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1. Sequentially Congruent Partitions

Partitions

A partition \ of a nonnegative integer n is a nonincreasing sequence
of positive integers which sum to n: A = (Aq,...,A\g) F n.
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1. Sequentially Congruent Partitions

Partitions

Definition

A partition \ of a nonnegative integer n is a nonincreasing sequence
of positive integers which sum to n: A = (Aq,...,A\g) F n.

The partition function p(n) := #{partitions of size n}.

p(5) = 7: the partitions of 5 are
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1. Sequentially Congruent Partitions

Partition Bijections

Restricted partitions:
o Partitions into odd parts,
o Partitions into distinct parts,
o Partitions into parts = £k (mod 2k + 1), etc.

Example (Euler’s Bijection)

The number of partitions of n into odd parts is equal

to the number of partitions of n into distinct parts.

When n=5: poga(5) =3 and Ddistinct(5) = 3

(5) (5)
(3,1,1) (4,1)
(1,1,1,1,1) (3,2)
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1. Sequentially Congruent Partitions

Sequentially Congruent Partitions

Definition

A sequentially congruent partition of n is a partition (A1,...,\,)
of n such that

1. XA = X1 (mod @) for all 1 < i < r, and
2. A =0 (mod ).
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A sequentially congruent partition of n is a partition (A1,...,\,)
of n such that

1. XA = X1 (mod @) for all 1 < i < r, and
2. A =0 (mod ).

In other words, each part is congruent to the next modulo its index.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partitions

A sequentially congruent partition of n is a partition (A1,...,\,)
of n such that

1. XA = X1 (mod @) for all 1 < i < r, and
2. A =0 (mod ).

In other words, each part is congruent to the next modulo its index.

IS
S

Example
(A1, A2, A3, A\g) = (21,16, 14, 8) - 59 is sequentially congruent:

| (21 — 16),

| (16 — 14),

| (14 —8), and
418
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1. Sequentially Congruent Partitions

Example

A sequentially congruent partition of n is a partition in which
each part is congruent to the next modulo its index.

Sequentially congruent partition (21,16, 14,8) has Young diagram:

[ [ 1 []

divisible
M—— by 1
divisible
by 2
divisible
y
divisible
y 4
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1. Sequentially Congruent Partitions

Partition “Addition”
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1. Sequentially Congruent Partitions

Partition “Addition”

For a partition 7, we consider m; = 0 for all ¢ > ¢(r).

For any two partitions A = (A1, Ae,...) and v = (71,72, ... ), define

AD Y=,

where pu = (u1, pio, - . . ) is the partition such that p; = A\; + ; for all 4.
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1. Sequentially Congruent Partitions

Partition “Addition”

For a partition 7, we consider m; = 0 for all ¢ > ¢(r).

Definition

For any two partitions A = (A1, Ae,...) and v = (71,72, ... ), define
AD Y=,
where pu = (u1, pio, - . . ) is the partition such that p; = A\; + ; for all 4.

In other words, @ is componentwise addition from the left.

(5,3,2,2) @ (3,2,1)
=(5+3,3+2,2+1,2+0)
=(8,5,3,2)
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

For a nonnegative integer ¢, define c¢(Aq, ..., A.) := (cAq, ...

CA=ADAD---DA.
—_——

c times
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Definition

For a nonnegative integer ¢, define c(Aq, ..., A.) := (cA1,...,¢c\), 80

CA=ADAD---DA.
—_——

c times

We now have a new way to write a sequentially congruent partition:

Theorem 1 (Cochran—-D.—Harrell-Saunders, 2023)

A partition X is sequentially congruent if and only if it can be written
uniquely in the form

A= 61(1) @62(2,2) @03(3,3,3) & ooo

for nonnegative integers ci,ca,cs, . .., with finitely many ¢; nonzero.

y
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

The partition (30,26, 18,15,15) - 104 is sequentially congruent.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

The partition (30,26, 18,15,15) - 104 is sequentially congruent.

(30,26, 18, 15, 15)

= (30,26,18,15,3 - 5)

=(30,26,18,0-4+3-5,3-5)

=(30,26,1-3+0-44+3-50-4+3-5)

=(30,4-2+1-3+0-4+3-51-340-4+3-50-4+3-5,3-5)

=(4-144-2+41-340-4+3-54-2+1-3+0-4+3-5,
1-34+0-4+3-5,0-4+3-5,3-5)
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

The partition (30,26, 18,15,15) - 104 is sequentially congruent.

