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Distributions on integers partitions

The Partition function p(n)

Definition
A partition of an integer n is any nonincreasing sequence

Λ := {λ1, λ2, . . . , λt}

of positive integers which sum to n.

Notation
The partition function

p(n) := # partitions of n.

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 =⇒ p(4) = 5.
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Distributions on integers partitions

Limiting Partition Distributions

General Problem
Let {Y (n)} be a sequence of discrete distributions on {λ : λ ` n}.

Can we have

lim
n→+∞

Y (n) = “Distribution independent of n” ?

Questions

(1) Are there any nice natural examples?

(2) ....examples with normalized limits independent of n?
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Distributions on integers partitions

Dyson’s Rank

Definition

The rank of a partition is its largest part minus its number of parts.

N(m,n) := #{partitions of n with rank m}.

Example

The ranks of the partitions of 4:

Partition Largest Part # Parts Rank
4 4 1 3 ≡ 3 (mod 5)

3 + 1 3 2 1 ≡ 1 (mod 5)
2 + 2 2 2 0 ≡ 0 (mod 5)

2 + 1 + 1 2 3 −1 ≡ 4 (mod 5)
1 + 1 + 1 + 1 1 4 −3 ≡ 2 (mod 5)
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Distributions on integers partitions

Dyson’s ranks are equidistributed

Theorem (Atkin and Swinnerton-Dyer, 1954)

If 0 ≤ a < b are integers and

N(a, b;n) := #{partitions of n with rank ≡ a mod b},

then for every n and every a, we have

N(a, 5; 5n+ 4) = p(5n+ 4)/5,

N(a, 7; 7n+ 5) = p(7n+ 5)/7.

This “explains” Ramanujan’s congruences modulo 5 and 7.

Theorem (Bringmann (Duke Math. J, 2008))

For all 0 ≤ a < b we have

lim
n→+∞

N(a, b;n)

p(n)
=

1

b
.
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Distributions on integers partitions
Counting Parts in Partitions

Number of Parts

Notation

The “number of parts” polynomials P#(n;T ) are defined by

∞∑
n=0

P#(n;T )qn :=

∞∏
n=1

1

(1− Tqn)
.

Example (Asymmetry)

P#(4;T ) = T + 2T 2 + T 3 + T 4

P#(5;T ) = T + 2T 2 + 2T 3 + T 4 + T 5

P#(6;T ) = T + 3T 2 + 3T 3 + 2T 4 + T 5 + T 6

...
...

...

P#(15;T ) = T + 7T 2 + 19T 3 + 27T 4 + 30T 5 + · · ·+ 2T 13 + T 14 + T 15.
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Distributions on integers partitions
Counting Parts in Partitions

Theorem of Erdös and Lehner

Notation
If k is a positive integer, then let

p≤k(n) := #{partitions of n with ≤ k parts}.

Theorem (Erdös and Lehner (1941))

If C := π
√

2/3 and kn(x) := C−1
√
n log n+

√
nx, then as a

function in x we have

lim
n→+∞

p≤kn(x)(n)

p(n)
= exp

(
− 2

C
· e−

1
2
Cx

)
.
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Distributions on integers partitions
Counting Parts in Partitions

Remarks
(1) Normal order for the number of parts is

√
n log n

C
=

√
3n log n√

2π
.

(2) The graph of the “Gumbel cumulative distribution function”
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Distributions on integers partitions
Counting Parts in Partitions

Numerics

Notation

kn(x) := C−1
√
n log n+

√
nx

δkn(x) :=
#{partitions of n with ≤ kn(x) parts}

p(n)
.

Gumbel(x) := exp

(
− 2

C
· e−

1
2
Cx

)
.
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Distributions on integers partitions
Counting Parts in Partitions

Partitions of n = 750

x bk750(x)c δk750(x) Gumbel(x)

0.5 84 0.656 . . . 0.663 . . .

1.0 98 0.814 . . . 0.805 . . .

