Distributions on integers partitions

DISTRIBUTIONS ON INTEGER PARTITIONS

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)

The Partition function p(n)

DEFINITION

A **partition** of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

- 4 回 ト - 4 三 ト - 4 三 ト

The Partition function p(n)

DEFINITION

A **partition** of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

NOTATION

The partition function

p(n) := # partitions of n.

(日) (四) (日) (日) (日)

The Partition function p(n)

DEFINITION

A **partition** of an integer n is any nonincreasing sequence

$$\Lambda := \{\lambda_1, \lambda_2, \dots, \lambda_t\}$$

of positive integers which sum to n.

NOTATION

The partition function

p(n) := # partitions of n.

 $4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \implies p(4) = 5.$

・ロト ・ 一日 ト ・ 日 ト

GENERAL PROBLEM

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$.

GENERAL PROBLEM

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

 $\lim_{n \to +\infty} Y(n) = \text{``Distribution independent of } n \text{''} ?$

・ロト ・ 日本・ ・ 日本・

GENERAL PROBLEM

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

 $\lim_{n \to +\infty} Y(n) = \text{``Distribution independent of } n \text{''} ?$

QUESTIONS

(1) Are there any nice natural examples?

(日) (四) (日) (日) (日)

GENERAL PROBLEM

Let $\{Y(n)\}$ be a sequence of discrete distributions on $\{\lambda : \lambda \vdash n\}$. Can we have

 $\lim_{n \to +\infty} Y(n) = \text{``Distribution independent of } n'' ?$

QUESTIONS

(1) Are there any nice natural examples?

(2) examples with normalized limits independent of n?

・ロト ・日ト ・日ト ・日ト

Dyson's Rank

DEFINITION

The **rank** of a partition is its largest part minus its number of parts.

 $N(m,n) := \#\{\text{partitions of } n \text{ with rank } m\}.$

イロト イロト イヨト イヨト 三日

Dyson's Rank

DEFINITION

The **rank** of a partition is its largest part minus its number of parts.

 $N(m,n) := \#\{\text{partitions of } n \text{ with rank } m\}.$

EXAMPLE

The ranks of the partitions of 4:

<u>Partition</u>	Largest Part	# Parts	Rank
4	4	1	$3 \equiv 3 \pmod{5}$
3 + 1	3	2	$1 \equiv 1 \pmod{5}$
2 + 2	2	2	$0 \equiv 0 \pmod{5}$
2 + 1 + 1	2	3	$-1 \equiv 4 \pmod{5}$
1 + 1 + 1 + 1	1	4	$-3 \equiv 2 \pmod{5}$

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If $0 \leq a < b$ are integers and

 $N(a,b;n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},\$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

(日)

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If $0 \leq a < b$ are integers and

 $N(a,b;n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},\$

then for every n and every a, we have

N(a, 5; 5n + 4) = p(5n + 4)/5,N(a, 7; 7n + 5) = p(7n + 5)/7.

イロト 不得下 イヨト イヨト 二日

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If $0 \leq a < b$ are integers and

 $N(a,b;n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},\$

then for every n and every a, we have

N(a,5;5n+4) = p(5n+4)/5,N(a,7;7n+5) = p(7n+5)/7.

- ロト - 4 母 ト - 4 母 ト - - - ヨ

This "explains" Ramanujan's congruences modulo 5 and 7.

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If $0 \leq a < b$ are integers and

 $N(a,b;n) := \#\{\text{partitions of } n \text{ with rank } \equiv a \mod b\},\$

then for every n and every a, we have

$$N(a,5;5n+4) = p(5n+4)/5,$$

 $N(a,7;7n+5) = p(7n+5)/7.$

This "explains" Ramanujan's congruences modulo 5 and 7.

THEOREM (BRINGMANN (DUKE MATH. J, 2008))

For all $0 \le a < b$ we have

$$\lim_{n \to +\infty} \frac{N(a,b;n)}{p(n)} = \frac{1}{b}.$$

NUMBER OF PARTS

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イポト イヨト イヨト 二日

NUMBER OF PARTS

NOTATION

The "number of parts" polynomials $P_{\#}(n;T)$ are defined by

$$\sum_{n=0}^{\infty} P_{\#}(n;T)q^n := \prod_{n=1}^{\infty} \frac{1}{(1-Tq^n)}$$

・ロト ・四ト ・ヨト ・ヨト

3

NUMBER OF PARTS

NOTATION

The "number of parts" polynomials $P_{\#}(n;T)$ are defined by

$$\sum_{n=0}^{\infty} P_{\#}(n;T)q^n := \prod_{n=1}^{\infty} \frac{1}{(1-Tq^n)}$$

EXAMPLE (ASYMMETRY)

$$P_{\#}(4;T) = T + 2T^{2} + T^{3} + T^{4}$$

$$P_{\#}(5;T) = T + 2T^{2} + 2T^{3} + T^{4} + T^{5}$$

$$P_{\#}(6;T) = T + 3T^{2} + 3T^{3} + 2T^{4} + T^{5} + T^{6}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$P_{\#}(15;T) = T + 7T^{2} + 19T^{3} + 27T^{4} + 30T^{5} + \dots + 2T^{13} + T^{14} + T^{15}.$$

THEOREM OF ERDÖS AND LEHNER

NOTATION

If k is a positive integer, then let

 $p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$

・ロト ・四ト ・ヨト ・ヨト

THEOREM OF ERDÖS AND LEHNER

NOTATION

If k is a positive integer, then let

 $p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$

THEOREM (ERDÖS AND LEHNER (1941))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$,

イロト イボト イヨト イヨト

THEOREM OF ERDÖS AND LEHNER

NOTATION

If k is a positive integer, then let

 $p_{\leq k}(n) := \#\{\text{partitions of } n \text{ with } \leq k \text{ parts}\}.$

THEOREM (ERDÖS AND LEHNER (1941))

If $C := \pi \sqrt{2/3}$ and $k_n(x) := C^{-1} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x we have

$$\lim_{n \to +\infty} \frac{p_{\leq k_n(x)}(n)}{p(n)} = \exp\left(-\frac{2}{C} \cdot e^{-\frac{1}{2}Cx}\right)$$

イロト イヨト イヨト イヨト

Remarks

(1) Normal order for the number of parts is

$$\frac{\sqrt{n}\log n}{C} = \frac{\sqrt{3n}\log n}{\sqrt{2}\pi}$$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イヨト イヨト イヨト

