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Distributions on integers partitions

THE PARTITION FUNCTION p(n)
DEFINITION
A partition of an integer n is any nonincreasing sequence

A={A, A N

of positive integers which sum to n.
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Distributions on integers partitions

THE PARTITION FUNCTION p(n)

DEFINITION

A partition of an integer n is any nonincreasing sequence

A={A, A N

of positive integers which sum to n.

NOTATION

The partition function

p(n) := # partitions of n.
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Distributions on integers partitions

THE PARTITION FUNCTION p(n)

DEFINITION

A partition of an integer n is any nonincreasing sequence

A={A, A N

of positive integers which sum to n.

NOTATION

The partition function

p(n) := # partitions of n.

4=3+1=2+2=2+141=14+1+1+1 = p(4)=5.

v
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Distributions on integers partitions

LIMITING PARTITION DISTRIBUTIONS

GENERAL PROBLEM
Let {Y(n)} be a sequence of discrete distributions on {\ : A\ - n}.
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Distributions on integers partitions

LIMITING PARTITION DISTRIBUTIONS

GENERAL PROBLEM

Let {Y(n)} be a sequence of discrete distributions on {\ : A\ - n}.
Can we have

lim Y (n) = “Distribution independent of n” ?
n—-+4o0o
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LIMITING PARTITION DISTRIBUTIONS

GENERAL PROBLEM

Let {Y(n)} be a sequence of discrete distributions on {\ : A\ - n}.
Can we have

lim Y (n) = “Distribution independent of n” ?
n—-+4o0o

QUESTIONS

(1) Are there any nice natural examples?
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Distributions on integers partitions

LIMITING PARTITION DISTRIBUTIONS

GENERAL PROBLEM
Let {Y (n)} be a sequence of discrete distributions on {\: A\ F n}.

Can we have

lim Y (n) = “Distribution independent of n” ?
n—-+4o0o

QUESTIONS

(1) Are there any nice natural examples?

(2) ....examples with normalized limits independent of n?
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Distributions on integers partitions

DyYSON’S RANK

DEFINITION
The rank of a partition is its largest part minus its number of parts.

N(m,n) := #{partitions of n with rank m}.
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Distributions on integers partitions

DyYSON’S RANK

DEFINITION

The rank of a partition is its largest part minus its number of parts.

N(m,n) := #{partitions of n with rank m}.

EXAMPLE
The ranks of the partitions of 4:

Partition Largest Part # Parts Rank
4 4 1 3=3 (mod 5)
3+1 3 2 1=1 (mod 5)
242 2 2 0=0 (mod 5)
24+1+1 2 3 ~1=4 (mod 5)
1+1+1+1 1 4 —3=2 (mod 5)
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Distributions on integers partitions

DYSON’S RANKS ARE EQUIDISTRIBUTED

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If 0 < a < b are integers and

N (a,b;n) := #{partitions of n with rank =a mod b},
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Distributions on integers partitions

DYSON’S RANKS ARE EQUIDISTRIBUTED
THEOREM (ATKIN AND SWINNERTON-DYER, 1954)
If 0 < a < b are integers and

N (a,b;n) := #{partitions of n with rank =a mod b},

then for every n and every a, we have

N(a,5;5n +4) = p(5n + 4)/5,
N(a,7;7n+5) = p(Tn +5)/7.
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DYSON’S RANKS ARE EQUIDISTRIBUTED

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)
If 0 < a < b are integers and

N (a,b;n) := #{partitions of n with rank =a mod b},
then for every n and every a, we have
N(a,5;5n +4) = p(5n + 4)/5,
N(a,7;7n+5) = p(Tn +5)/7.

This “explains” Ramanujan’s congruences modulo 5 and 7.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions

DYSON’S RANKS ARE EQUIDISTRIBUTED

THEOREM (ATKIN AND SWINNERTON-DYER, 1954)

If 0 < a < b are integers and
N (a,b;n) := #{partitions of n with rank =a mod b},
then for every n and every a, we have
N(a,5;5n +4) = p(5n + 4)/5,
N(a,7;7n+5) = p(Tn +5)/7.

This “explains” Ramanujan’s congruences modulo 5 and 7.

THEOREM (BRINGMANN (DUkE MATH. J, 2008))

For all 0 < a < b we have

. N(a,byn) 1
lim ———~ = —.
n—+oo  p(n) b
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Distributions on integers partitions
Counting Parts in Partitions

NUMBER OF PARTS

NOTATION
The “number of parts” polynomials Py (n;T) are defined by

(o) _ o0 1
T;P#(n,T)q = L[l =T
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Distributions on integers partitions
Counting Parts in Partitions

NUMBER OF PARTS

NOTATION

The “number of parts” polynomials Py (n;T) are defined by

o0

ZP#nT H 1_Tq

n=1

EXAMPLE (ASYMMETRY)

Pu(4T)=T+2T*+ T3 +T*
Pu(5;T) =T + 2T + 273 + T* + T°
Py(6;T) =T + 372 + 373 + 2T* 4 T + T

Py(15;T) =T + 7T% + 1973 + 27T* + 30T° + - - - + 2T"3 + T4 +

4
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Distributions on integers partitions
Counting Parts in Partitions

THEOREM OF ERDOS AND LEHNER

NOTATION

If k is a positive integer, then let

p<k(n) := #{partitions of n with <k parts}.
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Distributions on integers partitions
Counting Parts in Partitions

THEOREM OF ERDOS AND LEHNER

NOTATION
If k is a positive integer, then let

p<k(n) := #{partitions of n with <k parts}.

