Modulo *d* extension of parity results in Rogers-Ramanujan-Gordon type overpartition identities

arXiv id: 2211.04749

Kağan Kurşungöz, joint with Mohammad Zadeh Dabbagh

Sabancı University, İstanbul

Specialty Seminar in Partition Theory, *q*-Series and Related Topics MTU Dept. of Math. Sci. Dec. 01, 2022

DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers (parts) $(\lambda_1 + \lambda_2 + \cdots + \lambda_m = n)$.

EXAMPLE n = 4 has 5 partitions (p(4) = 5): 4, 3+1, 2+2, 2+1+1, 1+1+1+1.

We will use the frequency notation:

3+1 \leftrightarrow $f_1 = 1$, $f_2 = 0$, $f_3 = 1$, $f_4 = f_5 = \cdots = 0$.

DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers (parts) $(\lambda_1 + \lambda_2 + \cdots + \lambda_m = n)$.

EXAMPLE n = 4 has 5 partitions (p(4) = 5): 4, 3+1, 2+2, 2+1+1, 1+1+1+1.

We will use the frequency notation:

3+1 \leftrightarrow $f_1 = 1$, $f_2 = 0$, $f_3 = 1$, $f_4 = f_5 = \cdots = 0$.

DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of each part may be overlined.

EXAMPLE n = 3 has 8 overpartitions ($\overline{p}(3) = 8$): 3, $\overline{3}, 2 + 1, \overline{2} + 1, 2 + \overline{1}, \overline{2} + \overline{1}, 1 + 1 + 1, \overline{1} + 1 + 1.$

The frequency notation is used for overpartitions, too.

$$\begin{array}{cccc} 2+\overline{1} & \leftrightarrow & f_1=0, \quad f_{\overline{1}}=1, \quad f_2=1, \quad f_{\overline{2}}=0, \\ & f_i=f_{\overline{i}}=0 \ \text{for} \ i>2. \end{array}$$

DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of each part may be overlined.

EXAMPLE n = 3 has 8 overpartitions ($\overline{p}(3) = 8$): 3, $\overline{3}, 2+1, \overline{2}+1, 2+\overline{1}, \overline{2}+\overline{1}, 1+1+1, \overline{1}+1+1$

The frequency notation is used for overpartitions, too.

$$2+\overline{1}$$
 \leftrightarrow $f_1=0, \quad f_{\overline{1}}=1, \quad f_2=1, \quad f_{\overline{2}}=0, \quad f_i=f_{\overline{i}}=0 \text{ for } i>2.$

DEFINITION For $n \in \mathbb{N}$,

$$(a;q)_n = \prod_{j=1}^n (1-aq^{j-1}),$$

 $(a_1,\ldots,a_k;q)_n = (a_1;q)_n \cdots (a_k;q)_n$

and for |q| < 1

$$(a;q)_{\infty} = \lim_{n \to \infty} (a;q)_n = \prod_{j=1}^{\infty} (1-aq^{j-1}).$$

(sine qua non of partition generating functions)

Kurşungöz (joint with Zadehdabbagh)

The Partition and Overpartition Generating Functions

THEOREM (EULER)

$$\sum_{n\geq 0} p(n)q^n = \frac{1}{(1-q)(1-q^2)(1-q^3)\cdots} = \frac{1}{(q;q)_{\infty}}$$

THEOREM (CORTEEL AND LOVEJOY)

$$\sum_{n\geq 0} \overline{p}(n)q^n = \frac{(1+q)(1+q^2)(1+q^3)\cdots}{(1-q)(1-q^2)(1-q^3)\cdots} = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}}$$

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartitio

THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL VERSION)

For any $n \in \mathbb{N}$, the number of partitions of n into distinct and non-consecutive parts equals the number of partitions into parts $\not\equiv 0, \pm 2 \pmod{5}$.

In frequency notation,

$$p(n \mid f_i + f_{i+1} < 2) = p(n \mid f_{5j} = f_{5j\pm 2} = 0).$$

A general theme: multiplicity/frequency/gap conditions on parts vs. congruence/divisibility conditions on parts

THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL VERSION)

For any $n \in \mathbb{N}$, the number of partitions of n into distinct and non-consecutive parts equals the number of partitions into parts $\not\equiv 0, \pm 2 \pmod{5}$.