(30,26, 18, 15, 15)

= (30,26,18,15,3 - 5)

=(30,26,18,0-4+3-5,3-5)

=(30,26,1-3+0-44+3-50-4+3-5)

=(30,4-2+1-3+0-4+3-51-340-4+3-50-4+3-5,3-5)

=(4-144-2+41-340-4+3-54-2+1-3+0-4+3-5,
1-34+0-4+3-5,0-4+3-5,3-5)

Then

(30,26,18,15,15) = 4(1)D4(2,2)®1(3,3,3)®0(4, 4,4, 4)®3(5, 5,5, 5, 5).
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Note: a sequentially congruent partition

A=c1(1) ®c2(2,2) ®¢3(3,3,3) @ - B ep(r,...,7)
——

r times

can be written in standard notation as

A=(c1+2c2+3cs+ - +71cr,2c0+3c3+ -+ 1C,y...,TCp).
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Proof of Theorem 1.

(<) For a partition A of the form

A=c1(1) ®c2(2,2) ®¢3(3,3,3) @ - Bep(r,...,7)
~——

r times

=(c14+2co+ - +rcr,2c0+ - +71C,...,TC),

we see that

e r¢, =0 (mod r)
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Sequentially Congruent Partition Notation

Proof of Theorem 1.

(<) For a partition A of the form
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r times
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Proof of Theorem 1.

(=) For a sequentially congruent partition A, we must have that
A = M1 (mod k)

for each 1 < k < r.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Proof of Theorem 1.

(=) For a sequentially congruent partition A, we must have that
A = M1 (mod k)
for each 1 < k < r. Then we see that
Ak — Ag+1 = key,

for some nonnegative integer cy.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Proof of Theorem 1.

(=) For a sequentially congruent partition A, we must have that
A = M1 (mod k)
for each 1 < k < r. Then we see that
Ak — Ag+1 = key,

for some nonnegative integer ci. Therefore A\ = ke + Ay for all &,
So we can write

A=(c1+2co+ - +rce,2co+ - +71CH,...,TC)
=c1(1) ®c2(2,2) B c3(3,3,3) D - Dep(ry...,7).
~——

7 times
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Notation

Proof of Theorem 1.

(=) For a sequentially congruent partition A, we must have that
A = M1 (mod k)
for each 1 < k < r. Then we see that
Ak — Ag+1 = key,

for some nonnegative integer ci. Therefore A\ = ke + Ay for all &,
So we can write

A=(c1+2co+ - +rce,2co+ - +71CH,...,TC)
=c1(1) ®c2(2,2) B c3(3,3,3) D - Dep(ry...,7).
~——

7 times

Uniqueness can be proved by induction. O
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1. Sequentially Congruent Partitions

c-Notation

Since the representation in Theorem 1 is unique, we can denote any
sequentially congruent partition

A=c1(1) ®c2(2,2) ®¢3(3,3,3) B - Bep(r,...,r)
~——

r times

simply by
A= [617627 cee 707‘]‘
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1. Sequentially Congruent Partitions

c-Notation

Since the representation in Theorem 1 is unique, we can denote any
sequentially congruent partition

A=c1(1) ®c2(2,2) ®¢3(3,3,3) B - Bep(r,...,r)
~——

r times
simply by

A= [017627"'767‘]'

We call this new notation “c-notation.”
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1. Sequentially Congruent Partitions

c-Notation

Since the representation in Theorem 1 is unique, we can denote any
sequentially congruent partition

A=c1(1) ®c2(2,2) ®¢3(3,3,3) B - Bep(r,...,r)
~——

r times

simply by
A= [617627 cee 707‘]‘

We call this new notation “c-notation.”

Note that if the summand (3, 3,3) appears zero times in the partition,
then c3 = 0.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Bijections
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Theorem 2 (Schneider—Sellers—Wagner, 2021)
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number of partitions of n into squares.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Bijections

Theorem 2 (Schneider—Sellers—Wagner, 2021)

The number of sequentially congruent partitions of n is equal to the
number of partitions of n into squares.

Original Proof.
o The conjugate of a sequentially congruent partition is called a
frequency congruent partition:

m;(A\) =0 (mod %) for all 4 > 1.

o Any frequency congruent partition is of the form

(11'61,22'62, e ,i"ei) for some e; > 0.

