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Abstract

Figure 1: 37 integer lattice points in the set P(18, {1, 2, 3}).

We will revisit Gupta’s result regarding properties of a formula for restricted partitions and

generalize this. We will then use this result to prove an infinite family of congruences for a

certain restricted partition function. We find and prove combinatorial witnesses, also known as

cranks, for the congruences using polyhedral geometry.
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Outline

Theorem 1 (Kronholm, R.)

For any odd number ` ≥ 3 and k ≥ 0, we have

p

(
2`k +

3`− 3

2
, {1, 2, `}

)
≡ 0 (mod `).

Theorem 2 (R.)

• For ` ≡ 1 (mod 4) in Theorem 1, the crank 4λ2 − 3λ3, witnesses the
divisibility.

• For ` ≡ 3 (mod 4) in Theorem 1, the crank 2λ1 − 2λ2 + λ3,
witnesses the divisibility.
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Partitions

• A partition of a positive integer n is a finite non-increasing sequence
of positive integers λ1, λ2, ..., λr such that

∑r
i=1 λi = n.

The λi are called the parts of the partition.
These are the partitions of the number 4:

41 + 1 4

3 + 11 + 1 3 + 1

2 + 21 + 1 22

2 + 1 + 11 2 + 12

1 + 1 + 1 + 1 14
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Generating Functions for Partitions

The generating function for the general partition function, p(n), is

∞∑
n=0

p(n)qn =
∞∏
i=1

1

1− qi
=

1

(q; q)∞
.

The generating function for partitions of n into parts of sizes 1 through m,
p(n,m), is

∞∑
n=0

p(n,m)qn =
m∏
i=1

1

1− qi
=

1

(q; q)m
.

For example, we will show with some detail the generating function for
partitions of n into parts of sizes 1, 2, 3, 4 on the next slide.
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Example: p(n, 4)

∞∑
n=0

p(n, 4)qn =
1

(q; q)4
=

4∏
i=1

∞∑
n=0

qni =
∞∑
n=0

qi ×
∞∑
n=0

q2i ×
∞∑
n=0

q3i ×
∞∑
n=0

q4i

= 1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8 + 18q9 + 23q10 + · · ·

p(0, 4) = 1 p(12, 4) = 34 p(24, 4) = 169

p(1, 4) = 1 p(13, 4) = 39 p(25, 4) = 185

p(2, 4) = 2 p(14, 4) = 47 p(26, 4) = 206

p(3, 4) = 3 p(15, 4) = 54 p(27, 4) = 225

p(4, 4) = 5 p(16, 4) = 64 p(28, 4) = 249

p(5, 4) = 6 p(17, 4) = 72 p(29, 4) = 270

p(6, 4) = 9 p(18, 4) = 84 p(30, 4) = 297

p(7, 4) = 11 p(19, 4) = 94 p(31, 4) = 321

p(8, 4) = 15 p(20, 4) = 108 p(32, 4) = 351

p(9, 4) = 18 p(21, 4) = 120 p(33, 4) = 378

p(10, 4) = 23 p(22, 4) = 136 p(34, 4) = 411

p(11, 4) = 27 p(23, 4) = 150 p(35, 4) = 441...
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Formulas for p(n, 4)

