Applying Asymptotics Methods to Kang and Park's Generalization of the Alder-Andrews Theorem

Leah Sturman, joint with Holly Swisher

February 82024

Partitions

Definition (Partition)

A partition of a non-negative integer, n, is a sequence of non-increasing natural numbers, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$, such that

$$
\sum_{i=1}^{k} \lambda_{i}=n
$$

Each λ_{i} is called a part of the partition. The partition function, $p(n)$, counts the number of partitions of n.

An Example

Example (Partitions of 5)

$$
\begin{aligned}
5 & =5 \\
& =4+1 \\
& =3+2 \\
& =3+1+1 \\
= & 2+2+1 \\
= & 2+1+1+1 \\
= & 1+1+1+1+1 \\
& p(5)=7
\end{aligned}
$$

Variations on $p(n)$

- Let $p(n \mid$ condition $)$ denote the number of partitions of n which satisfy the given condition.

Variations on $p(n)$

- Let $p(n \mid$ condition) denote the number of partitions of n which satisfy the given condition.
- Then $p(n \mid$ distinct parts) denotes the number of partitions of n which have no repeated parts.

$$
\sum_{n=0}^{\infty} p(n \mid \text { distinct parts }) q^{n}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots
$$

Variations on $p(n)$

- Let $p(n \mid$ condition) denote the number of partitions of n which satisfy the given condition.
- Then $p(n \mid$ distinct parts) denotes the number of partitions of n which have no repeated parts.

$$
\sum_{n=0}^{\infty} p(n \mid \text { distinct parts }) q^{n}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots=(-q ; q)_{\infty}
$$

Variations on $p(n)$

- Let $p(n \mid$ condition) denote the number of partitions of n which satisfy the given condition.
- Then $p(n \mid$ distinct parts) denotes the number of partitions of n which have no repeated parts.

$$
\sum_{n=0}^{\infty} p(n \mid \text { distinct parts }) q^{n}=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) \cdots=(-q ; q)_{\infty}
$$

- Let p ($n \mid$ odd parts) be the number of partitions of n which have only odd parts.

$$
\sum_{n=0}^{\infty} p(n \mid \text { odd parts }) q^{n}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

Motivating Identities

- Euler: $p\left(n \mid \lambda_{i}\right.$ distinct $)=p\left(n \mid \lambda_{i}\right.$ odd $)$

$$
(-q ; q)_{\infty}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

Motivating Identities

- Euler: $p\left(n \mid \lambda_{i}\right.$ distinct $)=p\left(n \mid \lambda_{i}\right.$ odd $)$

$$
(-q ; q)_{\infty}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

- Rogers-Ramanujan 1 (1894, 1914): $p\left(n \mid \lambda_{i} 2\right.$-distinct $)=p\left(n \mid \lambda_{i} \equiv \pm 1 \bmod 5\right)$

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

Motivating Identities

- Euler: $p\left(n \mid \lambda_{i}\right.$ distinct $)=p\left(n \mid \lambda_{i}\right.$ odd $)$

$$
(-q ; q)_{\infty}=\frac{1}{\left(q ; q^{2}\right)_{\infty}}
$$

- Rogers-Ramanujan 1 (1894, 1914):

$$
p\left(n \mid \lambda_{i} 2 \text {-distinct }\right)=p\left(n \mid \lambda_{i} \equiv \pm 1 \bmod 5\right)
$$

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

- Schur (1926): the number of partitions of n into parts differing by at least 3 with no consecutive multiples of 3 equals the number of partitions of n with parts congruent to $\pm 1 \bmod 6$.

Generalizing the Motivating Identities

- $q_{d}^{(1)}(n):=p(n \mid$ parts differing by at least $d)$ has the generating function:

$$
\sum_{n=0}^{\infty} q_{d}^{(1)}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{d\binom{n}{2}+n}}{(q ; q)_{n}}
$$

- $Q_{d}^{(1)}(n):=p(n \mid$ parts $\equiv \pm 1 \bmod d+3)$ has the generating function:

$$
\sum_{n=0}^{\infty} Q_{d}^{(1)}(n) q^{n}=\frac{1}{\left(q ; q^{d+3}\right)_{\infty}\left(q^{d+2} ; q^{d+3}\right)_{\infty}}
$$

- When $d=2$, we recover the first Rogers-Ramanujan identity

$$
\sum_{n=0}^{\infty} q_{2}^{(1)}(n) q^{n}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}}=\frac{1}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}=\sum_{n=0}^{\infty} Q_{2}^{(1)}(n) q^{n}
$$

Alder's Conjecture

- To study the relative sizes of each object, Alder considered their difference: $\Delta_{d}^{(1)}(n):=q_{d}^{(1)}(n)-Q_{d}^{(1)}(n)$.
- By Euler, $\Delta_{1}^{(1)}(n)=0$.
- By RR1, $\Delta_{2}^{(1)}(n)=0$.
- By Schur, $\Delta_{3}^{(1)}(n) \geq 0$.
- Alder proved for $d \geq 3$ there exists $n \in \mathbb{N}$ such that $\Delta_{d}^{(1)}(n) \neq 0$.

