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Partition Statistics in Arithmetic Progressions
Partitions

The Partition function p(n)

Definition
A partition of an integer n is any nonincreasing sequence

Λ := {λ1, λ2, . . . , λt}

of positive integers which sum to n.

Notation
The partition function

p(n) := # partitions of n.

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 =⇒ p(4) = 5.
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Partitions

Ramanujan’s Legacy

Theorem (Hardy and Ramanujan)

We have that
p(n) ∼ 1

4n
√

3
· eπ

√
2n
3 .

Theorem (Ramanujan)

For every n, we have that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).
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Partitions

Dyson’s Rank

Definition

The rank of a partition is its largest part minus its number of parts.

N(m,n) := #{partitions of n with rank m}.

Example

The ranks of the partitions of 4:

Partition Largest Part # Parts Rank
4 4 1 3 ≡ 3 (mod 5)

3 + 1 3 2 1 ≡ 1 (mod 5)
2 + 2 2 2 0 ≡ 0 (mod 5)

2 + 1 + 1 2 3 −1 ≡ 4 (mod 5)
1 + 1 + 1 + 1 1 4 −3 ≡ 2 (mod 5)
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Partitions

Dyson’s Conjecture

Definition
If 0 ≤ a < b, then let

N(a, b;n) := #{partitions of n with rank ≡ a mod b}.

Conjecture (Dyson, 1944)

For every n and every a, we have

N(a, 5; 5n+ 4) = p(5n+ 4)/5,

N(a, 7; 7n+ 5) = p(7n+ 5)/7.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions

Dyson’s Conjecture

Definition
If 0 ≤ a < b, then let

N(a, b;n) := #{partitions of n with rank ≡ a mod b}.

Conjecture (Dyson, 1944)

For every n and every a, we have

N(a, 5; 5n+ 4) = p(5n+ 4)/5,

N(a, 7; 7n+ 5) = p(7n+ 5)/7.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions

Equidistribution of Ranks modulo t

Theorem (Atkin and Swinnerton-Dyer, 1954)

Dyson’s Conjecture is true.

Theorem (Bringmann (Duke Math. J, 2008))

Dyson’s Rank functions N(a, b;n) satisfy

lim
n→+∞

N(a, b;n)

p(n)
=

1

b
.

Remark

Consequences of harmonic Maass form theory (“mock modularity”).
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Partitions

Natural Questions

Questions

Suppose s(Λ) is an integer valued partition invariant,

and let

C(a, b;n) := #{Size n partitions Λ with s(Λ) ≡ a (mod b)}.

1 What can be said about the distribution of

p(n) = C(0, b;n) + C(1, b;n) + · · ·+ C(b− 1, b;n)?

2 For instance, do we have equidistribution

lim
n→+∞

C(a, b;n)

p(n)
=

1

b
?
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Partitions

New Examples

Questions
What can be said about the distributions of

Partition hook numbers?

Betti numbers of Hilbert schemes?
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Partitions
Hooks

Hook Numbers

Definition
Each partition λ1 ≥ λ2 ≥ · · · ≥ λm has a Ferrers-Young diagram

• • • · · · • ← λ1 nodes
• • . . . • ← λ2 nodes
...

...
...

• . . . • ← λm nodes,

The node in row k and column j has hook number

h(k, j) := (λk − k) + (λ′j − j) + 1,

where λ′j is the number of nodes in column j.
A t-hook is any hook number which is a multiple of t.
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Partitions
Hooks

An example

Example
The partition Λ = 5 + 4 + 1, has Young diagram

Therefore, we have

(Hooks) H(Λ) = {1, 1, 1, 2, 3, 3, 4, 5, 5, 7}
(2 Hooks) H2(Λ) = {2, 4}
(3 Hooks) H3(Λ) = {3, 3}.
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Hook numbers and representation theory

Theorem (Classical)

1 There are p(n) many irreducible representations of Sn.

2 The Sn action on standard tableaux of partitions Λ gives

ρΛ : Sn 7→ GL(VΛ).

In terms of hook numbers, we have

dim(VΛ) =
n!∏

h∈H(Λ) h(i, j)
.

Remarks

(1) The p-divisibility of hook numbers dictates divisibility of dim(VΛ).
(2) Granville-O solved Brauer’s Problem 19 by classifying Hp(Λ) = ∅.
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Hooks and Infinite Products

Theorem (Nekrasov-Okounkov, 2003)

For any complex number z, we have

∞∏
n=1

(1− qn)z−1 =
∑

Λ

q|Λ|
∏

h∈H(Λ)

(
1− z

h2

)
.