THEOREM (ERDOS AND LEHNER (1941))

If C :=7+/2/3 and kp(z) := C~1y/nlogn + v/nz,
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Distributions on integers partitions
Counting Parts in Partitions

THEOREM OF ERDOS AND LEHNER

NOTATION

If k is a positive integer, then let

p<k(n) := #{partitions of n with <k parts}.

THEOREM (ERDOS AND LEHNER (1941))
If C :=71+/2/3 and ky(x) := C~1y/nlogn + /nx, then as a

function in x we have

. pgkn(m)(n) . _E' — L@
ng{lr—loo —p(n) = exp c e 2 .
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Distributions on integers partitions
Counting Parts in Partitions

REMARKS

(1) Normal order for the number of parts is

Vvnlogn  v3nlogn
C Vor
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Distributions on integers partitions
Counting Parts in Partitions

REMARKS

(1) Normal order for the number of parts is

Vvnlogn  v3nlogn
C NoZ

(2) The graph of the “Gumbel cumulative distribution function’

)
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Distributions on integers partitions
Counting Parts in Partitions

NUMERICS
NOTATION
kn(2) := C~Y/nlogn + /nx
#{partitions of n with < k,(z) parts}
Ok, (z) = .

p(n)
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Distributions on integers partitions
Counting Parts in Partitions

NUMERICS
NOTATION
kn(2) := C~Y/nlogn + /nx
#{partitions of n with < k,(z) parts}
Ok, (z) = .
p(n)
2 _lc
Gumbel(z) := exp G e o
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Distributions on integers partitions
Counting Parts in Partitions

PARTITIONS OF n = 750

x | |kr50(2)] | Okyso () | Gumbel(z)

0.5 84 0.656...| 0.663...

1.0 98 0.814...| 0.805...

1.5 111 0.899...] 0.892...

2.0 125 0.949...| 0.941...

2.5 139 0.975...] 0.969...

3.0 152 0.987...] 0.983...
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How “many” multiples of A are parts in size n partitions?
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Distributions on integers partitions
Our work

PROBLEM 1: PARTS IN AN

QUESTION

How “many” multiples of A are parts in size n partitions?

QUESTION (PRECISE FORM)
If A > 2, then let

p<i(A;n) = #{AFn with <k parts in AN}.
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Our work

PROBLEM 1: PARTS IN AN

QUESTION

How “many” multiples of A are parts in size n partitions?

QUESTION (PRECISE FORM)
If A > 2, then let

p<i(A;n) = #{AFn with <k parts in AN}.
What is the camulative distribution function for

p<k(4in)
p(n)
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Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 1

THEOREM (GRIFFIN, O, ROLEN, TSsAI (2021))
If C :=m\/2/3 and kn, = kn(z) := 45/nlogn + /nz,
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SOLUTION TO PROBLEM 1

THEOREM (GRIFFIN, O, ROLEN, TSsAr (2021))

If C:=my\/2/3 and ky, = kn(x) := %\/ﬁlogn—i— Vnxz, then as

a function in x

. (A; 2
lim pSkn( 7”) = exp ( . e—;AC&:) )
n—+oo  p(n)
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SOLUTION TO PROBLEM 1

THEOREM (GRIFFIN, O, ROLEN, TSsAr (2021))

If C:=my\/2/3 and ky, = kn(x) := %\/ﬁlogn—i— Vnx, then as

a function in x

REMARKS
(1) These are Gumbel distributions.
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Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 1

THEOREM (GRIFFIN, O, ROLEN, TSsAr (2021))

If C:=my\/2/3 and ky, = kn(x) := %\/ﬁlogn—i— Vnx, then as

a function in x

. p<k, (Am) 2 _lacs
W ) _eXp< ac ¢ ° ‘

REMARKS
(1) These are Gumbel distributions.