p(12k, 4) = 1
(k+3

3

)
+ 30

(k+2
3

)
+ 39

(k+1
3

)
+ 2
(k

3

)
= 12k3 + 15k2 + 6k + 1

p(12k + 1, 4) = 1
(k+3

3

)
+ 35

(k+2
3

)
+ 35

(k+1
3

)
+ 1
(k

3

)
= 12k3 + 18k2 + 8k + 1

p(12k + 2, 4) = 2
(k+3

3

)
+ 39

(k+2
3

)
+ 30

(k+1
3

)
+ 1
(k

3

)
= 12k3 + 21k2 + 12k + 2

p(12k + 3, 4) = 3
(k+3

3

)
+ 42

(k+2
3

)
+ 27

(k+1
3

)
= 12k3 + 24k2 + 15k + 3

p(12k + 4, 4) = 5
(k+3

3

)
+ 44

(k+2
3

)
+ 23

(k+1
3

)
= 12k3 + 27k2 + 20k + 5

p(12k + 5, 4) = 6
(k+3

3

)
+ 48

(k+2
3

)
+ 18

(k+1
3

)
= 12k3 + 30k2 + 24k + 6

p(12k + 6, 4) = 9
(k+3

3

)
+ 48

(k+2
3

)
+ 15

(k+1
3

)
= 12k3 + 33k2 + 30k + 9

p(12k + 7, 4) = 11
(k+3

3

)
+ 50

(k+2
3

)
+ 11

(k+1
3

)
= 12k3 + 36k2 + 35k + 11

p(12k + 8, 4) = 15
(k+3

3

)
+ 48

(k+2
3

)
+ 9
(k+1

3

)
= 12k3 + 39k2 + 42k + 15

p(12k + 9, 4) = 18
(k+3

3

)
+ 48

(k+2
3

)
+ 6
(k+1

3

)
= 12k3 + 42k2 + 48k + 18

p(12k + 10, 4) = 23
(k+3

3

)
+ 44

(k+2
3

)
+ 5
(k+1

3

)
= 12k3 + 45k2 + 56k + 23

p(12k + 11, 4) = 27
(k+3

3

)
+ 42

(k+2
3

)
+ 3
(k+1

3

)
= 12k3 + 48k2 + 63k + 27
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How do we get those formulas?

∞∑
n=0

p(n, 4)qn =
1

(q; q)4

=
(1 + q + q2 · · ·+ q11)(1 + q2 + q4 + q6 + q8 + q10)(1 + q3 + q6 + q9)(1 + q4 + q8)

(q; q)4(1 + q + q2 · · ·+ q11)(1 + q2 + q4 + q6 + q8 + q10)(1 + q3 + q6 + q9)(1 + q4 + q8)

=
1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8 · · ·+ 6q33 + 5q34 + 3q35 + 2q36 + q37 + q38

(1− q12)4

(1)

With
1

(1− q12)4
=
∑
k≥0

(
k + 3

3

)
q12k , we now rewrite (1) as

(1+q+2q2+3q3+5q4+6q5+9q6+11q7+· · ·+6q33+5q34+3q35+2q36+q37+q38)×
∑
k≥0

(k + 3

3

)
q12k .

We denote the numerator in (1) by E4(q) =
∑38

x=0 h
∗
xq

x . We call the
polynomial ES(q), the Ehrhart numerator. Now we multiply and collect
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Multiply and Collect Like Terms, S = {1, 2, 3, 4}

∞∑
n=0

p(n, 4)qn = E4(q)×
∑
k≥0

(
k + 3

3

)
q12k =

38∑
x=0

h∗xq
x ×

∑
k≥0

(
k + 3

3

)
q12k

= (1 + q + 2q2 + 3q3 + 5q4 + 6q5 + 9q6 + 11q7 + 15q8 + 18q9 + 23q10

+27q11 + 30q12 + 35q13 + 39q14 + 42q15 + 44q16 + 48q17 + 48q18 + 50q19

+48q20 + 48q21 + 44q22 + 42q23 + 39q24 + 35q25 + 30q26 + 27q27 + 23q28

+18q29 + 15q30 + 11q31 + 9q32 + 6q33 + 5q34 + 3q35 + 2q36 + q37 + q38) ×
∑
k≥0

(k + 3

3

)
q12k

Multiply and collect like terms:
For example, how many ways are there to get an exponent of 12k + 5? We look
at h∗5 = 6, h∗17 = 48, h∗29 = 18.

∞∑
k=0

p(12k + 5, 4)q12k+5 = (h∗5q
5 + h∗17q

17 + h∗29q
29)×

∑
k≥0

(k + 3

3

)
q12k

=
(
6q5 + 48q17 + 18q29

)
×
∑
k≥0

(k + 3

3

)
q12k

=
∑
k≥0

(
6
(k + 3

3

)
+ 48

(k + 2

3

)
+ 18

(k + 1

3

))
q12k+5. Hence,

p(12k + 5, 4) = 6
(k + 3

3

)
+ 48

(k + 2

3

)
+ 18

(k + 1

3

)
= 12k3 + 30k2 + 24k + 6.
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Quasipolynomial for p(n, 4)