1.5 111 0.899 . . . 0.892 . . .

2.0 125 0.949 . . . 0.941 . . .

2.5 139 0.975 . . . 0.969 . . .

3.0 152 0.987 . . . 0.983 . . .
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Distributions on integers partitions
Our work

Problem 1: Parts in AN

Question
How “many” multiples of A are parts in size n partitions?

Question (Precise Form)

If A ≥ 2, then let

p≤k(A;n) := #{λ ` n with ≤ k parts in AN}.

What is the cumulative distribution function for

p≤k(A;n)

p(n)
?
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Distributions on integers partitions
Our work

Solution to Problem 1

Theorem (Griffin, O, Rolen, Tsai (2021))

If C := π
√

2/3 and kn = kn(x) := 1
AC

√
n log n+

√
nx,

then as
a function in x

lim
n→+∞

p≤kn(A;n)

p(n)
= exp

(
− 2

AC
· e−

1
2
ACx

)
.

Remarks
(1) These are Gumbel distributions.
(2) The mean and variance of the limiting distribution are:

Mean :=
2

AC

(
log

(
2

AC

)
+ γEuler

)
,

Variance := 1/A2.
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Distributions on integers partitions
Our work

Numerics when A = 2

Notation

kn(x) :=
1

2C

√
n log n+

√
nx

δkn(x) :=
#{λ ` n with ≤ kn(x) even parts}

p(n)
.

Gumbel(x) := exp

(
− 1

C
· e−Cx

)
.
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Distributions on integers partitions
Our work

Distribution of even parts for n = 600

x bk600(x)c δk600(x) Gumbel(x)

−0.1 28 0.597 . . . 0.604 . . .
0.0 30 0.663 . . . 0.677 . . .
0.1 32 0.721 . . . 0.739 . . .
0.2 35 0.791 . . . 0.792 . . .
0.3 37 0.830 . . . 0.835 . . .
...

...
...

...
1.5 67 0.994 . . . 0.992 . . .
2.0 79 0.998 . . . 0.998 . . .
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Our work

n point Hilbert schemes cut out by tori

Definition

We have that

X [n] = (C2)[n] := {I ⊂ C[x, y] : ideals with dimC(C[x, y]/I) = n} .

The torus (C×)2-action on X [n] is a lift of

(t1, t2) · (x, y) := (t1x, t2y).

For relatively prime α, β ∈ N, we have the one-dimensional subtorus

Tα,β := {(tα, tβ) : t ∈ C×}.

This defines the quasihomogeneous Hilbert scheme

X
[n]
α,β := ((C2)[n])Tα,β .
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Our work

Poincaré polynomials and distributions

Definition

The Poincaré polynomial for X [n]
α,β := ((C2)[n])Tα,β is

P
(
X

[n]
α,β ;T

)
:=

2b n
α+β c∑
j=0

dim
(
Hj

(
X

[n]
α,β ,Q

))
T j .

Definition

The discrete measure dµ[n]
α,β for X [n]

α,β is

Φn(α, β;x) :=
1

p(n)
·
∫ x

−∞
dµ

[n]
α,β .
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Our work

Corollary to the partition Theorem

Theorem (Griffin, O, Rolen, Tsai (2021))

If α and β are relatively prime and δn(α, β) :=
√
6n·log(n)
π(α+β) ,

then

lim
n→+∞

Φn(α, β; 2
√
nx+ δn(α, β))

= exp

(
−

√
6

π(α+ β)
· exp

(
−π(α+ β)x√

6

))
.

Remarks

Answers Q of Hausel and Rodriguez-Villegas on Hilbert schemes.
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Asymptotics for p≤k(A;n)?

