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DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers
(parts) (A1 + Ao+ -+ Am =n).

EXAMPLE
n =4 has 5 partitions (p(4) =5):

4, 341, 2+2, 24141, 14+1+1+1.
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DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers
(parts) (A1 + Ao+ -+ Am =n).

EXAMPLE
n =4 has 5 partitions (p(4) =5):

4, 3+1, 2+42, 24141, 1+1+1+1.
AN

We will use the frequency notation:

fj@ & A=l £H=0
|~__’l__/

Kursungoéz (joint with Zadehdabbagh)




DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of
each part may be overlined.

EXAMPLE
n = 3 has 8 overpartitions (p(3) = 8):

3, 3,241, 2+1, 2+1, 241,

1+1+1, 14141,
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DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of
each part may be overlined.

Ho
EXAMPLE O\OEW

n = 3 has 8 overpartitions (p(3) = 8): O
¥4'

3, 3,241, 241, 2+1, 2+1, Looer

14141, T4+1+1. |\

The frequency notation is used for overpartitions, too.

- i=0, =1 hHh=1 [£=0
) 1 Y, 9 %
®1OH : ‘_‘Lf;ZEZOTor/SZ

g
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DEFINITION

Forne N,
(2:9)n = [J(1 —ad ™),
j=1
(a1, ak;q)n = (a1;9)n- -~ (3k; G)n,
and for |q| < 1

(aq)oo—llm a;q)n ﬁl—aq’
Jj=1

(sine qua non of partition generating functions)
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THEOREM (EULER)
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THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n
into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).
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THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n

into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).

In frequency notation,
"4

p(n | fi+fir1<2)=p(n | f;="fjtr=0).
— —] A Ann AR

Kursungoéz (joint with Zadehdabbagh)



THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n

into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).

In frequency notation,
B

fi + fita <§:P(” |

A general theme: iplicity/frequency/g
VS.
congruence/divisibility conditions on parts

p(n |

on parts
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EXAMPLE

For n =09, 5745

9, 841, 7+2, 643, 5+4+3+1

VS.

9, 6+1+1+1, 4+4+1, 4+1+---4+1, 1+---+1
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THEOREM (ROGERS-RAMANUJAN I, g-SERIES VERSION)
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THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
IN FREQUENCY NOTATION)

Let a, k be integers such that k > 2 and 1 < a < k. Then, for all
non-negative integers n

p(n | fi+ fiy1 @ﬂ<a)=
VAAN-

(n| flokv1)j = fokt1)jxa = 0).
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THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
IN FREQUENCY NOTATION)

Let a, k be integers such that k > 2 and 1 < a < k. Then, for all
non-negative integers n, R

p(n | fi+ fiy1 < K, h < a) = p(n | foksr)) = foksi)j+a = 0)-

Remarks: 2.1
(4
> k=2and a :J{fcases are the Rogers-Ramanujan identities.
» These identities were independently found by Andrews.

» In Andrews’s analytic proof, a = 0 is allowed for convenience.
| - —
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EXAMPLE

Let k =a=05.
(we just display 3's and 4’s)

0 F (no 3’s 0r43here) + -
3 A

- 3 By Cj>+4+3+CZ) At
R Sonscanar SRR L R T4+4+3+”"

o BHBBB e, A ABABEB e, A A B3,
—_—  J L*’ At\_l ®ee

¥%f£k< h
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THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
USING INFINITE PRODUCTS)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

a 2k+l—a 2k+1. 2k+1
E P(”|fi+fi+1<k,f1<3)q"=(q’q ,'q E T
n>0 (ql q)OO
—
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THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
USING INFINITE PRODUCTS)

Let a, k be integers such that k > 2 and 1 < a < k. Then,
2k+1—a

2k+1. 2k+1
E] +yq+)oo

ZP(”|ﬁ+fi+1<k,f1<a)q"=(q’q ,'q
n>0 (q, q)oo

Remark: With the (evidently) positive multiple series generating
function, the identities are called Andrews-Gordon identities.
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THEOREM (GORDON’S THEOREM FOR OVERPARTITIONS,
LovEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

p a ,2k—a 2k. 2k
Z‘ﬁ(n[ﬁﬁ+1<k’f1<a)qn:( qvq)oo(q,q , 4 . q )oo

>0 (9;9)
(— /
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THEOREM (GORDON’S THEOREM FOR OVERPARTITIONS,
LovEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

2k— 2k. 2k
2,97 q°%)

q

o0

—q- a
ZP(” | fi+fAfip1 < ki <a)q" = (=9: 9)o(q "f’
n>0 7 0 (q, q)oo

Remark: The original version is
p(n| multiplicity condition ) = p(n| congruence condition ), but
the correspondence is straightforward.
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EXAMPLE

Let k =a=05.
Begin with any of

and delete parts as desired.
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For us, a Rogers-Ramanujan generalization is:
p(n| multiplicity condition™) = p(n| congruence condition )

uencies ONLY.