Conjecture (Alder, 1956)

For all $d \geq 1, n \geq 0, \Delta_{d}^{(1)}(n) \geq 0$.

Proof of Alder's Conjecture

Theorem (Andrews, 1971)
$\Delta_{d}^{(1)}(n) \geq 0$ for all $n>0$ if $d=2^{r}-1$ and $r \geq 4$.

Theorem (Yee, 2008)

$\Delta_{d}^{(1)}(n) \geq 0$ for all $n>0$ if $d=7$ or $d \geq 32$.
Theorem (Alfes, Jameson, Lemke Oliver, [1] 2010)
The Alder-Andrews Conjecture is true.

Asymptotic Expressions for $q_{d}^{(1)}(n), Q_{d}^{(1)}(n)$

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

If $d \geq 4$ and n is a positive integer, then

$$
Q_{d}^{(1)}(n)=\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+R(n)
$$

where $R(n)$ is an explicitly bounded function.

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

Let α be the unique real number in $[0,1]$ satisfying $\alpha^{d}+\alpha-1=0$, and let $A_{d}:=\frac{d}{2} \log ^{2} \alpha+\sum_{r=1}^{\infty} \frac{\alpha^{r d}}{r^{2}}$. If n is a positive integer, then

$$
q_{d}^{(1)}(n)=\frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)+r_{d}(n)
$$

where $\left|r_{d}(n)\right|$ can be explicitly bounded.

Method

- Since the error is explicit, we can compute $N(d)$, the value of n such that for all $n \geq N(d)$

$$
\begin{aligned}
& \frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)>\left|r_{d}(n)\right| \\
& \quad+\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+|R(n)|
\end{aligned}
$$

Method

- Since the error is explicit, we can compute $N(d)$, the value of n such that for all $n \geq N(d)$

$$
\begin{aligned}
& \frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)>\left|r_{d}(n)\right| \\
& \quad+\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+|R(n)|
\end{aligned}
$$

- Alfes, Jameson, and Lemke Oliver found that $N(d)$ is on the order of 10^{6}.

Method

- Since the error is explicit, we can compute $N(d)$, the value of n such that for all $n \geq N(d)$

$$
\begin{aligned}
& \frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)>\left|r_{d}(n)\right| \\
& \quad+\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+|R(n)|
\end{aligned}
$$

- Alfes, Jameson, and Lemke Oliver found that $N(d)$ is on the order of 10^{6}.
- This means the asymptotics guarantee that for all $n>10^{6}$, Alder's Conjecture is true!

Method

- Since the error is explicit, we can compute $N(d)$, the value of n such that for all $n \geq N(d)$

$$
\begin{aligned}
& \frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)>\left|r_{d}(n)\right| \\
& \quad+\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+|R(n)|
\end{aligned}
$$

- Alfes, Jameson, and Lemke Oliver found that $N(d)$ is on the order of 10^{6}.
- This means the asymptotics guarantee that for all $n>10^{6}$, Alder's Conjecture is true!
- What about $n<10^{6}$?

Method

- Since the error is explicit, we can compute $N(d)$, the value of n such that for all $n \geq N(d)$

$$
\begin{aligned}
& \frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-1}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)>\left|r_{d}(n)\right| \\
& \quad+\frac{(3 d+9)^{-\frac{1}{4}}}{4 \sin \frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+|R(n)|
\end{aligned}
$$

- Alfes, Jameson, and Lemke Oliver found that $N(d)$ is on the order of 10^{6}.
- This means the asymptotics guarantee that for all $n>10^{6}$, Alder's Conjecture is true!
- What about $n<10^{6}$? Check that $q_{d}(n) \geq Q_{d}(n)$ for all $4 \leq d \leq 31$ and $1 \leq n \leq N(d)$.