p(12k, 4) = 1
(k+3

3

)
+ 30

(k+2
3

)
+ 39

(k+1
3

)
+ 2
(k

3

)
= 12k3 + 15k2 + 6k + 1

p(12k + 1, 4) = 1
(k+3

3

)
+ 35

(k+2
3

)
+ 35

(k+1
3

)
+ 1
(k

3

)
= 12k3 + 18k2 + 8k + 1

p(12k + 2, 4) = 2
(k+3

3

)
+ 39

(k+2
3

)
+ 30

(k+1
3

)
+ 1
(k

3

)
= 12k3 + 21k2 + 12k + 2

p(12k + 3, 4) = 3
(k+3

3

)
+ 42

(k+2
3

)
+ 27

(k+1
3

)
= 12k3 + 24k2 + 15k + 3

p(12k + 4, 4) = 5
(k+3

3

)
+ 44

(k+2
3

)
+ 23

(k+1
3

)
= 12k3 + 27k2 + 20k + 5

p(12k + 5, 4) = 6
(k+3

3

)
+ 48

(k+2
3

)
+ 18

(k+1
3

)
= 12k3 + 30k2 + 24k + 6

p(12k + 6, 4) = 9
(k+3

3

)
+ 48

(k+2
3

)
+ 15

(k+1
3

)
= 12k3 + 33k2 + 30k + 9

p(12k + 7, 4) = 11
(k+3

3

)
+ 50

(k+2
3

)
+ 11

(k+1
3

)
= 12k3 + 36k2 + 35k + 11

p(12k + 8, 4) = 15
(k+3

3

)
+ 48

(k+2
3

)
+ 9
(k+1

3

)
= 12k3 + 39k2 + 42k + 15

p(12k + 9, 4) = 18
(k+3

3

)
+ 48

(k+2
3

)
+ 6
(k+1

3

)
= 12k3 + 42k2 + 48k + 18

p(12k + 10, 4) = 23
(k+3

3

)
+ 44

(k+2
3

)
+ 5
(k+1

3

)
= 12k3 + 45k2 + 56k + 23

p(12k + 11, 4) = 27
(k+3

3

)
+ 42

(k+2
3

)
+ 3
(k+1

3

)
= 12k3 + 48k2 + 63k + 27
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Quasipolynomials

Definition 3

A function f (n) is a quasipolynomial if there exists polynomials f0(n),
f1(n),..., fd−1(n), called constituents, such that for all n ∈ Z

f (n) =


f0(n) if n ≡ 0 mod d

f1(n) if n ≡ 1 mod d
...

fd−1(n) if n ≡ d − 1 mod d

The period of the quasipolynomial is the number of constituents.
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Ehrhart Numerator

Let S be any set of positive integers.

Definition 4

The polynomial ES(q) is defined to be

ES(q) =

|S|∏
i=1


lcm(S)

i
−1∑

n=0

qi ·n

 =

|S|·lcm(S)−
∑|S|

i=1 si∑
x=0

h∗xq
x . (2)

We will examine the coefficients h∗x of this polynomial to find partition
congruences and witnesses for these partition congruences, also known as.
cranks.
Later we will see the geometric implications of the h∗x coefficients.
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Gupta’s Result

Let A = {a1, a2, ..., am} be a nonempty set of m natural numbers with 1
as an element.

Theorem 5 (Gupta, 1975)

For the set A and 0 ≤ r < lcm(A),

∑
k≥0

h∗lcm(A)k+r =
lcm(A)m−1

a1a2...am

We write lcm(A) to denote the least common multiple of the numbers in
the set A. For example: A = {1, 2, 3, 4}, lcm(A) = 12.

∑
k≥0

h∗lcm(A)k+r =
123

1× 2× 3× 4
= 72
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Improving Gupta’s Result

We improve Gupta’s Result by obtaining a formula that does not obligate
us to have a part of size 1 in the set. Let S be a finite collection of natural
numbers with repetitions allowed.

Theorem 6 (Kronholm, R.)

Let k ∈ Z and 0 ≤ r < lcm(S). For the coefficients h∗x of ES(q) we have

∑
k≥0

h∗lcm(S)k+r =
lcm(S)|S|−1∏|S |−1

d=1 lcm(gcd({si}di=1), sd+1)
. (3)
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Ehrhart Numerator

Definition 7

The polynomial ES(q) is defined to be

ES(q) =

|S|∏
i=1


lcm(S)

i
−1∑

n=0

qi ·n

 =

|S|·lcm(S)−
∑|S|

i=1 si∑
x=0

h∗xq
x . (4)

We will use the factors

 lcm(S)
i
−1∑

n=0
qi ·n

 of the Ehrhart numerator to prove

this generalization.
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Proof of Theorem 6

We set q to be an lcm(S)th root of unity, so that the exponents on q are
automatically organized modulo lcm(S).
Because multiplication is commutative, we can consider the product of any two
factors of ES(q) by choosing any two elements si and sj from the set S . We
consider the product

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )−1∑

n=0

qn·gcd(si ,sj ). (5)

To have all the terms qa·si × qb·sj , for a ∈
{

0, ..., lcm(S)
si
− 1
}

and

b ∈
{

0, ..., lcm(S)
sj
− 1
}

, be considered, the exponent on q in (5) must be n ·
gcd(si , sj).