In frequency notation,

$$p(n \mid f_i + f_{i+1} < 2) = p(n \mid f_{5j} = f_{5j\pm 2} = 0).$$

A general theme: multiplicity/frequency/gap conditions on parts vs. congruence/divisibility conditions on parts

THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL VERSION)

For any $n \in \mathbb{N}$, the number of partitions of n into distinct and non-consecutive parts equals the number of partitions into parts $\not\equiv 0, \pm 2 \pmod{5}$.

In frequency notation,

$$p(n \mid f_i + f_{i+1} < 2) = p(n \mid f_{5j} = f_{5j\pm 2} = 0).$$

A general theme: multiplicity/frequency/gap conditions on parts vs. congruence/divisibility conditions on parts

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartitions

EXAMPLE For n = 9, 9, 8+1, 7+2, 6+3, 5+3+1vs. $9, 6+1+1+1, 4+4+1, 4+1+\dots+1, 1+\dots+1$.

Kurşungöz (joint with Zadehdabbagh) $\mod d$ extensions of parity in overpartition

THEOREM (ROGERS-RAMANUJAN I, q-SERIES VERSION)

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots} = \frac{1}{(q,q^4;q^5)_{\infty}}$$

THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES, IN FREQUENCY NOTATION)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then, for all non-negative integers n,

 $p(n \mid f_i + f_{i+1} < k, f_1 < a) = p(n \mid f_{(2k+1)j} = f_{(2k+1)j\pm a} = 0).$

Remarks:

k = 2 and a = 1, 2 cases are the Rogers-Ramanujan identities. These identities were independently found by Andrews. In Andrews's analytic proof, a = 0 is allowed for convenience. THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES, IN FREQUENCY NOTATION)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then, for all non-negative integers n,

$$p(n \mid f_i + f_{i+1} < k, f_1 < a) = p(n \mid f_{(2k+1)j} = f_{(2k+1)j\pm a} = 0).$$

Remarks:

- \blacktriangleright k = 2 and a = 1, 2 cases are the Rogers-Ramanujan identities.
- These identities were independently found by Andrews.
- ▶ In Andrews's analytic proof, a = 0 is allowed for convenience.

EXAMPLE let k = a = 5(we just display 3's and 4's) $\cdots + (no \ 3's \ or \ 4's \ here) + \cdots$ $\cdots + 3 + \cdots, \quad \cdots + 4 + \cdots,$ $\dots + 3 + 3 + \dots, \quad \dots + 4 + 3 + \dots, \quad \dots + 4 + 4 + \dots,$ $\dots + 3 + 3 + 3 + \dots, \dots + 4 + 3 + 3 + \dots, \dots + 4 + 4 + 3 + \dots, \dots$ $\dots + 3 + 3 + 3 + 3 + \dots$, $\dots + 4 + 3 + 3 + 3 + \dots$, $\dots + 4 + 4 + 3 + 3 + \dots$, \dots THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES, USING INFINITE PRODUCTS)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then,

$$\sum_{n \ge 0} p(n \mid f_i + f_{i+1} < k, f_1 < a) q^n = \frac{(q^a, q^{2k+1-a}, q^{2k+1}; q^{2k+1})_{\infty}}{(q; q)_{\infty}}$$

Remark: With the (evidently) positive multiple series generating function, the identities are called Andrews-Gordon identities.

THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES, USING INFINITE PRODUCTS)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then,

$$\sum_{n \ge 0} p(n \mid f_i + f_{i+1} < k, f_1 < a) q^n = \frac{(q^a, q^{2k+1-a}, q^{2k+1}; q^{2k+1})_{\infty}}{(q; q)_{\infty}}$$

Remark: With the (evidently) positive multiple series generating function, the identities are called Andrews-Gordon identities.

THEOREM (GORDON'S THEOREM FOR OVERPARTITIONS, LOVEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then,

$$\sum_{n \ge 0} p(n \mid f_i + f_{\overline{i}} + f_{i+1} < k, f_1 < a) q^n = \frac{(-q;q)_{\infty}(q^a, q^{2k-a}, q^{2k}; q^{2k})_{\infty}}{(q;q)_{\infty}}$$

Remark: The original version is p(n| multiplicity condition) = p(n| congruence condition), but the correspondence is straightforward.