Theorem (Griffin, O, Rolen, Tsai (2021))

If A ≥ 2 and k is fixed, then as n→ +∞ we have

p≤k(A;n) ∼ 24
k
2
− 1

4n
k
2
− 3

4

√
2
(
1− 1

A

) k
2
− 1

4 k!Ak+
1
2 (2π)k

e
2π

√
1
6(1− 1

A)n,

pk(A;n) ∼ 24
k
2
− 1

4 (n−Ak)
k
2
− 3

4

√
2
(
1− 1

A

) k
2
− 1

4 k!Ak+
1
2 (2π)k

e
2π

√
1
6(1− 1

A)(n−Ak).

Remarks
(1) This theorem is proved by Wright’s “circle method.”
(2) Error terms are too large to imply the Gumbel distributions.
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Example A = 3 and k = 1

The previous theorem gives

p1(3;n) ∼ 1

6π(n− 3)
1
4

· e
2π
√
n−3
3 .

Let p∗1(3;n) be the asymptotic in the theorem.

n p1(3;n) p∗1(3;n) p1(3;n)/p∗1(3;n)

200 93125823847 ≈ 82738081118 ≈ 1.126
400 ≈ 1.718× 1016 ≈ 1.579× 1016 ≈ 1.088
600 ≈ 1.928× 1020 ≈ 1.799× 1020 ≈ 1.071
800 ≈ 5.058× 1023 ≈ 4.764× 1023 ≈ 1.062
1000 ≈ 5.232× 1026 ≈ 4.959× 1026 ≈ 1.055
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Problem 2: t-hooks

Example (Hook lengths)

Figure: Hook lengths for λ = (5, 4, 1)

Problem
Does the sequence {Yt(n)} of distributions of the number of
t-hooks in the partitions of integers n have a limiting behavior?
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Example t = 2 and n = 5000

∑
λ`5000

T#{2∈H(λ)} = 704T + 9211712T 2 + · · ·+ 1805943379138T 98 + 2T 99.

Figure: Y2(5000)
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Solution to Problem 2

Theorem (Griffin, O, Tsai (2022))

(1) The sequence {Yt(n)} is asymptotically normal with mean
µt(n) ∼

√
6n
π −

t
2 and variance σ2t (n) ∼ (π2−6)

√
6n

2π3 .

(2) If kt,n(x) := µt(n) + σt(n)x, then we have

lim
n→+∞

Dt(kt,n(x);n) =
1√
2π

∫ x

−∞
e−

y2

2 dy =: E(x).
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Example t = 2 and n = 5000 continued

Illustration of the cumulative distribution approximation

D2(k2,5000(x); 5000) ≈ E(x).

x D2(k2,5000(x), 5000) E(x) D2(k2,5000(x), 5000)/E(x)

−1.5 0.0658 . . . 0.0668 . . . 0.9849 . . .
...

...
...

...
0.0 0.5055 . . . 0.5000 . . . 1.0011 . . .
1.0 0.8246 . . . 0.8413 . . . 0.9802 . . .
2.0 0.9685 . . . 0.9772 . . . 0.9911 . . .
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Problem 3: Hook lengths in tN

Problem

Does the sequence {Ŷ2(n)} of distributions of the number of even
hooks in the partitions of n have a limiting behavior?

Problem

Does the sequence {Ŷt(n)} of distributions of the number of
hooks in tN in the partitions of n have a limiting behavior?
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Example t = 11 and n = 1000
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Solution to Problem 3

“Theorem” (Griffin, O, Rolen, Tsai (2022))

If t ≥ 4, then Ŷt(n) is a shifted Gamma distribution.

Definition

A random variable Xk,θ is Gamma distributed with parameter k > 0
and scale θ > 0 if its probability distribution function is

Fk,θ(x) :=
1

Γ(k)θk
· xk−1e−

x
θ .
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Solution to Problem 3

Theorem (Griffin, O, Tsai (2022))

(1) If t ≥ 4, then

Ŷt(n) ∼ n

t
−
√

3(t− 1)n

πt
·X t−1

2
,
√

2
t−1

,

and has mean µ̂t(n) ∼ n
t
− (t−1)

√
6n

2πt
and variance σ̂2

t (n) ∼ 3(t−1)n

π2t2
.