This exponent accounts for all possible linear combinations of a · si and b · sj ,
hence gcd(si , sj).

Therefore we have a polynomial with exactly lcm(S)
gcd(si ,sj )

terms.
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Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj

=
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Because q is an lcm(S)th root of unity, the largest exponent possible on q

is lcm(S)− 1. Since there are exactly lcm(S)
gcd(si ,sj )

terms in the polynomial,

and the polynomial has a constant term, the top index is lcm(S)
gcd(si ,sj )

− 1.

lcm(S)
si
−1∑

n=0

qn·si ×

lcm(S)
sj
−1∑

n=0

qn·sj =
lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ).

Since there are a total of lcm(S)
si
× lcm(S)

sj
terms, including multiplicity, each

term has a multiplicity of exactly lcm(S)
lcm(si ,sj )

.

This is because lcm(S)
gcd(si ,sj )

× lcm(S)
lcm(si ,sj )

= lcm(S)
si
× lcm(S)

sj
.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 20 / 53



Theorem 6 Proved

Now, continue this process for any other sk ∈ S .

lcm(S)

lcm(si , sj)
×

lcm(S)
gcd(si ,sj )

−1∑
n=0

qn·gcd(si ,sj ) ×

lcm(S)
sk
−1∑

n=0

qn·sk

=
lcm(S)

lcm(si , sj)
× lcm(S)

lcm(gcd(si , sj), sk)
×

lcm(S)
gcd((si ,sj ),sk )

−1∑
n=0

qn·gcd((si ,sj ),sk ).

Continuing this procedure will give the desired result from Theorem 6.

∑
k≥0

h∗lcm(S)k+r =
lcm(S)|S|−1∏|S |−1

d=1 lcm(gcd({si}di=1), sd+1)
.
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Ramanujan

In 1919, Ramanujan proved the following congruences:

p(5k + 4) ≡ 0 (mod 5)

p(7k + 5) ≡ 0 (mod 7)

p(11k + 6) ≡ 0 (mod 11).

(6)

We will now use the h∗ coefficients of the Ehrhart numerator to find
partition congruences for p(n,S) for a certain variety of S .
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Example

Let S = {2, 4, 6},
∑
n≥0

p(n|S)qn =
1

(1− q2)(1− q4)(1− q6)
.

ES(q) = (1 + q6)(1 + q4 + q8)(1 + q2 + q4 + q6 + q8 + q10) =
1+q2 +2q4 +3q6 +4q8 +5q10 +4q12 +5q14 +4q16 +3q18 +2q20 +q22 +q24

=
ES(q)

(1− q12)3
= ES(q)×

∑
k≥0

(
k + 2

2

)
q12k

p(n|S)=



p(12k+1|S) = 1
(k+2

2

)
+ 4
(k+1

2

)
+ 1
(k

2

)
p(12k + 2|S) = 1

(k+2
2

)
+ 5
(k+1

2

)
p(12k + 4|S) = 2

(k+2
2

)
+ 4
(k+1

2

)
p(12k + 6|S) = 3

(k+2
2

)
+ 3
(k+1

2

)
p(12k + 8|S) = 4

(k+2
2

)
+ 2
(k+1

2

)
p(12k + 10|S) = 5

(k+2
2

)
+ 1
(k+1

2

)
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Let S = {2, 4, 6},
∑
n≥0

p(n|S)qn =
1

(1− q2)(1− q4)(1− q6)
.

ES(q) = (1 + q6)(1 + q4 + q8)(1 + q2 + q4 + q6 + q8 + q10) =
1+q2 +2q4 +3q6 +4q8 +5q10 +4q12 +5q14 +4q16 +3q18 +2q20 +q22 +q24

=
ES(q)

(1− q12)3
= ES(q)×

∑
k≥0

(
k + 2

2

)
q12k

p(n|S)=



p(12k+1|S) = 1
(k+2

2

)
+ 4
(k+1

2

)
+ 1
(k

2

)
p(12k + 2|S) = 1

(k+2
2

)
+ 5
(k+1

2

)
p(12k + 4|S) = 2

(k+2
2

)
+ 4
(k+1

2

)
p(12k + 6|S) = 3

(k+2
2

)
+ 3
(k+1

2

)
p(12k + 8|S) = 4

(k+2
2

)
+ 2
(k+1

2

)
p(12k + 10|S) = 5
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+ 1
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An Infinite Family of Partition Congruences

Theorem 8 (R.)

