Applying Asymptotics Methods to Kang and Park's Generalization of the Alder-Andrews Theorem

Leah Sturman, joint with Holly Swisher

February 8 2024

Leah Sturman, joint with Holly Swisher Applying Asymptotics Methods to Kang and Park's Generalizati

Definition (Partition)

A partition of a non-negative integer, n, is a sequence of non-increasing natural numbers, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, such that

$$\sum_{i=1}^k \lambda_i = n.$$

Each λ_i is called a part of the partition. The partition function, p(n), counts the number of partitions of n.

伺 ト イヨ ト イヨ ト

Example (Partitions of 5)

Leah Sturman, joint with Holly Swisher Applying Asymptotics Methods to Kang and Park's Generalizati

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @ ●

• Let p(n|condition) denote the number of partitions of n which satisfy the given condition.

伺 ト イヨト イヨト

~~

- Let p(n|condition) denote the number of partitions of n which satisfy the given condition.
- Then *p*(*n*|distinct parts) denotes the number of partitions of *n* which have no repeated parts.

$$\sum_{n=0}^{\infty} p(n| ext{distinct parts })q^n = (1\!+\!q)(1\!+\!q^2)(1\!+\!q^3)\cdots$$

何 ト イヨ ト イヨ ト

- Let p(n|condition) denote the number of partitions of n which satisfy the given condition.
- Then *p*(*n*|distinct parts) denotes the number of partitions of *n* which have no repeated parts.

$$\sum_{n=0}^{\infty} p(n|\text{distinct parts })q^n = (1+q)(1+q^2)(1+q^3)\cdots = (-q;q)_{\infty}$$

- Let p(n|condition) denote the number of partitions of n which satisfy the given condition.
- Then *p*(*n*|distinct parts) denotes the number of partitions of *n* which have no repeated parts.

$$\sum_{n=0}^{\infty} p(n| ext{distinct parts })q^n = (1+q)(1+q^2)(1+q^3)\cdots = (-q;q)_\infty$$

• Let p(n|odd parts) be the number of partitions of n which have only odd parts.

$$\sum_{n=0}^{\infty} p(n | \text{odd parts }) q^n = \frac{1}{(q; q^2)_{\infty}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Motivating Identities

• Euler: $p(n|\lambda_i \text{ distinct}) = p(n|\lambda_i \text{ odd})$

$$(-q;q)_\infty = rac{1}{(q;q^2)_\infty}$$

Leah Sturman, joint with Holly Swisher Applying Asymptotics Methods to Kang and Park's Generalizati

(ロ) (部) (E) (E) (E)

Motivating Identities

• Euler: $p(n|\lambda_i \text{ distinct}) = p(n|\lambda_i \text{ odd})$

$$(-q;q)_{\infty}=rac{1}{(q;q^2)_{\infty}}$$

• Rogers-Ramanujan 1 (1894, 1914): $p(n|\lambda_i \text{ 2-distinct}) = p(n|\lambda_i \equiv \pm 1 \mod 5)$

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Motivating Identities

• Euler: $p(n|\lambda_i \text{ distinct}) = p(n|\lambda_i \text{ odd})$

$$(-q;q)_\infty=rac{1}{(q;q^2)_\infty}$$

• Rogers-Ramanujan 1 (1894, 1914): $p(n|\lambda_i \text{ 2-distinct}) = p(n|\lambda_i \equiv \pm 1 \mod 5)$

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

• Schur (1926): the number of partitions of n into parts differing by at least 3 with no consecutive multiples of 3 equals the number of partitions of n with parts congruent to $\pm 1 \mod 6$.

同 ト イヨ ト イヨ ト ニヨ

Generalizing the Motivating Identities

q_d⁽¹⁾(n) := p(n|parts differing by at least d) has the generating function:

$$\sum_{n=0}^{\infty} q_d^{(1)}(n) q^n = \sum_{n=0}^{\infty} \frac{q^{d\binom{n}{2}+n}}{(q;q)_n}$$

Q_d⁽¹⁾(n) := p(n|parts ≡ ±1 mod d + 3) has the generating function:

$$\sum_{n=0}^{\infty} Q_d^{(1)}(n) q^n = \frac{1}{(q; q^{d+3})_{\infty}(q^{d+2}; q^{d+3})_{\infty}}.$$

• When d = 2, we recover the first Rogers-Ramanujan identity

$$\sum_{n=0}^{\infty} q_2^{(1)}(n) q^n = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n} = \frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}} = \sum_{n=0}^{\infty} Q_2^{(1)}(n) q^n.$$