(2) If k̂t,n(x) := µ̂t(n) + σ̂t(n)x, then in the lower incomplete γ-function

lim
n→+∞

D̂t(k̂t,n(x);n) =
γ
(
t−1
2

;
√

t−1
2
x+ t−1

2

)
Γ
(
t−1
2

) .

Remark

No continuous limit for t ∈ {2, 3} as there are always vanishing terms as in∑
λ`19

T#H2(λ) = 300T 9 + 185T 8 + 0T 7 + 0T 6 + 0T 5 + 0T 4 + 0T 3 + 5T 2.
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Example t = 11 and n = 1000

We illustrates the approximation

D̂11(k(x); 1000) ≈
γ
(
5;
√

5x+ 5
)

24
=: Ê11(x).

x D̂11(k(x); 1000) Ê11(x) D̂11(k(x); 1000)/Ê11(x)

−1.00 0.1319 . . . 0.1467 . . . 0.8993 . . .
...

...
...

...
0.75 0.7410 . . . 0.7954 . . . 0.9315 . . .
1.00 0.8226 . . . 0.8474 . . . 0.9707 . . .
1.25 0.8872 . . . 0.8880 . . . 0.9991 . . .
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

Solving Problem 1

Proposition

If A ≥ 2, then for every positive integer n we have

p≤k(A;n) =

b nA c∑
j=0

p≤k(j) · preg(A;n−Aj),

where preg(A; ·) is the A-regular partition function.

Proof.

• Suppose λ is counted by p≤k(A;n).

• Then we have
λ = λreg ⊕Aλ′,

where |Aλ′| = Aj and λ′ is counted by p≤k(j).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

Erdös-Lehner Formula for p≤k(j)

Proposition (Erdös-Lehner (1941))

If k and j are positive integers, then

p≤k(j) = p(j)−
∞∑
m=1

(−1)mSk(m; j),

where

Sk(m; j) :=
∑

1≤r1<r2<···<rm
Tm≤r1+r2+···+rm≤j−mk

p

(
j −

m∑
i=1

(k + ri)

)

and Tm := m(m+ 1)/2.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

• Conjugacy implies p≤k(j) = #{λ ` j : no parts ≥ k + 1}.

• We have p(j − (k + r)) = #{λ ` j : with a part of size k + r.}.

• Therefore, we have p(j)− Sk(1, j) ≤ p≤k(j).

• By overcounting, we have

p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.
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p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

• Conjugacy implies p≤k(j) = #{λ ` j : no parts ≥ k + 1}.

• We have p(j − (k + r)) = #{λ ` j : with a part of size k + r.}.

• Therefore, we have p(j)− Sk(1, j) ≤ p≤k(j).

• By overcounting, we have

p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

• Conjugacy implies p≤k(j) = #{λ ` j : no parts ≥ k + 1}.

• We have p(j − (k + r)) = #{λ ` j : with a part of size k + r.}.

• Therefore, we have p(j)− Sk(1, j) ≤ p≤k(j).

• By overcounting, we have

p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

• Conjugacy implies p≤k(j) = #{λ ` j : no parts ≥ k + 1}.

• We have p(j − (k + r)) = #{λ ` j : with a part of size k + r.}.

• Therefore, we have p(j)− Sk(1, j) ≤ p≤k(j).

• By overcounting, we have

p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

Proof of the formula

• Conjugacy implies p≤k(j) = #{λ ` j : no parts ≥ k + 1}.

• We have p(j − (k + r)) = #{λ ` j : with a part of size k + r.}.

• Therefore, we have p(j)− Sk(1, j) ≤ p≤k(j).

• By overcounting, we have

p(j)− Sk(1; j) ≤ p≤k(j) ≤ p(j)− Sk(1; j) + Sk(2; j).