@ Prove that the following is a size-preserving bijection:

(e i) = () (3)Y)
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Sequentially Congruent Partition Bijections

Theorem 3 (Schneider—Sellers—Wagner, 2021)

The number of sequentially congruent partitions of n is equal to the
number of partitions of n into squares.

Proof using c-notation.
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1. Sequentially Congruent Partitions

Sequentially Congruent Partition Bijections

Theorem 3 (Schneider—Sellers—Wagner, 2021)

The number of sequentially congruent partitions of n is equal to the
number of partitions of n into squares.

Proof using c-notation.

o Any sequentially congruent partition can be uniquely written as

[c1,¢0y. ., cr]).
o Any partition into squares can be uniquely written as
(1™, 2%, ()™,
o Prove that the following is a size-preserving bijection:

e, 2, vy er] <(12)“, PR (7”2)CT>.
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2. Young Diagrams

Partitions into Squares

Theorem 3 can be illustrated via Young diagrams.
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2. Young Diagrams

Partitions into Squares

Theorem 3 can be illustrated via Young diagrams.

The Young diagram of a sequentially congruent partition is composed
of squares:

A= Cl(l) @ 62(272) D 63(37373) DD CT(T, ce 7T)'
——

r times
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2. Young Diagrams

Partitions into Squares

Theorem 3 can be illustrated via Young diagrams.

The Young diagram of a sequentially congruent partition is composed
of squares:

A= Cl(l) @ 62(27 2) D 63(3737 3) DD CT(T, ce 7T)'
——
r times
To map a sequentially congruent partition to a partition into squares,
we transform each square into its own row:

O
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2. Young Diagrams

Partitions Composed of Squares

The Young diagram of a sequentially congruent partition [c1, ca, ... ]:

[]... S

[

-
— ——c) times

—_

¢4 times

c5 times

—— ——— ¢y times
c3 times
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2. Young Diagrams

Partitions Composed of Squares

The Young diagram of a sequentially congruent partition [c1, ca, ... ]:

[]... -0
[] —
———— times
—— —— cp times

——— ———— 3 times
c4 times

c5 times

The number of ¢ X ¢ squares is equal to ¢; for each ¢ > 1.

16 /35



2. Young Diagrams

Size to Largest Part Bijections
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2. Young Diagrams

Size to Largest Part Bijections

Theorem 4 (Schneider—Schneider, 2019)

The number of partitions of n is equal to the number of sequentially
congruent partitions with largest part n.

Schneider—Schneider explicitly constructed two bijections:
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2. Young Diagrams

Size to Largest Part Bijections

Theorem 4 (Schneider—Schneider, 2019)

The number of partitions of n is equal to the number of sequentially
congruent partitions with largest part n.

Schneider—Schneider explicitly constructed two bijections:

1. For a partition A = (A\1,...,\.) b n, define 7 : A — X where
XN = (A],...,Al) is the sequentially congruent partition with

No=idi+ > A
j=i+1
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2. Young Diagrams

Size to Largest Part Bijections

Theorem 4 (Schneider—Schneider, 2019)

The number of partitions of n is equal to the number of sequentially
congruent partitions with largest part n.

Schneider—Schneider explicitly constructed two bijections:

1. For a partition A = (A\1,...,\.) b n, define 7 : A — X where
XN = (A],...,Al) is the sequentially congruent partition with

No=idi+ > A
j=i+1

2. For a sequentially congruent partition ¢ = (¢4, ..., ¢,), define
o <1¢1—¢72’ 2(¢2—¢3)/2’ 3(¢3—¢4)/3’ o 770(J5T/T>.

17 /35



2. Young Diagrams

Examples of Bijections

Recall 7: (A1,..., Ar) = (A, .0, A7) where Aj = i\ + 37700 A
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» o

Let ()\1,)\2,)\3,A47)\5) = (12,8,4,373)

g= z+1
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2. Young Diagrams

Examples of Bijections

Recall m: (A1,...,Ar) = (N],...,\.) where \; =i\; + >

» o

Let ()\1,)\2,)\3,A47)\5) = (12,8,4,373)

g= z+1

5
Xl:1)\1+Zj:2)\j:12+8+4+3+3=3O,
5
! L _
No=2Xo+) A =16+4+3+3=26,
5
Agzs/\3+zj:4/\j:12+3+3:18,

! o R _
4_4A4+ZFSAJ_12+3_15,
A = BAs = 15.
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2. Young Diagrams

Examples of Bijections

Recall m: (A1,...,Ar) = (N],...,\.) where \; =i\; + >

» o

Let ()\1,)\2,)\3,A47)\5) = (12,8,4,373)

g= z+1

5
Xl:1)\1+Zj:2)\j:12+8+4+3+3=3O,
5
! L _
No=2Xo+) A =16+4+3+3=26,
5
Agzs/\3+zj:4/\j:12+3+3:18,

! o R _
4_4A4+ZFSAJ_12+3_15,
A = BAs = 15.