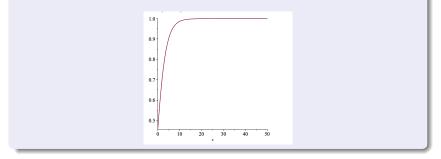
æ

Remarks

(1) Normal order for the number of parts is

$$\frac{\sqrt{n}\log n}{C} = \frac{\sqrt{3n}\log n}{\sqrt{2}\pi}.$$

(2) The graph of the "Gumbel cumulative distribution function"



イロト イポト イヨト イヨト

NUMERICS

NOTATION

$$k_n(x) := C^{-1}\sqrt{n}\log n + \sqrt{nx}$$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イポト イヨト イヨト 二日

NUMERICS

NOTATION $k_n(x) := C^{-1}\sqrt{n}\log n + \sqrt{nx}$ $\delta_{k_n}(x) := \frac{\#\{\text{partitions of } n \text{ with } \le k_n(x) \text{ parts}\}}{p(n)}.$

イロト イロト イヨト イヨト 三日

NUMERICS

NOTATION $k_n(x) := C^{-1}\sqrt{n}\log n + \sqrt{nx}$ $\delta_{k_n}(x) := \frac{\#\{\text{partitions of } n \text{ with } \le k_n(x) \text{ parts}\}}{p(n)}.$ $\text{Gumbel}(x) := \exp\left(-\frac{2}{C} \cdot e^{-\frac{1}{2}Cx}\right).$

イロト イロト イヨト イヨト 三日

Partitions of n = 750

x	$\lfloor k_{750}(x) \rfloor$	$\delta_{k_{750}}(x)$	$\operatorname{Gumbel}(x)$
0.5	84	0.656	0.663
1.0	98	0.814	0.805
1.5	111	0.899	0.892
2.0	125	0.949	0.941
2.5	139	0.975	0.969
3.0	152	0.987	0.983

Distributions on integers partitions Our work

PROBLEM 1: PARTS IN $A\mathbb{N}$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Distributions on integers partitions Our work

Problem 1: Parts in $A\mathbb{N}$

QUESTION

How "many" multiples of A are parts in size n partitions?

・ロト ・聞 ト ・ヨト ・ヨト

3

Problem 1: Parts in $A\mathbb{N}$

QUESTION

How "many" multiples of A are parts in size n partitions?

QUESTION (PRECISE FORM)

If $A \geq 2$, then let

 $p_{\leq k}(A; n) := \#\{\lambda \vdash n \text{ with } \leq k \text{ parts in } A\mathbb{N}\}.$

イロト イボト イヨト イヨト

Problem 1: Parts in $A\mathbb{N}$

QUESTION

How "many" multiples of A are parts in size n partitions?

QUESTION (PRECISE FORM)

If $A \geq 2$, then let

 $p_{\leq k}(A; n) := \#\{\lambda \vdash n \text{ with } \leq k \text{ parts in } A\mathbb{N}\}.$

What is the cumulative distribution function for

$$\frac{p_{\leq k}(A;n)}{p(n)} ?$$

イロト イボト イヨト イヨト

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))

If
$$C := \pi \sqrt{2/3}$$
 and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$,

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・四ト ・ヨト ・ヨト

3

Theorem (Griffin, O, Rolen, Tsai (2021))

If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x

$$\lim_{n \to +\infty} \frac{p_{\leq \mathbf{k}_n}(A; n)}{p(n)} = \exp\left(-\frac{2}{AC} \cdot e^{-\frac{1}{2}AC\mathbf{x}}\right).$$

イロト 不得下 イヨト イヨト 二日

Theorem (Griffin, O, Rolen, Tsai (2021))

If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x

$$\lim_{n \to +\infty} \frac{p_{\leq \mathbf{k}_n}(A; n)}{p(n)} = \exp\left(-\frac{2}{AC} \cdot e^{-\frac{1}{2}AC\mathbf{x}}\right)$$

Remarks

(1) These are Gumbel distributions.

Theorem (Griffin, O, Rolen, Tsai (2021))

If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then as a function in x

$$\lim_{n \to +\infty} \frac{p_{\leq \mathbf{k}_n}(A; n)}{p(n)} = \exp\left(-\frac{2}{AC} \cdot e^{-\frac{1}{2}AC\mathbf{x}}\right)$$

Remarks

- (1) These are Gumbel distributions.
- (2) The mean and variance of the limiting distribution are:

Mean :=
$$\frac{2}{AC} \left(\log \left(\frac{2}{AC} \right) + \gamma_{Euler} \right)$$
,
Variance := $1/A^2$.

Distributions on integers partitions Our work

NUMERICS WHEN A = 2

Notation $k_n(x) := \frac{1}{2C} \sqrt{n} \log n + \sqrt{n} x$

イロト イロト イヨト イヨト 三日

Distributions on integers partitions Our work

NUMERICS WHEN A = 2

NOTATION
$$k_n(x) := \frac{1}{2C}\sqrt{n}\log n + \sqrt{nx}$$
$$\delta_{k_n}(x) := \frac{\#\{\lambda \vdash n \text{ with } \le k_n(x) \text{ even } \text{parts}\}}{p(n)}.$$

イロト 不聞 と 不良 と 不良 とう

臣

NUMERICS WHEN A = 2

NOTATION

$$k_n(x) := \frac{1}{2C} \sqrt{n} \log n + \sqrt{nx}$$

$$\delta_{k_n}(x) := \frac{\#\{\lambda \vdash n \text{ with } \le k_n(x) \text{ even } \text{parts}\}}{p(n)}.$$

$$\text{Gumbel}(x) := \exp\left(-\frac{1}{C} \cdot e^{-Cx}\right).$$

ヘロト ヘヨト ヘヨト ヘヨト

æ

Distribution of even parts for n = 600

x	$\lfloor k_{600}(x) \rfloor$	$\delta_{k_{600}}(x)$	$\operatorname{Gumbel}(x)$
-0.1	28	$0.597\ldots$	0.604
0.0	30	$0.663\ldots$	0.677
0.1	32	$0.721\ldots$	0.739
0.2	35	$0.791\ldots$	0.792
0.3	37	$0.830\ldots$	$0.835\ldots$
:	:	•	
1.5	67	$0.994\ldots$	0.992
2.0	79	$0.998\ldots$	0.998