THEOREM (GORDON'S THEOREM FOR OVERPARTITIONS, LOVEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that $k \ge 2$ and $1 \le a \le k$. Then,

$$\sum_{n \ge 0} p(n \mid f_i + f_{\overline{i}} + f_{i+1} < k, f_1 < a) q^n = \frac{(-q;q)_{\infty}(q^a, q^{2k-a}, q^{2k}; q^{2k})_{\infty}}{(q;q)_{\infty}}$$

Remark: The original version is p(n| multiplicity condition) = p(n| congruence condition), but the correspondence is straightforward.

EXAMPLE

Let k = a = 5. Begin with any of

and delete parts as desired.

ROGERS-RAMANUJAN GENERALIZATIONS

For us, a Rogers-Ramanujan generalization is:

p(n| multiplicity condition^{*}) = p(n| congruence condition)

* The multiplicity condition relates consecutive frequencies ONLY.

mise en scene credit: Steven Crowder. Also see https://imgflip.com/i/711a16 and https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign.

The parchment figure is from twinkl.com

14/32

Kurşungöz (joint with Zadehdabbagh)

ROGERS-RAMANUJAN GENERALIZATIONS

For us, a Rogers-Ramanujan generalization is:

p(n| multiplicity condition^{*}) = p(n| congruence condition)

* The multiplicity condition relates consecutive frequencies ONLY.

mise en scene credit: Steven Crowder. Also see https://imgflip.com/i/71la16 and https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign.

The parchment figure is from twinkl.com

14/32

Kurşungöz (joint with Zadehdabbagh)

ONE OF MANY RESULTS IN ANDREWS' "PARITY IN PARTITIONS"

THEOREM (ANDREWS)

Let a, k be integers such that $k \ge 2$, $1 \le a \le k$, and $k \equiv a \pmod{2}$. Consider partitions satisfying (G) $f_i + f_{\overline{i}} + f_{i+1} < k, f_1 < a,$ (P) $f_{2i} \equiv 0 \pmod{2}$. Then,

$$\sum_{n\geq 0} p(n \mid (G) \text{ and } (P)) q^n = \frac{(-q;q^2)_{\infty}(q^a,q^{2k+2-a},q^{2k+2};q^{2k+2})_{\infty}}{(q^2;q^2)_{\infty}}$$

Remarks:

The missing $k \not\equiv a \pmod{2}$ case was first found by Kim and Yee.

Andrews also asked for an overpartition analog.

Kurşungöz (joint with Zadehdabbagh)

ONE OF MANY RESULTS IN ANDREWS' "PARITY IN PARTITIONS"

THEOREM (ANDREWS)

Let a, k be integers such that $k \ge 2$, $1 \le a \le k$, and $k \equiv a \pmod{2}$. Consider partitions satisfying (G) $f_i + f_{\overline{i}} + f_{i+1} < k$, $f_1 < a$, (P) $f_{2i} \equiv 0 \pmod{2}$. Then,

$$\sum_{n\geq 0} p(n \mid (G) \text{ and } (P)) q^n = \frac{(-q;q^2)_{\infty}(q^a,q^{2k+2-a},q^{2k+2};q^{2k+2})_{\infty}}{(q^2;q^2)_{\infty}}$$

Remarks:

- The missing k ≠ a (mod 2) case was first found by Kim and Yee.
- Andrews also asked for an overpartition analog.

Kurşungöz (joint with Zadehdabbagh)

One of many results in Andrews' "Parity in Partitions"

EXAMPLE Let k = a = 6. Begin with any of

:

$$\dots + 3 + 3 + 3 + 3 + 3 + \dots ,$$

 $\dots + 4 + 4 + 3 + 3 + 3 + \dots ,$
 $\dots + 4 + 4 + 4 + 4 + 3 + \dots ,$
:

and delete 3's at will, and 4's only in pairs.