Therefore

m((12,8,4,3,3)) = (30,26, 18, 15, 15)

18 /35



2. Young Diagrams

Examples of Bijections

Recall 0 : (¢1,...,¢,) — (191792 2(92=¢3)/2 3(¢s=0a)/3 pér/r,
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2. Young Diagrams

Examples of Bijections

Recall 0 : (¢1,...,¢,) — (191792 2(92=¢3)/2 3(¢s=0a)/3 pér/r,
Let (¢1) ¢2a ¢3a ¢47 ¢5) = (307 267 187 157 15)
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2. Young Diagrams

Examples of Bijections

Recall 0 : (¢1,...,¢,) — (191792 2(92=¢3)/2 3(¢s=0a)/3 pér/r,
Let (¢1) ¢2a ¢3a ¢47 ¢5) = (307 267 187 157 15)
1¢1—¢2 — 130—26 — 14

)
P2—93 26—18

27z =27z =24
385 _ gt _ gl
4¢4Z¢5 :4¥ :407

5% =5% =53,

19/35



2. Young Diagrams

Examples of Bijections

Recall o : (¢1,...,0,) —
Let (¢1)¢2a¢3a¢47¢5) =

Therefore

<1¢1*¢2 , 2(¢72*¢3)/27 3(473.*(1)4)/37

(30, 26,18, 15, 15).

191—2

¢o—¢3
2

2

$3—b4
3

3
4

ba—¢5
1

o((30,26,18, 15, 15))

— 130-26 _ 14
277 = 24,
s
4770 =40
=5% =5°.

©
U“m

= (1,24,3,5%)
=(55,5,3,2,2,2,2,1,1,1,1)

Lo/,
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2. Young Diagrams

Young Diagram Transformations

Bijection 1 can be illustrated via Young diagrams as follows:
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2. Young Diagrams

Young Diagram Transformations

Bijection 1 can be illustrated via Young diagrams as follows:

The map 7 “stretches” each ¢ X 1 column in the Young diagram into
an ¢ X ¢ square.

[ [
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2. Young Diagrams

Young Diagram Transformations

Bijection 2 can be illustrated via Young diagrams as follows:
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2. Young Diagrams

Young Diagram Transformations

Bijection 2 can be illustrated via Young diagrams as follows:

The map o “squishes” each 7 x ¢ square into an ¢ X 1 column, and
then “flips” (conjugates) the diagram.

21/35



2. Young Diagrams

Natural Questions About Bijections

The bijections m and o are not inverses of each other.
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2. Young Diagrams

Natural Questions About Bijections

The bijections m and o are not inverses of each other.

@ What is an explicit description of the composition o o w?

o What is an explicit description of the composition 7 o o7

o What is a combinatorial interpretation of both of these
compositions?

22/35



2. Young Diagrams

Compositions of Bijections
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Theorem 5 (Schneider—Schneider, 2019)

The composition o o m is equivalent to conjugation.
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Theorem 5 (Schneider—Schneider, 2019)

The composition o o m is equivalent to conjugation.

Corollary 6 (Cochran—D.-Harrell-Saund

The conjugate of any partition A = (A1, Aa, ..., \.) is the partition
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2. Young Diagrams

Compositions of Bijections

Theorem 5 (Schneider—Schneider, 2019)

The composition o o m is equivalent to conjugation.

Corollary 6 (Cochran—D.-Harrell-Saund

The conjugate of any partition A = (A1, Aa, ..., \.) is the partition

<1)\17)\2’2)\27)\3 . (7,_1 r—1—Ap )\ >

Moreover, a partition X\ is self-conjugate if and only if

T when i < A\,
r—1 when A\, <1< A1,

2 when Az <1 < Ao,
1 when Ao < i < Aq.

