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Partitions

Definition

A partition λ of a nonnegative integer n is a nonincreasing sequence
of positive integers which sum to n: λ = (λ1, . . . , λk) ` n.

The partition function p(n) := #{partitions of size n}.

Example

p(5) = 7: the partitions of 5 are

(5)

(4, 1)

(3, 2)

(3, 1, 1)

(2, 2, 1)

(2, 1, 1, 1)

(1, 1, 1, 1, 1)
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Partition Bijections

Restricted partitions:

Partitions into odd parts,

Partitions into distinct parts,

Partitions into parts ≡ ±k (mod 2k + 1), etc.

Example (Euler’s Bijection)

The number of partitions of n into odd parts is equal

to the number of partitions of n into distinct parts.

When n = 5: podd(5) = 3 and pdistinct(5) = 3

(5)

(3, 1, 1)

(1, 1, 1, 1, 1)

(5)

(4, 1)

(3, 2)
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Sequentially Congruent Partitions

Definition

A sequentially congruent partition of n is a partition (λ1, . . . , λr)
of n such that

1. λi ≡ λi+1 (mod i) for all 1 ≤ i < r, and

2. λr ≡ 0 (mod r).

In other words, each part is congruent to the next modulo its index.

Example

(λ1, λ2, λ3, λ4) = (21, 16, 14, 8) ` 59 is sequentially congruent:

1 | (21− 16),

2 | (16− 14),

3 | (14− 8), and

4 | 8.

4 / 35
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Example

Definition

A sequentially congruent partition of n is a partition in which
each part is congruent to the next modulo its index.

Sequentially congruent partition (21, 16, 14, 8) has Young diagram:

︸ ︷︷ ︸
divisible
by 4

︸ ︷︷ ︸
divisible
by 3

︸ ︷︷ ︸
divisible
by 2

︸ ︷︷ ︸
divisible
by 1
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Partition “Addition”

For a partition π, we consider πi = 0 for all i > `(π).

Definition

For any two partitions λ = (λ1, λ2, . . . ) and γ = (γ1, γ2, . . . ), define

λ⊕ γ := µ,

where µ = (µ1, µ2, . . . ) is the partition such that µi = λi + γi for all i.

In other words, ⊕ is componentwise addition from the left.

Example

(5, 3, 2, 2)⊕ (3, 2, 1)

= (5 + 3, 3 + 2, 2 + 1, 2 + 0)

= (8, 5, 3, 2)

6 / 35
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3. Generalizations

Sequentially Congruent Partition Notation

Definition

For a nonnegative integer c, define c(λ1, . . . , λr) := (cλ1, . . . , cλr), so

cλ = λ⊕ λ⊕ · · · ⊕ λ︸ ︷︷ ︸
c times

.

We now have a new way to write a sequentially congruent partition:

Theorem 1 (Cochran–D.–Harrell–Saunders, 2023)

A partition λ is sequentially congruent if and only if it can be written
uniquely in the form

λ = c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · ·

for nonnegative integers c1, c2, c3, . . . , with finitely many ci nonzero.
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Sequentially Congruent Partition Notation

Example

The partition (30, 26, 18, 15, 15) ` 104 is sequentially congruent.

(30, 26, 18, 15, 15)

= (30, 26, 18, 15, 3 · 5)

= (30, 26, 18, 0 · 4 + 3 · 5, 3 · 5)

= (30, 26, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5)

= (30, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

= (4 · 1 + 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5,
1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

Then

(30, 26, 18, 15, 15) = 4(1)⊕4(2, 2)⊕1(3, 3, 3)⊕0(4, 4, 4, 4)⊕3(5, 5, 5, 5, 5).

8 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Sequentially Congruent Partition Notation

Example

The partition (30, 26, 18, 15, 15) ` 104 is sequentially congruent.

(30, 26, 18, 15, 15)

= (30, 26, 18, 15, 3 · 5)

= (30, 26, 18, 0 · 4 + 3 · 5, 3 · 5)

= (30, 26, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5)

= (30, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

= (4 · 1 + 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5,
1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

Then

(30, 26, 18, 15, 15) = 4(1)⊕4(2, 2)⊕1(3, 3, 3)⊕0(4, 4, 4, 4)⊕3(5, 5, 5, 5, 5).

