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A mathematical universe

A universe based on child’s play

One easily sees that

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1,

and so we say that
p(5) = 7.
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A mathematical universe

Can we count the “uncountable”?

p(2) = 2

p(4) = 5

p(8) = 22

p(16) = 231

p(32) = 8349

p(64) = 1741630

p(128) = 4351078600

p(256) = 365749566870782

p(512) = 4453575699570940947378

I dare you to count p(200)!
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A mathematical universe

Why do partitions matter?

Modular & automorphic forms - generating functions,
congruences, Galois representations and the “circle method”.

Symmetric functions & representation theory - Young
diagrams, Schur/Hall-Littlewood bases, hook-length formula,
Frobenius characteristic, Sn characters,. . .

q-series & identities - Rogers-Ramanujan, Andrews-Gordon,
Bailey chains, product-sum transformations,. . .

Geometry & physics - Hilbert schemes of points,
Donaldson/Gromov-Witten/BPS state counts, VOA/partition
functions in topological strings.

Probability & statistical mechanics - Plancherel measure
and limit shapes, plane partitions, Bose-Einstein combinatorics.
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Computing p(n)

Leonhard Euler’s “recurrence”

Theorem (Euler (1700s))

We have that

p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+p(n−12)+p(n−15)−. . . .

Remark
The first 200 values were famously computed this way in 1915.

1, 1, 2,3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176,

231, 297, . . . . . . . . . . . . . . . , p(200) = 3972999029388.
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Pursuit of a Formula

Hardy-Ramanujan Theorem (1918)

For large n, we have

p(n) ∼ 1

4n
√
3
eπ
√

2n/3.

Remark (“Circle Method”)

Based on Cauchy’s Integral Formula.
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Pursuit of a Formula

This means....

If we let Approx(n) := 1
4n

√
3
· eπ
√

2n/3, then we have

n p(n) Approx(n) Approx(n)
p(n)

10 42 48.104. . . 1.145. . .
20 627 692.384. . . 1.104. . .
30 5604 6080.435. . . 1.085. . .
40 37338 40080.080. . . 1.073. . .
50 204226 217590.501. . . 1.065. . .

...
...

...
...

∞ ∞ ∞ 1
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Rademacher’s Exact formula

Rademacher’s “Epiphany”

Theorem (Rademacher (1943))

If n is a positive integer, then

p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√
24n− 1

6k

)
.

Remark
Perfectly good integers expressed as infinite convergent sums.
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Rademacher’s Exact formula

Example (First 10 approximations for p(1) = 1.)

N PN (1)

1 1.13355 . . .
2 1.00296 . . .
3 0.97318 . . .
...

...
8 1.00528 . . .
9 1.00633 . . .
10 1.00633 . . .

The 10th approximation is worse than the 2nd!

Question
But can we actually use this formula to prove new theorems?
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Bruinier-O’s Exact formula

A finite algebraic formula

Theorem (Bruinier-O (2011))

There is an explicit Maass function P (τ) on X0(6) for which

p(n) =
1

24n− 1
· (P (αn,1) + P (αn,2) + · · ·+ P (αn,hn)) .

The numbers P (αn,m) are algebraic.

Remarks

(1) The α′s are roots of hn ∼
√
n many quadratic equations.

(2) (Brunier-O-Sutherland) Efficiently compute p(n).
(3) Proved using the method of “theta lifts”.
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Bruinier-O’s Exact formula

The p(1) = 1 example.

If β := 161529092 + 18648492
√
69, then

1

23
· P

(
−1 +

√
−23

12

)
=

1

3
+

β2/3 + 127972

6β1/3
,

1

23
· P

(
−13 +

√
−23

24

)
=

1

3
− β2/3 + 127972

12β1/3
+

β2/3 − 127972

4
√
−3β1/3

,

1

23
· P

(
−25 +

√
−23

36

)
=

1

3
− β2/3 + 127972

12β1/3
− β2/3 − 127972

4
√
−3β1/3

,

and we find that

p(1) = 1 =
1

23
(P (α1) + P (α2) + P (α3)) .
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Bruinier-O’s Exact formula

The Maass Function P (τ)

Definition
In terms of Eisenstein series and Dedekind’s eta-function, we let

F (τ) =
E2(τ)− 2E2(2τ)− 3E2(3τ) + 6E2(6τ)

2 η(τ)2η(2τ)2η(3τ)2η(6τ)2
.

