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DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers
(parts) (A1 + Ao+ -+ Am =n).

EXAMPLE
n =4 has 5 partitions (p(4) =5):

4, 341, 2+2, 24141, 14+1+1+1.



DEFINITION (EULER)

An integer partition is an unordered finite sum of positive integers
(parts) (A1 + Ao+ -+ Am =n).

EXAMPLE
n =4 has 5 partitions (p(4) =5):

4, 341, 2+2, 24141, 14+1+1+1.

We will use the frequency notation:

3+1 < i=1 £=0 fKR=1 fL=FfH=---=0.



DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of
each part may be overlined.

EXAMPLE
n =3 has 8 overpartitions (p(3) = 8):

3, 3,2+1, 2+1, 2+1, 2+1,

1+14+1, 14141,



DEFINITION (CORTEEL AND LOVEJOY)

An overpartition is a partition such that the first occurrence of
each part may be overlined.

EXAMPLE
n =3 has 8 overpartitions (p(3) = 8):

3, 3,2+1, 2+1, 2+1, 2+1,

1+14+1, 14141,

The frequency notation is used for overpartitions, too.

_ A=0, =1 hKh=1 F£=0,
2 « = =20 for i > 2.



DEFINITION
Forne N,

n

(a:q)n = [J(1 - ag/™),

j=1
(a1, -, ak:9)n = (a1;9)n - - (3k; ),
and for |q| < 1

(aq)oo—llm a;q)n ﬁl—aq’
=it

(sine qua non of partition generating functions)



THEOREM (EULER)
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THEOREM (CORTEEL AND LOVEJOY)

g 1+ 91+ +%) - (99
;p C(1-901-*)1-¢% - (39w



THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n

into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).



THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n

into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).

In frequency notation,

p(n | fi+fi1<2)=p(n | f;="fjtr=0).



THEOREM (ROGERS-RAMANUJAN I, COMBINATORIAL
VERSION)

For any n € N,

the number of partitions of n

into distinct and non-consecutive parts
equals the number of partitions into parts
# 0,%+2 (mod 5).

In frequency notation,
p(n | fi+fi1<2)=p(n | f;="fjtr=0).

A general theme: multiplicity/frequency/gap conditions on parts
VS.
congruence/divisibility conditions on parts



EXAMPLE
For n =09,

9, 841, 7+4+2, 643, 5+3+1
vs.

9, 6+1+1+1, 4+4+1, 4+1+---4+1, 1+---+1



THEOREM (ROGERS-RAMANUJAN I, g-SERIES VERSION)

q"2 1 B 1

= (q:9)n T 1-90-NA-®)1-¢") - (0.5 )




THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
IN FREQUENCY NOTATION)

Let a, k be integers such that k > 2 and 1 < a < k. Then, for all
non-negative integers n,

p(n | fi+ fiy1 < k, i < a) = p(n | fos1); = foks1)j+a = 0)-



THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
IN FREQUENCY NOTATION)

Let a, k be integers such that k > 2 and 1 < a < k. Then, for all

non-negative integers n,

p(n | fi+fix1 < k,fi <a)=p(n| faks1); = foks1)j+a = 0)-
Remarks:
» k=2 and a=1,2 cases are the Rogers-Ramanujan identities.

» These identities were independently found by Andrews.

» In Andrews’s analytic proof, a = 0 is allowed for convenience.



EXAMPLE

Let k =a=05.
(we just display 3's and 4’s)

-+ (no 3’s or 4’s here) +---,

coadb @b coa . acodbAdlocs
coa b BA B cas | candb AL G Al aoe oot Al Al oa

CF 343434, A3 3 4, A A3

34343434, A 343434, A A3 3



THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
USING INFINITE PRODUCTS)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

a 2k+1—a 2k+1. 2k+1
ZP(”|ﬁ+fi+1<k,f1<a)qnz(q’q 90T oo

>0 (9: 9o




THEOREM (ROGERS-RAMANUJAN-GORDON IDENTITIES,
USING INFINITE PRODUCTS)

Let a, k be integers such that k > 2 and 1 < a < k. Then,
a’ q2k+1—a’ q2k+1; q2k+1)oo

ZP(”|ﬁ+fi+1<k,f1<3)CI"=(q :
n>0 (9: 9o

Remark: With the (evidently) positive multiple series generating
function, the identities are called Andrews-Gordon identities.



THEOREM (GORDON’S THEOREM FOR OVERPARTITIONS,
LovEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

2k— 2k. 2k
2,97 q°%)

q

o0

—q- a
ZP(” | fi+fAfip1 < ki <a)q" = (=91 9)(q "'7
n>0 (qr CI)oo



THEOREM (GORDON’S THEOREM FOR OVERPARTITIONS,
LovEJOY, CHEN AND SANG AND SHI)

Let a, k be integers such that k > 2 and 1 < a < k. Then,

2k— 2k. 2k
2,97 q°%)

q

o0

—q- a
ZP(” | fi+fAfip1 < ki <a)q" = (=91 9)(q "'7
n>0 (qr CI)oo

Remark: The original version is
p(n| multiplicity condition ) = p(n| congruence condition ), but
the correspondence is straightforward.