(2) The mean and variance of the limiting distribution are:

2 2
Mean := 10 (log (AC) +7Euler> )

Variance := 1/A%.
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Distributions on integers partitions
Our work

NUMERICS WHEN A = 2

NOTATION
1
kn(z) := =—=+/nlogn + v/nx
2C
#{\F n with < k,(x) even parts}
5kn (a:) = .
p(n)
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NUMERICS WHEN A = 2

NOTATION
1
kn(z) := =—=+/nlogn + v/nx
2C
A Fn with < k,(x) even parts
e ()i (x) even parts}

<
p(n)

1
Gumbel(x) := exp (—5 e_C'”> .
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Distributions on integers partitions
Our work

DISTRIBUTION OF EVEN PARTS FOR n = 600

[z [ [keoo(2)] | Orgoo(®) | Gumbel(z) |

-0.1 28 0.597... 0.604. ..
0.0 30 0.663. .. 0.677...
0.1 32 0.721... 0.739...
0.2 35 0.791... 0.792...
0.3 37 0.830... 0.835...
1.5 67 0.994... 0.992...
2.0 79 0.998... 0.998...
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n POINT HILBERT SCHEMES CUT OUT BY TORI

DEFINITION
We have that

Xl = () .= {I c Clz,y] : ideals with dim¢(C[z,y]/I) =n}.
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n POINT HILBERT SCHEMES CUT OUT BY TORI

DEFINITION
We have that

Xl = () .= {I c Clz,y] : ideals with dim¢(C[z,y]/I) =n}.
The torus (C*)?-action on X[ is a lift of

(t1,t2) - (z,9) = (1, t2y).
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n POINT HILBERT SCHEMES CUT OUT BY TORI

DEFINITION
We have that

Xl = () .= {I c Clz,y] : ideals with dim¢(C[z,y]/I) =n}.
The torus (C*)?-action on X[ is a lift of
(t1,t2) - (z,y) = (t1x, t2y).
For relatively prime «, 8 € N, we have the one-dimensional subtorus

Top:={(1t*t%) : teC*}.
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n POINT HILBERT SCHEMES CUT OUT BY TORI

DEFINITION
We have that

Xl = () .= {I c Clz,y] : ideals with dim¢(C[z,y]/I) =n}.
The torus (C*)?-action on X[ is a lift of
(t1,t2) - (z,y) = (t1x, t2y).
For relatively prime «, 8 € N, we have the one-dimensional subtorus
Top:={(1t*t%) : teC*}.
This defines the quasihomogeneous Hilbert scheme

Xy = (@),
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Our work

POINCARE POLYNOMIALS AND DISTRIBUTIONS

DEFINITION
The Poincaré polynomial for X([In]ﬁ = ((C?)Tas is
2ls%7]

P(xIT) = aim (H; (X0, @) ) 7.
3=0
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POINCARE POLYNOMIALS AND DISTRIBUTIONS

DEFINITION
The Poincaré polynomial for X([In]ﬁ = ((C?)Tas is
2l5¥5)

P(xIT) = aim (H; (X0, @) ) 7.
3=0

DEFINITION

The discrete measure d,ut[z]ﬁ for Xgn]ﬁ is

1 x
P, (a, 852 ::—~/ dul™ .
( B ) p(n) . :u‘a”H
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COROLLARY TO THE PARTITION THEOREM

THEOREM (GRIFFIN, O, ROLEN, TsAI1 (2021))

If o and B are relatively prime and 6, (a, B) := %,
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COROLLARY TO THE PARTITION THEOREM

THEOREM (GRIFFIN, O, ROLEN, TsAI1 (2021))

Vonlog(n) yup o

If o and B are relatively prime and 6, (a, B) := ot h)

lim ®,(c, 8;2v/nz + 6, (a, B))

n—+o0
= exp <—$ - exp (—%)) .
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COROLLARY TO THE PARTITION THEOREM

THEOREM (GRIFFIN, O, ROLEN, TsAI1 (2021))

If o and B are relatively prime and 6, (a, B) := %, then

lim ®,(c, 8;2v/nz + 6, (a, B))

n—+o0
= exp <—$ - exp (—%)) .

REMARKS

Answers Q of Hausel and Rodriguez-Villegas on Hilbert schemes.
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ASYMPTOTICS FOR p<i(A;n)?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))
If A> 2 and k is fixed, then as n — +o0o we have

245~ in5~3 11 1
n o i(1—1
pgk(A7n)N 1 1 62 6(1 A)n7
V2 (1 - 1)275 plaRTz (2n)k
k k
245_%(7%—1%‘)5_% 2my /3 (1= 1) (n—Ak)
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ASYMPTOTICS FOR p<i(A;n)?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))
If A> 2 and k is fixed, then as n — +o0o we have

245~ in5~3 11 1
n o /Ll(1—1
pgk(A7n)N 1 1 62 6(1 A)n7
V2 (1 - 1)2 1 klAR+3 (2m)k
k k
245_%(7%—1%‘)5_% 2my /3 (1= 1) (n—Ak)

REMARKS
(1) This theorem is proved by Wright’s “circle method.”
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ASYMPTOTICS FOR p<i(A;n)?

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))
If A> 2 and k is fixed, then as n — +o0o we have

24%‘% g_% 1 1
pﬁk(A;n)N k 1n 627r g(liz)na
V2 (1 - 1)275 plaRTz (2n)k
k_ 1 k_3
pe(Ain) v — 2222 AR)TTL o 3(-F) - ab)

REMARKS
(1) This theorem is proved by Wright’s “circle method.”