23 /35



2. Young Diagrams

Compositions of Bijections

Schneider—Schneider observed that 7 o ¢ is not conjugation.
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2. Young Diagrams

Compositions of Bijections

Schneider—Schneider observed that 7 o ¢ is not conjugation.

Theorem 7 (Cochran—D.—Harrell-Saunders, 2023)

Let ¢ = (¢1,¢2,..., ) be a sequentially congruent partition. Then

17 ¢17¢22r’_‘ rT‘_.%E
(WOU)(¢)_<<Zz¢i—i¢z+l) 7<22¢1 i¢z+1) 7”'7(22@ i¢z+1) >

$2—d3
2
j=1 i=j j=1i=j

=10,...,0,1,0,...,0,1,...,0,...,0,1].
—— N——

cr terms cr—1 terms c1 terms
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2. Young Diagrams

Compositions of Bijections

Schneider—Schneider observed that 7 o ¢ is not conjugation.

Theorem 7 (Cochran—D.—Harrell-Saunders, 2023)

Let ¢ = (¢1,¢2,..., ) be a sequentially congruent partition. Then

$2-9¢3
2

j=1 i=j j=1i=j

1 $1—¢2 2 S $r
(WOU)(¢)_<<Zz¢i—i¢z+l) 7<22¢1 i¢z+1) 7”'7(22@ i¢z+1> >

=10,...,0,1,0,...,0,1,...,0,...,0,1].
—— N——

cr terms cr—1 terms c1 terms

“Proofs” of Theorems 5 and 7.

@ The composition ¢ o 7 transforms the Young diagram of a
partition by stretch-squish-flip.
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2. Young Diagrams

Compositions of Bijections

Schneider—Schneider observed that 7 o ¢ is not conjugation.

Theorem 7 (Cochran—D.—Harrell-Saunders, 2023)

Let ¢ = (¢1,¢2,..., ) be a sequentially congruent partition. Then

1o #1=92 2 r o
("°”)(¢)‘<<ZZ%) v(ZZW)

j=1 i=j j=1i=j

2 ;¢1 ér

j=1 i=j

=10,...,0,1,0,...,0,1,...,0,...,0,1].
—— N——

cr terms cr—1 terms c1 terms

“Proofs” of Theorems 5 and 7.

@ The composition ¢ o 7 transforms the Young diagram of a
partition by stretch-squish-flip.

@ The composition 7 o ¢ transforms the Young diagram of a
sequentially congruent partition by squish-flip-stretch. O
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Definition

Recall that Frequency congruent partitions are the conjugates of
sequentially congruent partitions and are of the form
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where f; =0 (mod 7).
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3. Generalizations

Recap of Frequency Congruent Partitions

Definition

Recall that Frequency congruent partitions are the conjugates of
sequentially congruent partitions and are of the form

<1f1’2f273f3,“.>7

where f; =0 (mod 7).

In other words, the part ¢ occurs a multiple of ¢ times.
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3. Generalizations

Recap of Frequency Congruent Partitions

Sequentially congruent partition:

]

Corresponding frequency congruent partition:
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3. Generalizations

Generalized Frequency Congruent Partitions

Let B C N, and let A be a sequence of natural numbers.

Schneider—Schneider define the set of partitions with parts from B,
where the part b; occurs a multiple of a; times:

niai 202 n3as
<b1 7b2 ab3 7"'>a

where all n; > 0 and finitely many n; are nonzero.
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Let B C N, and let A be a sequence of natural numbers.

Schneider—Schneider define the set of partitions with parts from B,
where the part b; occurs a multiple of a; times:

niai 202 n3as
<b1 7b2 ab3 7"'>a

where all n; > 0 and finitely many n; are nonzero.

We'll refer to these as “generalized frequency congruent partitions.”

Let B ={2,4,6,8,...} CN, and let A =(1,3,5,7,...).
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3. Generalizations

Generalized Frequency Congruent Partitions

Let B C N, and let A be a sequence of natural numbers.

Schneider—Schneider define the set of partitions with parts from B,
where the part b; occurs a multiple of a; times:

niai 202 n3as
<b1 7b2 ab3 7"'>a

where all n; > 0 and finitely many n; are nonzero.

We'll refer to these as “generalized frequency congruent partitions.”

Let B ={2,4,6,8,...} CN, and let A =(1,3,5,7,...).