* The multiplicity condition relates consecutive freq
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For us, a Rogers-Ramanujan generalization is:

p(n| multiplicity condition™) = p(n| congruence condition )

* The multiplicity condition relates consecutive frequencies ONLY.
NN i 1S

| i 1 ,,
mise en scene credit: Steven Crowder. Also see https://imgflip.com/i/711a16 and
https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign.

The parchment figure is from twinkl.com
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THEOREM (ANDREWS)

Let a, k be integers such that k > 2,1 < a<k, and k= a

mo Consider partitions satisfying
G)fitfitfin<kf<a ]
(P) f2i =0 (mod 2). Then,

AAAANNT A

—qg:q? a 2k+2—a 2k+2.,2k+2
ZP(H | (G} and (P) ) q" = (=9:9%) (g ,((7q2;+q2)o;q +2,g2k+2)

n>0 1

—
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THEOREM (ANDREWS)

Let a, k be integers such that k > 2,1 < a<k, and k= a
(mod 2)..Lonsider partitions satisfying

(G) i+ + fiy1 < k,fi <a,

(P) f; =0 (mod 2). Then,

—qg:q? a 2k+2—a 2k+2.,2k+2
ZP(H | (G} and (P) ) q" = (=9:9%) (g ,((7q2;+q2)o;q +2,g2k+2)

n>0

Remarks:

» The missing k # a (mod 2) case was first found by Kim and
Yee.

» Andrews also asked for an overpartition analog.
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EXAMPLE
Let k =a=06.

Begin with any of
~
- H-34+34+3+34+34---,

A+ A44343434-,
oA+ A+ REAF3H

and delete 3's at will, and 4’s only in pairs.
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THEOREM (SANG, SHI AND YEE)

Let a, k be integers such that k > 2,1 < a<k, and k= a
(mod 2). Let Uy ,(n) be the number of overpartitions satisfying

>f1<a—1+fT <
> h_1 >

h1-1 2 B
;'w’ =0 (mod 2 ]
> f/—i-f-i-f/+1§k—1 <
and let Uy (n) be the numberofoverpartitions of n satisfying

> f1<a—1+ﬁ,
> >y,
» fo_1+ =0 (mod 2)]

> i+t fig Sk—1+fg...
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EXAMPLE
Let 2k =2a = 6.
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EXAMPLE
Let 2k =2a =06. Yes?

M~ X
—y
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THEOREM (SANG, SHI AND YEE)

... Then,
n p 23, 4I<7237 Ak . 4k
Z a,,% n)q _ (=3:9)c0(q (qg;q2)oo q"q" oo
nzo \'\__-/
m—
n —aF 2a’ 4k72a’ Ak 4k
Z (@@n)q (Iqu)( 9:9)oo (g (qg;qQ)oo 979" )oo
n>0
(—giq)o0 (a2 2, g%k —2a+2 4k, 4%k)
(a%:42) 00
U n_ Uk n _ (=a%6%)3(a%?,4* 722 g%k i) o
Z L@’(n)q Z L@@n)q (a%:42) 00
n>0 n>0
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Setup:
Hereafter, let d, k, a, e, and f be non-negative parameters such

that
d>1, k>1, 0<a<k, and @(ﬁd

—

(we will allow f = 0, as necessary, in the proofs)

—_—
—
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Let Udk—f—eda—L’ iv-be the n
0) f1<da+f—‘+ d—1)

g.on
(II) fé/l)\uf]. /1’ /\/\/QMWC '_2
M) T2/+r2,_U (mod| d)| owis
(iv) f/+f+f,+1<W+e—1 Y

and let Ugke.datr(n) be the number of overpartitions of n
satisfying

(i) A <d —1 -l—@)fl

(iiy oy X (d — Lyf5;

2/
(iii)) 1+ =0 (moi d),(

V) i+ fit o <[dkte—1

ber of overpartltlons of n sat|sfy|ng

Nty

(d = 1)fpy
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EXAMPLE
Lletd =3,dk +e=da+f =6.
NAA~

&*I =
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THEOREM )

For parameters as above Withl &)a ‘

(liqd-f—f—e)( da+e 2dk da+e
(1—q9) (4:9%)00
(qd+f—eiqd) (qda—d+eyq2dk—da+d+e’q2dk+2e;q2dk+2e)oo