THEOREM (SANG, SHI AND YEE)

Let a, k be integers such that $k \ge 2$, $1 \le a \le k$, and $k \equiv a \pmod{2}$. Let $U_{k,a}(n)$ be the number of overpartitions satisfying

►
$$f_1 \leq a - 1 + f_{\overline{1}}$$
,

$$\blacktriangleright f_{2l-1} \ge f_{\overline{2l-1}},$$

$$f_{2I} + f_{\overline{2I}} \equiv 0 \pmod{2},$$

$$f_l + f_{\overline{l}} + f_{l+1} \le k - 1 + f_{\overline{l+1}};$$

and let $U_{k,a}(n)$ be the number of overpartitions of n satisfying

$$\bullet \ f_1 \leq a - 1 + f_{\overline{1}},$$

$$\blacktriangleright f_{2l} \geq f_{\overline{2l}},$$

•
$$f_{2l-1} + f_{\overline{2l-1}} \equiv 0 \pmod{2}$$
,

$$\blacktriangleright f_l + f_{\overline{l}} + f_{l+1} \le k - 1 + f_{\overline{l+1}} \dots$$

EXAMPLE Let 2k = 2a = 6. Yes?

EXAMPLE Let 2k = 2a = 6. Yes?

THEOREM (SANG, SHI AND YEE) ... Then,

$$\sum_{n \ge 0} U_{2k,2a}(n) q^n = \frac{(-q;q)_{\infty}(q^{2a},q^{4k}-2a,q^{4k};q^{4k})_{\infty}}{(q^2;q^2)_{\infty}}$$

$$\sum_{n\geq 0} U_{2k,2a-1}(n)q^n = \frac{1}{(1+q)} \frac{(-q;q)_{\infty}(q^{2a},q^{4k}-2a,q^{4k};q^{4k})_{\infty}}{(q^2;q^2)_{\infty}} + \frac{q}{(1+q)} \frac{(-q;q)_{\infty}(q^{2a-2},q^{4k}-2a+2,q^{4k};q^{4k})_{\infty}}{(q^2;q^2)_{\infty}}$$

$$\sum_{n\geq 0} \overline{U}_{2k,2a-1}(n)q^n = \sum_{n\geq 0} \overline{U}_{2k,2a}(n)q^n = \frac{(-q^2;q^2)_{\infty}^2(q^{2a},q^{4k}-2a,q^{4k};q^{4k})_{\infty}}{(q^2;q^2)_{\infty}}$$

19/32

Kurşungöz (joint with Zadehdabbagh) $\mod d$ extensions of parity in overpartition

Setup:

Hereafter, let d, k, a, e, and f be non-negative parameters such that

 $d \ge 1$, $k \ge 1$, $0 \le a \le k$, and $1 \le e, f \le d$.

(we will allow f = 0, as necessary, in the proofs)

Let $U_{dk+e, da+f}(n)$ be the number of overpartitions of n satisfying (i) $f_1 < da + f - 1 + (d - 1)f_{\overline{1}}$ (ii) $f_{2l-1} \ge (d-1)f_{2l-1}$, (iii) $f_{2l} + f_{\overline{2l}} \equiv 0 \pmod{d}$, (iv) $f_l + f_{\overline{l}} + f_{\overline{l+1}} \le dk + e - 1 + (d-1)f_{\overline{l+1}};$ and let $U_{dk+e,da+f}(n)$ be the number of overpartitions of n satisfying (i) $f_1 < da + f - 1 + (d - 1)f_{\overline{1}}$ (ii) $f_{2l} \ge (d-1)f_{\overline{2l}}$ (iii) $f_{2l-1} + f_{\overline{2l-1}} \equiv 0 \pmod{d}$, (iv) $f_l + f_{\bar{l}} + f_{l+1} \le dk + e - 1 + (d-1)f_{l+1}$.

EXAMPLE Let d = 3, dk + e = da + f = 6.

Theorem

For parameters as above with e = d or 2e = d

$$\sum_{n\geq 0} U_{dk+e,da+f}(n)q^{n}$$

$$= \begin{cases} \frac{(1-q^{d+f-e})(q^{da+e},q^{2dk-da+e},q^{2dk+2e},q^{2dk+2e})_{\infty}}{(1-q^{d})(q;q^{2})_{\infty}(q^{d};q^{d})_{\infty}} \\ + \frac{(q^{d+f-e}-q^{d})(q^{da-d+e},q^{2dk-da+d+e},q^{2dk+2e},q^{2dk+2e})_{\infty}}{(q;q^{2})_{\infty}(q^{d};q^{d})_{\infty}}, & \text{if } f < e, \end{cases}$$