\boldsymbol{n} point Hilbert schemes cut out by tori

DEFINITION

We have that

 $X^{[n]} = (\mathbb{C}^2)^{[n]} := \left\{ I \subset \mathbb{C}[x, y] \ : \ \text{ideals with } \dim_{\mathbb{C}}(\mathbb{C}[x, y]/I) = n \right\}.$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロット (雪) (山) (日)

n point Hilbert schemes cut out by tori

DEFINITION

We have that

 $X^{[n]} = (\mathbb{C}^2)^{[n]} := \left\{ I \subset \mathbb{C}[x,y] \ : \ \text{ideals with } \dim_{\mathbb{C}}(\mathbb{C}[x,y]/I) = n \right\}.$

The torus $(\mathbb{C}^{\times})^2$ -action on $X^{[n]}$ is a lift of

$$(t_1, t_2) \cdot (x, y) := (t_1 x, t_2 y).$$

(1日) (日) (日)

n point Hilbert schemes cut out by tori

DEFINITION

We have that

 $X^{[n]} = (\mathbb{C}^2)^{[n]} := \{ I \subset \mathbb{C}[x, y] : \text{ ideals with } \dim_{\mathbb{C}}(\mathbb{C}[x, y]/I) = n \}.$

The torus $(\mathbb{C}^{\times})^2$ -action on $X^{[n]}$ is a lift of

$$(t_1, t_2) \cdot (x, y) := (t_1 x, t_2 y).$$

For relatively prime $\alpha, \beta \in \mathbb{N}$, we have the one-dimensional subtorus

$$T_{\alpha,\beta} := \{ (t^{\alpha}, t^{\beta}) : t \in \mathbb{C}^{\times} \}.$$

n point Hilbert schemes cut out by tori

DEFINITION

We have that

 $X^{[n]} = (\mathbb{C}^2)^{[n]} := \{ I \subset \mathbb{C}[x, y] : \text{ ideals with } \dim_{\mathbb{C}}(\mathbb{C}[x, y]/I) = n \}.$

The torus $(\mathbb{C}^{\times})^2$ -action on $X^{[n]}$ is a lift of

$$(t_1, t_2) \cdot (x, y) := (t_1 x, t_2 y).$$

For relatively prime $\alpha, \beta \in \mathbb{N}$, we have the one-dimensional subtorus

$$T_{\alpha,\beta} := \{ (t^{\alpha}, t^{\beta}) : t \in \mathbb{C}^{\times} \}.$$

This defines the quasihomogeneous Hilbert scheme

$$X_{\alpha,\beta}^{[n]} := ((\mathbb{C}^2)^{[n]})^{T_{\alpha,\beta}}.$$

POINCARÉ POLYNOMIALS AND DISTRIBUTIONS

DEFINITION

The Poincaré polynomial for $X_{\alpha,\beta}^{[n]} := ((\mathbb{C}^2)^{[n]})^{T_{\alpha,\beta}}$ is

$$P\left(X_{\alpha,\beta}^{[n]};T\right) := \sum_{j=0}^{2\lfloor\frac{n}{\alpha+\beta}\rfloor} \dim\left(H_j\left(X_{\alpha,\beta}^{[n]},\mathbb{Q}\right)\right)T^j.$$

POINCARÉ POLYNOMIALS AND DISTRIBUTIONS

DEFINITION

The Poincaré polynomial for $X_{\alpha,\beta}^{[n]} := ((\mathbb{C}^2)^{[n]})^{T_{\alpha,\beta}}$ is

$$P\left(X_{\alpha,\beta}^{[n]};T\right) := \sum_{j=0}^{2\lfloor\frac{n}{\alpha+\beta}\rfloor} \dim\left(H_j\left(X_{\alpha,\beta}^{[n]},\mathbb{Q}\right)\right)T^j.$$

DEFINITION

The discrete measure $d\mu_{\alpha,\beta}^{[n]}$ for $X_{\alpha,\beta}^{[n]}$ is

$$\Phi_n(\alpha,\beta;x) := \frac{1}{p(n)} \cdot \int_{-\infty}^x d\mu_{\alpha,\beta}^{[n]}.$$

イロト イポト イヨト イヨト

COROLLARY TO THE PARTITION THEOREM

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))

If α and β are relatively prime and $\delta_n(\alpha, \beta) := \frac{\sqrt{6n} \cdot \log(n)}{\pi(\alpha+\beta)}$,

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・四ト ・ヨト ・ヨ

COROLLARY TO THE PARTITION THEOREM

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If α and β are relatively prime and $\delta_n(\alpha, \beta) := \frac{\sqrt{6n} \cdot \log(n)}{\pi(\alpha + \beta)}$, then $\lim_{n \to +\infty} \Phi_n(\alpha, \beta; 2\sqrt{nx} + \delta_n(\alpha, \beta))$ $= \exp\left(-\frac{\sqrt{6}}{\pi(\alpha + \beta)} \cdot \exp\left(-\frac{\pi(\alpha + \beta)x}{\sqrt{6}}\right)\right).$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

COROLLARY TO THE PARTITION THEOREM

Theorem (Griffin, O, Rolen, Tsai (2021))

If α and β are relatively prime and $\delta_n(\alpha, \beta) := \frac{\sqrt{6n} \cdot \log(n)}{\pi(\alpha+\beta)}$, then

$$\lim_{n \to +\infty} \Phi_n(\alpha, \beta; 2\sqrt{nx} + \delta_n(\alpha, \beta)) = \exp\left(-\frac{\sqrt{6}}{\pi(\alpha + \beta)} \cdot \exp\left(-\frac{\pi(\alpha + \beta)x}{\sqrt{6}}\right)\right).$$

Remarks

Answers Q of Hausel and Rodriguez-Villegas on Hilbert schemes.

Asymptotics for $p_{\leq k}(A; n)$?

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Asymptotics for $p_{\leq k}(A; n)$?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$p_{\leq k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) n}},$$
$$p_{k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) (n - Ak)}}.$$

・ロト ・四ト ・ヨト ・ヨト

Asymptotics for $p_{\leq k}(A; n)$?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$p_{\leq k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) n}},$$
$$p_{k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right) (n - Ak)}}.$$

イロト イボト イヨト イヨト

Remarks

(1) This theorem is proved by Wright's "circle method."