Example of a generalized frequency congruent partition for B and A:

<24’49’ 65,814>
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3. Generalizations

Generalized Sequentially Congruent Partitions

Generalized sequentially congruent partitions are the
conjugates of generalized frequency congruent partitions.
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3. Generalizations

Generalized Sequentially Congruent Partitions

Generalized sequentially congruent partitions are the
conjugates of generalized frequency congruent partitions.

Question: Can we give an explicit description?

If B=N,A=(1,1,1,...), these are sequentially congruent partitions.
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3. Generalizations

Generalized Sequentially Congruent Partitions

Young diagram of a generalized sequentially congruent partition:
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3. Generalizations

Generalized Sequentially Congruent Partitions

Young diagram of a generalized sequentially congruent partition:

]

ay
ny times

- by

—_—

az
no times

_
ar

n, times

A generalized sequentially congruent partition can be uniquely written

>\:nl(ala"'val)®n2(a2a"'7a2)@n3(a3a"'7a’3)@'”
—— —— ——
by times bs times b3 times

with finitely many nonzero n;. We use the “n-notation”

A=[n1,ne,...,n]aB.
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3. Generalizations

Generalized Bijections

We explicitly construct two analogous generalized bijections:
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Generalized Bijections

We explicitly construct two analogous generalized bijections:

1. For a partition A = (A\q,...,A), define map : A — X where
N = (/\’17 D VI )\27.) is the generalized sequentially congruent
partition with

m_al)‘ + Z — Qj— 1 j

J=t1+1

for b_1 <m < b;, forall 1 <i<r.
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N = (/\’17 D VI )\27.) is the generalized sequentially congruent
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m_al)‘ + Z — Qj— 1 j

J=t1+1

for b_1 <m < b;, forall 1 <i<r.
The map map still “stretches” the Young diagram.
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Generalized Bijections

We explicitly construct two analogous generalized bijections:

1. For a partition A = (A\q,...,A), define map : A — X where
N = (/\’17 D VI )\27.) is the generalized sequentially congruent
partition with

m_al)‘ + Z — Qj— 1 j

J=t1+1

for b_1 <m < b;, forall 1 <i<r.
The map map still “stretches” the Young diagram.

2. For a generalized sequentially congruent partition
¢ = [n1,...,n.], define

oag o= (1™ ).

30/35



3. Generalizations

Generalized Bijections

We explicitly construct two analogous generalized bijections:

1. For a partition A = (A\q,...,A), define map : A — X where
N = (/\’17 D VI )\27.) is the generalized sequentially congruent
partition with

A = @i\ + Z — Qj— 1 j
J=t1+1

for b_1 <m < b;, forall 1 <i<r.
The map map still “stretches” the Young diagram.

2. For a generalized sequentially congruent partition
¢ = [n1,...,n.], define

oag o= (1™ ).
The map oap still “squishes” then “flips” the Young diagram.
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3. Generalizations

Examples of Generalized Bijections

Recall map : (A1,...,Ar) — ()\’17 .. .,)\ZT)7 where for all 1 < i <r,
)‘;n = a;\; + Z;:iJrl (aj = aj,l) )\j for b;_1 <m < b;.
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Example

Recall map : (A1,...,Ar) — ()\’17 .. .,)\ZT)7 where for all 1 < i <r,
)‘;n = a;\; + Z;:iJrl (aj = aj,l) )\j for b;_1 <m < b;.

Let B={2,4,6,8,10,...} CNand A = (1,3,5,7,9,...), and let
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3. Generalizations

Examples of Generalized Bijections

Example

Recall map : (A1,...,Ar) — ()\’17 .. .,)\gT)7 where for all 1 < i <r,
)‘;n = a;\; + Z;:Z—Jrl (aj = aj,l) )\j for b;_1 <m < b;.

Let B={2,4,6,8,10,...} CNand A = (1,3,5,7,9,...), and let
()\17)\27)\37)‘4u )‘5) = (1278747373)

5
)\’1:)\’2:1)\1+Zj:2(ajfaj_1))\j:12+16+8+6+6:48,
5
)\é: 21:3)\2+Zj:3(aj—aj_1)/\j:24+8+6+6=44,
5
)\g:)\'ﬁ:5)\3+2j:4(aj—aj,1))\j:2O+6+6:32,

5
L=, =Th + ijs (aj —aj_1)\; = 21 +6 = 27,
Ay = Mo = 95 = 27.
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3. Generalizations

Examples of Generalized Bijections

Example

Recall map : (A1,...,Ar) — ()\’17 .. .,)\gT)7 where for all 1 < i <r,
)‘;n = a;\; + Z;:Z—Jrl (aj = aj,l) )\j for b;_1 <m < b;.