(2) Error terms are too large to imply the Gumbel distributions.

v
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1
p1(3;n) ~

r €
6m(n —3)1
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EXAMPLE A =3 AND k=1

The previous theorem gives
1 27/n—3

p1(3;n)~ ——— e 3
6m(n—3)1

Let pi(3;n) be the asymptotic in the theorem.
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Our work

EXAMPLE A =3 AND k=1

The previous theorem gives

Let pi(3;n) be the asymptotic in the theorem.

p1(3;n) ~

1 2my/n—

6m(n — S)i

n p1(3;m) pi(3;in) p1(3;n)/pi(3;n)
200 03125823847 ~ 82738081118 ~ 1.126
400 ~ 1.718 x 106 ~ 1.579 x 10'6 ~ 1.088
600 ~ 1.928 x 10%° ~ 1.799 x 10%° ~ 1.071
800 ~ 5.058 x 10% ~ 4.764 x 10%3 ~ 1.062
1000 ~ 5.232 x 10%6 ~ 4.959 x 1026 ~ 1.055

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)
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PROBLEM 2: t-HOOKS

ExXAMPLE (HOOK LENGTHS)

7[5[4[3]1]
5[3]2]1

i

FIcGURE: Hook lengths for A = (5,4, 1)
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PROBLEM 2: t-HOOKS

ExXAMPLE (HOOK LENGTHS)

7[5[4[3]1]
5[3]2]1

i

FIcGURE: Hook lengths for A = (5,4, 1)

PROBLEM

Does the sequence {Yy(n)} of distributions of the number of
t-hooks in the partitions of integers n have a limiting behavior?

v
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EXAMPLE t = 2 AND n = 5000

Z THZERNY — 7047 4 921171272 + - - - + 18059433791387°% + 27,
AF5000

2.x107
15x 10"
1.x107

5.x107

o
0
0 10 20 30 40 50 60 70 80 90

FIGURE: Y2(5000)
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SOLUTION TO PROBLEM 2

THEOREM (GRIFFIN, O, TsaAr (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

. 2_ £/
pe(n) ~ ¥ — L and variance o} (n) ~ W.
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SOLUTION TO PROBLEM 2

THEOREM (GRIFFIN, O, TsaAr (2022))
(1) The sequence {Yi(n)} is asymptotically normal with mean
we(n) ~ \/T(T" — & and variance o} (n) ~ (Z2—6)16n.

273

(2) If ki () := pe(n) + or(n)z, then we have

2
nEToth(kt"( o) \ﬁ/ Tdy =: E(z).

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Our work

EXAMPLE t = 2 AND n = 5000 CONTINUED

Illustration of the cumulative distribution approximation

D5 (k2,5000(); 5000) ~ E(x).
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EXAMPLE t = 2 AND n = 5000 CONTINUED

Illustration of the cumulative distribution approximation

D5 (k2,5000(); 5000) ~ E(x).

T D2(k2’5000(l‘)7 5000) E(Z’) D2 (k2,5000($), 5000)/E(33)
—-1.5 0.0658 ... 0.0668 ... 0.9849...
0.0 0.5055. .. 0.5000. .. 1.0011...
1.0 0.8246. .. 0.8413... 0.9802...
2.0 0.9685. .. 0.9772... 0.9911...

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)
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PROBLEM 3: HOOK LENGTHS IN tN

PROBLEM

Does the sequence {Ya(n)} of distributions of the number of even
hooks in the partitions of n have a limiting behavior?
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PROBLEM 3: HOOK LENGTHS IN tN

PROBLEM

Does the sequence {Ya(n)} of distributions of the number of even
hooks in the partitions of n have a limiting behavior?

v

PROBLEM

Does the sequence {Yi(n)} of distributions of the number of
hooks in tN in the partitions of n have a limiting behavior?
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EXAMPLE t = 11 AND n = 1000

Z T#H11(A)

AF1000
= 811275879 + 78926354107 + - - - + 29672185525213602280791828408T°°.
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EXAMPLE t = 11 AND

Z T#H11(A)

n —=

1000

- + 29672185525213602280791828408T°°.

AF1000
= 811275879 + 78926354101 + - -

2.x10°1 s
A °
15 % 10°
o e
1. x 10%
.
.
.
5.x 1071 . .
S
0 ———t
0 10 20 30 40 S0 60 70 80 90

Distributions on integers partitions
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Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 3

“THEOREM” (GRIFFIN, O, ROLEN, TsaI (2022))
If t > 4, then Yi(n) is a shifted Gamma distribution.