Asymptotics for $p_{\leq k}(A; n)$?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If $A \ge 2$ and k is fixed, then as $n \to +\infty$ we have

$$p_{\leq k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} n^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right)n}},$$
$$p_{k}(A;n) \sim \frac{24^{\frac{k}{2} - \frac{1}{4}} (n - Ak)^{\frac{k}{2} - \frac{3}{4}}}{\sqrt{2} \left(1 - \frac{1}{A}\right)^{\frac{k}{2} - \frac{1}{4}} k! A^{k + \frac{1}{2}} (2\pi)^{k}} e^{2\pi \sqrt{\frac{1}{6} \left(1 - \frac{1}{A}\right)(n - Ak)}}.$$

Remarks

(1) This theorem is proved by Wright's "circle method."

(2) Error terms are too large to imply the Gumbel distributions.

イロト イボト イヨト イヨト

Example A = 3 and k = 1

The previous theorem gives

$$p_1(3;n) \sim \frac{1}{6\pi (n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イポト イヨト イヨト 二日

EXAMPLE A = 3 and k = 1

The previous theorem gives

$$p_1(3;n) \sim \frac{1}{6\pi (n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Let $p_1^*(3; n)$ be the asymptotic in the theorem.

(□) (圖) (E) (E) (E)

Example A = 3 and k = 1

The previous theorem gives

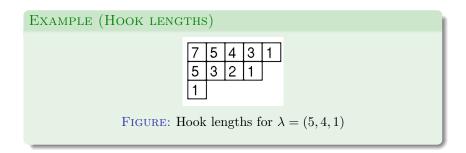
$$p_1(3;n) \sim \frac{1}{6\pi (n-3)^{\frac{1}{4}}} \cdot e^{\frac{2\pi\sqrt{n-3}}{3}}.$$

Let $p_1^*(3; n)$ be the asymptotic in the theorem.

n	$p_1(3;n)$	$p_1^*(3;n)$	$p_1(3;n)/p_1^*(3;n)$
200	93125823847	≈ 82738081118	≈ 1.126
400	$\approx 1.718 \times 10^{16}$	$\approx 1.579 \times 10^{16}$	≈ 1.088
600	$\approx 1.928 \times 10^{20}$	$\approx 1.799 \times 10^{20}$	≈ 1.071
800	$\approx 5.058 \times 10^{23}$	$\approx 4.764 \times 10^{23}$	≈ 1.062
1000	$\approx 5.232 \times 10^{26}$	$\approx 4.959 \times 10^{26}$	≈ 1.055

(ロ) (個) (E) (E) (E)

PROBLEM 2: *t*-HOOKS

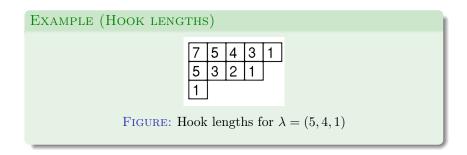


Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Problem 2: t-hooks



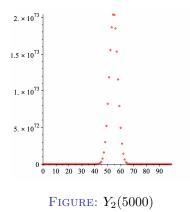
PROBLEM

Does the sequence $\{Y_t(n)\}$ of distributions of the number of t-hooks in the partitions of integers n have a limiting behavior?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

EXAMPLE t = 2 and n = 5000

 $\sum_{\lambda \vdash 5000} T^{\#\{2 \in \mathcal{H}(\lambda)\}} = 704T + 9211712T^2 + \dots + 1805943379138T^{98} + 2T^{99}.$



Solution to Problem 2

THEOREM (GRIFFIN, O, TSAI (2022))

(1) The sequence $\{Y_t(n)\}$ is asymptotically **normal** with mean $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} - \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.

イロト 不得下 イヨト イヨト 二日

Solution to Problem 2

THEOREM (GRIFFIN, O, TSAI (2022))
(1) The sequence
$$\{Y_t(n)\}$$
 is asymptotically **normal** with mean
 $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} - \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.
(2) If $k_{t,n}(x) := \mu_t(n) + \sigma_t(n)x$, then we have
 $\lim_{n \to +\infty} D_t(k_{t,n}(x); n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy =: E(x).$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

 $D_2(k_{2,5000}(x); 5000) \approx E(x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

 $D_2(k_{2,5000}(x); 5000) \approx E(x).$

x	$D_2(k_{2,5000}(x), 5000)$	E(x)	$D_2(k_{2,5000}(x), 5000)/E(x)$
-1.5	0.0658	$0.0668\ldots$	$0.9849\ldots$
:	:		:
0.0	$0.5055\ldots$	0.5000	1.0011
1.0	0.8246	$0.8413\ldots$	0.9802
2.0	$0.9685\ldots$	0.9772	0.9911

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

Problem 3: Hook lengths in $t\mathbb{N}$

PROBLEM

Does the sequence $\{\hat{Y}_2(n)\}$ of distributions of the number of even hooks in the partitions of n have a limiting behavior?

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・ 一日 ト ・ 日 ト

Problem 3: Hook lengths in $t\mathbb{N}$

PROBLEM

Does the sequence $\{\hat{Y}_2(n)\}$ of distributions of the number of even hooks in the partitions of n have a limiting behavior?

PROBLEM

Does the sequence $\{\widehat{Y}_t(n)\}$ of distributions of the number of hooks in $t\mathbb{N}$ in the partitions of n have a limiting behavior?

・ロト ・ 一日 ト ・ 日 ト

Example t = 11 and n = 1000

$$\sum_{\lambda \vdash 1000} T^{\#\mathcal{H}_{11}(\lambda)}$$

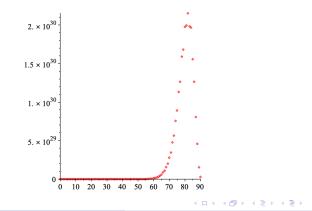
 $= 811275879 + 7892635410T + \dots + 29672185525213602280791828408T^{90}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Example t = 11 and n = 1000

$$\sum_{\lambda \vdash 1000} T^{\#\mathcal{H}_{11}(\lambda)}$$

 $= 811275879 + 7892635410T + \dots + 29672185525213602280791828408T^{90}.$



3

Solution to Problem 3

"Theorem" (Griffin, O, Rolen, Tsai (2022))

If $t \ge 4$, then $\widehat{Y}_t(n)$ is a shifted Gamma distribution.