Let B={2,4,6,8,10,...} CNand A = (1,3,5,7,9,...), and let
()\17)\27)\37)‘4u )‘5) = (1278747373)

5
)\’1:)\’2:1)\1+Zj:2(ajfaj_1))\j:12+16+8+6+6:48,
5
)\é: 21:3)\2+Zj:3(aj—aj_1)/\j:24+8+6+6=44,
5
)\g:)\'ﬁ:5)\3+2j:4(aj—aj,1))\j:2O+6+6:32,

5
=Xy =T\ +Zj:5 (aj —aj_1) N =21 +6 =27,
Ay = Mo =95 = 27.
Therefore map((12,8,4,3,3)) = (48,44, 32, 27,27).
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3. Generalizations

Examples of Generalized Bijections

Recall 045 : [nlw--anr} g <1n1a--~77'7”>.
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3. Generalizations

Examples of Generalized Bijections

Example
Recall 045 : [77’17 .- anr] g <1n1’. .- 77’nr> .

Let B ={2,4,6,8,10,...} CNand A= (1,3,5,7,9,...), and let
[nl,n27n37n47n5]A,B = [37 17 ]-7072]14,3'

=7
U R
B =g
4ms = 40
G = 527

Therefore

oap ([3,1,1,0,2]a,8) = (1%,2",3",5%)
= (5, 9,3,2,1,1, 1)
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3. Generalizations

Examples of Generalized Bijections

Let B = {2,4,6,8,10,...} CNand A = (1,3,5,7,9,...).
The last example calculated 045 ([3,1,1,0,2]4.5) = (5,5,3,2,1,1,1).
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The values of n; dictate the number of times each b; X a; rectangle
appears in the Young diagram.
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Examples of Generalized Bijections

Example
Let B = {2,4,6,8,10,...} CNand A = (1,3,5,7,9,...).
The last example calculated 045 ([3,1,1,0,2]4.5) = (5,5,3,2,1,1,1).

The values of n; dictate the number of times each b; X a; rectangle
appears in the Young diagram.

The input partition [3,1,1,0,2]4, 5 has
b1 x ap =2 x 1 rectangles,

by X ap =4 x 3 rectangle,

bs X a3 =6 x5 rectangle, and

N = = W

bs X a5 =10 X 9 rectangles.
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3. Generalizations

Examples of Generalized Bijections

Example
Let B = {2,4,6,8,10,...} CNand A = (1,3,5,7,9,...).
The last example calculated 045 ([3,1,1,0,2]4.5) = (5,5,3,2,1,1,1).

The values of n; dictate the number of times each b; X a; rectangle
appears in the Young diagram.

The input partition [3,1,1,0,2]4, 5 has
b1 x ap =2 x 1 rectangles,

by X ap =4 x 3 rectangle,

bs X a3 =6 x5 rectangle, and

N = = W

bs X a5 =10 X 9 rectangles.

Therefore we found that
o45((29,29,26,26,23,23,18,18,18,18)) = (5,5,3,2,1,1,1).
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Other Generalized Bijections

o Versions of 7 and o which map size to largest part
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3. Generalizations

Other Generalized Bijections

o Versions of 7 and o which map size to largest part

We showed that the size-to-largest-part versions cannot be the
same as the squish-flip-stretch versions, except in the special case
that the sequence A is of the form A = (a,2aq,3a,...).

o A size-to-largest-part bijection from the set of generalized
sequentially congruent partitions with any B C N and
A= (1]“, ok 3k .. ) to the set of partitions into kth powers

@ A size-preserving bijection from the set of generalized
sequentially congruent partitions with B = N and
A= (1%,28 3% ...) to the set of partitions into (k + 1)th powers

@ A composite bijection between the two previous sets of
generalized sequentially congruent partitions

@ Generalized bijections mapping between rectangles of different
sizes or between different rectangles with the same area
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3. Generalizations

Summary

Sequentially congruent partitions enjoy many fascinating properties:

Abbreviated c-notation

Young diagrams composed of squares
Bijections with various sets of partitions

An analogue of conjugation within sequential congruence

Generalizations with Young diagrams composed of rectangles

o Generalized bijections
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