EXAMPLE

Let k =a=05.
Begin with any of

o+ 44343434,
o +44+34343 4+,
A 4+A4434+3434--,
B4+ 44+34343+---,

and delete parts as desired.



For us, a Rogers-Ramanujan generalization is:
p(n| multiplicity condition™) = p(n| congruence condition )

uencies ONLY.

* The multiplicity condition relates consecutive freq



https://imgflip.com/i/71la16
https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign
twinkl.com

For us, a Rogers-Ramanujan generalization is:

p(n| multiplicity condition™) = p(n| congruence condition )

* The multiplicity condition relates consecutive frequencies ONLY.

ey 1 <

mise en scene credit: Steven Crowder. Also see https://imgflip.com/i/711a16 and
https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign.

The parchment figure is from twinkl.com


https://imgflip.com/i/71la16
https://knowyourmeme.com/memes/steven-crowders-change-my-mind-campus-sign
twinkl.com

THEOREM (ANDREWS)

Let a, k be integers such that k > 2,1 < a<k, and k= a
(mod 2). Consider partitions satisfying

(G) fi+Ff+fiqa<kfi<a,

(P) i =0 (mod 2). Then,

Zp(n | (G) and (P)) q" = (=9:9%) 00 (g7,g%K 272, g0 +2,¢?k+2)

(4%9%)
n>0



THEOREM (ANDREWS)

Let a, k be integers such that k > 2,1 < a<k, and k= a
(mod 2). Consider partitions satisfying

(G) fi+Ff+fiqa<kfi<a,

(P) i =0 (mod 2). Then,

n —q; 2 o a7 2k+27a7 2k+2; 2k+2 o
Z%”(”' (G) and (P) ) q" = CED=(a0- i)

Remarks:

» The missing k # a (mod 2) case was first found by Kim and
Yee.

» Andrews also asked for an overpartition analog.



EXAMPLE

Let k=a=6.
Begin with any of

-4 343434343,
44343434,
SNy Ry Y Y U S

and delete 3's at will, and 4’s only in pairs.



THEOREM (SANG, SHI AND YEE)

Let a, k be integers such that k > 2,1 < a<k, and k= a
(mod 2). Let Uy ,(n) be the number of overpartitions satisfying
» h<a—-1+Ff,
> o1 > 5,
> £+ ;=0 (mod 2),
> i+ fH+f <k—-1+f
and let Uy (n) be the number of overpartitions of n satisfying
> A<a—-1+F,
> f > 15,
> fo_1+ =0 (mod 2),
> fitFfi <k—1+Ffg...



EXAMPLE
Let 2k =2a = 6.



EXAMPLE
Let 2k =2a =06. Yes?



THEOREM (SANG, SHI AND YEE)
. Then,

E N _ (~q:9)oo(d®?,q** =22 4*:q%) o
U2k123(n)q (q2?q2)oo
n>0

2a 4I< 2a 4k 4k
Z U2k723_1(n)q” :(liq)( ai9)oo(d”".g Joo

g (q q2)oo
n>
4.4 (—g:a)o0 (4222, K —2242 g4k %K) o
(1+a) (4%:4%) 00
2 22 (23 4k—2a 4k. 4k
E U E U n _ (=9%9)50(a77 .9 9759 oo
— 2k 23 1 = 2k 23 (‘72?‘72)00
n-= n-=



Setup:
Hereafter, let d, k, a, e, and f be non-negative parameters such
that

d>1, k>1, 0<a<k, and 1<ef<d.

(we will allow f = 0, as necessary, in the proofs)



Let Ugkte,datr(n) be the number of overpartitions of n satisfying
() A<da+f—1+(d—1)%

(i) -1 >(d - 1)

(iii) f+ ;=0 (mod d),
(iv) it+f+fiyn<dk+e—1+(d- 1)
and let Ugkte datr(n) be the number of overpartitions of n
satisfying
(i) A<da+f—1+4+(d-1)f,

i) by > (d—-1)f;,

i) f_1 + ;=7 =0 (mod d),

v) i+ f+fia<dk+e—1+(d—1)f7



EXAMPLE
letd =3,dk+e=da+f =6.