DEFINITION

A random variable X} ¢ is Gamma distributed with parameter k£ > 0
and scale 6 > 0 if its probability distribution function is

8

1 1 -
Fio(x) := (kYo" cxF e
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Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 3

THEOREM (GRIFFIN, O, Tsar (2022))
(1) If t > 4, then

n 3(t—1)n
O
and has mean fir(n) ~ % — (-1)v6n

. ~2 3(t—1)n
5 and variance 0 (n) ~

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)

Distributions on integers partitions



Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 3

THEOREM (GRIFFIN, O, Tsar (2022))
(1) If t > 4, then

Y}(n)wﬁ— 3(t—1)n

X, )

t mt L YA
and has mean fir(n) ~ % — % and variance Gi(n) ~ 3“;:2)"_
(2) If ken(@) := fie(n) +

at(n)x, then in the lower incomplete y-function

1 —1 t—1
Y\ 5 &+ ==
lim Dy (ken(z);n) = (2 Vfl 2).
=D TS

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)
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Distributions on integers partitions
Our work

SOLUTION TO PROBLEM 3

THEOREM (GRIFFIN, O, Tsar (2022))
(1) If t > 4, then

Y;g(n)/\/ﬁf 3(t—1)n

X, )

t mt L YA
and has mean [it(n) ~ ¥ — % and variance 57 (n) ~ 24z0".
(2) If ken(@) = fie(n) +

ot(n)x, then in the lower incomplete y-function

1 1 t—1
Y T7\/Tx+7
i Bitar = LY 2

REMARK

No continuous limit for t € {2,3} as there are always vanishing terms as in

3 ) -

3007° + 1857 + 07" + 07° + 07° + 07* + 073 + 57>
AF19

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)
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‘We illustrates the approximation

D1 (k(x); 1000) ~

it
v
a
it
[

v (5; VB + 5)
24

=: Eu(x).
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Distributions on integers partitions

Our work

EXAMPLE t = 11 AND n = 1000

We illustrates the approximation

D1 (k(z); 1000) ~

7(5;\/5x+5) i

24

=: 11($).

z D1 (k(x); 1000) Ei(z) | Dii(k(x);1000)/Es (2)
—1.00 0.1319... 0.1467... 0.8993...
0.75 0.7410. .. 0.7954... 0.9315...
1.00 0.8226... 0.8474... 0.9707...
1.25 0.8872... 0.8880. .. 0.9991...

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai)
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

SOLVING PROBLEM 1

ProPOSITION
If A > 2, then for every positive integer n we have
[%]

p<i(A;n) = D p<i(i) - Preg(Asn — Aj),
=0

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

SOLVING PROBLEM 1

ProPOSITION
If A > 2, then for every positive integer n we have
[%]

p<i(A;n) = D p<i(i) - Preg(Asn — Aj),
=0

where Preg(A; ) is the A-regqular partition function.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

SOLVING PROBLEM 1

ProPOSITION
If A > 2, then for every positive integer n we have
[%]
p<k(A;n) =) p<i(j) - Preg(Asn — Aj),

Jj=0

where Preg(A; ) is the A-regqular partition function.

PROOF.
e Suppose A is counted by p<x(A4;n).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

SOLVING PROBLEM 1

ProPOSITION
If A > 2, then for every positive integer n we have
[%]
p<k(A;n) =) p<i(j) - Preg(Asn — Aj),

Jj=0

where Preg(A; ) is the A-regular partition function.

PROOF.
e Suppose A is counted by p<x(A4;n).

e Then we have
A= Areg ® AN,
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

SOLVING PROBLEM 1

PROPOSITION
If A > 2, then for every positive integer n we have
[%]
p<i(A;n) = D p<i(i) - Preg(Asn — Aj),

Jj=0

where Preg(A; ) is the A-regular partition function.

PROOF.
e Suppose A is counted by p<x(A4;n).

e Then we have
A= Areg ® AN,

where |AN| = Aj and X is counted by p<k (7).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

ERDOS-LEHNER FORMULA FOR p<k(7)

PROPOSITION (ERDOS-LEHNER (1941))

If k and j are positive integers, then

p<k(§) = (i) = Y (=1)™Sk(m; 5),

m=1
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

ERDOS-LEHNER FORMULA FOR p<k(7)

PROPOSITION (ERDOS-LEHNER (1941))
If k and j are positive integers, then

(o)
p<k(j) = p(j Z 1)™8Sk(m; 5),
=1

where

m
Sm= Y ( S+ >)
1<r1<ro<---<rm 3
Tm<ri+ro+--+rm<j—mk

and Ty, :=m(m + 1)/2.

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions
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e Conjugacy implies p<y(j) = #{\ F j

no parts > k +1}.