8 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Sequentially Congruent Partition Notation

Example

The partition (30, 26, 18, 15, 15) ` 104 is sequentially congruent.

(30, 26, 18, 15, 15)

= (30, 26, 18, 15, 3 · 5)

= (30, 26, 18, 0 · 4 + 3 · 5, 3 · 5)

= (30, 26, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5)

= (30, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

= (4 · 1 + 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5, 4 · 2 + 1 · 3 + 0 · 4 + 3 · 5,
1 · 3 + 0 · 4 + 3 · 5, 0 · 4 + 3 · 5, 3 · 5)

Then

(30, 26, 18, 15, 15) = 4(1)⊕4(2, 2)⊕1(3, 3, 3)⊕0(4, 4, 4, 4)⊕3(5, 5, 5, 5, 5).

8 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Sequentially Congruent Partition Notation

Note: a sequentially congruent partition

λ = c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · · ⊕ cr(r, . . . , r︸ ︷︷ ︸
r times

)

can be written in standard notation as

λ = (c1 + 2c2 + 3c3 + · · ·+ rcr, 2c2 + 3c3 + · · ·+ rcr, . . . , rcr).

9 / 35
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Sequentially Congruent Partition Notation

Proof of Theorem 1.

(⇐) For a partition λ of the form

λ = c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · · ⊕ cr(r, . . . , r︸ ︷︷ ︸
r times

)

= (c1 + 2c2 + · · ·+ rcr, 2c2 + · · ·+ rcr, . . . , rcr),

we see that

rcr ≡ 0 (mod r)

λk − λk+1 = kck ≡ 0 (mod k) for all 1 ≤ k < r.

Therefore λ is sequentially congruent.

10 / 35
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Sequentially Congruent Partition Notation

Proof of Theorem 1.

(⇒) For a sequentially congruent partition λ, we must have that

λk ≡ λk+1 (mod k)

for each 1 ≤ k < r.

Then we see that

λk − λk+1 = kck

for some nonnegative integer ck. Therefore λk = kck + λk+1 for all k,
so we can write

λ = (c1 + 2c2 + · · ·+ rcr, 2c2 + · · ·+ rcr, . . . , rcr)

= c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · · ⊕ cr(r, . . . , r︸ ︷︷ ︸
r times

).

Uniqueness can be proved by induction.
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c-Notation

Since the representation in Theorem 1 is unique, we can denote any
sequentially congruent partition

λ = c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · · ⊕ cr(r, . . . , r︸ ︷︷ ︸
r times

)

simply by
λ = [c1, c2, . . . , cr].

We call this new notation “c-notation.”

Note that if the summand (3, 3, 3) appears zero times in the partition,
then c3 = 0.

12 / 35
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Sequentially Congruent Partition Bijections

Theorem 2 (Schneider–Sellers–Wagner, 2021)

The number of sequentially congruent partitions of n is equal to the
number of partitions of n into squares.

Original Proof.

The conjugate of a sequentially congruent partition is called a
frequency congruent partition:

mi(λ) ≡ 0 (mod i) for all i ≥ 1.

Any frequency congruent partition is of the form(
11·e1 , 22·e2 , . . . , ii·ei

)
for some ei ≥ 0.

Prove that the following is a size-preserving bijection:(
11·e1 , . . . , ii·ei

)
7→
((

12
)e1

, . . . ,
(
i2
)ei)

13 / 35
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Sequentially Congruent Partition Bijections

Theorem 3 (Schneider–Sellers–Wagner, 2021)

The number of sequentially congruent partitions of n is equal to the
number of partitions of n into squares.

Proof using c-notation.

Any sequentially congruent partition can be uniquely written as

[c1, c2, . . . , cr].

Any partition into squares can be uniquely written as〈
(12)

d1
, (22)

d2
, . . . , (r2)

dr〉
.