$$= \begin{cases} \frac{(q^{da+e},q^{2dk-da+e},q^{2dk+2e},q^{2dk+2e},q^{2dk+2e})_{\infty}}{(q;q^{2})_{\infty}(q^{d};q^{d})_{\infty}}, & \text{if } f = e, \end{cases}$$

$$= \frac{(q^{f-e}-q^{d})(q^{da+e},q^{2dk-da+e},q^{2dk+2e},q^{2dk+2e},q^{2dk+2e})_{\infty}}{(q;q^{2})_{\infty}(q^{d};q^{d})_{\infty}}, & \text{if } f = e, \end{cases}$$

$$= \frac{(q^{f-e}-q^{d})(q^{da+e},q^{2dk-da+e},q^{2dk-2e},q^{2dk+2e},q^{2dk+2e})_{\infty}}{(q;q^{2})_{\infty}(q^{d};q^{d})_{\infty}}, & \text{if } f = e, \end{cases}$$

Kurşungöz (joint with Zadehdabbagh)

Theorem

$$\sum_{n\geq 0}\overline{U}_{dk+e,da+f}(n)q^n = \frac{(-q^d;q^d)_{\infty}(q^{da+d},q^{2dk-da-d+2e},q^{2dk+2e};q^{2dk+2e})_{\infty}}{(q^2;q^2)_{\infty}(q^d;q^{2d})_{\infty}}.$$

Remarks:

- For d = e = 1, the theorem is Gordon's theorem for overpartitions.
- For d = e = 2, it is Sang, Shi and Yee's result.
- It is possible to eliminate the overlined parts in the proofs. (Then what?)
- It is possible (but painful) to interpret the infinite products as partition generating functions.

Theorem

$$\sum_{n\geq 0} \overline{U}_{dk+e,da+f}(n)q^n = \frac{(-q^d;q^d)_{\infty}(q^{da+d},q^{2dk-da-d+2e},q^{2dk+2e};q^{2dk+2e})_{\infty}}{(q^2;q^2)_{\infty}(q^d;q^{2d})_{\infty}}.$$

Remarks:

- For d = e = 1, the theorem is Gordon's theorem for overpartitions.
- For d = e = 2, it is Sang, Shi and Yee's result.

It is possible to eliminate the overlined parts in the proofs. (Then what?)

It is possible (but painful) to interpret the infinite products as partition generating functions.

Theorem

$$\sum_{n\geq 0} \overline{U}_{dk+e,da+f}(n)q^n = \frac{(-q^d;q^d)_{\infty}(q^{da+d},q^{2dk-da-d+2e},q^{2dk+2e};q^{2dk+2e})_{\infty}}{(q^2;q^2)_{\infty}(q^d;q^{2d})_{\infty}}.$$

Remarks:

- For d = e = 1, the theorem is Gordon's theorem for overpartitions.
- For d = e = 2, it is Sang, Shi and Yee's result.
- It is possible to eliminate the overlined parts in the proofs. (Then what?)

It is possible (but painful) to interpret the infinite products as partition generating functions.

Theorem

$$\sum_{n\geq 0} \overline{U}_{dk+e,da+f}(n)q^n = \frac{(-q^d;q^d)_{\infty}(q^{da+d},q^{2dk-da-d+2e},q^{2dk+2e};q^{2dk+2e})_{\infty}}{(q^2;q^2)_{\infty}(q^d;q^{2d})_{\infty}}.$$

Remarks:

- For d = e = 1, the theorem is Gordon's theorem for overpartitions.
- For d = e = 2, it is Sang, Shi and Yee's result.
- It is possible to eliminate the overlined parts in the proofs. (Then what?)
- It is possible (but painful) to interpret the infinite products as partition generating functions.

Remember Andrews' analytic proof of the Rogers-Ramanujan-Gordon identities?

Let $b_{k,a}(m, n)$ be the number of partitions of n into m parts satisfying Gordon's condition.

Set

$$R_{k,a}(x) = \sum_{m,n \ge 0} b_{k,a}(m,n) x^m q^n$$

Observe/prove that

$$R_{k,a}(x) - R_{k,a-1}(x) = (xq)^{a-1}R_{k,k-a+1}(xq),$$

$$R_{k,0}(x) = 0,$$

$$R_{k,a}(0) = 1.$$

25/32

Kurşungöz (joint with Zadehdabbagh) $\mod d$ extensions of parity in overpartitions

Remember Andrews' analytic proof of the Rogers-Ramanujan-Gordon identities?