イロト イロト イヨト イヨト 三日

Solution to Problem 3

"Theorem" (Griffin, O, Rolen, Tsai (2022))

If $t \ge 4$, then $\widehat{Y}_t(n)$ is a shifted Gamma distribution.

DEFINITION

A random variable $X_{k,\theta}$ is **Gamma distributed with parameter** k > 0and scale $\theta > 0$ if its probability distribution function is

$$F_{k,\theta}(x) := \frac{1}{\Gamma(k)\theta^k} \cdot x^{k-1} e^{-\frac{x}{\theta}}.$$

Solution to Problem 3

THEOREM (GRIFFIN, O, TSAI (2022))

(1) If $t \geq 4$, then

$$\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}},$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{\pi^2 t^2}$.

Solution to Problem 3

THEOREM (GRIFFIN, O, TSAI (2022)) (1) If $t \ge 4$, then $\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}},$ and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{\pi^2 t^2}.$ (2) If $\widehat{k}_{t,n}(x) := \widehat{\mu}_t(n) + \widehat{\sigma}_t(n)x$, then in the lower incomplete γ -function $\lim_{n \to +\infty} \widehat{D}_t(\widehat{k}_{t,n}(x); n) = \frac{\gamma\left(\frac{t-1}{2}; \sqrt{\frac{t-1}{2}}x + \frac{t-1}{2}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 ろの⊙

Solution to Problem 3

THEOREM (GRIFFIN, O, TSAI (2022)) (1) If $t \ge 4$, then $\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}},$ and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{\pi^2 t^2}.$ (2) If $\widehat{k}_{t,n}(x) := \widehat{\mu}_t(n) + \widehat{\sigma}_t(n)x$, then in the lower incomplete γ -function $\lim_{n \to +\infty} \widehat{D}_t(\widehat{k}_{t,n}(x); n) = \frac{\gamma\left(\frac{t-1}{2}; \sqrt{\frac{t-1}{2}}x + \frac{t-1}{2}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$

Remark

No continuous limit for $t \in \{2, 3\}$ as there are always vanishing terms as in

$$\sum_{\lambda \vdash 19} T^{\#\mathcal{H}_2(\lambda)} = 300T^9 + 185T^8 + 0T^7 + 0T^6 + 0T^5 + 0T^4 + 0T^3 + 5T^2.$$

Example t = 11 and n = 1000

We illustrates the approximation

$$\widehat{D}_{11}(k(x);1000) \approx \frac{\gamma\left(5;\sqrt{5}x+5\right)}{24} =: \widehat{E}_{11}(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Example t = 11 and n = 1000

We illustrates the approximation

$$\widehat{D}_{11}(k(x);1000) \approx \frac{\gamma\left(5;\sqrt{5}x+5\right)}{24} =: \widehat{E}_{11}(x).$$

x	$\widehat{D}_{11}(k(x);1000)$	$\widehat{E}_{11}(x)$	$\widehat{D}_{11}(k(x);1000)/\widehat{E}_{11}(x)$
-1.00	0.1319	0.1467	0.8993
:	:		:
0.75	0.7410	$0.7954\ldots$	0.9315
1.00	0.8226	$0.8474\ldots$	0.9707
1.25	0.8872	0.8880	0.9991

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

SOLVING PROBLEM 1

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イポト イヨト イヨト 二日

SOLVING PROBLEM 1

PROPOSITION

If $A \geq 2$, then for every positive integer n we have

$$p_{\leq k}(\boldsymbol{A}; n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(\boldsymbol{A}; n - Aj),$$

・ロト ・ 四ト ・ ヨト ・ ヨト

3

SOLVING PROBLEM 1

PROPOSITION

If $A \geq 2$, then for every positive integer n we have

$$p_{\leq k}(\boldsymbol{A};n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(\boldsymbol{A};n-\boldsymbol{A}j),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

SOLVING PROBLEM 1

PROPOSITION

If $A \geq 2$, then for every positive integer n we have

$$p_{\leq k}(\boldsymbol{A};n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(\boldsymbol{A};n-\boldsymbol{A}j),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

• Suppose λ is counted by $p_{\leq k}(A; n)$.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト イポト イヨト イヨト

SOLVING PROBLEM 1

PROPOSITION

If $A \geq 2$, then for every positive integer n we have

$$p_{\leq k}(\boldsymbol{A};n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\text{reg}}(\boldsymbol{A};n-\boldsymbol{A}j),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

- Suppose λ is counted by $p_{\leq k}(A; n)$.
- Then we have

$$\lambda = \lambda_{\rm reg} \oplus A\lambda',$$

イロト イポト イヨト イヨト

SOLVING PROBLEM 1

PROPOSITION

If $A \geq 2$, then for every positive integer n we have

$$p_{\leq k}(\boldsymbol{A}; n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(\boldsymbol{A}; n - Aj),$$

where $p_{reg}(A; \cdot)$ is the A-regular partition function.

Proof.

- Suppose λ is counted by $p_{\leq k}(A; n)$.
- Then we have

$$\lambda = \lambda_{\rm reg} \oplus A\lambda',$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where $|A\lambda'| = Aj$ and λ' is counted by $p_{\leq k}(j)$.

ERDÖS-LEHNER FORMULA FOR $p_{\leq k}(j)$

PROPOSITION (ERDÖS-LEHNER (1941)) If k and j are positive integers, then

$$p_{\leq k}(j) = p(j) - \sum_{m=1}^{\infty} (-1)^m S_k(m; j),$$

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

< ロト < 同ト < ヨト < ヨト

ERDÖS-LEHNER FORMULA FOR $p_{\leq k}(j)$

PROPOSITION (ERDÖS-LEHNER (1941))

If k and j are positive integers, then

$$p_{\leq k}(j) = p(j) - \sum_{m=1}^{\infty} (-1)^m S_k(m; j),$$

where

$$S_k(m;j) := \sum_{\substack{1 \le r_1 < r_2 < \dots < r_m \\ T_m \le r_1 + r_2 + \dots + r_m \le j - mk}} p\left(j - \sum_{i=1}^m (k+r_i)\right)$$

イロト イポト イヨト イヨト

and $T_m := m(m+1)/2$.