Theorem (Han, 2008)

For t ∈ N, roots of unity ζ and z ∈ C we have

∞∏
n=1

(1− qtn)t

(1− (ζqt)n)t−z(1− qn)
=
∑

Λ

q|Λ|
∏

h∈Ht(Λ)

(
ζ − ζtz

h2

)
.
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Eclipses classical theta function identities

• (Euler) q
∏∞
n=1(1− q24n) = q − q25 − q49 + q121 + q169 − . . . .

• (Jacobi) q
∏∞
n=1(1− q8n)3 = q − 3q9 + 5q25 − 7q49 + 11q121 − . . . .

• (Gauss) q
∏∞
n=1

(1−q16n)2

(1−q8n) = q+ q9 + q25 + q49 + q121 + q169 + . . . .

Remarks

(1) N-O gives the first two with z = 2, 4 by expanding∑
Λ`n

∏
h∈H(Λ)

(
1− z

h2

)
.

(2) The N-O and Han q-series “are” modular forms when z ∈ Z.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Eclipses classical theta function identities

• (Euler) q
∏∞
n=1(1− q24n) = q − q25 − q49 + q121 + q169 − . . . .

• (Jacobi) q
∏∞
n=1(1− q8n)3 = q − 3q9 + 5q25 − 7q49 + 11q121 − . . . .

• (Gauss) q
∏∞
n=1

(1−q16n)2

(1−q8n) = q+ q9 + q25 + q49 + q121 + q169 + . . . .

Remarks

(1) N-O gives the first two with z = 2, 4 by expanding∑
Λ`n

∏
h∈H(Λ)

(
1− z

h2

)
.

(2) The N-O and Han q-series “are” modular forms when z ∈ Z.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Eclipses classical theta function identities

• (Euler) q
∏∞
n=1(1− q24n) = q − q25 − q49 + q121 + q169 − . . . .

• (Jacobi) q
∏∞
n=1(1− q8n)3 = q − 3q9 + 5q25 − 7q49 + 11q121 − . . . .

• (Gauss) q
∏∞
n=1

(1−q16n)2

(1−q8n) = q+ q9 + q25 + q49 + q121 + q169 + . . . .

Remarks

(1) N-O gives the first two with z = 2, 4 by expanding∑
Λ`n

∏
h∈H(Λ)

(
1− z

h2

)
.

(2) The N-O and Han q-series “are” modular forms when z ∈ Z.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Counting t-Hooks in Partitions

Definition

If t ∈ Z+ and 0 ≤ a < b, then we define

pt(a, b;n) := #{Λ ` n : #Ht(Λ) ≡ a (mod b)}.

Moreover, we define the density function

Ψt(a, b;n) :=
pt(a, b;n)

p(n)
.

Question
For large n, what is the distribution of

p(n) = pt(0, b;n) + pt(1, b;n) + · · ·+ pt(b− 1, b;n) ?
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Number of 3-hooks modulo 3

Remark
The number of 3-hooks seems to be equidistributed modulo 3.
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Number of 2-hooks modulo 3

Questions
1 What is going on?
2 Does it matter that the n in the table are multiples of 3?
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Number of 4-hooks modulo 3

Speculation

lim
n→+∞

Ψ4(a, 3; 12n) =


4/9 if a = 0

1/3 if a = 1

2/9 if a = 2

?
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Partitions
Hooks

Distributions

Theorem (B-C-M-O)

If t > 1 and 0 ≤ a < b, where b is an odd prime, then we have

pt(a, b;n) ∼ ct(a, b;n)

4
√

3n
· eπ

√
2n
3 .

Moreover, the function ct(a, b;n) is periodic in n modulo b.

Remarks
1 Equidistribution requires ct(a, b;n) = 1/b.

2 Theorem known earlier for t = 2 by Craig and Pun.
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Partitions
Hooks

Formulas for ct(a, b;n)

Definition
If 0 ≤ a < b, where b is an odd prime, then

Here I(a, b, t, n) is a certain residue class indicator function, and
εb := 1 (resp, i) when b ≡ 1 (mod 4) (resp. b ≡ 3 (mod 4)).