«Or < Fr <=

= o )

Da



Distributions on integers partitions
Problem 1: Parts that are multiples of A

PROOF OF THE FORMULA

o Conjugacy implies p<j(j) = #{\F j : no parts > k + 1}.

e We have p(j — (k+71)) = #{\Fj : with a part of size k + r.}.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

PROOF OF THE FORMULA

e Conjugacy implies p<y(j) = #{AFj : no parts > k + 1}.
e We have p(j — (k+71)) = #{\Fj : with a part of size k + r.}.

o Therefore, we have p(j) — Sk(1,7) < p<i(4).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

PROOF OF THE FORMULA

e Conjugacy implies p<y(j) = #{AFj : no parts > k + 1}.
e We have p(j — (k+71)) = #{\Fj : with a part of size k + r.}.
o Therefore, we have p(j) — Sk(1,7) < p<i(4).

e By overcounting, we have

p() = Sk(155) < p<k(d) < p(5) — Sk(1;5) + Sk(2:7)-
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

PROOF OF THE FORMULA

o Conjugacy implies p<j(j) = #{\F j : no parts > k + 1}.
e We have p(j — (k+ 7)) = #{AFj : with a part of size k + r.}.
o Therefore, we have p(j) — Sk(1,7) < p<i(4).
e By overcounting, we have
p() = Sk(1;5) < p<r(h) < p(F) — Sk(1;5) + Sk(2:7).

e Inclusion-Exclusion. O

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

“HAND WAVY PROOF” OF OUR THEOREM

o We start with the elementary formula

L%
p<i(A;n) = per(d) - Pres(A;n — Aj),
=0
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

“HAND WAVY PROOF” OF OUR THEOREM

o We start with the elementary formula
L4)
p<i(Ain) =Y p<i(i) - Preg(Asn — Aj),

j=0

e By Erdds-Lehner formula for p<j(j), we have
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

“HAND WAVY PROOF” OF OUR THEOREM

o We start with the elementary formula
L%
p<i(Ain) = p<ili) - Preg(Asn — Aj),
7=0
e By Erdds-Lehner formula for p<j(j), we have

%] /
p<k(4;n) = (Z (1)m5k(m;j)> Preg(A;n — Aj).

=0 \m=0
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

“HAND WAVY PROOF” OF OUR THEOREM

o We start with the elementary formula
L4)
p<i(Ain) = p<ili) - Preg(Asn — Aj),
7=0

e By Erdds-Lehner formula for p<j(j), we have

%] /
p<k(4;n) = Z (Z (1)m5k(m;j)> Preg(A;n — Aj).

=0 \m=0

e Dividing by p(n) we get

pern(Ain) LA (0% (—1)™Sk(m; 5)) preg(Asn — Aj) |

p(n) p(n)

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



e Counterintuitively let Sj(m;j) := Sk(m;j)/p(j).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Counterintuitively let S} (m;j) := Sk(m;j)/p(7).

e Therefore, we get

l%) / o . .
p<k(4Ain) _ 1y GE (s 4 | PU)Preg(Asn — Aj)

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Counterintuitively let S} (m;j) := Sk(m;j)/p(7).

e Therefore, we get

l%) / o . .
p<k(4Ain) _ 1y GE (s 4 | PU)Preg(Asn — Aj)
p(n) = (mZ:O( 1) Sk( 7])) [)(TZ) .

e Erdos and Lehner proved

Sitmi) ~ o )

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Counterintuitively let S} (m;j) := Sk(m;j)/p(7).

e Therefore, we get

14] / ~ . .
p<k(A;n) C1ymGr (e 4 | . PU)Pre(Asn — AJ)
p(n) - = (mZ:O( 1) Sk( 7])) [)(TZ) .

e Erdos and Lehner proved

Sitmi) ~ o )

e For every m this means Si(m;j) ~ ;- Si(1;5)™,

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Counterintuitively let S} (m;j) := Sk(m;j)/p(7).

e Therefore, we get

pﬁk(A; n) _ e (i(—l)MSZ(maJ)> ) p(j)prcg(A§n - AJ) '

p(n) — p(n)

j m=0

e Erdos and Lehner proved

Sitmi) ~ o )

e For every m this means S} (m;j) ~ % -SE(1;5)™, giving

[e.e]

D (=18}, (m; ) ~ exp(=Sj, (1;5))-

m=0

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have

L

w3

p<k(A;n) exp(— S (1.].))_p(j)preg(A;n—Aj)'

p(n) = p(n)

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have

L

w3

p<k(4in) ex(—S* (107 P(J)Preg(A;n — Aj)

e Hardy-Ramanujan proved
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Therefore, as a sum in j we have

L . )
pgk(A,n) ~ GXP(—S}:n(l,j)) . p(J)Preg(As n— AJ) )

p(n) = p(n)

w3

e Hardy-Ramanujan proved

L aE

e Hagis proved that

DN = =

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Therefore, each jth summand has the “factor”

p(.j)preg(A§ n— A])
p(n)

C n - A— . A— .
- (24n—24A;—1+A)%76xP <C (f_\/ﬁ+\/Tl (”_A]J’Tl))) (1+0,7H)
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Therefore, each jth summand has the “factor”

p(j)preg(A§ n— A])
p(n)

C n - A— . A— .
- (24n—24A;—1+A)%76xP <C (f_\/ﬁ+\/Tl (”_A]J’Tl))) (1+0,7H)

e The convenient change of variable j = |n/A2?] + y gives

Ca AZn
(24n — 24n/A — 24Ay — 1+ A)in+ A%y

X €xp (C (m—\/ﬁ+\/% (n—n/A—Ay+ %))) . (1+Oy(n’%)).