Let S = {a, b, c} be a set of three relatively prime numbers, with one of
them being an even integer. For j ∈ N, we define the set Sj = {ja, jb, jc}.
Then,

p

(
jabck +

2jabc − ja− jb − jc

2
,Sj

)
≡ 0

(
mod

abc

2

)
. (7)

The proof of this theorem can be broken up into four steps.

1 Show that ES j(q) is a reciprocal polynomial.

2 Show that the sum of the constituent coefficients is abc.

3 Show that the constituent corresponding to

p
(
jabck + 2jabc−ja−jb−jc

2 , Sj

)
has exactly two terms in the binomial

basis.

4 Show that the coefficients for this constituent are both equal to abc
2 .
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An Infinite Family of Partition Congruences

Example of Theorem 8

Let S = {1, 2, 3} be a set of three relatively prime numbers. For 2 ∈ N, we
define the set S2 = {2, 4, 6}. Then,

p (12k + 6, S2) ≡ 0 (mod 3). (8)
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Proof of Theorem 8: Step 1

• A polynomial
P(q) = g0q

0 + g1q
1 + g2q

2 + ...+ gd−2q
d−2 + gd−1q

d−1 + gdq
d of

degree d is called a reciprocal polynomial if qd(P( 1
q )) = P(q),

equivalently for each i , gi = gd−i .

• It can be shown that ESj (q) is a reciprocal polynomial of degree
3jabc − ja− jb − jc .
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Proof of Theorem 8: Step 2

Theorem 6 tells us that the sum of the coefficients from any constituent is
abc. ∑

k≥0

h∗jabck+r =
(abc)2

lcm(a, b) · lcm(gcd(a, b), c)
=

abc2

abc
= abc.
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Proof of Theorem 8: Steps 3 and 4

We know that

p

(
jabck +

2jabc − ja− jb − jc

2
,Sj

)

= h∗2jabc−ja−jb−jc
2

(
k + 2

2

)
+ h∗

jabc+ 2jabc−ja−jb−jc
2

(
k + 1

2

)
We also note that the following are the only two coefficients for this
constituent because 2jabc + 2jabc−ja−jb−jc

2 > 3jabc − ja− jb − jc , which is
the degree of ESj (q). In other words, h∗

2jabc+ 2jabc−ja−jb−jc
2

= 0.
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Proof of Theorem 8: Steps 3 and 4, Continued

Because ESj (q) is a reciprocal polynomial of degree
d = 3jabc − ja− jb − jc , we compute h∗i = h∗d−i :

h∗2jabc−ja−jb−jc
2

= h∗
3jabc−ja−jb−jc− 2jabc−ja−jb−jc

2

= h∗6jabc−2ja−2jb−2jc−2jabc+ja+jb+jc
2

= h∗4jabc−ja−jb−jc
2

= h∗2jabc+2jabc−ja−jb−jc
2

= h∗
jabc+ 2jabc−ja−jb−jc

2

thus, h∗2jabc−ja−jb−jc
2

= h∗
jabc+ 2jabc−ja−jb−jc

2

.
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Proof Continued

Since h∗2jabc−ja−jb−jc
2

+ h∗
jabc+ 2jabc−ja−jb−jc

2

= abc, and they’re equal to each

other

h∗2jabc−ja−jb−jc
2

= h∗
jabc+ 2jabc−ja−jb−jc

2

=
abc

2
.

Hence, p
(
jabck + 2jabc−ja−jb−jc

2 ,Sj

)
= abc

2

(k+2
2

)
+ abc

2

(k+1
2

)
.

Thus,

p

(
jabck +

2jabc − ja− jb − jc

2
,Sj

)
≡ 0

(
mod

abc

2

)
.
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Ramanujan-Style Congruences

Theorem 1 (Kronholm, R.)

Let S = {1, 2, `}, for any odd number ` ≥ 3 and k ≥ 0, we have

p

(
2`k +

3`− 3

2
, {1, 2, `}

)
≡ 0 (mod `).
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Theorem 1 Constituent Examples