THEOREM

For parameters as above with or

n
E Udk+e,datr(n)q
n>0
(liqd+f—e) (qda+eyq2dk—da+e ’q2dk+2e;q2dk+2e)oo
(1—gq9) (3:92) 00 (99:9%) 00

(qd+f—eiqd) (qda—d+eyq2dk—da+d+e ,q2dk+26;q2dk+2e)oo

(1-q9 (4:92) 00 (99;99) o Hf<e

_ (qdaJre"72dl<7da+e’q2dk+2e;‘72dk+2e)Oo if fee
(9:92)00(99:9%) 00

(qffe_qd) (qda+e’q2dk7da+e 2dk+29 2dl<+2e)(><>
(1—q9) (4:9%) o0 (d q%)oo

Jr(1_qffe) (qda+d+e,q2dkfdafd+e 2cll<+2e;q2dk+2<-;=)oo ’ B
\ ' (1—q9) (9:9%)00(99:99) 00




THEOREM

T n__ (— d; d da+d 2dk da— d+25 2dk+2€ 2dk+2e
E Udk+e,da+f(n)q ={=2 4 Joold (q2 2)oo(q q2d)oo oo
n>0



THEOREM

T n__ (— d; d da+d 2dk da— d+25 2dk+2€ 2dk+2e
E Udk+e,da+f(n)q ={=2 4 Joold (q2 2)oo(q q2d)oo oo
n>0

Remarks:

» For d = e =1, the theorem is Gordon’s theorem for
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result.



THEOREM

T n__ (— d; d da+d 2dk da— d+25 2dk+2€ 2dk+2e
E Udk+e,da+f(n)q ={=2 4 Joold (q2 2)oo(q q2d)oo oo
n>0

Remarks:

» For d = e =1, the theorem is Gordon’s theorem for
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result.

» It is possible to eliminate the overlined parts in the proofs.
(Then what? )



THEOREM

T n__ (— d; d da+d 2dk da— d+25 2dk+2€ 2dk+2e
E Udk+e,da+f(n)q ={=2 4 Joold (q2 2)oo(q q2d)oo oo
n>0

Remarks:

» For d = e =1, the theorem is Gordon’s theorem for
overpartitions.

» For d = e =2, it is Sang, Shi and Yee's result.

» It is possible to eliminate the overlined parts in the proofs.
(Then what? )

» It is possible (but painful) to interpret the infinite products as
partition generating functions.



Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?



Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let bk ,(m, n) be the number of partitions of n into m parts
satisfying Gordon's condition.



Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let bk ,(m, n) be the number of partitions of n into m parts
satisfying Gordon's condition.

Set

Rka Z bkamn

m,n>0



Remember Andrews' analytic proof of the
Rogers-Ramanujan-Gordon identities?

Let bk ,(m, n) be the number of partitions of n into m parts
satisfying Gordon's condition.

Set

Rka Z bkamn

m,n>0

Observe/prove that

Ri.a(x) = Rk.a—1(x) = (xq)° ' Ric k—at1(xq),
Ri,0(x) =0,
Ria(0) = 1.



Define

Qk,a(x) = Z

(_1)nxknq(2k+1)(”§1)
(a: @)n(xq" 1t @)oo
(_1)nanq(2k+1)(";rl)
(9: @)n(xq"t1; @)oo

n>0




Define

( 1)nanq(2k+1)(”;1)

Qualx) =2 (9: 9)n(xq"L; @)oo

n>0

(—1)"x knq(2k+1)("“)
(g: 9)n(xg"1; q)o

Regard the series as

Qka Zan +Bn(x)

n>0



Verify that
Qu.a(x) — Qrao1(x) = (x¢)° Qrk—ar1(xq)

by showing that

an(x)q " —an(x) = (xq)* ' Bn-1(xq)

and

Bn(x) —Bn(x) = (xq)" ' an(xq)
for all n.



Verify that

Qk.a(x) — Qra-1(x) = (xq)° ' Qx k—at1(xq)

by showing that

an(x)q " —an(x) = (xq)* ' Bn-1(xq)

and

Bn(x) —Bn(x) = (xq)" ' an(xq)
for all n.

Remark: These are sufficient, but not necessary conditions!



Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.



Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.

Because @'s and R's satisfy the same set of functional equations,
and the set of functional equations determine double power series
uniquely,

Rka Z bka m, n xM q Qk,a(x)

m,n>0

(defining g-equations principle as Andrews calls it).



Next, just observe that Qx o(x) = 0 and Q ,(0) = 1.

Because @'s and R's satisfy the same set of functional equations,
and the set of functional equations determine double power series
uniquely,

Rka Z bka m, n xM q Qk,a(x)

m,n>0

(defining g-equations principle as Andrews calls it).

Finally,
Qxk a(l Z Z bk ,a m n qn’
n>0 \ m>0

which equals the desired infinite product by the Jacobi’s Triple
Product identity.



Now, slightly change the order of the above operations,
adjust as necessary,
and the proof writes itself.



» There still are many missing cases.



» There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.



» There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.

» Now that we have theorems, we can look for alternative
proofs.



» There still are many missing cases.

» Sang, Shi and Yee have Andrews-Gordon type series as
generating functions, those series are missing in the general
case.

» Now that we have theorems, we can look for alternative
proofs.

» The process begs for automation.



Thank you for your attention.

Any questions?
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