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Partitions

Definition (Partition)

A partition of a non-negative integer, n, is a sequence of
non-increasing natural numbers, λ1 ≥ λ2 ≥ · · · ≥ λk , such that

k∑
i=1

λi = n.

Each λi is called a part of the partition.
The partition function, p(n), counts the number of partitions of n.

Leah Sturman, joint with Holly Swisher Applying Asymptotics Methods to Kang and Park’s Generalization of the Alder-Andrews Theorem



An Example

Example (Partitions of 5)

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

p(5) = 7
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Variations on p(n)

Let p(n|condition) denote the number of partitions of n which
satisfy the given condition.

Then p(n|distinct parts ) denotes the number of partitions of
n which have no repeated parts.

∞∑
n=0

p(n|distinct parts )qn = (1+q)(1+q2)(1+q3) · · · = (−q; q)∞

Let p(n|odd parts) be the number of partitions of n which
have only odd parts.

∞∑
n=0

p(n|odd parts )qn =
1

(q; q2)∞
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Motivating Identities

Euler: p(n|λi distinct) = p(n|λi odd)

(−q; q)∞ =
1

(q; q2)∞

Rogers-Ramanujan 1 (1894, 1914):
p(n|λi 2-distinct) = p(n|λi ≡ ±1 mod 5)

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞

Schur (1926): the number of partitions of n into parts
differing by at least 3 with no consecutive multiples of 3
equals the number of partitions of n with parts congruent to
±1 mod 6.
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Generalizing the Motivating Identities

q
(1)
d (n) := p(n|parts differing by at least d) has the

generating function:

∞∑
n=0

q
(1)
d (n)qn =

∞∑
n=0

qd(
n
2)+n

(q; q)n
.

Q
(1)
d (n) := p(n|parts ≡ ±1 mod d + 3) has the generating

function:

∞∑
n=0

Q
(1)
d (n)qn =

1

(q; qd+3)∞(qd+2; qd+3)∞
.

When d = 2, we recover the first Rogers-Ramanujan identity

∞∑
n=0

q
(1)
2 (n)qn =

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
=

∞∑
n=0

Q
(1)
2 (n)qn.
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Alder’s Conjecture

To study the relative sizes of each object, Alder considered

their difference: ∆
(1)
d (n) := q

(1)
d (n)− Q

(1)
d (n).

By Euler, ∆
(1)
1 (n) = 0.

By RR1, ∆
(1)
2 (n) = 0.

By Schur, ∆
(1)
3 (n) ≥ 0.

Alder proved for d ≥ 3 there exists n ∈ N such that

∆
(1)
d (n) ̸= 0.

Conjecture (Alder, 1956)

For all d ≥ 1, n ≥ 0, ∆
(1)
d (n) ≥ 0.
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Proof of Alder’s Conjecture

Theorem (Andrews, 1971)

∆
(1)
d (n) ≥ 0 for all n > 0 if d = 2r − 1 and r ≥ 4.

Theorem (Yee, 2008)

∆
(1)
d (n) ≥ 0 for all n > 0 if d = 7 or d ≥ 32.

Theorem (Alfes, Jameson, Lemke Oliver, [1] 2010)

The Alder-Andrews Conjecture is true.
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Asymptotic Expressions for q
(1)
d (n), Q

(1)
d (n)

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

If d ≥ 4 and n is a positive integer, then

Q
(1)
d (n) =

(3d + 9)−
1
4

4 sin π
d+3

n−
3
4 exp

(
n

1
2

2π√
3(d + 3)

)
+ R(n),

where R(n) is an explicitly bounded function.

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

Let α be the unique real number in [0, 1] satisfying αd +α− 1 = 0,

and let Ad := d
2 log

2 α+
∑∞

r=1
αrd

r2
. If n is a positive integer, then

q
(1)
d (n) =

A
1
4
d

2
√
παd−1(dαd−1 + 1)

n−
3
4 exp(2

√
nAd) + rd(n),

where |rd(n)| can be explicitly bounded.
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Method

Since the error is explicit, we can compute N(d), the value of
n such that for all n ≥ N(d)

A
1
4
d

2
√

παd−1(dαd−1 + 1)
n−

3
4 exp(2

√
nAd) > |rd(n)|

+
(3d + 9)−

1
4

4 sin π
d+3

n−
3
4 exp

(
n

1
2

2π√
3(d + 3)

)
+ |R(n)|

Alfes, Jameson, and Lemke Oliver found that N(d) is on the
order of 106.

This means the asymptotics guarantee that for all n > 106,
Alder’s Conjecture is true!

What about n < 106? Check that qd(n) ≥ Qd(n) for all
4 ≤ d ≤ 31 and 1 ≤ n ≤ N(d).
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Generalization of RR2

Theorem (Rogers-Ramanujan 2)

For all integers n ≥ 0

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
.

From Kang and Park (2020):

q
(a)
d (n) := p(n|parts ≥ a, and parts differ by at least d)

Q
(b)
d (n) := p(n|parts ≡ ±b (mod d + 3))

and ∆
(a,b)
d (n) = q

(a)
d (n)− Q

(b)
d (n).

When a = b = d = 2, we recover the second
Rogers-Ramanujan identity.

When a = b we write ∆
(a)
d (n) = ∆

(a,a)
d (n).
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Kang and Park’s Conjecture

∆
(2)
3 (4) = −1.

Let Q
(2,−)
d (n) be the number of partitions of n into parts

congruent to ±2 (mod d + 3) excluding parts equal to d + 1.

Conjecture (Kang Park[4] 2020)

For all n ≥ 0, d ≥ 1,

∆
(2,−)
d (n) := q

(2)
d (n)− Q

(2,−)
d (n) ≥ 0.