Prove that the following is a size-preserving bijection:

[c1, c2, . . . , cr] 7→
〈

(12)
c1
, (22)

c2
, . . . , (r2)

cr
〉
.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Partitions into Squares

Theorem 3 can be illustrated via Young diagrams.

The Young diagram of a sequentially congruent partition is composed
of squares:

λ = c1(1)⊕ c2(2, 2)⊕ c3(3, 3, 3)⊕ · · · ⊕ cr(r, . . . , r︸ ︷︷ ︸
r times

).

To map a sequentially congruent partition to a partition into squares,
we transform each square into its own row:

ψ7−−→
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Partitions Composed of Squares

The Young diagram of a sequentially congruent partition [c1, c2, . . . ]:

The number of i× i squares is equal to ci for each i ≥ 1.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Size to Largest Part Bijections

Theorem 4 (Schneider–Schneider, 2019)

The number of partitions of n is equal to the number of sequentially
congruent partitions with largest part n.

Schneider–Schneider explicitly constructed two bijections:

1. For a partition λ = (λ1, . . . , λr) ` n, define π : λ 7→ λ′ where
λ′ = (λ′1, . . . , λ

′
r) is the sequentially congruent partition with

λ′i = iλi +

r∑
j=i+1

λj .

2. For a sequentially congruent partition φ = (φ1, . . . , φr), define

σ : φ 7→
〈
1φ1−φ2 , 2(φ2−φ3)/2, 3(φ3−φ4)/3, . . . , rφr/r

〉
.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Bijections

Example

Recall π : (λ1, . . . , λr) 7→ (λ′1, . . . , λ
′
r) where λ′i = iλi +

∑r
j=i+1 λj .

Let (λ1, λ2, λ3, λ4, λ5) = (12, 8, 4, 3, 3).

λ′1 = 1λ1 +
∑5

j=2
λj = 12 + 8 + 4 + 3 + 3 = 30,

λ′2 = 2λ2 +
∑5

j=3
λj = 16 + 4 + 3 + 3 = 26,

λ′3 = 3λ3 +
∑5

j=4
λj = 12 + 3 + 3 = 18,

λ′4 = 4λ4 +
∑5

j=5
λj = 12 + 3 = 15,

λ′5 = 5λ5 = 15.

Therefore
π((12, 8, 4, 3, 3)) = (30, 26, 18, 15, 15)
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Bijections

Example

Recall σ : (φ1, . . . , φr) 7→
〈
1φ1−φ2 , 2(φ2−φ3)/2, 3(φ3−φ4)/3, . . . , rφr/r

〉
.

Let (φ1, φ2, φ3, φ4, φ5) = (30, 26, 18, 15, 15).

1φ1−φ2 = 130−26 = 14,

2
φ2−φ3

2 = 2
26−18

2 = 24,

3
φ3−φ4

3 = 3
18−15

3 = 31,

4
φ4−φ5

4 = 4
15−15

4 = 40,

5
φ5
5 = 5

15
5 = 53.

Therefore

σ((30, 26, 18, 15, 15)) =
〈
14, 24, 31, 53

〉
= (5, 5, 5, 3, 2, 2, 2, 2, 1, 1, 1, 1)
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Young Diagram Transformations

Bijection 1 can be illustrated via Young diagrams as follows:

π7−−→

The map π “stretches” each i× 1 column in the Young diagram into
an i× i square.

π7−−→
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Young Diagram Transformations

Bijection 2 can be illustrated via Young diagrams as follows:

σ7−−→

The map σ “squishes” each i× i square into an i× 1 column, and
then “flips” (conjugates) the diagram.

→ →

σ
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Natural Questions About Bijections

Observation

The bijections π and σ are not inverses of each other.

What is an explicit description of the composition σ ◦ π?

What is an explicit description of the composition π ◦ σ?

What is a combinatorial interpretation of both of these
compositions?
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Compositions of Bijections

Theorem 5 (Schneider–Schneider, 2019)

The composition σ ◦ π is equivalent to conjugation.

Corollary 6 (Cochran–D.-Harrell–Saunders, 2023)

The conjugate of any partition λ = (λ1, λ2, . . . , λr) is the partition〈
1λ1−λ2 , 2λ2−λ3 , . . . , (r − 1)λr−1−λr , rλr

〉
.