Then the Maass function P (τ) is defined by

P (τ) = − 1

2πi

dF

dτ
(τ) − 1

2πIm(τ)
F (τ).

Question
Can we actually use this finite formula to prove new theorems?
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Elliptic curve moduli and p(n)

Conceptual lens?

Question
A conceptual way to interpret the Bruinier–O formula?

1 What do the CM points αn,1, αn,2, . . . , αn,hn represent?

2 What is the “meaning” of the summands in the formula

p(n) =
1

24n− 1
(P (αn,1) + P (αn,2) + · · ·+ P (αn,hn)) ?

Answer
Elliptic curve moduli.



Elliptic curve moduli and p(n)

Conceptual lens?

Question
A conceptual way to interpret the Bruinier–O formula?

1 What do the CM points αn,1, αn,2, . . . , αn,hn represent?

2 What is the “meaning” of the summands in the formula

p(n) =
1

24n− 1
(P (αn,1) + P (αn,2) + · · ·+ P (αn,hn)) ?

Answer
Elliptic curve moduli.



Elliptic curve moduli and p(n)

Conceptual lens?

Question
A conceptual way to interpret the Bruinier–O formula?

1 What do the CM points αn,1, αn,2, . . . , αn,hn represent?

2 What is the “meaning” of the summands in the formula

p(n) =
1

24n− 1
(P (αn,1) + P (αn,2) + · · ·+ P (αn,hn)) ?

Answer
Elliptic curve moduli.



Elliptic curve moduli and p(n)

Conceptual lens?

Question
A conceptual way to interpret the Bruinier–O formula?

1 What do the CM points αn,1, αn,2, . . . , αn,hn represent?

2 What is the “meaning” of the summands in the formula

p(n) =
1

24n− 1
(P (αn,1) + P (αn,2) + · · ·+ P (αn,hn)) ?

Answer
Elliptic curve moduli.



Elliptic curve moduli and p(n)

A cartoon

T2 ∼= E(C)

{α1, α2, α3, α4, . . .} ⊂ X0(6)

What are P (αn,1), P (αn,2), . . . ?
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Elliptic curve moduli and p(n)

What is X0(6)? (Moduli viewpoint)

Elliptic curve over C ∼= a torus C/Λ (a lattice Λ ⊂ C).

Level-6 structures: These are pairs (E,C) with cyclic subgroup

C ≤ E[6] cyclic of order 6.

Isomorphism rule: (E,C) ∼ (E′, C ′) if there is an
isomorphism ϕ : E→E′ with ϕ(C) = C ′.

Moduli Space.

{ X0(6)(C) ←→ {isomorphism classes of pairs (E,C)}.

Forgetting the level: Forgetting C, we have the map

j : X0(6) −→ X(1) (E,C) 7−→ j(E).
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Elliptic curve moduli and p(n)

What do the CM points α represent?

Moduli meaning on X0(6)

(1) We have that

α ∈ X0(6)(C) ⇐⇒ [(E,C)] with C ⊂ E[6] cyclic of order 6.

(2) We have that

α is CM ⇐⇒ End(E) ∼= OD (an imaginary quadratic order).

Remarks (D := 1− 24n)

(1) For D < 0, the CM points form a Heegner packet on X0(6).

(2) The α’s are those moduli points [(E,C)] where E has
complex multiplication by OD.
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Elliptic curve moduli and p(n)

What’s the deal with P (τ)?

Problem
Is it a problem that P (τ) is a Maass function which does not
arise in arithmetic geometry?

Theorem (O, 2025)

For each n, there is a modular function Fn(τ) on X0(6) such
that, for the CM points {αn,1, . . . , αn,hn}, we have

Fn(αn,j) = P (αn,j) for all j.
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Elliptic curve moduli and p(n)

Sketch of the Proof.