PROOF OF THE FORMULA

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・四ト ・ヨト ・ヨト 三日

• Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{ no parts } \geq k+1\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{ no parts } \geq k+1\}.$
- We have $p(j (k + r)) = #\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{ no parts } \geq k+1\}.$
- We have $p(j (k + r)) = #\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1, j) \le p_{\le k}(j)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ○○○○

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{ no parts } \geq k+1\}.$
- We have $p(j (k + r)) = #\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1, j) \le p_{\le k}(j)$.
- By overcounting, we have

$$p(j) - S_k(1;j) \le p_{\le k}(j) \le p(j) - S_k(1;j) + \frac{S_k(2;j)}{S_k(2;j)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ○○○○

- Conjugacy implies $p_{\leq k}(j) = \#\{\lambda \vdash j : \text{ no parts } \geq k+1\}.$
- We have $p(j (k + r)) = #\{\lambda \vdash j : \text{ with a part of size } k + r.\}.$
- Therefore, we have $p(j) S_k(1, j) \le p_{\le k}(j)$.
- By overcounting, we have

$$p(j) - S_k(1;j) \le p_{\le k}(j) \le p(j) - S_k(1;j) + \frac{S_k(2;j)}{S_k(2;j)}$$

• Inclusion-Exclusion.

"HAND WAVY PROOF" OF OUR THEOREM

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(A;n-Aj),$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

"HAND WAVY PROOF" OF OUR THEOREM

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

"HAND WAVY PROOF" OF OUR THEOREM

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\text{reg}}(A;n-Aj).$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで

"HAND WAVY PROOF" OF OUR THEOREM

• We start with the elementary formula

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} p_{\leq k}(j) \cdot p_{\operatorname{reg}}(A;n-Aj),$$

• By Erdös-Lehner formula for $p_{\leq k}(j)$, we have

$$p_{\leq k}(A;n) = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\text{reg}}(A;n-Aj).$$

• Dividing by p(n) we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \frac{\sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k(m;j) \right) p_{\operatorname{reg}}(A;n-Aj)}{p(n)}$$

イロト イロト イヨト イヨト 三日

• Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j) p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C}\sqrt{j}\exp\left(-\frac{Ck}{2\sqrt{j}}\right)\right)^m$$

٠

・ロト ・四ト ・ヨト ・ヨト - ヨ

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j)p_{\operatorname{reg}}(A;n-Aj)}{p(n)}$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C}\sqrt{j}\exp\left(-\frac{Ck}{2\sqrt{j}}\right)\right)^m.$$

イロト 不得下 イヨト イヨト 二日

• For every *m* this means $S_k^*(m; j) \sim \frac{1}{m!} \cdot S_k^*(1; j)^m$,

- Counterintuitively let $S_k^*(m;j) := S_k(m;j)/p(j)$.
- Therefore, we get

$$\frac{p_{\leq k}(A;n)}{p(n)} = \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \left(\sum_{m=0}^{\infty} (-1)^m S_k^*(m;j) \right) \cdot \frac{p(j)p_{\operatorname{reg}}(A;n-Aj)}{p(n)}$$

• Erdös and Lehner proved

$$S_k^*(m;j) \sim \frac{1}{m!} \left(\frac{2}{C}\sqrt{j}\exp\left(-\frac{Ck}{2\sqrt{j}}\right)\right)^m.$$

• For every *m* this means $S_k^*(m;j) \sim \frac{1}{m!} \cdot S_k^*(1;j)^m$, giving

$$\sum_{m=0}^{\infty} (-1)^m S_{k_n}^*(m;j) \sim \exp(-S_{k_n}^*(1;j)).$$

イロト 不得下 イヨト イヨト 二日

• Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Hardy-Ramanujan proved

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{\frac{2n}{3}}}.$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

• Therefore, as a sum in j we have

$$\frac{p_{\leq k}(A;n)}{p(n)} \sim \sum_{j=0}^{\lfloor \frac{n}{A} \rfloor} \exp(-S_{k_n}^*(1;j)) \cdot \frac{p(j)p_{\text{reg}}(A;n-Aj)}{p(n)}.$$

• Hardy-Ramanujan proved

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{\frac{2n}{3}}}.$$

• Hagis proved that

$$p_{\text{reg}}(A;n) \sim C_A (24n-1+A)^{-\frac{3}{4}} \exp\left(C\sqrt{\frac{A-1}{A}\left(n+\frac{A-1}{24}\right)}\right)$$

3

• Therefore, each jth summand has the "factor"

$$\begin{aligned} & \frac{p(j)p_{\text{reg}}(A; n - Aj)}{p(n)} \\ &= \frac{C_A}{(24n - 24Aj - 1 + A)^{\frac{3}{4}}} \frac{n}{j} \exp\left(C\left(\sqrt{j} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - Aj + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_j(n^{-\frac{1}{2}})\right) \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト 三日

• Therefore, each *j*th summand has the "factor"

$$\begin{aligned} & \frac{p(j)p_{\text{reg}}(A; n - Aj)}{p(n)} \\ &= \frac{C_A}{(24n - 24Aj - 1 + A)^{\frac{3}{4}}} \frac{n}{j} \exp\left(C\left(\sqrt{j} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - Aj + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_j(n^{-\frac{1}{2}})\right) \end{aligned}$$

• The convenient change of variable $j = \lfloor n/A^2 \rfloor + y$ gives

$$= \frac{C_A}{(24n - 24n/A - 24Ay - 1 + A)^{\frac{3}{4}}} \frac{A^2n}{n + A^2y} \\ \times \exp\left(C\left(\sqrt{n/A^2 + y} - \sqrt{n} + \sqrt{\frac{A - 1}{A}\left(n - n/A - Ay + \frac{A - 1}{24}\right)}\right)\right) \cdot \left(1 + O_y(n^{-\frac{1}{2}})\right).$$

• In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.
- Therefore, the desired overall limit is

$$\lim_{n \to \infty} \sum_{|y| < n^{3/4} \log(n)} \frac{A^2}{96^{1/4} \sqrt{A-1}} \cdot \frac{1}{n^{3/4}} \cdot \exp\left(-\frac{CA^4}{8(A-1)} \frac{y^2}{n^{3/2}} - \frac{2}{AC} \exp\left(-\frac{1}{2} xAC\right)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- In the limit the sum is supported on $|y| \le n^{3/4} \log(n)$.
- Therefore, the desired overall limit is

$$\lim_{n \to \infty} \sum_{|y| < n^{3/4} \log(n)} \frac{A^2}{96^{1/4} \sqrt{A-1}} \cdot \frac{1}{n^{3/4}} \cdot \exp\left(-\frac{CA^4}{8(A-1)} \frac{y^2}{n^{3/2}} - \frac{2}{AC} \exp\left(-\frac{1}{2} xAC\right)\right)$$

• Letting $n \to +\infty$, this converges to the limit of integrals

$$\lim_{n \to +\infty} \frac{A^2}{96^{1/4}\sqrt{A-1}} \int_{-\log(n)}^{\log(n)} \exp\left(-\frac{CA^4}{8(A-1)}t^2 - \frac{2}{AC}\exp\left(-\frac{1}{2}xAC\right)\right) dt$$

イロト イロト イヨト イヨト 三日

• Dependence on n is only in limits of integration!