Let $b_{k,a}(m, n)$ be the number of partitions of n into m parts satisfying Gordon's condition.

Set

$$R_{k,a}(x) = \sum_{m,n \ge 0} b_{k,a}(m,n) x^m q^n$$

Observe/prove that

$$R_{k,a}(x) - R_{k,a-1}(x) = (xq)^{a-1}R_{k,k-a+1}(xq),$$

$$R_{k,0}(x) = 0,$$

$$R_{k,a}(0) = 1.$$

25/32

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartitions

Remember Andrews' analytic proof of the Rogers-Ramanujan-Gordon identities?

Let $b_{k,a}(m, n)$ be the number of partitions of n into m parts satisfying Gordon's condition.

Set

$$R_{k,a}(x) = \sum_{m,n\geq 0} b_{k,a}(m,n) x^m q^n$$

Observe/prove that

$$R_{k,a}(x) - R_{k,a-1}(x) = (xq)^{a-1}R_{k,k-a+1}(xq),$$

$$R_{k,0}(x) = 0,$$

$$R_{k,a}(0) = 1.$$

25/32

Kurşungöz (joint with Zadehdabbagh) $\mod d$ extensions of parity in overpartitions

Remember Andrews' analytic proof of the Rogers-Ramanujan-Gordon identities?

Let $b_{k,a}(m, n)$ be the number of partitions of n into m parts satisfying Gordon's condition.

Set

$$R_{k,a}(x) = \sum_{m,n\geq 0} b_{k,a}(m,n) x^m q^n$$

Observe/prove that

$$\begin{aligned} R_{k,a}(x) - R_{k,a-1}(x) &= (xq)^{a-1} R_{k,k-a+1}(xq), \\ R_{k,0}(x) &= 0, \\ R_{k,a}(0) &= 1. \end{aligned}$$

Panorama of the Proof

Define

$$Q_{k,a}(x) = \sum_{n \ge 0} \frac{(-1)^n x^{kn} q^{(2k+1)\binom{n+1}{2}} q^{-an}}{(q;q)_n (xq^{n+1};q)_\infty} - \frac{(-1)^n x^{kn} q^{(2k+1)\binom{n+1}{2}} x^a q^{(n+1)a}}{(q;q)_n (xq^{n+1};q)_\infty}$$

Regard the series as

$$Q_{k,a}(x) = \sum_{n \ge 0} \alpha_n(x) \qquad + \beta_n(x)$$

26/32

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartitions

Panorama of the Proof

Define

$$Q_{k,a}(x) = \sum_{n \ge 0} \frac{(-1)^n x^{kn} q^{(2k+1)\binom{n+1}{2}} q^{-an}}{(q;q)_n (xq^{n+1};q)_\infty} - \frac{(-1)^n x^{kn} q^{(2k+1)\binom{n+1}{2}} x^a q^{(n+1)a}}{(q;q)_n (xq^{n+1};q)_\infty}$$

Regard the series as

$$Q_{k,a}(x) = \sum_{n\geq 0} \alpha_n(x) q^{-an} + \beta_n(x) x^a q^{(n+1)a}$$

Verify that

$$Q_{k,a}(x) - Q_{k,a-1}(x) = (xq)^{a-1}Q_{k,k-a+1}(xq)$$

by showing that

$$\alpha_n(x)q^{-an} - \alpha_n(x)q^{-(a-1)n} = (xq)^{a-1}\beta_{n-1}(xq)x^{k-a+1}q^{(n+1)(k-a+1)}$$

and

$$\beta_n(x)x^{\mathfrak{a}}q^{(n+1)\mathfrak{a}}-\beta_n(x)x^{\mathfrak{a}-1}q^{(n+1)(\mathfrak{a}-1)}=(xq)^{\mathfrak{a}-1}\alpha_n(xq)q^{-n(k-\mathfrak{a}+1)}$$

for all n.

Remark: These are sufficient, but not necessary conditions!

