Palindrome Partitions and Calkin-Wilf Tree

Karlee Westrem
Michigan Technological University

Partition Theory Seminar
February 15, 2024
*This is joint work with my advisor David Hemmer

Background Information

In number theory, the Calkin-Wilf tree is a tree in which the vertices correspond one-to-one to the positive rational numbers. The tree is rooted at the number 1 , and any rational number expressed in simplest terms as the fraction $\frac{a}{b}$ has as its two children the numbers $\frac{a}{a+b}$ (move to the left) and $\frac{a+b}{b}$. (move to the right)

Background Information

Background Information

Partition Theory

Recall that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ is a partition of n, denoted $\lambda \vdash n$, if $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{r}>0$ are positive integers with $\sum_{i=1}^{r} \lambda_{i}=n$.
$\lambda=(5,5,3,3,1)$ is a partition of $n=17$.

To λ we associate its Young diagram [λ].

Partition Sequences

We start in the southwest corner of the diagram labeling a move to the right by 1 and a move upward by 0 .

Partition Sequences

We start in the southwest corner of the diagram labeling a move to the right by 1 and a move upward by 0 . So every integer partition is associated with a sequence beginning with a 1 and ending with a 0 .

Partition Sequences

We start in the southwest corner of the diagram labeling a move to the right by 1 and a move upward by 0 . So every integer partition is associated with a sequence beginning with a 1 and ending with a 0 .

Partition Sequences

We start in the southwest corner of the diagram labeling a move to the right by 1 and a move upward by 0 . So every integer partition is associated with a sequence beginning with a 1 and ending with a 0 .

For what partitions of n is the corresponding binary sequence a palindrome? How many are there for each n ?

Palindrome Sequences

Definition

Let $P P(n)$ be the number of palindrome sequences whose corresponding integer partition is a partition of n.

n	$P P(n)$						
1	1	11	10	21	12	31	38
2	2	12	2	22	2	32	34
3	2	13	8	23	36	33	18
4	2	14	10	24	12	34	46
5	4	15	10	25	14	35	104
6	2	16	2	26	24	36	2
7	4	17	18	27	36	37	20
8	4	18	2	28	2	38	46
9	6	19	20	29	60	39	108
10	2	20	16	30	2	40	2

Background Information

Definition

Let $P P(n)$ be the number of palindrome sequences whose corresponding integer partition is a partition of n.

n	$P P(n)$						
1	1	11	10	21	12	31	38
2	2	12	2	22	2	32	34
3	2	13	8	23	36	33	18
4	2	14	10	24	12	34	46
5	4	15	10	25	14	35	104
6	2	16	2	26	24	36	2
7	4	17	18	27	36	37	20
8	4	18	2	28	2	38	46
9	6	19	20	29	60	39	108
10	2	20	16	30	2	40	2

Palindrome Partitions

Theorem

The number $P P(n)=2$ if and only if $n=3$ or $n+1$ is prime.
Which the two palindrome sequences are all zeros and all ones corresponding to (1^{n}) and (n) respectively.

Palindrome Partitions

Q: How do we calculate the number of palindromes for n ?

We have one of three cases, an odd \# of 1's, an odd \# of 0's, or both \# of 1 's and 0 's is even. Given a palindrome sequence of n, swapping a "01" in one spot means swapping a "10" in another spot.

Palindrome Partitions

Q: If $n \neq 3$ or $n+1$ is not prime, how do we calculate the number of palindromes for n ?

We have one of three cases, an odd number of 1 's, an odd number of 0 's, or an even number of 1 's and 0 's. Given a palindrome sequence of n, swapping a " 01 " in one spot means swapping a "10" in another spot.

Palindrome Partitions

Q: If $n \neq 3$ or $n+1$ is not prime, how do we calculate the number of palindromes for n ?

We have one of three cases, an odd number of 1 's, an odd number of 0 's, or an even number of 1 's and 0 's. Given a palindrome sequence of n, swapping a " 01 " in one spot means swapping a " 10 " in another spot.

Palindrome Partitions

Q: If $n \neq 3$ or $n+1$ is not prime, how do we calculate the number of palindromes for n ?

We have one of three cases, an odd number of 1 's, an odd number of 0 's, or an even number of 1 's and 0 's. Given a palindrome sequence of n, swapping a " 01 " in one spot means swapping a " 10 " in another spot.

Palindrome Partitions

Q: How do we calculate the number of palindromes for n ?

We have one of three cases, an odd number of 1 's, an odd number of 0 's, or an even number of 1 's and 0 's. Given a palindrome sequence of n, swapping a " 01 " in one spot means swapping a " 10 " in another spot.

