez?) 0(x)?
6(az)8(bx)8(cx )6 ((abe)?a?)
+abex 0(abcx?) )
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Watson’s LMS presidential address.

The following two partial fraction expansions appear in
Watson’s paper (1936):
DI = S
1—zq"

=0 (gz,q/)n (2o

3n(n+1)
2

— """ 1« (-Dg
5 S e

= (@q/v)n (@,

He derived them from his g-analogue of Whipple’s formula, but
added in a footnote
This formula may also be obtained by expressing the series on the

right (qua function of cos ) as a sum of partial fractions.

The calculation of the residues uses the formula
o qn(nfl)xn 1

(¢,7)n B ()00

n=0
which is a limiting case of the ¢-Gauss identity.
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Ramanujan’s expansion.

The following entry appears in Ramanujan’s lost notebook:

Source: https://archives.trin.cam.ac.uk/index.php/the-so-called-lost-notebook-2
License: https://creativecommons.org/licenses/by-nc/4.0/

Changing the notation and rearranging slightly, it can be

written as
o n,n,n? oo n n(3n+1) n,n 2n
()0 3 T 3 (=)"q 2 a"y"(xy)n(l — zyg™)
oo - .
o C287) S (@n(1 = 2q™)(1 - yq")

This is a partial fraction expansion with respect to the variable
z introduced through the substitution (z,y) — (zz,y/z2).
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Partial fraction expansions from ¢-Gauss and the o5
identity.

This last equation is a limiting case of the expansion

n(n+

(@, b)n (L) Ty»*y %0 2 (zy)"(a,b,zy)n(1 — zyg™)
Z - > Z ab zy

= (T, Yt (zy, ) (¢, %52, (1 — 2q")(1 = yq")

for which the calculation of the residues uses the general case of
the ¢-Gauss identity.

This in turn is a limiting case of

&) abczx 2n— 1)

Z (a, b, cz, e Jn(1 — abcxq
(z,abz/qz)p41(acz, bex),

n=0
(az, bz, cx, abet) oo (a,b, D)n(aba)p_1(1 — abzg® ") (cx)"
(2, abx, acz, bex) oo <= (¢, aw, ba)n(abez)n—1(1 — 2¢")(1 — abzg™ ! /z)’

which follows from the g¢5 identity.

36 /41



A bilateral expansion.

The most interesting special case is

i (4,4, cz,4)p (1 — cg® 1) (ab)™ ~ (a,b,¢,abc) s Z (4, b, 1) (abe)™
= (ac bc,z,z)n+1 "~ (g, ab, ac, bc)oo (a,b,¢)ns1(1 — 2q™)

When ¢ = 1/a and b — 0, the right-hand side is a theta
function.

When a = —1 and b, ¢ — 0, the right-hand side is the universal
mock theta function go.

When a, b, ¢ — 0, the right-hand side is the universal mock
theta function gs.
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An expansion with symmetry in four variables.

Theorem
For |zz| < 1,
(abz, acz, adz, bex, bdx, cdx) i Bbes “2”, az’i’, “;‘f’ b;iz) (abedz)an—2 (E é 6 d T2, 2 )(zz)"
o e 30"70 (abz, acz, adz, bex, bdz, cdz), (2, “Zdzz),,“(”b;‘i’)gwdm 2222 4

az, bz, cx, dz, abex, abdz, acdz, bed) s ~— (a,b, ¢, d),(abedr, abedx?),—o(1 — abedrg®2)q"

= >
(z, abedw)oo = ( n(abex, abdz, acdz, bcdl) (1 —2q")(1— 7"""@’1”72)
_ (a,b,¢,d, abea?, abda?, acda®, beda®) i (az,bx, cx, dz), (abeda?, abeda®),—o(1 — abedz®®2)q"
‘ (%,abcdﬂ)m =0 (4, qx)n(abcx?, abda?, acdx?, beda?), 1 (1 — z2q™)(1 — M)
y

It is necessary to form an analytic continuation of the left-hand
side in order to see that it does indeed have four sets of poles.

The theorem has a couple of special cases in which the partial

fraction expansion on the right-hand side can be written in a
bilateral form.
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Rewriting mock theta functions: an example.

The second-order mock theta function

> n 2n(n+1)

q" *¢%)n _ q q 0 Z
v S (/X o AR = 1—(12”+1

B =y 0

can be expressed in the alternative form

00 qn(3n+2)( ) (1 +q4n+2 _ q4n+3 + q6n+4>

(;:42)7 1 1(@* 35 ¢%)na
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Open problems.

@ Jackson’s problem in the case k > 5: can the unilateral
summation formula with symmetry in four variables be
extended to symmetry in five or more variables?

e Do those formulae (if they exist) extend to bilateral
summations via the same techniques which work for k = 3
and k =47

@ Do the theta functions in those bilateral formulae (if they
exist) have coefficients which vanish in arithmetic
progressions?

@ Do the unilateral summation formulae have finite
analogues? For the case k = 3, the relevant formula is
Jackson’s terminating g¢7 summation.

@ Do the finite analogues (if they exist) extend to identities
of elliptic hypergeometric series? In the case k = 3, the
terminating g¢7 summation is a special case of a 19Vh
summation formula due to Frenkel and Turaev.
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