1 Work on X0(6), which has genus zero, so modular functions
are just rational functions in a single Hauptmodul.

2 Prescribe the cusp behavior to match the growth of the
Maass function P (after the standard scaling).

3 The CM values of P are determined by holomorphic data its
values on each CM packet are algebraic and Galois-stable.

4 Interpolate: A unique rational function with the chosen
cusp divisor hits those CM values.

5 This gives Fn. □
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Elliptic curve moduli and p(n)

CM values as tangents

Theorem (CM tangent (O))

If J = j(αQ) and Φ∆n
(X,Y ) is

the modular polynomial, then

P (αQ) = −D−2F (αQ)

+
1

6
F (αQ)

ΦY Y − ΦXY

ΦY

∣∣∣∣
(J,J)

.

Remark

The Maass value P (αQ) is essentially the tangent of the Hecke
correspondence along the diagonal at (J, J) in X0(1)×X0(1).
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New arithmetic formula for p(n)

Theorem (O (2025))

If ∆ = 1− 24n < 0 and A∆ is the CM packet on X0(6), then

p(n) =
1

24n− 1

∑
α∈A∆

“Diagonal tangent slopes”.

Remark

We can and will use this formula to prove new theorems!
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Congruences and Divisibility

How often is p(n) even?

Let Prop2(N) := proportion of the first N values that are even.

N Prop2(N)

200,000 0.5012. . .
600,000 0.5000. . .

1,000,000 0.5004. . .
∞ 1

2?

Conjecture
Half of the partition numbers are even.
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How often is p(n) a multiple of 3?

N Prop3(N)

800 0.334. . .
1,600 0.314. . .
2,400 0.319. . .
3,200 0.331. . .

...
...

Conjecture
One third of the partition numbers are multiples of 3.
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N Prop5(N)
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2,000 0.346. . .
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...
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Congruences and Divisibility

Ramanujan’s Theorem

Theorem (Ramanujan (1915))

For every n we have

p(5n+ 4) is a multiple of 5,
p(7n+ 5) is a multiple of 7,

p(11n+ 6) is a multiple of 11.



Ramanujan’s Dream

A tantalyzing and enigmatic quote

“I have proved. . . that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

There appear to be corresponding properties in which the
moduli are powers of 5, 7, or 11. . . , and no simple properties
for any moduli involving primes other than these three."

Ramanujan (1919)



Ramanujan’s Dream

“Corresponding properties”

Ramanujan, Watson (1938), and Atkin (1967) proved:

Theorem (Ramanujan’s Congruences)

If 1 ≤ δℓ(m) < ℓm satisfies 24δℓ(m) ≡ 1 (mod ℓm), then

p(5mn+ δ5(m)) ≡ 0 (mod 5m),

p(7mn+ δ7(m)) ≡ 0 (mod 7⌊
m+2

2
⌋),

p(11mn+ δ11(m)) ≡ 0 (mod 11m).



Ramanujan’s Dream

Mystery

Question
What did Ramanujan mean when he said
“...and no simple properties for any moduli involving primes
other than these three (5,7,11)” ?

Theorem (Radu, 2011)

There are no arithmetic progressions An+B for which

p(An+B) ≡ 0 (mod 2) or p(An+B) ≡ 0 (mod 3).
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Ramanujan’s Dream

More on the mystery

Theorem (Ahlgren and Boylan, 2005)

The only (ℓ, a) for which

p(ℓn+ a) ≡ 0 (mod ℓ),

are (5, 4), (7, 5), and (11, 6).



Ramanujan’s Dream

Not so simple properties

Theorem (O, 2000)

For primes Q ≥ 5, there are infinitely many progressions
An+B for which

p(An+B) ≡ 0 (mod Q).

Examples. For example, we have:

p(48037937n+ 1122838) ≡ 0 (mod 17),

p(1977147619n+ 815655) ≡ 0 (mod 19),

p(14375n+ 3474) ≡ 0 (mod 23),

p(348104768909n+ 43819835) ≡ 0 (mod 29),

p(4063467631n+ 30064597) ≡ 0 (mod 31).
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Elliptic curves tell us about congruences?

Supersingular (E,C)

Definition (Supersingularity)

Let k be a field of char p > 0. An
elliptic curve E/k is supersingular if
E[p](k) = {0}.