Moreover, a partition λ is self-conjugate if and only if

λi =



r when i ≤ λr,
r − 1 when λr < i ≤ λr−1,
...

2 when λ3 < i ≤ λ2,
1 when λ2 < i ≤ λ1.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Compositions of Bijections

Schneider–Schneider observed that π ◦ σ is not conjugation.

Theorem 7 (Cochran–D.–Harrell–Saunders, 2023)

Let φ = (φ1, φ2, . . . , φr) be a sequentially congruent partition. Then

= [0, . . . , 0, 1︸ ︷︷ ︸
cr terms

, 0, . . . , 0, 1︸ ︷︷ ︸
cr−1 terms

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
c1 terms

].

“Proofs” of Theorems 5 and 7.

The composition σ ◦ π transforms the Young diagram of a
partition by stretch-squish-flip.

The composition π ◦ σ transforms the Young diagram of a
sequentially congruent partition by squish-flip-stretch.

24 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Compositions of Bijections

Schneider–Schneider observed that π ◦ σ is not conjugation.

Theorem 7 (Cochran–D.–Harrell–Saunders, 2023)

Let φ = (φ1, φ2, . . . , φr) be a sequentially congruent partition. Then

= [0, . . . , 0, 1︸ ︷︷ ︸
cr terms

, 0, . . . , 0, 1︸ ︷︷ ︸
cr−1 terms

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
c1 terms

].

“Proofs” of Theorems 5 and 7.

The composition σ ◦ π transforms the Young diagram of a
partition by stretch-squish-flip.

The composition π ◦ σ transforms the Young diagram of a
sequentially congruent partition by squish-flip-stretch.

24 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Compositions of Bijections

Schneider–Schneider observed that π ◦ σ is not conjugation.

Theorem 7 (Cochran–D.–Harrell–Saunders, 2023)

Let φ = (φ1, φ2, . . . , φr) be a sequentially congruent partition. Then

= [0, . . . , 0, 1︸ ︷︷ ︸
cr terms

, 0, . . . , 0, 1︸ ︷︷ ︸
cr−1 terms

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
c1 terms

].

“Proofs” of Theorems 5 and 7.

The composition σ ◦ π transforms the Young diagram of a
partition by stretch-squish-flip.

The composition π ◦ σ transforms the Young diagram of a
sequentially congruent partition by squish-flip-stretch.

24 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Compositions of Bijections

Schneider–Schneider observed that π ◦ σ is not conjugation.

Theorem 7 (Cochran–D.–Harrell–Saunders, 2023)

Let φ = (φ1, φ2, . . . , φr) be a sequentially congruent partition. Then

= [0, . . . , 0, 1︸ ︷︷ ︸
cr terms

, 0, . . . , 0, 1︸ ︷︷ ︸
cr−1 terms

, . . . , 0, . . . , 0, 1︸ ︷︷ ︸
c1 terms

].

“Proofs” of Theorems 5 and 7.

The composition σ ◦ π transforms the Young diagram of a
partition by stretch-squish-flip.

The composition π ◦ σ transforms the Young diagram of a
sequentially congruent partition by squish-flip-stretch.

24 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Recap of Frequency Congruent Partitions

Definition

Recall that Frequency congruent partitions are the conjugates of
sequentially congruent partitions and are of the form〈

1f1 , 2f2 , 3f3 , . . .
〉
,

where fi ≡ 0 (mod i).

In other words, the part i occurs a multiple of i times.

25 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Recap of Frequency Congruent Partitions

Definition

Recall that Frequency congruent partitions are the conjugates of
sequentially congruent partitions and are of the form〈

1f1 , 2f2 , 3f3 , . . .
〉
,

where fi ≡ 0 (mod i).

In other words, the part i occurs a multiple of i times.

25 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Recap of Frequency Congruent Partitions

Definition

Recall that Frequency congruent partitions are the conjugates of
sequentially congruent partitions and are of the form〈

1f1 , 2f2 , 3f3 , . . .
〉
,

where fi ≡ 0 (mod i).