• Inclusion-Exclusion.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

“Hand Wavy Proof” of Our Theorem

• We start with the elementary formula

p≤k(A;n) =

b nA c∑
j=0

p≤k(j) · preg(A;n−Aj),

• By Erdös-Lehner formula for p≤k(j), we have

p≤k(A;n) =

b nA c∑
j=0

( ∞∑
m=0

(−1)mSk(m; j)

)
preg(A;n−Aj).

• Dividing by p(n) we get

p≤k(A;n)

p(n)
=

∑b nA c
j=0 (

∑∞
m=0(−1)mSk(m; j)) preg(A;n−Aj)

p(n)
.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

• Counterintuitively let S∗k(m; j) := Sk(m; j)/p(j).

• Therefore, we get

p≤k(A;n)

p(n)
=

b n
A
c∑

j=0

( ∞∑
m=0

(−1)mS∗k(m; j)

)
· p(j)preg(A;n−Aj)

p(n)
.

• Erdös and Lehner proved

S∗k(m; j) ∼ 1

m!

(
2

C

√
j exp

(
− Ck

2
√
j

))m
.

• For every m this means S∗k(m; j) ∼ 1
m! · S

∗
k(1; j)m, giving

∞∑
m=0

(−1)mS∗kn(m; j) ∼ exp(−S∗kn(1; j)).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

• Therefore, as a sum in j we have

p≤k(A;n)

p(n)
∼
b n
A
c∑

j=0

exp(−S∗kn(1; j)) · p(j)preg(A;n−Aj)
p(n)

.

• Hardy-Ramanujan proved

p(n) ∼ 1

4n
√

3
· eπ

√
2n
3 .

• Hagis proved that

preg(A;n) ∼ CA(24n−1+A)−
3
4 exp

(
C

√
A− 1

A

(
n+

A− 1

24

))
.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

• Therefore, each jth summand has the “factor”

• The convenient change of variable j = bn/A2c+ y gives
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

• In the limit the sum is supported on |y| ≤ n3/4 log(n).

• Therefore, the desired overall limit is

• Letting n→ +∞, this converges to the limit of integrals
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

• Dependence on n is only in limits of integration!

• The part involving t vanishes after integration as n→ +∞.

• This only leaves

lim
n→+∞

p≤kn(A;n)

p(n)
= exp

(
− 2

AC
exp

(
−1

2
xAC

))
.
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Distributions on integers partitions
Solving Problems 2 and 3

Counting hooks

Theorem (Han, 2008)

Gt(T ; q) =

∞∑
n=0

Pt(n;T )qn =:=
∑
λ

q|λ|T#{t∈H(λ)} =

∞∏
n=1

(1 + (T − 1)qtn)t

1− qn ,

Ĝt(T ; q) =

∞∑
n=0

P̂t(n;T )qn :=
∑
λ

q|λ|T#Ht(λ) =

∞∏
n=1

(1− qtn)t

(1− (Tqt)n)t(1− qn)
.
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Distributions on integers partitions
Solving Problems 2 and 3

Important Asymptotics

Proposition

If η ∈ (0, 1] and η ≤ T ≤ η−1 and c(T ) :=
√
π2/6− Li2(1− T ), then

Pt(n;T ) =
c(T )

2
√

2πnT
t
2

· ec(T )
(
2
√
n− 1√

n

)
·
(

1 +Oη(n−
1
7 )
)
,

where Li2(z) := −
∫ z
0

log(1−u)
u

du is the dilogarithm function.

Proposition

If t is a positive integer and T := {Tn} is a positive real sequence for which

Tn = e
α(T )+εT (n)√

n , where α(T ) is real and εT (n) = oT (1), then

P̂t(n;Tn) ∼ 1

2
7
4 3

1
4 n
·

√
1√
6

+
α(T )

πt

(
πt

πt+
√

6α(T ))

) t
2

· eπ
√
n
(√

2
3
+
α(T )
πt

)
.
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Distributions on integers partitions
Solving Problems 2 and 3

Proving the Propositions Requires

Lemma

If η ∈ (0, 1], then for α > 0 and η ≤ T ≤ η−1 we have

∞∑
j=1

log(1− e−jα) = −π
2

6α
− 1

2
log
( α

2π

)
+O(α), (1)