Generalization of RR2

Theorem (Rogers-Ramanujan 2)

For all integers $n \geq 0$

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{n}}=\frac{1}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}
$$

From Kang and Park (2020):

- $q_{d}^{(a)}(n):=p(n \mid$ parts $\geq a$, and parts differ by at least $d)$
- $Q_{d}^{(b)}(n):=p(n \mid$ parts $\equiv \pm b(\bmod d+3))$
- and $\Delta_{d}^{(a, b)}(n)=q_{d}^{(a)}(n)-Q_{d}^{(b)}(n)$.
- When $a=b=d=2$, we recover the second Rogers-Ramanujan identity.
- When $a=b$ we write $\Delta_{d}^{(a)}(n)=\Delta_{d}^{(a, a)}(n)$.

Kang and Park's Conjecture

- $\Delta_{3}^{(2)}(4)=-1$.
- Let $Q_{d}^{(2,-)}(n)$ be the number of partitions of n into parts congruent to $\pm 2(\bmod d+3)$ excluding parts equal to $d+1$.

Conjecture (Kang Park[4] 2020)

For all $n \geq 0, d \geq 1$,

$$
\Delta_{d}^{(2,-)}(n):=q_{d}^{(2)}(n)-Q_{d}^{(2,-)}(n) \geq 0
$$

Theorem (Duncan Khunger Swisher Tamura [2], 2020)
For $d \geq 62$ and $n \geq 1$,

$$
\Delta_{d}^{(2,-)}(n) \geq 0
$$

My Project

- Given the work by Duncan et al., there are finitely many values of d left to prove Kang and Park's conjecture for.
- $d=2$ is done by the second Rogers-Ramanujan identity.
- Thus $d=1$ and $3 \leq d \leq 61$ remain.
- Our goal is to use the methods used by Alfes et al. to prove Kang and Park's conjecture for as many of the remaining d values as possible.

Asymptotics for $q_{d}^{(2)}(n)$

- Can we find asymptotic expressions with explicit error bounds for $Q_{d}^{(2,-)}(n)$ and $q_{d}^{(2)}(n)$?

Theorem (Duncan et al. 2022)

Let α be the unique real number in $[0,1]$ satisfying $\alpha^{d}+\alpha-1=0$, and let $A_{d}:=\frac{d}{2} \log ^{2} \alpha+\sum_{r=1}^{\infty} \frac{\alpha^{r d}}{r^{2}}$. If n is a positive integer, then

$$
q_{d}^{(2)}(n)=\frac{A_{d}^{\frac{1}{4}}}{2 \sqrt{\pi \alpha^{d-3}\left(d \alpha^{d-1}+1\right)}} n^{-\frac{3}{4}} \exp \left(2 \sqrt{n A_{d}}\right)+r_{d}(n)
$$

where $\left|r_{d}(n)\right|$ can be explicitly bounded.

Asymptotic Approaches

- Meinardus's results do not permit us to find an asymptotic expression for $Q_{d}^{(2,-)}(n)$ directly.
- By a theorem of Andrews

$$
Q_{d}^{(1)}(n) \geq Q_{d}^{(2,-)}(n)
$$

- Also, trivially

$$
Q_{d}^{(2)}(n) \geq Q_{d}^{(2,-)}(n)
$$

- We can either show $q_{d}^{(2)}(n) \geq Q_{d}^{(1)}(n)$ for large positive integers n or we can show $q_{d}^{(2)}(n) \geq Q_{d}^{(2)}(n)$ for large positive integers.
- So, we have two different approaches to try, and we will need both!

Asymptotics for $Q_{d}^{(2)}(n)$

- When d is odd, $d+3$ is even.
- In this case $Q_{d}^{(2)}(2 n+1)=0$.

Theorem (S- Swisher, 2022)

If $d \geq 4$ is even and n is a positive integer, then

$$
Q_{d}^{(2)}(n)=\frac{(3(d+3))^{-\frac{1}{4}}}{4 \sin \frac{2 \pi}{d+3}} n^{-\frac{3}{4}} \exp \left(n^{\frac{1}{2}} \frac{2 \pi}{\sqrt{3(d+3)}}\right)+R(n)
$$

where $R(n)$ is an explicitly bounded function.

- For even $d \geq 4$, we use the asymptotic expression for $Q_{d}^{(2)}(n)$ to find the value, $N(d)$ such that for all $n \geq N(d)$

$$
q_{d}^{(2)}(n) \geq Q_{d}^{(2)}(n) \geq Q_{d}^{(2,-)}(n)
$$

- For odd $d \geq 5$ we instead use the asymptotic expression for $Q_{d}^{(1)}(n)$ to find $N(d)$ such that

$$
q_{d}^{(2)}(n) \geq Q_{d}^{(1)}(n) \geq Q_{d}^{(2,-)}(n)
$$

for all $n \geq N(d)$.