Applying Asymptotics Methods to Kang and Park's Generalization

Alder's Conjecture

- To study the relative sizes of each object, Alder considered their difference: Δ⁽¹⁾_d(n) := q⁽¹⁾_d(n) - Q⁽¹⁾_d(n).
- By Euler, $\Delta_1^{(1)}(n) = 0$.
- By RR1, $\Delta_2^{(1)}(n) = 0$.
- By Schur, $\Delta_3^{(1)}(n) \ge 0$.
- Alder proved for $d \geq 3$ there exists $n \in \mathbb{N}$ such that $\Delta_d^{(1)}(n) \neq 0.$

Conjecture (Alder, 1956)

For all
$$d\geq 1,$$
 $n\geq 0$, $\Delta_d^{(1)}(n)\geq 0.$

Theorem (Andrews, 1971)

$$\Delta^{(1)}_d({\it n})\geq 0$$
 for all ${\it n}>0$ if $d=2^r-1$ and $r\geq 4.$

Theorem (Yee, 2008)

$$\Delta_d^{(1)}(n) \geq 0$$
 for all $n > 0$ if $d = 7$ or $d \geq 32$.

Theorem (Alfes, Jameson, Lemke Oliver, [1] 2010)

The Alder-Andrews Conjecture is true.

・ 同 ト ・ ヨ ト ・ ヨ ト

Asymptotic Expressions for $q_d^{(1)}(n)$, $Q_d^{(1)}(n)$

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

If $d \ge 4$ and n is a positive integer, then

$$Q_d^{(1)}(n) = \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}} n^{-\frac{3}{4}} \exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + R(n),$$

where R(n) is an explicitly bounded function.

Theorem (Alfes, Jameson, Lemke Oliver, 2010)

Let α be the unique real number in [0, 1] satisfying $\alpha^d + \alpha - 1 = 0$, and let $A_d := \frac{d}{2} \log^2 \alpha + \sum_{r=1}^{\infty} \frac{\alpha^{rd}}{r^2}$. If n is a positive integer, then

$$q_d^{(1)}(n) = \frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}} n^{-\frac{3}{4}} \exp(2\sqrt{nA_d}) + r_d(n),$$

where $|r_d(n)|$ can be explicitly bounded.

Since the error is explicit, we can compute N(d), the value of n such that for all n ≥ N(d)

$$\frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) > |r_d(n)| \\ + \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}}n^{-\frac{3}{4}}\exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + |R(n)|$$

伺 ト イ ヨ ト イ ヨ ト

э

Since the error is explicit, we can compute N(d), the value of n such that for all n ≥ N(d)

$$\frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) > |r_d(n)| + \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}}n^{-\frac{3}{4}}\exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + |R(n)|$$

• Alfes, Jameson, and Lemke Oliver found that N(d) is on the order of 10^6 .

伺 ト イヨ ト イヨ ト

э

 Since the error is explicit, we can compute N(d), the value of n such that for all n ≥ N(d)

$$\frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) > |r_d(n)| + \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}}n^{-\frac{3}{4}}\exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + |R(n)|$$

- Alfes, Jameson, and Lemke Oliver found that N(d) is on the order of 10^6 .
- This means the asymptotics guarantee that for all $n > 10^6$, Alder's Conjecture is true!

何 ト イヨ ト イヨ ト

 Since the error is explicit, we can compute N(d), the value of n such that for all n ≥ N(d)

$$\frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) > |r_d(n)| + \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}}n^{-\frac{3}{4}}\exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + |R(n)|$$

- Alfes, Jameson, and Lemke Oliver found that N(d) is on the order of 10^6 .
- This means the asymptotics guarantee that for all $n > 10^6$, Alder's Conjecture is true!
- What about $n < 10^6$?

伺 と く ヨ と く ヨ と 二 ヨ

 Since the error is explicit, we can compute N(d), the value of n such that for all n ≥ N(d)

$$\frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-1}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) > |r_d(n)| \\ + \frac{(3d+9)^{-\frac{1}{4}}}{4\sin\frac{\pi}{d+3}}n^{-\frac{3}{4}}\exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + |R(n)|$$

- Alfes, Jameson, and Lemke Oliver found that N(d) is on the order of 10^6 .
- This means the asymptotics guarantee that for all $n > 10^6$, Alder's Conjecture is true!
- What about $n < 10^6$? Check that $q_d(n) \ge Q_d(n)$ for all $4 \le d \le 31$ and $1 \le n \le N(d)$.