27/32

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartitions

Verify that

$$Q_{k,a}(x) - Q_{k,a-1}(x) = (xq)^{a-1}Q_{k,k-a+1}(xq)$$

by showing that

$$\alpha_n(x)q^{-an} - \alpha_n(x)q^{-(a-1)n} = (xq)^{a-1}\beta_{n-1}(xq)x^{k-a+1}q^{(n+1)(k-a+1)}$$

and

$$\beta_n(x)x^a q^{(n+1)a} - \beta_n(x)x^{a-1}q^{(n+1)(a-1)} = (xq)^{a-1}\alpha_n(xq)q^{-n(k-a+1)}$$

for all n.

Remark: These are sufficient, but not necessary conditions!

27/32

Kurşungöz (joint with Zadehdabbagh) mod d extensions of parity in overpartition

Next, just observe that $Q_{k,0}(x) = 0$ and $Q_{k,a}(0) = 1$.

Because Q's and R's satisfy the same set of functional equations, and the set of functional equations determine double power series uniquely,

$$R_{k,a}(x) = \sum_{m,n \ge 0} b_{k,a}(m,n) x^m q^n = Q_{k,a}(x)$$

(defining q-equations principle as Andrews calls it).

Finally,

$$Q_{k,a}(1)=\sum_{n\geq 0}\left(\sum_{m\geq 0}b_{k,a}(m,n)
ight)q^n,$$

which equals the desired infinite product by the Jacobi's Triple Product identity.

Kurşungöz (joint with Zadehdabbagh)

nod *d* extensions of parity in overpartitions

Next, just observe that $Q_{k,0}(x) = 0$ and $\overline{Q_{k,a}(0)} = 1$.

Because Q's and R's satisfy the same set of functional equations, and the set of functional equations determine double power series uniquely,

$$R_{k,a}(x) = \sum_{m,n \ge 0} b_{k,a}(m,n) x^m q^n = Q_{k,a}(x)$$

(defining *q*-equations principle as Andrews calls it).

Finally,

$$Q_{k,a}(1)=\sum_{n\geq 0}\left(\sum_{m\geq 0}b_{k,a}(m,n)
ight)q^n,$$

which equals the desired infinite product by the Jacobi's Triple Product identity.

Kurşungöz (joint with Zadehdabbagh)

nod d extensions of parity in overpartitions

Next, just observe that $Q_{k,0}(x) = 0$ and $Q_{k,a}(0) = 1$.

Because Q's and R's satisfy the same set of functional equations, and the set of functional equations determine double power series uniquely,

$$R_{k,a}(x) = \sum_{m,n \ge 0} b_{k,a}(m,n) x^m q^n = Q_{k,a}(x)$$

(defining *q*-equations principle as Andrews calls it).

Finally,

$$Q_{k,a}(1) = \sum_{n\geq 0} \left(\sum_{m\geq 0} b_{k,a}(m,n)\right) q^n,$$

which equals the desired infinite product by the Jacobi's Triple Product identity.

Kurşungöz (joint with Zadehdabbagh)

nod *d* extensions of parity in overpartitions

Now, slightly change the order of the above operations, adjust as necessary, and the proof writes itself.

FUTURE WORK

► There still are many missing cases.

Sang, Shi and Yee have Andrews-Gordon type series as generating functions, those series are missing in the general case.

Now that we have theorems, we can look for alternative proofs.

The process begs for automation.

► There still are many missing cases.

 Sang, Shi and Yee have Andrews-Gordon type series as generating functions, those series are missing in the general case.

Now that we have theorems, we can look for alternative proofs.

The process begs for automation.

► There still are many missing cases.

- Sang, Shi and Yee have Andrews-Gordon type series as generating functions, those series are missing in the general case.
- Now that we have theorems, we can look for alternative proofs.

The process begs for automation.

► There still are many missing cases.

- Sang, Shi and Yee have Andrews-Gordon type series as generating functions, those series are missing in the general case.
- Now that we have theorems, we can look for alternative proofs.
- ► The process begs for automation.

Thank you for your attention.

Any questions?

Modulo *d* extension of parity results in Rogers-Ramanujan-Gordon type overpartition identities

arXiv id: 2211.04749

Kağan Kurşungöz, joint with Mohammad Zadeh Dabbagh

Sabancı University, İstanbul

Specialty Seminar in Partition Theory, *q*-Series and Related Topics MTU Dept. of Math. Sci. Dec. 01, 2022