Deuring reduction for CM
If E/C have CM by a O−D and(−D

p

)
∈ {0,−1}, then E is

supersingular. Illustration of CM points
descending to the

ordinary/supersingular layers.
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Elliptic curves tell us about congruences?

Universal mod ℓ congruence (ℓ ≥ 5)

Theorem (O (2025))

If ℓ ≥ 5 is prime and
(
∆n

ℓ

)
= −1, then

p(n) ≡ − 1

∆n

∑
(E,C)∈SSℓ(6)

h∆n
(E,C) · P (ℓ)(E,C) (mod ℓ),

where SSℓ(6) is the supersingular locus of X0(6) in char ℓ and

h∆n
(E,C) := # {oriented optimal embeddings of O∆n

7→ End(E,C).}
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Elliptic curves tell us about congruences?

Congruences via CM tangents

Theorem (Ramanjan’s Congruences)

For each integer j ≥ 1 there exist residue classes βm(j) such that

p(5jn+ β5(j)) ≡ 0 (mod 5j),

p(7jn+ β7(j)) ≡ 0 (mod 7⌊j/2⌋+1),

p(11jn+ β11(j)) ≡ 0 (mod 11j).

Here each βm(j) is characterized by 24βm(j) ≡ 1 (mod mj).



Elliptic curves tell us about congruences?

Sketch of Proof Ramanujan’s congruences

1 Replace P by a modular function. For each n, there is
a modular function Fn on X0(6) with Fn(α) = P (α) for
every CM point α in the packet.

2 Potential issue. A modular function can behave badly
modulo ℓ (poles collide with the supersingular fiber,
denominators vanish, etc.).

3 Lucky primes 5, 7, 11. In characteristics ℓ = 5, 7, 11 the
supersingular j-invariants are only 0 and 1728. Therefore,
we can normalize Fn so its reduction is well behaved on the
supersingular fiber (i.e. E4(ρ) = E6(i) = 0.).

4 Consequence. We study Fn (hence P ) modulo ℓ entirely
on the supersingular locus of X0(6) without pathologies.
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Elliptic curves tell us about congruences?

Sketch of Proof (continued)

5 Ramanujan’s congruences have ℓ | ∆n which is ramification.

6 Then P (αn,j) correspond to supersingular (E,C) ∈ X0(6).
7 CM → supersingular reduction. The CM sum giving
−∆n p(n) specializes to a sum over supersingular points

−∆n p(n) =
∑
i

h∆n(Ei, Ci)︸ ︷︷ ︸
# optimal embeddings

· P (ℓ)(Ei, Ci)︸ ︷︷ ︸
reduced CM invariant

8 Uℓ-contraction + growth of counts. Raising the
conductor multiplies the counts by ℓ, while the Hecke
operator Uℓ contracts the invariant side modulo ℓ.

9 Prime powers. Combining the ℓ-fold growth of the
counts with the Uℓ-contraction yields the congruences.
□
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Parity of p(n)

General Parity Conjecture

Conjecture (O)

If f(x) ∈ Z[x], then the following are true:

(1) There are infinitely many n for which p(f(n)) is even.

(2) There are infinitely many m for which p(f(m)) is odd.

Remarks
1 (O ⊕ Radu) True for deg(f) = 1.

2 If deg(f) ≥ 3, then we have no ideas.
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Parity of p(n)

Special quadratic polynomials

Theorem (O, O-Ramsey ’12)

If 1 ≤ D ≡ 23 (mod 24) is square-free, then the following are true:
(1) There are infinitely many n coprime to 6 for which

p

(
Dn2 + 1

24

)
is even.

(2) There are infinitely many m coprime to 6 for which

p

(
Dm2 + 1

24

)
is odd,

if there is at least one such m. Furthermore, the smallest m (if any)
satisfies m ≤ 12h(−D) + 2.

⇑
Class Number
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Parity of p(n)

New theorem on parity

Theorem (O (2025))

If D ≡ 23 (mod 24) is square-free and every prime ℓ | D satisfies
ℓ ≡ 1, 7 (mod 8), then along the progression

n =
Dm2 + 1

24
with (m, 6) = 1,

the partition numbers p(n) take both parities infinitely often.