∞∑
n=1

t2n(T − 1)

T − 1 + etnα
= −Li2(1− T )

α2
+Oη(1), (2)

∞∑
n=1

log
(
1 + (T − 1)e−tnα

)
= −Li2(1− T )

tα
− 1

2
log T +Oη(α), (3)

∞∑
n=1

t3n2e−tnα

(1 + (T − 1)e−tnα)2
= − 2

α3

Li2(1− T )

T − 1
+Oη(α). (4)

+ Connect to Han’s Gen. Fcns + Technical “saddle point” calculations.
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Proving the Propositions Requires

Lemma

If η ∈ (0, 1], then for α > 0 and η ≤ T ≤ η−1 we have

∞∑
j=1

log(1− e−jα) = − π
2

6α
− 1

2
log
( α

2π

)
+O(α), (1)

∞∑
n=1

t2n(T − 1)

T − 1 + etnα
= −Li2(1− T )

α2
+Oη(1), (2)

∞∑
n=1

log
(
1 + (T − 1)e−tnα

)
= −Li2(1− T )

tα
− 1

2
log T +Oη(α), (3)

∞∑
n=1

t3n2e−tnα

(1 + (T − 1)e−tnα)2
= − 2

α3

Li2(1− T )

T − 1
+Oη(α). (4)

+ Connect to Han’s Gen. Fcns + Technical “saddle point” calculations.
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Solving Problems 2 and 3

Solutions to Problems 2 and 3

Proof.
(1) Use these results to compute “moment generating functions.”

Theorem (Curtiss, 1940s)

Let {Xn} be real random variables with moment gen. fcns.

MXn(r) :=

∫ ∞
−∞

erxdFn(x),

where Fn(x) are the cumulative distributions.
If the {MXn(r)} converge, then the {Xn} converge.

(2) Prove convergence and recognize as normal and shifted
Gamma respectively.
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Summary

Problem 1: Parts in AN

Theorem (Griffin, O, Rolen, Tsai (2021))

If C := π
√

2/3 and kn = kn(x) := 1
AC

√
n log n+

√
nx, then

lim
n→+∞

p≤kn(A;n)

p(n)
= exp

(
− 2

AC
· e−

1
2
ACx

)
.

Remarks
(1) These are Gumbel distributions.
(2) The mean and variance are:

Mean :=
2

AC

(
log

(
2

AC

)
+ γEuler

)
,

Variance := 1/A2.
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Problem 2: t hooks

Theorem (Griffin, O, Tsai (2022))

(1) The sequence {Yt(n)} is asymptotically normal with mean
µt(n) ∼

√
6n
π −

t
2 and variance σ2t (n) ∼ (π2−6)

√
6n

2π3 .

(2) If kt,n(x) := µt(n) + σt(n)x, then we have

lim
n→+∞

Dt(kt,n(x);n) =
1√
2π

∫ x

−∞
e−

y2

2 dy =: E(x).
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Problem 3: Hooks in tN

Theorem (Griffin, O, Tsai (2022))

(1) If t ≥ 4, then

Ŷt(n) ∼ n

t
−
√

3(t− 1)n

πt
·X t−1

2
,
√

2
t−1

,

and has mean µ̂t(n) ∼ n
t
− (t−1)

√
6n

2πt
and variance σ̂2

t (n) ∼ 3(t−1)n

π2t2
.

(2) If k̂t,n(x) := µ̂t(n) + σ̂t(n)x, then in the lower incomplete γ-function

lim
n→+∞

D̂t(k̂t,n(x);n) =
γ
(
t−1
2

;
√

t−1
2
x+ t−1

2

)
Γ
(
t−1
2

) .
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Executive Summary

Parts in AN correspond to Gumbel Distributions.

t-hooks correspond to Normal Distributions.

tN hooks correspond to shifted Gamma distributions.
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