- Write

$$
Q_{d}^{(a)}(n)=M_{Q}(n)+R(n)
$$

and

$$
q_{d}^{(2)}(n)=M_{q}(n)+r_{d}(n) .
$$

- $N(d)$ is the value of n such that for all $n \geq N(d)$

$$
M_{q}(n) \geq M_{Q}(n)+|R(n)|+\left|r_{d}(n)\right|
$$

- We find $N(d)$ by taking each term in the sum, $M_{Q}+R(n)+r_{d}(n)$, and finding individual weighted bounds N_{1}, N_{2}, N_{3} such that

$$
\begin{aligned}
K_{1} M_{q}(n) & \geq M_{Q}(n) \\
K_{2} M_{q}(n) & \geq|R(n)|
\end{aligned}
$$

and

$$
K_{3} M_{q}(n) \geq\left|r_{d}(n)\right|
$$

for all $n \geq N_{1}, N_{2}$ and N_{3} respectively.

- By choosing weights $0 \leq K_{1}, K_{2}, K_{3} \leq 1$ such that $K_{1}+K_{2}+K_{3}=1$ we find $N(d)=\max \left\{N_{1}, N_{2}, N_{3}\right\}$.
- More specifically, since $R(n)$ and $r_{d}(n)$ are sums of other terms, we actually have K_{i}, N_{i} for $1 \leq i \leq 8$ because we treat each of the terms in $R(n)$ and $r_{d}(n)$ separately.

Computed Values of $N(d)$

- For even $6 \leq d \leq 60$ and odd $9 \leq d \leq 61, N(d) \leq 10^{7}$.
- $N(4)=3.8 \times 10^{7}, N(5)=1.5 \times 10^{8}$, and $N(7)=1.7 \times 10^{7}$
- We are able to compute $Q_{d}^{(2)}(n), Q_{d}^{(2,-)}(n)$, and $q_{d}^{(2)}(n)$ up to about $n=10^{7}$.

Computing $\Delta_{d}^{(2,-)}(n)$

- We use a modified version of the code that Alfes, Jameson, and Lemke Oliver used.
- The code is written in $\mathrm{C}++$ and utilizes recursive algorithms to generate values for $Q_{d}^{(2,-)}(n)$ and $q_{d}^{(2)}(n)$ individually then finds their difference and outputs values of n for which $\Delta_{d}^{(2,-)}(n)$ is negative.

Theorem (S-, Swisher 2023)

For all positive integers $n \geq 1$ and $d=1$ and $6 \leq d \leq 61$

$$
\Delta_{d}^{(2,-)}(n) \geq 0
$$

Remaining Cases

- Thus, Kang and Park's conjecture is proven for all d except $d=3,4$ and 5.
- For each $d \in\{3,4,5\}$ we compute $\Delta_{d}^{(2,-)}(n)$ for all $1 \leq n \leq 10^{7}$.
- For each d except 3 , we would only need improve the computed $N(d)$ value to be $N(d) \leq 10^{7}$ to finish proving those cases.
- For $d=3$, it is possible that one could extend the asymptotic results to include $d=3$ and proceed from there.
- For how many even values of d is the dash unnecessary? I.e. for what values of d is $\Delta_{d}^{(2)}(n) \geq 0$ for all n ?
- What about $\Delta_{d}^{(a,-)}(n)$ for higher values of a ?
- Inagaki and Tamura [3] have proved $\Delta_{d}^{(3,-)}(n) \geq 0$ for all but finitely many d.
- Armstrong, Ducasse, Meyer, and Swisher proved

$$
\begin{aligned}
& \Delta_{d}^{(a,-)}(n) \geq 0 \text { for } a \geq 1,\left\lceil\frac{d}{a}\right\rceil \geq 105 \text { and } 1 \leq n \leq d+2+a \text { or } \\
& d+2 a \leq n .
\end{aligned}
$$

Bibliography I

围 Claudia Alfes, Marie Jameson, and Robert Lemke Oliver. Proof of the alder-andrews conjecture.
Proceedings of the American Mathematical Society, 139(1):63-78, 2011.

R Adriana L Duncan, Simran Khunger, Holly Swisher, and Ryan Tamura.
Generalizations of alder's conjecture via a conjecture of kang and park.
Research in Number Theory, 7(1):1-26, 2021.
Ryota Inagaki and Ryan Tamura.
On generalizations of a conjecture of Kang and Park. arXiv preprint arXiv:2206.04842, 2022.

Bibliography II

Soon-Yi Kang and Eun Young Park.
An analogue of alder-andrews conjecture generalizing the 2nd rogers-ramanujan identity.
Discrete Mathematics, 343(7):111882, 2020.