Parity of p(n)

Sketch of the proof

Ramanujan’s mock theta functions

1 We start with Ramanujan’s mock theta functions:

f(q) := 1 +

∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

ω(q) :=

∞∑
n=0

q2n
2+2n

(q; q2)2n+1

.



Parity of p(n)

Sketch of the proof

Sketch of the proof

2 By the work of Zwegers, f(q) and ω(q) are the “holomorphic
parts” of a weight 1/2 vector-valued harmonic Maass form.

3 Work with Bruinier gives Generalized Borcherds Products
using weight 1/2 harmonic Maass forms.

4 This theory applies for f(q) and ω(q).
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Parity of p(n)

Sketch of the proof

Sketch of the proof

5 More precisely, for 0 ≤ j ≤ 11 we let

Hj(z) =
∑

C(j;n)qn :=



±q−1f(q24) if j = 1, 5, 7, 11,

2
(
±ω(q12)± ω(−q12)

)
if j = 2, 4, 8, 10,

0 otherwise.

6 Note that Hj(z) ≡ 0 (mod 2) for j ̸∈ {1, 5, 7, 11}.
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7 Letting PD(X) :=
∏

b (mod D)(1− e(−b/D)X)(
−D
b ), we then let

ΨD(z) :=

∞∏
m=1

PD(qm)C(m;Dm2).

8 Generalized Borcherds Products =⇒ ΨD(z) is a modular function
on Γ0(6) with a discriminant −D Heegner divisor.
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9 =⇒ Log derivative of ΨD(z) is a weight 2 modular form with
simple poles at disc. −D CM points.

10 Using the combinatorial properties of f(q), we have that

P (D; z) :=
∑
m≥1

gcd(m,6)=1

p

(
Dm2 + 1

24

) ∑
n≥1

gcd(n,D)=1

qmn (mod 2)

is the mod 2 reduction of a wgt 2 meromorphic modular form.
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11 Elliptic curves at 2. On the special fiber at 2, the divisor of
ΨD reduces to a Frobenius orbit.

12 In characteristic 2, ker(d log) = (k(X)×)2, so odd residues force a
nonzero mod 2 form.

13 Odd residue via genus theory.
If every ℓ | D satisfies ℓ ≡ 1, 7 (mod 8), then some ordinary point
has an odd residue for d logΨD.

14 These D have a first p(n) =⇒ infinitely many by earlier work.
□
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Executive Summary

Bruinier–O formula revisited

Theorem (O (2025))

Let ∆n := 1− 24n < 0 and let A∆n is its X0(6) CM packet, then

p(n) = − 1

∆n

∑
α∈A∆n

P (α),

where for each CM point α with J = j(α) and Φ = Φ∆n(X,Y ),

P (α) = −D−2F (α) +
1

6
F (α)

ΦY Y − ΦXY

ΦY

∣∣∣∣
(J,J)

.

Remark
Recasts p(n) as a sum of tangents at CM points on X0(6).
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Executive Summary

Summary: Congruences modulo ℓ ≥ 5

Theorem (O (2025))

If ℓ ≥ 5 is prime and
(
∆n

ℓ

)
= −1, then

p(n) = − 1

∆n

∑
(E,C)∈SSℓ(6)

h∆n(E,C) · P (ℓ)(E,C),

where SSℓ(6) is the supersingular locus of X0(6) in char ℓ and

h∆n
(E,C) := # {oriented optimal embeddings of O∆n

7→ End(E,C).}

Remarks

(1) Conceptual proof of the congruences mod powers of 5, 7 and 11.
(2) The primes 5, 7, and11 are “lucky” in that these are the only
primes for which j = 0, 1728 cover all supersingular curves. Index
formula contributes “half prime powers.”
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Executive Summary

Summary: New theorem on parity

Theorem (O (2025))

If D ≡ 23 (mod 24) is square-free and every prime ℓ | D satisfies
ℓ ≡ 1, 7 (mod 8), then along the progression

n =
Dm2 + 1

24
with (m, 6) = 1,

the partition numbers p(n) take both parities infinitely often.
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