イロト イポト イラト イラト

Theorem (Rogers-Ramanujan 2)

For all integers $n \ge 0$

$$\sum_{n=0}^{\infty}rac{q^{n^2+n}}{(q;q)_n}=rac{1}{(q^2;q^5)_{\infty}(q^3;q^5)_{\infty}}.$$

From Kang and Park (2020):

• $q_d^{(a)}(n) := p(n|parts \ge a)$, and parts differ by at least d)

•
$$Q_d^{(b)}(n) := p(n|\text{parts} \equiv \pm b \pmod{d+3})$$

• and
$$\Delta_d^{(a,b)}(n) = q_d^{(a)}(n) - Q_d^{(b)}(n).$$

• When a = b = d = 2, we recover the second Rogers-Ramanujan identity.

• When
$$a=b$$
 we write $\Delta_d^{(a)}(n)=\Delta_d^{(a,a)}(n).$

伺 と く ヨ と く ヨ と

Kang and Park's Conjecture

•
$$\Delta_3^{(2)}(4) = -1.$$

Let Q_d^(2,-)(n) be the number of partitions of n into parts congruent to ±2 (mod d + 3) excluding parts equal to d + 1.

Conjecture (Kang Park[4] 2020)

For all $n \ge 0, d \ge 1$,

$$\Delta_d^{(2,-)}(n) := q_d^{(2)}(n) - Q_d^{(2,-)}(n) \ge 0.$$

Theorem (Duncan Khunger Swisher Tamura [2], 2020)

For $d \ge 62$ and $n \ge 1$,

$$\Delta_d^{(2,-)}(n) \geq 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Given the work by Duncan et al., there are finitely many values of *d* left to prove Kang and Park's conjecture for.
- d = 2 is done by the second Rogers-Ramanujan identity.
- Thus d = 1 and $3 \le d \le 61$ remain.
- Our goal is to use the methods used by Alfes et al. to prove Kang and Park's conjecture for as many of the remaining *d* values as possible.

(4月) (日) (日) 日

Asymptotics for $q_d^{(2)}(n)$

• Can we find asymptotic expressions with explicit error bounds for $Q_d^{(2,-)}(n)$ and $q_d^{(2)}(n)$?

Theorem (Duncan et al. 2022)

Let α be the unique real number in [0, 1] satisfying $\alpha^d + \alpha - 1 = 0$, and let $A_d := \frac{d}{2} \log^2 \alpha + \sum_{r=1}^{\infty} \frac{\alpha^{rd}}{r^2}$. If n is a positive integer, then

$$q_d^{(2)}(n) = \frac{A_d^{\frac{1}{4}}}{2\sqrt{\pi\alpha^{d-3}(d\alpha^{d-1}+1)}}n^{-\frac{3}{4}}\exp(2\sqrt{nA_d}) + r_d(n),$$

where $|r_d(n)|$ can be explicitly bounded.

Asymptotic Approaches

- Meinardus's results do not permit us to find an asymptotic expression for $Q_d^{(2,-)}(n)$ directly.
- By a theorem of Andrews

$$Q_d^{(1)}(n) \ge Q_d^{(2,-)}(n).$$

Also, trivially

$$Q_d^{(2)}(n) \ge Q_d^{(2,-)}(n).$$

- We can either show $q_d^{(2)}(n) \ge Q_d^{(1)}(n)$ for large positive integers n or we can show $q_d^{(2)}(n) \ge Q_d^{(2)}(n)$ for large positive integers.
- So, we have two different approaches to try, and we will need both!

通 と く き と く き と … き

• When d is odd, d + 3 is even.

• In this case
$$Q_d^{(2)}(2n+1) = 0$$
.

Theorem (S- Swisher<u>, 2022)</u>

If $d \ge 4$ is even and n is a positive integer, then

$$Q_d^{(2)}(n) = \frac{(3(d+3))^{-\frac{1}{4}}}{4\sin\frac{2\pi}{d+3}} n^{-\frac{3}{4}} \exp\left(n^{\frac{1}{2}}\frac{2\pi}{\sqrt{3(d+3)}}\right) + R(n),$$

where R(n) is an explicitly bounded function.