Remark
We have equidistribution precisely when b | t.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Formulas for ct(a, b;n)

Definition
If 0 ≤ a < b, where b is an odd prime, then

Here I(a, b, t, n) is a certain residue class indicator function, and
εb := 1 (resp, i) when b ≡ 1 (mod 4) (resp. b ≡ 3 (mod 4)).

Remark
We have equidistribution precisely when b | t.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Formulas for ct(a, b;n)

Definition
If 0 ≤ a < b, where b is an odd prime, then

Here I(a, b, t, n) is a certain residue class indicator function, and
εb := 1 (resp, i) when b ≡ 1 (mod 4) (resp. b ≡ 3 (mod 4)).

Remark
We have equidistribution precisely when b | t.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Vanishing for t ∈ {2, 3}

Theorem (B-C-M-O)

The following are true for primes `.
(1) If ` is odd and (−16a1+8a2+1

` ) = −1, then we have

p2(a1, `; `n+ a2) = 0.

(2) If ` ≡ 2 (mod 3) and ord`(−9a1 + 3a2 + 1) = 1, then we have

p3

(
a1, `

2; `2n+ a2

)
= 0.

Question
The proof uses theta functions and weight 1 Eisenstein series.
Is there an “elementary combinatorial proof”?
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Partitions
Hooks

Examples

Example (2 hooks)

For ` = 3, part (1) implies

p2(0, 3; 3n+ 2) = p2(1, 3; 3n+ 1) = p2(2, 3; 3n) = 0.

There are 1
2 (`2 − `) many pairs (a1, a2) (mod `) with this vanishing.

Example (3 hooks)

For ` = 2, part (2) gives

p3(0, 4; 4n+ 3) = p3(1, 4; 4n+ 2) = p3(2, 4; 4n+ 1) = p3(3, 4; 4n) = 0.

For ` ≡ 2 (mod 3) and each 0 ≤ a1 < `2, there are `− 1 choices for a2.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Examples

Example (2 hooks)

For ` = 3, part (1) implies

p2(0, 3; 3n+ 2) = p2(1, 3; 3n+ 1) = p2(2, 3; 3n) = 0.

There are 1
2 (`2 − `) many pairs (a1, a2) (mod `) with this vanishing.

Example (3 hooks)

For ` = 2, part (2) gives

p3(0, 4; 4n+ 3) = p3(1, 4; 4n+ 2) = p3(2, 4; 4n+ 1) = p3(3, 4; 4n) = 0.

For ` ≡ 2 (mod 3) and each 0 ≤ a1 < `2, there are `− 1 choices for a2.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Examples

Example (2 hooks)

For ` = 3, part (1) implies

p2(0, 3; 3n+ 2) = p2(1, 3; 3n+ 1) = p2(2, 3; 3n) = 0.

There are 1
2 (`2 − `) many pairs (a1, a2) (mod `) with this vanishing.

Example (3 hooks)

For ` = 2, part (2) gives

p3(0, 4; 4n+ 3) = p3(1, 4; 4n+ 2) = p3(2, 4; 4n+ 1) = p3(3, 4; 4n) = 0.

For ` ≡ 2 (mod 3) and each 0 ≤ a1 < `2, there are `− 1 choices for a2.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hooks

Examples

Example (2 hooks)

For ` = 3, part (1) implies

p2(0, 3; 3n+ 2) = p2(1, 3; 3n+ 1) = p2(2, 3; 3n) = 0.

There are 1
2 (`2 − `) many pairs (a1, a2) (mod `) with this vanishing.

Example (3 hooks)

For ` = 2, part (2) gives

p3(0, 4; 4n+ 3) = p3(1, 4; 4n+ 2) = p3(2, 4; 4n+ 1) = p3(3, 4; 4n) = 0.

For ` ≡ 2 (mod 3) and each 0 ≤ a1 < `2, there are `− 1 choices for a2.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Partitions
Hilbert schemes

Hilbert schemes on n points

Definition

The nth Hilbert scheme of a projective variety S is a
“smoothed” version of the nth symmetric product of S.

Example (Göttsche and Buryak, Feigin, & Nakajima)

Denote the Hilbert scheme of n points of C2 by (C2)[n].
For 0 ≤ a < b, we define the modular sums of Betti numbers

B
(
a, b;

(
C2
)[n]
)

:=
∑

j≡a (mod b)

dim
(
Hj

((
C2
)[n]

,Q
))

.