- Dependence on n is only in limits of integration!
- The part involving t vanishes after integration as $n \to +\infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- Dependence on n is only in limits of integration!
- The part involving t vanishes after integration as $n \to +\infty$.
- This only leaves

$$\lim_{n \to +\infty} \frac{p_{\leq k_n}(A; n)}{p(n)} = \exp\left(-\frac{2}{AC}\exp\left(-\frac{1}{2}xAC\right)\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Distributions on integers partitions Solving Problems 2 and 3

COUNTING HOOKS

THEOREM (HAN, 2008)

$$G_t(T;q) = \sum_{n=0}^{\infty} P_t(n;T)q^n = \sum_{\lambda} q^{|\lambda|} T^{\#\{t \in \mathcal{H}(\lambda)\}} = \prod_{n=1}^{\infty} \frac{(1+(T-1)q^{tn})^t}{1-q^n},$$
$$\widehat{G}_t(T;q) = \sum_{n=0}^{\infty} \widehat{P}_t(n;T)q^n := \sum_{\lambda} q^{|\lambda|} T^{\#\mathcal{H}_t(\lambda)} = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{(1-(Tq^t)^n)^t(1-q^n)}.$$

イロト イポト イヨト イヨト 二日

Distributions on integers partitions Solving Problems 2 and 3

IMPORTANT ASYMPTOTICS

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

▲□▶ ▲圖▶ ▲国▶ ▲国▶

臣

Distributions on integers partitions Solving Problems 2 and 3

Important Asymptotics

Proposition

If
$$\eta \in (0,1]$$
 and $\eta \le T \le \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \text{Li}_2(1-T)}$,

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・四ト ・ヨト ・ヨト

3

IMPORTANT ASYMPTOTICS

PROPOSITION

If
$$\eta \in (0,1]$$
 and $\eta \leq T \leq \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \text{Li}_2(1-T)}$, then

$$P_t(n;T) = \frac{c(T)}{2\sqrt{2\pi}nT^{\frac{t}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_\eta(n^{-\frac{1}{7}})\right),$$
where $\text{Li}_2(z) := -\int_a^z \frac{\log(1-u)}{z} du$ is the dilogarithm function.

イロト 不聞 と 不良 と 不良 とう

3

IMPORTANT ASYMPTOTICS

PROPOSITION

If
$$\eta \in (0,1]$$
 and $\eta \le T \le \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \text{Li}_2(1-T)}$, then

$$P_t(n;T) = \frac{c(T)}{2\sqrt{2\pi}nT^{\frac{t}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_\eta(n^{-\frac{1}{7}})\right),$$

where $\operatorname{Li}_2(z) := -\int_0^z \frac{\log(1-u)}{u} du$ is the dilogarithm function.

PROPOSITION

If t is a positive integer and $T := \{T_n\}$ is a positive real sequence for which $T_n = e^{\frac{\alpha(T) + \varepsilon_T(n)}{\sqrt{n}}}$, where $\alpha(T)$ is real and $\varepsilon_T(n) = o_T(1)$,

Important Asymptotics

PROPOSITION

If
$$\eta \in (0,1]$$
 and $\eta \le T \le \eta^{-1}$ and $c(T) := \sqrt{\pi^2/6 - \text{Li}_2(1-T)}$, then

$$P_t(n;T) = \frac{c(T)}{2\sqrt{2\pi}nT^{\frac{1}{2}}} \cdot e^{c(T)\left(2\sqrt{n} - \frac{1}{\sqrt{n}}\right)} \cdot \left(1 + O_\eta(n^{-\frac{1}{7}})\right),$$

where $\operatorname{Li}_2(z) := -\int_0^z \frac{\log(1-u)}{u} du$ is the dilogarithm function.

PROPOSITION

If t is a positive integer and $T := \{T_n\}$ is a positive real sequence for which $T_n = e^{\frac{\alpha(T) + \varepsilon_T(n)}{\sqrt{n}}}$, where $\alpha(T)$ is real and $\varepsilon_T(n) = o_T(1)$, then $\hat{P}_t(n; T_n) \sim \frac{1}{2^{\frac{7}{4}} 3^{\frac{1}{4}} n} \cdot \sqrt{\frac{1}{\sqrt{6}} + \frac{\alpha(T)}{\pi t}} \left(\frac{\pi t}{\pi t + \sqrt{6}\alpha(T)}\right)^{\frac{t}{2}} \cdot e^{\pi \sqrt{n} \left(\sqrt{\frac{2}{3}} + \frac{\alpha(T)}{\pi t}\right)}.$

Distributions on integers partitions Solving Problems 2 and 3

PROVING THE PROPOSITIONS REQUIRES

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

・ロト ・四ト ・ヨト ・ヨト

3

PROVING THE PROPOSITIONS REQUIRES

Lemma

If $\eta \in (0,1]$, then for $\alpha > 0$ and $\eta \le T \le \eta^{-1}$ we have

$$\sum_{j=1}^{\infty} \log(1 - e^{-j\alpha}) = -\frac{\pi^2}{6\alpha} - \frac{1}{2} \log\left(\frac{\alpha}{2\pi}\right) + O(\alpha),\tag{1}$$

$$\sum_{n=1}^{\infty} \frac{t^2 n(T-1)}{T-1+e^{tn\alpha}} = -\frac{\text{Li}_2(1-T)}{\alpha^2} + O_\eta(1),$$
(2)

$$\sum_{n=1}^{\infty} \log\left(1 + (T-1)e^{-tn\alpha}\right) = -\frac{\text{Li}_2(1-T)}{t\alpha} - \frac{1}{2}\log T + O_\eta(\alpha), \quad (3)$$

$$\sum_{n=1}^{\infty} \frac{t^3 n^2 e^{-tn\alpha}}{(1+(T-1)e^{-tn\alpha})^2} = -\frac{2}{\alpha^3} \frac{\text{Li}_2(1-T)}{T-1} + O_\eta(\alpha).$$
(4)