(1—q9) (9:9%)00(a%:9%) 00

| q2dk+2e, 2dk+2ey
(q9:q9)o0

(qda+e’q2dk7da+e ,q2dk+2e;q2dk+2€)oo
(4:9%)00 (99599 o0

if f=e,

ffe_qd)( da+e 2dk da+te q2dk+2e 2dk+2e)
(1—q9) (9:9%)00(99:9%) 00

(1_qf7e) (qda+d+e’q2dk da— d+e 2dl<+2e;q2dk+2e)OO ) .
+ Z d e ) if f>e;
\| (1—q9) (4:9%)00(99:99) 00
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THEOREM

——

T n _d.d da+d 2dk—da—d+2e _2dk+2e. 2dk-+2e
S Ui ot £(n)q" et Lttt ek e
n>0
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THEOREM

T n__ (- d; d da+d 2dk da— d+25 2dk+2€ 2dk+2e
E Udk+e,da+f(n)q ={=2 4 Joold (q2 2)oo(q q2d)oo oo
n>0

Remarks:

» For d = e =1, the theorem is Gordon's theorem for M}"%
M’\-’vv-
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result. A =2 e=|
e O N
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THEOREM

Z* N (—qfiqd)a, (g0 2dk—da—d+2e 2dk-+2e, 2dk+2e
Uditedatr(n)q" =Cms=le (q‘;:qz)oo(qd;qu)zo ’ =
n>0

Remarks:

» For d = e =1, the theorem is Gordon’s theorem for
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result.

» It is possible to eliminate the overlined parts in the proofs.
(Then what? )
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THEOREM

Udk+e,da+f(n)q —(=9%q )ooLﬂ ,q iq )ob

(%P )T P

n>

Remarks:

» For d = e =1, the theorem is Gordon’s theorem for
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result.

» It is possible to eliminate the overlined parts in the proofs.
(Then what? )

» It is possible (but painful) to interpret the infinite products as
partition generating functions.
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Remember Andrews' analytic proof of the ( (6 )
Rogers-Ramanujan-Gordon identities? 4
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Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let by ,(m, n) be the number of partitions of n into m parts
satisfying Gordon's condition.
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Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let by ,(m, n) be the number of partitions of n into m parts
satisfying Gordon's condition.

Rka Z bka @

m, n>0
W\

Set

Kursungoéz (joint with Zadehdabbagh)



Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let bk ,(m, n) be the number of partitions of n into m parts

satisfying Gordon's condition. o-\ k-a
1 @---2)
Set &1
bk a(m, n)x™q"
—E: on-|
Observe/prove tha
7

l‘@rk Ras=1(x) [Xq )? D?k( )(Xq )

Rk 0] X) =0

R 2(0) = 1.
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)

) (an+1 q)oo
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n+1
@q 2k+1)

T q)n(xq
(—1)7 (2k+1)("+1)

\_\Wn()(%

n>0

Regard the series as

Qr,a(x) (x) Bn(x)
,alx) = ap(Xx + Pnlx
.,k nzo“"‘"""‘"‘ \/W\/‘
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Verify that

E(X) — Qua-1(x) = (xq)°* Qk,k—a+1(XCI))

by showing that

fun)0 —an()s " = (x0)* Br-1(x)

and

gﬂn(x) —Bn(x)

for all n.

= (xq)° 'an(xq)
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Verify that

Qk.a(x) — Qra-1(x) = (xq)° ' Qx k—at1(xq)

by showing that

an(x)q " —an(x) = (xq)* ' Bn-1(xq)

and

Bn(x) —Bn(x) = (xq)" an(xq)
for all n.

Remark: These are sufficient, but not necessary conditions!
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Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.
AT N—"——
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Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.

Because @'s and R's satisfy the same set of functional equations,
and the set of functional equations determine double power series
uniquely,

Rka Z bka m, n xM q Qk,a(x)

m,n>0

(defining g-equations principle as Andrews calls it).
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Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.

Because @'s and R's satisfy the same set of functional equations,
and the set of functional equations determine double power series

uniquely,
Ria(x) = Y bra(m @ = Qualx)

m,n>0

(defining g-equations principle as Andrews calls it).

Finally,

Qk,a(l) = Z Z bk,a(mv n)

n>0

which equals the desired infinite product by the Jacobi’s Triple
Product identity.
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Now, slightly change the order of the above operations,
adjust as necessary,
and the proof writes itself.

umkqh\ﬁm%vﬁg(Pg) mwm‘t
fnd chk wz\ﬁg o RS- \

aggme ‘72:"‘”**

7\7 O

T\wen, e aove rFﬁleor\‘- tonsinelc #S o
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» There still are many missing cases.
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» There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.
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There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.

» Now that we have theorems, we can look for alternative
proofs.
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There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.

» Now that we have theorems, we can look for alternative
proofs.

» The process begs for automation.
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Thank you for your attention.

Any questions?
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