Palindrome Partitions

We have one of three cases, an odd number of 1 's, an odd number of 0 's, or an even number of 1 's and 0 's.
Case 3: we can will assume that the palindrome sequence looks like

$n=2 k I+I+1+I+2 k \quad$ and $2(n+1)=(2 k+2)(2 I+2)$

Palindrome Partitions

Case	$\lambda_{1}^{\prime}-1=\# 0$'s	$\lambda_{1}-1=\# 1$'s	$2(\mathrm{n}+1)$
1	$2 \mathrm{k}+1$	2 l	$(2 \mathrm{l}+2)(2 \mathrm{k}+3)$
2.	2 k	$2 \mathrm{l}+1$	$(2 \mathrm{k}+2)(2 \mathrm{l}+3)$
3.	2 k	2 l	$(2 \mathrm{k}+2)(2 \mathrm{l}+2)$

If $n+1=p$ is prime, then solving for $k, /$ for each case, we find that the only solutions are when $k=0, I=(p-3) / 2$ and $k=(p-3) / 2, I=0$.

Palindrome Partitions

$$
\text { Table: Palindrome partitions of } n=11
$$

λ	11	7,4	$5^{2}, 1$	$5,4,2$	$5,3^{2}$	$3^{3}, 1^{2}$	$3^{2}, 2^{2}, 1$
Sequence	1^{10}	$1^{3} 01^{3}$	$01^{4} 0$	101101	110011	001100	010010
length	10	7	6	6	6	6	6

λ	$3,2^{4}$	$2^{4}, 1^{3}$	1^{11}
Sequence	$10^{4} 1$	$0^{3} 10^{3}$	0^{10}
length	6	7	10

We only have 3 possible lengths.

Definition

Let $P L(n)$ be the number of lengths among all sequences as λ runs over all palindrome partitions of n. This is also the number of distinct perimeters among all palindrome partitions of n.

Palindrome Partitions

Theorem

$P L(n)$ is the number of factorizations $x y=2(n+1)$ where $0<x \leq y \leq n$. This is the sequence https: // oeis. org/A211270 shifted by one. Moreover, suppose there is a palindrome partition $\lambda \vdash n$ with the palindrome sequence having length $m=a+b$ with a zeros and b ones. Then any other palindrome partition $\mu \vdash n$ with palindrome sequence of length m must have a zeros and b ones or b zeros and a ones.

If $n=11$, then $2(n+1)=24$, which has 3 factorizations namely, $2 \cdot 12,3 \cdot 8$, and $4 \cdot 6$.

We will use the factorizations of $2(n+1)$ to find all palindrome partitions for the given n.

Palindrome Partitions for $\mathrm{n}=29$

$$
2(n+1)=60=x \cdot y
$$

Palindrome Partitions for $\mathrm{n}=29$

$$
2(n+1)=60=x \cdot y
$$

$$
2 \cdot 30
$$

$$
3 \cdot 20
$$

$$
4 \cdot 15
$$

$$
5 \cdot 12
$$

$$
6 \cdot 10
$$

Palindrome Partitions for $\mathrm{n}=29$

$$
\begin{array}{llll}
2(n+1)=60=x \cdot y & \\
\hline 2 \cdot 30 & 2=2 k+2 \quad 30=2 l+2 \quad 2 k=0 \quad 2 l=28
\end{array}
$$

$$
3 \cdot 20
$$

$$
4 \cdot 15
$$

$$
5 \cdot 12
$$

$$
6 \cdot 10
$$

Palindrome Partitions for $\mathrm{n}=29$

$2(n+1)=60=x \cdot y$	\# of zeros	\# of ones	\# of λ	Example
$2 \cdot 30$	0	28	1	(29)
$2 \cdot 30$	28	0	1	$\left(1^{29}\right)$
$3 \cdot 20$				

$4 \cdot 15$
$5 \cdot 12$
$6 \cdot 10$

Palindrome Partitions for $\mathrm{n}=29$

$2(n+1)=60=x \cdot y$	\# of zeros	\# of ones	\# of λ	Example
$2 \cdot 30$	0	28	1	(29)
$2 \cdot 30$	28	0	1	$\left(1^{29}\right)$
$3 \cdot 20$				

$4 \cdot 15$
$5 \cdot 12$

$6 \cdot 10$	4	8	$\binom{6}{2}$	$\left(9^{3}, 1,1\right)$
$6 \cdot 10$	8	4	$\binom{6}{2}$	$\left(5^{5}, 1^{4}\right)$

Palindrome Partitions for $\mathrm{n}=29$

$2(n+1)=60=x \cdot y$	\# of zeros	\# of ones	\# of λ	Example
$2 \cdot 30$	0	28	1	(29)
$2 \cdot 30$	28	0	1	$\left(1^{29}\right)$
$3 \cdot 20$	1	18	1	$(19,10)$
$3 \cdot 20$	18	1	1	$\left(2^{10}, 1^{9}\right)$
$4 \cdot 15$	2	13	$\left(\begin{array}{l}(7)\end{array}\right.$	$(14,14,1)$
$4 \cdot 15$	13	2	$\binom{1}{1}$	$\left(3,2^{13}\right)$
$5 \cdot 12$	3	10	$\binom{6}{1}$	$(11,11,6,1)$
$5 \cdot 12$	10	3	$\binom{6}{1}$	$\left(4,3^{5} 2^{5}\right)$
$6 \cdot 10$	4	8	$\binom{6}{2}$	$\left(9^{3}, 1,1\right)$
$6 \cdot 10$	8	4	$\binom{6}{2}$	$\left(5^{5}, 1^{4}\right)$