p(6k + 3|{1, 2, 3}) =3

(
k + 2

2

)
+ 3

(
k + 1

2

)
p(10k + 6|{1, 2, 5}) =5

(
k + 2

2

)
+ 5

(
k + 1

2

)
p(14k + 9|{1, 2, 7}) =7

(
k + 2

2

)
+ 7

(
k + 1

2

)
p(18k + 12|{1, 2, 9}) =9

(
k + 2

2

)
+ 9

(
k + 1

2

)
p(22k + 15|{1, 2, 11}) =11

(
k + 2

2

)
+ 11

(
k + 1

2

)
p(26k + 18|{1, 2, 13}) =13

(
k + 2

2

)
+ 13

(
k + 1

2

)
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p(14k + 9|{1, 2, 7}) =7

(
k + 2

2

)
+ 7

(
k + 1

2

)
p(18k + 12|{1, 2, 9}) =9

(
k + 2

2

)
+ 9

(
k + 1

2

)
p(22k + 15|{1, 2, 11}) =11

(
k + 2

2

)
+ 11

(
k + 1

2

)
p(26k + 18|{1, 2, 13}) =13

(
k + 2

2

)
+ 13

(
k + 1

2

)
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Ranks and Cranks

In 1919, Ramanujan proved the following congruences:

p(5k + 4) ≡ 0 (mod 5)

p(7k + 5) ≡ 0 (mod 7)

p(11k + 6) ≡ 0 (mod 11).

(9)

In Some Guesses in the Theory of Partitions, Freeman Dyson asks for
proofs of these identities in which it is clear to see the way the divisions
are made. He began by looking at the ranks of those partitions.

Definition 9

The rank of a partition is the first part minus the number of parts.
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p(5), Rank, Rank modulo 7

Table 1: p(5) = 7

λ ` 5 rank(λ) rank(λ) (mod 7)

1+1+1+1+1 -4 3

2+1+1+1 -2 5

2+1+1+1 -1 6

3+1+1 0 0

3+2 1 1

4+1 2 2

5 4 4

Definition 10

The crank is a statistic on partitions that is not the rank, and witnesses
any Ramanujan-like partition congruence.
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Divisibility and Cranks

Theorem 1 (Kronholm, R.)

For any odd number ` ≥ 3 and k ≥ 0, we have

p

(
2`k +

3`− 3

2
, {1, 2, `}

)
≡ 0 (mod `).

Theorem 2 (R.)

• For ` ≡ 1 (mod 4) in Theorem 1, the crank 4λ2 − 3λ3, witnesses the
divisibility.

• For ` ≡ 3 (mod 4) in Theorem 1, the crank 2λ1 − 2λ2 + λ3,
witnesses the divisibility.
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Polyhedral Geometry

Figure 2: 37 integer lattice points in the set P(18, {1, 2, 3}).
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Polyhedral Geometry

Figure 3: 80 integer lattice
points/partitions in the set
P(36, {1, 2, 5}).

Figure 4: Crank values of the 80 integer
lattice points/partitions in the set
P(36, {1, 2, 5}).
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Mathematica Code to Search for Cranks for Theorem 2
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Integer Lattice Points

1 p(n, {1, 2, `}) enumerates the partitions of n into parts of sizes 1, 2
and `.
• The conjugates of these partitions can be represented as integer vectors

or lattice points in `-dimensional space.
• Vectors of height |λ| = λ1 + λ2 + λ`−2

3 .
2

P(n, {1, 2, `}) =


 λ1

λ2

λ`−2
3

 ∈ Z`
∣∣∣λ1 + λ2 + λ`−2

3 = n and λ1 ≥ λ2 ≥ λ`−2
3 ≥ 0

 (10)

represents the set of partitions as a set of integer lattice points.

3 P(n, {1, 2, `}), shown in Figure 5, lives in a partition cone C`.

Figure 5: P(18, {1, 2, 3})
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The Partition Cone and Fundamental Parallelepiped

1 C` is the set of all linear combinations with non-real coefficients of a
finite set of generators v1, v2, . . . , v` ∈ Q`.

2

C` = {x ∈ R`|x1 ≥ x2 ≥ · · · ≥ x` ≥ 0}. (11)

• The cone is simplicial when the generators are linearly independent.

Definition 11

Given a simplicial cone, we define a fundamental parallelepiped, F` as

F` = V`([0, 1)`) = Π(v1, . . . , v`) =

{∑̀
i=0

λivi

∣∣∣0 ≤ λi < 1

}
. (12)

For some m ≥ `, the set of lattice points in the fundamental parallelepiped
is defined as

F` = ΠZ` = Zm ∩ coneR(v1, . . . , v`).
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Hyper-Plane Slices of the Fundamental Parallelepiped