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



e In the limit the sum is supported on |y| < n3/*log(n).
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e In the limit the sum is supported on |y| < n®/*log(n).

e Therefore, the desired overall limit is

_ A2 1 cAt 2 2 1
i 0D | 961/A/A=1 - (_S(A ST vl d (_ExAC))

ly|<n3/4log(n
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e In the limit the sum is supported on |y| < n®/*log(n).

e Therefore, the desired overall limit is

_ A2 1 cAt 2 2 1
Jim o> 961/4\/— . (_S(A e AC (_Q”AC))

ly|<n3/4log(n

e Letting n — +o00, this converges to the limit of integrals

log(n) CA4 5 ) 1
55 [y (i~ e (34) ) @

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



e Dependence on n is only in limits of integration!
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Dependence on n is only in limits of integration!

e The part involving ¢ vanishes after integration as n — +oo.
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Distributions on integers partitions
Problem 1: Parts that are multiples of A

e Dependence on n is only in limits of integration!
e The part involving ¢ vanishes after integration as n — +oo.

e This only leaves

. P<k, (Asn) 2 1
Pskn \fH10) 2 _ - ) [
nhI_iI_l ) exp ( c exp ( 233AC'>>

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions



Distributions on integers partitions
Solving Problems 2 and 3

COUNTING HOOKS

THEOREM (HAN, 2008)

as 1-d

i S gAITAUERO} ﬁ T—1)¢")"
Q) =) Pi(nT)q" == T —n,
n=0 A

(n; A #He ) _ T (1—q")
=S Rt = S = T s

A

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions
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Distributions on integers partitions
Solving Problems 2 and 3

IMPORTANT ASYMPTOTICS

ProposITION

Ifn e (0,1 andn <T <n~ ' and ¢(T) := \/72/6 — Li2(1 - T),
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Distributions on integers partitions
Solving Problems 2 and 3

IMPORTANT ASYMPTOTICS

ProposITION

Ifn € (0,1 andn <T <n~' and ¢(T) := /n2/6 — Liz(1 — T), then

T c -1 _1
P T) = — 2L V) (14 0,7h)),
2v2mnT'2
where Liz(2) := — [, Wdu is the dilogarithm function.
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Distributions on integers partitions
Solving Problems 2 and 3

IMPORTANT ASYMPTOTICS

ProposITION

Ifn € (0,1 andn <T <n~' and ¢(T) := /n2/6 — Liz(1 — T), then

T c m——L _1
Py(n;T) = L)t .e (T)(2f ﬁ) ] (1 + Oy(n %)) ,
2v2mnT2
where Liz(2) := — [, Wdu is the dilogarithm function.
PRrRoPOSITION

If t is a positive integer and T := {T,} is a positive real sequence for which
a(T)+eq(n)

T.=e V=  where a(T) is real and e7(n) = or(1),
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Distributions on integers partitions
Solving Problems 2 and 3

IMPORTANT ASYMPTOTICS

ProposITION

Ifn € (0,1 andn <T <n~' and ¢(T) := /n2/6 — Liz(1 — T), then

T c m——L _1
Pi(m;T) = L)t D (va-F) | (1 +0y(n %)) ,
2v2mnT'2
where Liz(2) := — [, Wdu is the dilogarithm function.
PRrRoPOSITION

If t is a positive integer and T := {T,} is a positive real sequence for which
a(T)+eq(n)

T,=e v» , where a(T) is real and er(n) = or(1), then

t
5 1 1 a(T)( mt )5 v/ + 200
BniTo) ~ —— 4| == + e sT).
)~ Ve T T \mirvea)
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Distributions on integers partitions
Solving Problems 2 and 3

PROVING THE PROPOSITIONS REQUIRES

LEMMA

Ifn € (0,1], then for a >0 andn < T < n~" we have

;log(l —e ') = —g—a - %log (g> + O(a),

2w
= 2n(T —1) Liz(1 —1T)
= 1

g I = Tl e oz T o)
= _ Lix(1-T) 1
» log (1+(T—1)e ™) = —=2—-2 — ~logT+ O
2 og (1+ ( )e” ") - 5 108 T + Oy(a),

t*n’e " 2 Lig(1-T)

gk

(1+ (T —1)e-tne)2 — a3 T -1 + On(a).

n=1

Ken Ono (with M. Griffin, L. Rolen, and W.-L. Tsai) Distributions on integers partitions




Distributions on integers partitions
Solving Problems 2 and 3

PROVING THE PROPOSITIONS REQUIRES

LEMMA

Ifn € (0,1], then for a >0 andn < T < n~" we have

2

S log(1 — o9 = _ T _ Lo (@

D low(1 =) = 5 5108 (5= ) +O(a),

— t*n(T'—1) _ Li(1-T)

7;1 — 1+6tno¢ - a2 +O’7(1)7

= tne Li(1-T7) 1

;lg(l—l—(T—l)e ¢ ):—%—glogT—kOn(a)?
t3n2e~ine 2 Lix(1-1T)

< (1+(T _1)67tna)2: 2@ T_1 + On(a).

||M8

+ Connect to Han’s Gen. Fcns + Technical “saddle point” calculations.
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Distributions on integers partitions
Solving Problems 2 and 3

SOLUTIONS TO PROBLEMS 2 AND 3

PROOF.