Theorem (Duncan Khunger Swisher Tamura [2], 2020)

For d ≥ 62 and n ≥ 1,

∆
(2,−)
d (n) ≥ 0.
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My Project

Given the work by Duncan et al., there are finitely many
values of d left to prove Kang and Park’s conjecture for.

d = 2 is done by the second Rogers-Ramanujan identity.

Thus d = 1 and 3 ≤ d ≤ 61 remain.

Our goal is to use the methods used by Alfes et al. to prove
Kang and Park’s conjecture for as many of the remaining d
values as possible.
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Asymptotics for q
(2)
d (n)

Can we find asymptotic expressions with explicit error bounds

for Q
(2,−)
d (n) and q

(2)
d (n)?

Theorem (Duncan et al. 2022)

Let α be the unique real number in [0, 1] satisfying αd +α− 1 = 0,

and let Ad := d
2 log

2 α+
∑∞

r=1
αrd

r2
. If n is a positive integer, then

q
(2)
d (n) =

A
1
4
d

2
√
παd−3(dαd−1 + 1)

n−
3
4 exp(2

√
nAd) + rd(n),

where |rd(n)| can be explicitly bounded.
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Asymptotic Approaches

Meinardus’s results do not permit us to find an asymptotic

expression for Q
(2,−)
d (n) directly.

By a theorem of Andrews

Q
(1)
d (n) ≥ Q

(2,−)
d (n).

Also, trivially

Q
(2)
d (n) ≥ Q

(2,−)
d (n).

We can either show q
(2)
d (n) ≥ Q

(1)
d (n) for large positive

integers n or we can show q
(2)
d (n) ≥ Q

(2)
d (n) for large positive

integers.

So, we have two different approaches to try, and we will need
both!
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Asymptotics for Q
(2)
d (n)

When d is odd, d + 3 is even.

In this case Q
(2)
d (2n + 1) = 0.

Theorem (S- Swisher, 2022)

If d ≥ 4 is even and n is a positive integer, then

Q
(2)
d (n) =

(3(d + 3))−
1
4

4 sin 2π
d+3

n−
3
4 exp

(
n

1
2

2π√
3(d + 3)

)
+ R(n),

where R(n) is an explicitly bounded function.
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Finding N(d)

For even d ≥ 4, we use the asymptotic expression for Q
(2)
d (n)

to find the value, N(d) such that for all n ≥ N(d)

q
(2)
d (n) ≥ Q

(2)
d (n) ≥ Q

(2,−)
d (n).

For odd d ≥ 5 we instead use the asymptotic expression for

Q
(1)
d (n) to find N(d) such that

q
(2)
d (n) ≥ Q

(1)
d (n) ≥ Q

(2,−)
d (n)

for all n ≥ N(d).
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Finding N(d)

Write
Q

(a)
d (n) = MQ(n) + R(n)

and
q
(2)
d (n) = Mq(n) + rd(n).

N(d) is the value of n such that for all n ≥ N(d)

Mq(n) ≥ MQ(n) + |R(n)|+ |rd(n)|.
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Finding N(d)

We find N(d) by taking each term in the sum,
MQ + R(n) + rd(n), and finding individual weighted bounds
N1,N2,N3 such that

K1Mq(n) ≥ MQ(n),

K2Mq(n) ≥ |R(n)|,

and
K3Mq(n) ≥ |rd(n)|

for all n ≥ N1,N2 and N3 respectively.

By choosing weights 0 ≤ K1,K2,K3 ≤ 1 such that
K1 + K2 + K3 = 1 we find N(d) = max{N1,N2,N3}.
More specifically, since R(n) and rd(n) are sums of other
terms, we actually have Ki , Ni for 1 ≤ i ≤ 8 because we treat
each of the terms in R(n) and rd(n) separately.
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Computed Values of N(d)

For even 6 ≤ d ≤ 60 and odd 9 ≤ d ≤ 61, N(d) ≤ 107.

N(4) = 3.8× 107, N(5) = 1.5× 108, and N(7) = 1.7× 107

We are able to compute Q
(2)
d (n), Q

(2,−)
d (n), and q

(2)
d (n) up to

about n = 107.
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Computing ∆
(2,−)
d (n)

We use a modified version of the code that Alfes, Jameson,
and Lemke Oliver used.

The code is written in C++ and utilizes recursive algorithms

to generate values for Q
(2,−)
d (n) and q

(2)
d (n) individually then

finds their difference and outputs values of n for which

∆
(2,−)
d (n) is negative.

Theorem (S-, Swisher 2023)

For all positive integers n ≥ 1 and d = 1 and 6 ≤ d ≤ 61

∆
(2,−)
d (n) ≥ 0.
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Remaining Cases

Thus, Kang and Park’s conjecture is proven for all d except
d = 3, 4 and 5.

For each d ∈ {3, 4, 5} we compute ∆
(2,−)
d (n) for all

1 ≤ n ≤ 107.

For each d except 3, we would only need improve the
computed N(d) value to be N(d) ≤ 107 to finish proving
those cases.

For d = 3, it is possible that one could extend the asymptotic
results to include d = 3 and proceed from there.
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Future Work

For how many even values of d is the dash unnecessary? I.e.

for what values of d is ∆
(2)
d (n) ≥ 0 for all n?

What about ∆
(a,−)
d (n) for higher values of a?

Inagaki and Tamura [3] have proved ∆
(3,−)
d (n) ≥ 0 for all but

finitely many d .

Armstrong, Ducasse, Meyer, and Swisher proved

∆
(a,−)
d (n) ≥ 0 for a ≥ 1, ⌈da ⌉ ≥ 105 and 1 ≤ n ≤ d + 2 + a or

d + 2a ≤ n.
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