Palindrome Partitions

Theorem

We have the following generating function:

$$
\begin{gathered}
\sum_{n=0}^{\infty} P P(n) q^{n} \\
=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+\prime}{k} q^{2 k l+2 k+2 l+1}+2 \sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\binom{k+\prime}{k} q^{2 k l+2 k+3 l+2} .
\end{gathered}
$$

Palindrome Partitions

James Sellers provided this simplification to the last theorem using the binomial series $\frac{1}{(1-x)^{n+1}}=\sum_{j=0}^{\infty}\binom{n+j}{j} x^{j}$.

Theorem

$$
\sum_{n=0}^{\infty} P P(n) q^{n}=\sum_{k=0}^{\infty} \frac{q^{2 k+1}}{\left(1-q^{2 k+2}\right)^{k+1}}+2 \frac{q^{2 k+2}}{\left(1-q^{2 k+3}\right)^{k+1}}
$$

Conjugating inner Young diagram

Consider λ with sequence $B(\lambda)$ that has A zeros and B ones. Consider the boxes not in the first row or column as a partition $\tilde{\lambda}$ sitting inside an $A \times B$ rectangle. We will replace $\tilde{\lambda}$ with the partition obtained by taking its complement inside the $A \times B$ rectangle and rotating it 180 degrees, while preserving the first row and column of λ. Then the new diagram will be called $P\left(B(\lambda)^{r}\right)$.

Conjugating inner Young diagram

Consider λ with sequence $B(\lambda)$ that has A zeros and B ones. Consider the boxes not in the first row or column as a partition $\tilde{\lambda}$ sitting inside an $A \times B$ rectangle. We will replace $\tilde{\lambda}$ with the partition obtained by taking its complement inside the $A \times B$ rectangle and rotating it 180 degrees, while preserving the first row and column of λ. Then the new diagram will be called $P\left(B(\lambda)^{r}\right)$.

Let $R(n)$ be the number of partitions $\lambda \vdash n$ where $P\left(B(\lambda)^{r}\right) \vdash n$.

Partitions with weight fixed by reversal

We require that it fill exactly half of the boxes in the $2 k \times 2 /$ or $(2 k+1) \times 2 /$ rectangle. Recall that the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the generating function for partitions that fit inside an $(n-k) \times k$ rectangle, and is called a Gaussian polynomial. The coefficient of q^{m} counts partitions of m fitting inside a $(n-k) \times k$ rectangle, so it has leading term $q^{k(n-k)}$.

Partitions with weight fixed by reversal

Definition

Let $T(n, k)$ be the number of nondecreasing sequences of length n , with integer entries in $[-k, k$], summing to zero.

For example if $n=5$ and $k=4$ a possible sequence would be $\{-4,-2,1,1,4\}$. The array $T(n, k)$ is given as sequence A183917 in the OEIS.

Proposition

The coefficient of $q^{k l}$ in the Gaussian polynomial $\left[\begin{array}{c}2 k+\prime \\ l\end{array}\right]_{q}$ is $T(I, k)$.
We give a bijection $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash k l$ to the corresponding sequence $\left\{\lambda_{I}-k, \lambda_{I-1}-k, \ldots, \lambda_{1}-k\right\}$.

Partitions with weight fixed by reversal

Theorem

We have the following generating function:

$$
\begin{gathered}
\sum_{n=0}^{\infty} R(n) q^{n} \\
=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} T(2 l, k) q^{2 k l+2 k+2 l+1}+2 \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} T(k+1, l) q^{2 k l+2 k+3 l+2} .
\end{gathered}
$$

Future research

Problem

Can we write the generating functions for $R(n)$ in a more compact form $\sum f(n) q^{n}$ similar to the generating function for $P P(n)$? Can we see clearly from the generating function why $f(n)=2$ when $n+1$ is prime?

Problem

The traditional Young's lattice has all partitions of n in row n with edges corresponding to removing and/or adding a single box. Classically this describes the branching of irreducible representations of the symmetric group. Does the branching diagram have any representation-theoretic interpretation?

Future research

Problem

Can we determine if a fraction in the Calkin-Wilf tree corresponds to a palindrome without doing the continued fraction expansion?

Thank you

And a big thanks to Dave, as well as Matthew Just and Robert Schneider for suggesting looking at this operation on partitions and William Keith for help with generating functions. Also, a thanks to James Sellers for calculating the simplification of the generating function for $P P(n)$.