(1) Use these results to compute “moment generating functions.”
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Distributions on integers partitions
Solving Problems 2 and 3

SOLUTIONS TO PROBLEMS 2 AND 3

PROOF.

(1) Use these results to compute “moment generating functions.”

THEOREM (CURTISS, 19408)

Let {X,,} be real random variables
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Distributions on integers partitions
Solving Problems 2 and 3

SOLUTIONS TO PROBLEMS 2 AND 3

PROOF.

(1) Use these results to compute “moment generating functions.”

THEOREM (CURTISS, 19408)
Let {X,,} be real random variables with moment gen. fcns.
(o)
Mx, (r) := / e dF,(x),
—00

where F,,(x) are the cumulative distributions.
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Distributions on integers partitions
Solving Problems 2 and 3

SOLUTIONS TO PROBLEMS 2 AND 3

PROOF.

(1) Use these results to compute “moment generating functions.”

THEOREM (CURTISS, 19408)
Let {X,,} be real random variables with moment gen. fcns.
(o)
Mx, (r) := / e dF,(x),
—00

where F,,(x) are the cumulative distributions.
If the {Mx, (r)} converge, then the {X,} converge.
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Distributions on integers partitions
Solving Problems 2 and 3

SOLUTIONS TO PROBLEMS 2 AND 3

PROOF.

(1) Use these results to compute “moment generating functions.”

THEOREM (CURTISS, 19408)
Let {X,,} be real random variables with moment gen. fcns.
(o)
Mx, (r) := / e dF,(x),
—00

where F,,(x) are the cumulative distributions.
If the {Mx, (r)} converge, then the {X,} converge.

(2) Prove convergence and recognize as normal and shifted
Gamma respectively.
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Distributions on integers partitions
Summary

PROBLEM 1: PARTS IN AN

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))
If C == m\/2/3 and kn, = kn(z) := 4=/nlogn + \/nz, then

A; 2 :
lim pﬁk’n( ,TL) = oxp <__ . e—;ACa) ]
n—-+o0o p(’n,)
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Distributions on integers partitions

Summary

PROBLEM 1: PARTS IN AN

THEOREM (GRIFFIN, O, ROLEN, TSAI (2021))
If C == m\/2/3 and kn, = kn(z) := 4=/nlogn + \/nz, then

A; 2 -
11m pgkn( ﬂn) — eXp <__ . e—;AC,L) .
n——+0o p(’n,)

REMARKS
(1) These are Gumbel distributions.

(2) The mean and variance are:

2 2
Mean := E (log (E) +7Euler> 9

Variance := 1/4%.
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Distributions on integers partitions
Summary

PROBLEM 2: t HOOKS

THEOREM (GRIFFIN, O, TsaAr (2022))

(1) The sequence {Yi(n)} is asymptotically normal with mean

. 2_ £/
pe(n) ~ ¥ — L and variance o} (n) ~ W.
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PROBLEM 2: t HOOKS

THEOREM (GRIFFIN, O, TsaAr (2022))
(1) The sequence {Yi(n)} is asymptotically normal with mean
we(n) ~ \/T(T" — £ and variance o} (n) ~ (Z2—6)16n.

273

(2) If ki () := pe(n) + or(n)z, then we have

2
nEToth(kt"( o) \ﬁ/ Tdy =: E(z).
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PROBLEM 3: HOOKS IN tN

THEOREM (GRIFFIN, O, Tsar1 (2022))
(1) If t > 4, then

?t(n)Nﬁ_ S(t—l)n

X1 =
t Tt 7 Vi1
~ n _ (=1)V6n ' ~2 3(t—1)n
and has mean jiy(n) ~ ¥ — =" and variance o; (n) ~

m2t2
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PROBLEM 3: HOOKS IN tN

THEOREM (GRIFFIN, O, Tsar1 (2022))
(1) If t > 4, then

?t(n)’\‘ﬁ— S(t—l)n

- X, :
t it S
and has mean fir(n) ~ % — % and variance 52 (n) ~ SUn

m2t2

(2) If ki.n(z) := fe(n) + o¢(n)x, then in the lower incomplete y-function

7(21,\/:)%5)

tim Dy (e (@)in)
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EXECUTIVE SUMMARY

e Parts in AN correspond to Gumbel Distributions.
@ t-hooks correspond to Normal Distributions.

o tN hooks correspond to shifted Gamma distributions.
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