1 Hi = F` ∩ {λ ∈ R||λ| = i} are the hyper-plane slices of the
fundamental parallelepiped at height i .

2 Hi = Z` ∩Hi represents the set of lattice points.
• h∗i = #Hi is the amount of points in Hi .

3 Tk = {τ ∈ Z`≥0} is the set of all non-negative integer vectors whose
coordinates sum to k .

Using notation from Ehrhart Theory, we write

p

(
2`k +

3`− 3

2
, {1, 2, `}

)
= h∗r

(
k + 2

2

)
+ h∗2`+r

(
k + 1

2

)
, (13)

P

(
2`k +

3`− 3

2
, {1, 2, `}

)
= (Hr +V`Tk)∪(H2`+r +V`Tk−1), (14)

P
(

2`k +
3`− 3

2
, {1, 2, `}

)
= (Hr +V`Tk)∪(H2`+r +V`Tk−1), (15)

for 0 ≤ r < ` and k ≥ 0.
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Polyhedral Geometry, p
(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0 (mod `)

Theorem 2 (R.)

• For ` ≡ 1 (mod 4) in Theorem 1, the crank 4λ2 − 3λ3, witnesses the
divisibility.

• For ` ≡ 3 (mod 4) in Theorem 1, the crank 2λ1 − 2λ2 + λ3,
witnesses the divisibility.

1 To prove that the crank witnesses the divisibility shown in Theorem 1,
we will show that the slices of the fundamental parallelepiped at

n = 2`k + 3`−3
2

∣∣∣∣
k=0,1

have a complete set of residues modulo ` after

we apply the crank to them.

2 We then show that we retain a complete set of residues modulo `
with any translation of these two slices.

3 For this proof, we consider the case when ` ≡ 1 (mod 4).
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Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 0

Figure 6: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 . Note: The

slices represent the conjugates of the
partitions of n into part sizes 1, 2, `.
The crank is 4λ2 − 3λ3.

1 There are 3`+1
4

vectors in the

λ`−2
3 = 0`−2 row.

2 The partition of 3`−3
2

with the largest

λ2 is

 3`−3
4

3`−3
4

0`−2

.

3 The crank value increases by 4
(mod `) as we move to the right.

4 The first vector here has c(λ) = 0.

5 The extra vector

 3`−7
4

3`+1
4

0`−2

 would have

had crank value of c(λ) = 1.

6 The last crank value in this row is
4λ2 − 3λ3 ≡ −3 (mod `).

7 Because gcd(4, `) = 1,the crank value
of each vector must be distinct.

Joselyne Rodriguez, University of Texas Rio Grande Valley Specialty Seminar in Partitions MTU 43 / 53



Theorem 2 Proof for ` ≡ 1 (mod 4) for λ3 = 1

Figure 7: This is a slice of the
fundamental parallelepiped with k = 0
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 3`−3
2 .

The crank is 4λ2 − 3λ3.

1 By Gupta, there are ` vectors in
total.

2 Since there are 3`+1
4 in the

λ`−2
3 = 0`−2 row, there must be

`−1
4 vectors in the λ`−2

3 = 1`−2

row.

3 The partition of 3`−3
2 with

λ`−2
3 = 1`−2 and smallest λ2 value

is

 `−1
4
1

1`−2

, which has crank value

1.

4 The remaining `−5
4 vectors all have

c(λ) ≡ 1 (mod 4).

5 Together, the crank values of both
rows make a complete set of
residues modulo `.
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Translating the Slices

These slices of the fundamental
parallelepiped are translated using

the following method:
V` × τ + µ = λ, which represent:

 2` ` 2
0 ` 2

0`−2 0`−2 2`−2

τ1
τ2
τ3

+

 µ1
µ2

µ`−2
3

 =

 λ1
λ2

λ`−2
3

 .

1 The final `− 2 parts are identical and
are written as λ`−2

3 .

2 The columns of V` are the generators
for the partition cone C`.

3 The translation vector τ , has
coordinates that sum to k.

4 The partition µ is found in the
fundamental parallelepiped F`.

5 The vector λ gives the coordinates of
the new partition after the translation.

 2` ` 2
0 ` 2

0`−2 0`−2 2`−2

×
τ1
τ2
τ3

 +

 µ1
µ2

µ`−2
3

 =

2`τ1 + `τ2 + 2τ3 + µ1
`τ2 + 2τ3 + µ2

2`−2τ3 + µ`−2
3

 (16)

1 Reducing (16) modulo `, we get 2τ3 + µ1
2τ3 + µ2

2`−2τ3 + µ`−2
3

.

2 c(λ) = 4(2τ3 + µ2) − 3(2τ3 + µ3)

(mod `) ≡ 2τ3 + (4µ2 − 3µ3) (mod `).