The homology is labelled by the partitions of n, and so we have

p(n) =

b−1∑
a=0

B
(
a, b;

(
C2
)[n]
)
.
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Distribution Functions

Question
For large n, what is the distribution of

p(n) =

B
(
0, b; (C2

)[n]
) +B

(
1, b; (C2)[n]

)
+ · · ·+B

(
b− 1, b; (C2

)[n]
) ?

Definition
If 0 ≤ a < b, then define the Betti distribution functions

δ(a, b;n) :=
B
(
a, b;

(
C2
)[n]
)

p(n)
.
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Numerical Example

Remark
This looks like equidistribution!
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Betti number distribution

Theorem (B-C-M-O)

As n→∞, we have

B
(
a, b;

(
C2
)[n]
)
∼ d(a, b)

4
√

3n
· eπ
√

2n
3 ,

where

d(a, b) :=


1
b if b is odd,
2
b if a and b are even,
0 if a is odd and b is even.

Remarks

(1) We have equidistribution for odd b.
(2) We have equidistribution over even classes modulo even b.
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Partition Statistics in Arithmetic Progressions
Circle Method

Proofs rely on the Circle Method

1 For partition statistic s(Λ), consider the generating function

Gs(q) :=
∑

Λ

zs(Λ)q|Λ|.

2 For 0 ≤ a < b and ζb := e2πi/b, we have

Gs(a, b; q) :=
1

b

b−1∑
r=0

ζ−arb Gs(ζ
r
b ; q) =

∑
Λ

s(Λ)≡a (mod b)

q|Λ|.

3 Therefore, by Cauchy’s Theorem we get

#{Λ ` n with s(Λ) ≡ a (mod b)} =
1

2πi

∫
C

Gs(a, b; q)

qn+1
dq.
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#{Λ ` n with s(Λ) ≡ a (mod b)} =
1

2πi

∫
C

Gs(a, b; q)

qn+1
dq.
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Remarks about the Circle Method

1 Great for modular generating functions!
Often gives exact formulas (i.e. Rademacher expansions).

2 “Wright’s Variant” is sufficient for asymptotics for many
other generating functions.
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Theorem (Wright)
Suppose the following for F (q) =

∑
c(n)qn = L(q)ξ(q).

(1) For k ≥ 1, as |z| → 0 in the cone |Arg(z)| < π
2
− δ, we have

L(e
−z

) =
1

zB

k−1∑
j=0

αjz
j

+ Oδ

(
z
k
)

ξ(e
−z

) = z
β
e
c2

z

(
1 + Oδ

(
e
−γ
z

))
.

(2) As |z| → 0 in the cone π
2
− δ ≤ |Arg(z)| < π

2
, we have L(e−z)�δ z−C .

(3) As |z| → 0 in the bounded cone π
2
− δ ≤ |Arg(z)| < π

2
, we have

|ξ(e−z)| �δ ξ(|e
−z |)e−

%
z .

If (1)-(3) hold, then as n→∞ we have for any R ∈ R+

c(n) = n
1
4
(2B−2β−3)

e
2c
√
n

R−1∑
r=0

prN
− r

2 + O

(
N
−R

2

)
.

 ,
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t-hook generating function

Theorem (Han, 2008)

As formal power series, we have

Ht(z; q) :=
∑
Λ∈P

z#Ht(Λ)q|Λ| =
1

F2(z; qt)t
·
∞∏
n=1

(1− qtn)
t

1− qn
,

where F2(z; q) :=
∏∞
n=1 (1− (zq)n) .

Remarks

1 Note that Ht(1; q) =
∑∞
n=0 p(n)qn.

2 Dedekind’s eta-function η(τ) := q1/24
∏∞
n=1(1− qn) is a weight

1/2 modular form in q := e2πiτ .

3 For roots of unity z = ζ, we have that Ht(ζ; q) is “essentially” a
weight -1/2 modular form.
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Betti Numbers for n point Hilbert schemes

Theorem (Göttsche 1992)

As formal power series, we have that

G(z; q) :=

∞∑
n=0

P
((

C2
)[n]

; z
)
qn =

∞∏
m=1

1

1− z2m−2qm
,

where P
((

C2
)[n]

; z
)
is the Poincaré polynomial.

Remarks
1 Note that G(1; q) =

∑∞
n=0 p(n)qn.

2 At roots of unity z = ζ, this q-series is not a modular form.
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Asymptotics for various infinite products

Some Infinite Products

Definition

For roots of unity z, we define

F1(z; q) :=

∞∏
n=1

(1− zqn) ,

F2(z; q) :=

∞∏
n=1

(1− (zq)n) ,

F3(z; q) :=

∞∏
n=1

(
1− z−1(zq)n

)
.