イロト イヨト イヨト イヨト

PROVING THE PROPOSITIONS REQUIRES

Lemma

If $\eta \in (0,1]$, then for $\alpha > 0$ and $\eta \le T \le \eta^{-1}$ we have

$$\sum_{j=1}^{\infty} \log(1 - e^{-j\alpha}) = -\frac{\pi^2}{6\alpha} - \frac{1}{2} \log\left(\frac{\alpha}{2\pi}\right) + O(\alpha),\tag{1}$$

$$\sum_{n=1}^{\infty} \frac{t^2 n(T-1)}{T-1+e^{tn\alpha}} = -\frac{\text{Li}_2(1-T)}{\alpha^2} + O_\eta(1),$$
(2)

$$\sum_{n=1}^{\infty} \log\left(1 + (T-1)e^{-tn\alpha}\right) = -\frac{\text{Li}_2(1-T)}{t\alpha} - \frac{1}{2}\log T + O_\eta(\alpha), \quad (3)$$

$$\sum_{n=1}^{\infty} \frac{t^3 n^2 e^{-tn\alpha}}{(1+(T-1)e^{-tn\alpha})^2} = -\frac{2}{\alpha^3} \frac{\text{Li}_2(1-T)}{T-1} + O_\eta(\alpha).$$
(4)

+ Connect to Han's Gen. Fcns + Technical "saddle point" calculations.

Proof.

(1) Use these results to compute "moment generating functions."

Proof.

(1) Use these results to compute "moment generating functions."

THEOREM (CURTISS, 1940s)

Let $\{X_n\}$ be real random variables

Proof.

(1) Use these results to compute "moment generating functions."

THEOREM (CURTISS, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions.

Proof.

(1) Use these results to compute "moment generating functions."

THEOREM (CURTISS, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions. If the $\{M_{X_n}(r)\}$ converge, then the $\{X_n\}$ converge.

Proof.

(1) Use these results to compute "moment generating functions."

THEOREM (CURTISS, 1940s)

Let $\{X_n\}$ be real random variables with moment gen. fcns.

$$M_{X_n}(r) := \int_{-\infty}^{\infty} e^{rx} dF_n(x),$$

where $F_n(x)$ are the cumulative distributions. If the $\{M_{X_n}(r)\}$ converge, then the $\{X_n\}$ converge.

(2) Prove convergence and recognize as normal and shifted Gamma respectively.

PROBLEM 1: PARTS IN $A\mathbb{N}$

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{AC} \sqrt{n} \log n + \sqrt{nx}$, then $\lim_{n \to +\infty} \frac{p_{\leq k_n}(A; n)}{p(n)} = \exp\left(-\frac{2}{AC} \cdot e^{-\frac{1}{2}ACx}\right).$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

PROBLEM 1: PARTS IN $A\mathbb{N}$

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021)) If $C := \pi \sqrt{2/3}$ and $k_n = k_n(x) := \frac{1}{4C} \sqrt{n} \log n + \sqrt{nx}$, then

$$\lim_{n \to +\infty} \frac{p_{\leq \mathbf{k_n}}(A;n)}{p(n)} = \exp\left(-\frac{2}{AC} \cdot e^{-\frac{1}{2}AC\mathbf{x}}\right)$$

Remarks

- (1) These are Gumbel distributions.
- (2) The mean and variance are:

Mean :=
$$\frac{2}{AC} \left(\log \left(\frac{2}{AC} \right) + \gamma_{Euler} \right)$$
,
Variance := $1/A^2$.

Problem 2: t hooks

THEOREM (GRIFFIN, O, TSAI (2022))

(1) The sequence $\{Y_t(n)\}$ is asymptotically **normal** with mean $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} - \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions

イロト 不得下 イヨト イヨト 二日

Problem 2: t hooks

THEOREM (GRIFFIN, O, TSAI (2022))
(1) The sequence
$$\{Y_t(n)\}$$
 is asymptotically **normal** with mean
 $\mu_t(n) \sim \frac{\sqrt{6n}}{\pi} - \frac{t}{2}$ and variance $\sigma_t^2(n) \sim \frac{(\pi^2 - 6)\sqrt{6n}}{2\pi^3}$.
(2) If $k_{t,n}(x) := \mu_t(n) + \sigma_t(n)x$, then we have
 $\lim_{n \to +\infty} D_t(k_{t,n}(x); n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy =: E(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Problem 3: Hooks in $t\mathbb{N}$

THEOREM (GRIFFIN, O, TSAI (2022)) (1) If $t \ge 4$, then $\widehat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}}$, and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{\pi^2 t^2}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Problem 3: Hooks in $t\mathbb{N}$

THEOREM (GRIFFIN, O, TSAI (2022)) (1) If $t \geq 4$, then $\hat{Y}_t(n) \sim \frac{n}{t} - \frac{\sqrt{3(t-1)n}}{\pi t} \cdot X_{\frac{t-1}{2},\sqrt{\frac{2}{t-1}}},$ and has mean $\widehat{\mu}_t(n) \sim \frac{n}{t} - \frac{(t-1)\sqrt{6n}}{2\pi t}$ and variance $\widehat{\sigma}_t^2(n) \sim \frac{3(t-1)n}{-2t^2}$. (2) If $\hat{k}_{t,n}(x) := \hat{\mu}_t(n) + \hat{\sigma}_t(n)x$, then in the lower incomplete γ -function $\lim_{t \to +\infty} \widehat{D}_t(\widehat{k}_{t,n}(x); n) = \frac{\gamma\left(\frac{t-1}{2}; \sqrt{\frac{t-1}{2}x + \frac{t-1}{2}}\right)}{\Gamma\left(\frac{t-1}{2}\right)}.$

イロト 不得下 イヨト イヨト 二日

EXECUTIVE SUMMARY

- Parts in $A\mathbb{N}$ correspond to **Gumbel Distributions**.
- *t*-hooks correspond to **Normal Distributions.**
- $t\mathbb{N}$ hooks correspond to shifted Gamma distributions.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ ● のへで