3 Given µ ∈ F`, c(λ) of any integer
translation of µ, is increased by 2τ3.

4 Therefore, any integer vector
translation of the partitions in F`

simply permutes the set of residues.
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Translating the Slices

These slices of the fundamental
parallelepiped are translated using

the following method:
V` × τ + µ = λ, which represent:

 2` ` 2
0 ` 2

0`−2 0`−2 2`−2

τ1
τ2
τ3

+

 µ1
µ2

µ`−2
3

 =

 λ1
λ2

λ`−2
3

 .

1 The final `− 2 parts are identical and
are written as λ`−2

3 .

2 The columns of V` are the generators
for the partition cone C`.

3 The translation vector τ , has
coordinates that sum to k.

4 The partition µ is found in the
fundamental parallelepiped F`.

5 The vector λ gives the coordinates of
the new partition after the translation.

 2` ` 2
0 ` 2

0`−2 0`−2 2`−2

×
τ1
τ2
τ3

 +

 µ1
µ2

µ`−2
3

 =

2`τ1 + `τ2 + 2τ3 + µ1
`τ2 + 2τ3 + µ2

2`−2τ3 + µ`−2
3

 (16)

1 Reducing (16) modulo `, we get 2τ3 + µ1
2τ3 + µ2

2`−2τ3 + µ`−2
3

.

2 c(λ) = 4(2τ3 + µ2) − 3(2τ3 + µ3)

(mod `) ≡ 2τ3 + (4µ2 − 3µ3) (mod `).
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Symmetry of the Fundamental Parallelepiped

Figure 8: This is a slice of the
fundamental parallelepiped with k = 1
for p

(
2`k + 3`−3

2 , {1, 2, `}
)
≡ 0

(mod `) at height 2`k + 3`−3
2 .

1 We can use the symmetry of F`,
show that this slice, and its
translations, also have complete
sets of residues modulo `.

2 Thus, for ` ≡ 1 (mod 4), the crank
4λ2 − 3λ3 witnesses the
congruence found in Theorem 1.

3 A similar argument will establish
the case for ` ≡ 3 (mod 4) where
the crank 2λ1 − 2λ2 + λ3 witnesses
the divisibility.

�
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Theorem 2 Example p(36, {1, 2, 5})

Theorem 1 (Kronholm, R.)

For any odd number ` ≥ 3 and k ≥ 0, we have

p

(
2`k +

3`− 3

2
, {1, 2, `}

)
≡ 0 (mod `).

• We begin by drawing the slice of the
fundamental parallelepiped determined by
the part sizes 1, 2, and ` = 5 and
p(10k + 6|S) ≡ 0 (mod 5) at k = 0.

• We will translate this slice #Tk =
(k+2

2

)
times.

• For k = 3, #T3 =
(3+2

2

)
.
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)
.
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2

)
+
(2+2

2

)
= 16 translates for

k = 3, exactly cover the slice of the
partition cone at height
2`k + 3`−3

2
= 2× 5× 3 + 3×5−3

2
= 36.
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Theorem 2 Example p(36, {1, 2, 5})

Figure 9: Slice of the partition cone at
height 36.

This is the slice of the partition
cone at height 36.
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=
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1
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9
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)
=

(
24
9
13

)
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Theorem 2 Example p(36, {1, 2, 5})

Figure 10: Slice of the partition cone at
height 36.

Figure 11: Crank values modulo 5 of the
slice of the partition at height 36.
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Combinatorial Witness- Big Picture

Figure 12: Crank values modulo 5 of the
slice of the partition cone at height 36.

1 Each slice of F`, and their
translations, represent an `-cycle of
partitions.

• `-cycle: collection G of `
maps such that for g ∈ G ,
g(λ) = λ′ where c(λ′)
(mod `) = c(λ) + x (mod `)
for some fixed integer x
co-prime to `.

2 λ′ and λ are contained in the same
translated slice, V` × τ + Hn for
specified values of n.

3 Hence, every slice of the
P(n, {1, 2, `}) at height

n = 2`k + 3`−3
2

∣∣∣∣
k≥0

consists of exactly(
k+2

2

)
+
(
k+1

2

)
= (k + 1)2 `-cycles.
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Further Research Goals

• To obtain similar results for the full generalization

p

(
jabck +

2jabc − ja− jb − jc

2
, Sj

)
≡ 0

(
mod

abc

2

)
.

theorem.
• To extend that theorem to include more than three parts in the set.

• Equal Values of Certain Partition Functions via Diophantine Equations.
SZ. Tengley, M. Ulas.
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