Remarks

1 We need to determine their behavior as q → roots of unity.

2 F2(ζ; q) is a twisted Dedekind eta-function.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Asymptotics for various infinite products

Some Infinite Products

Definition

For roots of unity z, we define

F1(z; q) :=

∞∏
n=1

(1− zqn) ,

F2(z; q) :=

∞∏
n=1

(1− (zq)n) ,

F3(z; q) :=

∞∏
n=1

(
1− z−1(zq)n

)
.

Remarks

1 We need to determine their behavior as q → roots of unity.

2 F2(ζ; q) is a twisted Dedekind eta-function.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
Asymptotics for various infinite products

Some Infinite Products

Definition

For roots of unity z, we define

F1(z; q) :=

∞∏
n=1

(1− zqn) ,

F2(z; q) :=

∞∏
n=1

(1− (zq)n) ,

F3(z; q) :=

∞∏
n=1

(
1− z−1(zq)n

)
.

Remarks

1 We need to determine their behavior as q → roots of unity.

2 F2(ζ; q) is a twisted Dedekind eta-function.

K. Bringmann, W. Craig, J. Males, and K. Ono Partition Statistics in Arithmetic Progressions



Partition Statistics in Arithmetic Progressions
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Asymptotics of F2(ζ; q)

Lemma

Let ζ = e
2πia
b and q = e

2πi
k

(h+iz), where gcd(h, k) = 1.
Then as z → 0 we have

F2

(
ζ; qt

)
∼ ω−1

htλh,a
k

+
λh,aa

b
,λh,a

(
λh,atz

k

)− 1
2

e
− πk

12λ2
h,a

tz
.

Remarks
1 Essentially a twisted modular transformation law for

Dedekind’s eta-function.
2 RHS depends on automorphy factors (i.e. Dedekind sums).
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Asymptotic of F1(ζ; q) and F3(ζ; q)

Theorem (B-C-M-O)

If ζ is a primitive b-th root of unity, then we have:
(1) Assume that ζ 6= 1. As x→ 0+, we have

F1

(
ζ; e−x

)
=

1√
1− ξ

e
− ζΦ(ζ,2,1)

x
− ζx

12(1−ζ) +O(x2).

(2) As x→ 0+, we have

F3

(
ζ; e−x

)
=

√
2π(bx)

1
2
− 1
b

∏
1≤j≤b−1

1

(1− ζj)
j
b

e
− π2

6b2x
+
(
− b

4
+ 7

24
−Sb(ζ)

b

)
x+O(x2)

.
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asymptotics for F1(ζ; q) and F3(ζ; q)

1 Euler-Maclaurin summation gives

2 If we have h(x) ∼
∑∞

n=0 cnx
n, then as x→ 0+, we have

∞∑
n=0

h((n+ a)x) ∼ Ih
x
−
∞∑
n=0

cnBn+1(a)

n+ 1
xn, (1)

where Ih :=
∫∞

0 h(u)du.
3 Lots of little details to get right.
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Partition Statistics in Arithmetic Progressions
Asymptotics for various infinite products

Leads to a Key Lemma

Remarks

1 Apply lemma to the logarithms of F1(ζ; q) and F3(ζ; q).

2 Exponentiate to get the asymptotics.

3 Inserting into the Circle Method(s) gives our results!
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Partition Statistics in Arithmetic Progressions
Summary

t-hook Distributions

Theorem (B-C-M-O)

If t > 1 and 0 ≤ a < b, where b is an odd prime, then we have

pt(a, b;n) ∼ ct(a, b;n)

4
√

3n
· eπ

√
2n
3 .

Moreover, we have equidistribution precisely when b | t.

Remark
For t ∈ {2, 3} there is a web of arithmetic progressions with

p2(a1, `; `n+ a2) = 0 p3(a1, `
2; `2n+ a2) = 0.
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Summary

Betti numbers on n point Hilbert schemes

Theorem (B-C-M-O)

As n→∞, we have

B
(
a, b;

(
C2
)[n]
)
∼ d(a, b)

4
√

3n
· eπ
√

2n
3 ,

where

d(a, b) :=


1
b if b is odd,
2
b if a and b are even,
0 if a is odd and b is even.

Remarks

(1) We have equidistribution for odd b.
(2) We have equidistribution over odd classes modulo even b.
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