伺 ト イヨ ト イヨト

• For even $d \ge 4$, we use the asymptotic expression for $Q_d^{(2)}(n)$ to find the value, N(d) such that for all $n \ge N(d)$

$$q_d^{(2)}(n) \ge Q_d^{(2)}(n) \ge Q_d^{(2,-)}(n).$$

• For odd $d \ge 5$ we instead use the asymptotic expression for $Q_d^{(1)}(n)$ to find N(d) such that

$$q_d^{(2)}(n) \ge Q_d^{(1)}(n) \ge Q_d^{(2,-)}(n)$$

for all $n \ge N(d)$.

Write

$$Q_d^{(a)}(n) = M_Q(n) + R(n)$$

and

$$q_d^{(2)}(n) = M_q(n) + r_d(n).$$

• N(d) is the value of *n* such that for all $n \ge N(d)$

$$M_q(n) \ge M_Q(n) + |R(n)| + |r_d(n)|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Finding N(d)

• We find N(d) by taking each term in the sum, $M_Q + R(n) + r_d(n)$, and finding individual weighted bounds N_1, N_2, N_3 such that

> $K_1 M_q(n) \ge M_Q(n),$ $K_2 M_q(n) \ge |R(n)|,$

and

$$K_3M_q(n) \geq |r_d(n)|$$

for all $n \ge N_1, N_2$ and N_3 respectively.

- By choosing weights $0 \le K_1, K_2, K_3 \le 1$ such that $K_1 + K_2 + K_3 = 1$ we find $N(d) = \max\{N_1, N_2, N_3\}$.
- More specifically, since R(n) and r_d(n) are sums of other terms, we actually have K_i, N_i for 1 ≤ i ≤ 8 because we treat each of the terms in R(n) and r_d(n) separately.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ の Q @

- For even $6 \le d \le 60$ and odd $9 \le d \le 61$, $N(d) \le 10^7$.
- $N(4) = 3.8 \times 10^7, \ N(5) = 1.5 \times 10^8$, and $N(7) = 1.7 \times 10^7$
- We are able to compute $Q_d^{(2)}(n)$, $Q_d^{(2,-)}(n)$, and $q_d^{(2)}(n)$ up to about $n = 10^7$.

Computing $\Delta_d^{(2,-)}(n)$

- We use a modified version of the code that Alfes, Jameson, and Lemke Oliver used.
- The code is written in C++ and utilizes recursive algorithms to generate values for $Q_d^{(2,-)}(n)$ and $q_d^{(2)}(n)$ individually then finds their difference and outputs values of n for which $\Delta_d^{(2,-)}(n)$ is negative.

Theorem (S-, Swisher 2023)

For all positive integers $n \ge 1$ and d = 1 and $6 \le d \le 61$

$$\Delta_d^{(2,-)}(n) \geq 0.$$

同 ト イヨ ト イヨ ト ニヨ

Remaining Cases

- Thus, Kang and Park's conjecture is proven for all d except d = 3, 4 and 5.
- For each $d \in \{3,4,5\}$ we compute $\Delta_d^{(2,-)}(n)$ for all $1 \le n \le 10^7$.
- For each d except 3, we would only need improve the computed N(d) value to be $N(d) \le 10^7$ to finish proving those cases.
- For d = 3, it is possible that one could extend the asymptotic results to include d = 3 and proceed from there.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- For how many even values of d is the dash unnecessary? I.e. for what values of d is $\Delta_d^{(2)}(n) \ge 0$ for all n?
- What about $\Delta_d^{(a,-)}(n)$ for higher values of a?
- Inagaki and Tamura [3] have proved Δ^(3,−)_d(n) ≥ 0 for all but finitely many d.
- Armstrong, Ducasse, Meyer, and Swisher proved $\Delta_d^{(a,-)}(n) \ge 0$ for $a \ge 1$, $\lceil \frac{d}{a} \rceil \ge 105$ and $1 \le n \le d+2+a$ or $d+2a \le n$.

伺 と く き と く き と … き

Bibliography I

Claudia Alfes, Marie Jameson, and Robert Lemke Oliver. Proof of the alder-andrews conjecture. Proceedings of the American Mathematical Society, 139(1):63–78, 2011.

Adriana L Duncan, Simran Khunger, Holly Swisher, and Ryan Tamura.

Generalizations of alder's conjecture via a conjecture of kang and park.

Research in Number Theory, 7(1):1–26, 2021.

Ryota Inagaki and Ryan Tamura. On generalizations of a conjecture of Kang and Park. arXiv preprint arXiv:2206.04842, 2022.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Soon-Yi Kang and Eun Young Park.

An analogue of alder-andrews conjecture generalizing the 2nd rogers-ramanujan identity.

Discrete Mathematics, 343(7):111882, 2020.

• • = • • =