In other words, the part i occurs a multiple of i times.

25 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Recap of Frequency Congruent Partitions

Example

Sequentially congruent partition:

Corresponding frequency congruent partition:
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2. Young Diagrams
3. Generalizations

Generalized Frequency Congruent Partitions

Let B ⊆ N, and let A be a sequence of natural numbers.

Schneider–Schneider define the set of partitions with parts from B,
where the part bi occurs a multiple of ai times:

〈bn1a1
1 , bn2a2

2 , bn3a3
3 , . . . 〉,

where all ni ≥ 0 and finitely many ni are nonzero.

We’ll refer to these as “generalized frequency congruent partitions.”

Example

Let B = {2, 4, 6, 8, . . . } ⊆ N, and let A = (1, 3, 5, 7, . . . ).

Example of a generalized frequency congruent partition for B and A:〈
24, 49, 65, 814

〉
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Generalized Sequentially Congruent Partitions

Definition

Generalized sequentially congruent partitions are the
conjugates of generalized frequency congruent partitions.

Question: Can we give an explicit description?

Example

If B = N, A = (1, 1, 1, . . . ), these are sequentially congruent partitions.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Generalized Sequentially Congruent Partitions

Young diagram of a generalized sequentially congruent partition:

A generalized sequentially congruent partition can be uniquely written

λ = n1(a1, . . . , a1︸ ︷︷ ︸
b1 times

)⊕ n2(a2, . . . , a2︸ ︷︷ ︸
b2 times

)⊕ n3(a3, . . . , a3︸ ︷︷ ︸
b3 times

)⊕ · · ·

with finitely many nonzero ni. We use the “n-notation”

λ = [n1, n2, . . . , nr]A,B .
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Generalized Bijections

We explicitly construct two analogous generalized bijections:

1. For a partition λ = (λ1, . . . , λr), define πAB : λ 7→ λ′ where
λ′ =

(
λ′1, λ

′
2, . . . , λ

′
br

)
is the generalized sequentially congruent

partition with

λ′m = aiλi +

r∑
j=i+1

(aj − aj−1)λj

for bi−1 < m ≤ bi, for all 1 ≤ i ≤ r.
The map πAB still “stretches” the Young diagram.

2. For a generalized sequentially congruent partition
φ = [n1, . . . , nr], define

σAB : φ 7→ 〈1n1 , . . . , rnr 〉 .

The map σAB still “squishes” then “flips” the Young diagram.
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Recall πAB : (λ1, . . . , λr) 7→
(
λ′1, . . . , λ

′
br

)
, where for all 1 ≤ i ≤ r,

λ′m = aiλi +
∑r
j=i+1 (aj − aj−1)λj for bi−1 < m ≤ bi.

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ), and let
(λ1, λ2, λ3, λ4, λ5) = (12, 8, 4, 3, 3).

λ′1 = λ′2 = 1λ1 +
∑5

j=2
(aj − aj−1)λj = 12 + 16 + 8 + 6 + 6 = 48,

λ′3 = λ′4 = 3λ2 +
∑5

j=3
(aj − aj−1)λj = 24 + 8 + 6 + 6 = 44,

λ′5 = λ′6 = 5λ3 +
∑5

j=4
(aj − aj−1)λj = 20 + 6 + 6 = 32,

λ′7 = λ′8 = 7λ4 +
∑5

j=5
(aj − aj−1)λj = 21 + 6 = 27,

λ′9 = λ′10 = 9λ5 = 27.

Therefore πAB((12, 8, 4, 3, 3)) = (48, 44, 32, 27, 27).
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Recall σAB : [n1, . . . , nr] 7→ 〈1n1 , . . . , rnr 〉 .

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ), and let
[n1, n2, n3, n4, n5]A,B = [3, 1, 1, 0, 2]A,B .

1n1 = 13,

2n2 = 21,

3n3 = 31,

4n4 = 40,

5n5 = 52.
Therefore

σAB ([3, 1, 1, 0, 2]A,B) =
〈
13, 21, 31, 52

〉
= (5, 5, 3, 2, 1, 1, 1)
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1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ).

The last example calculated σAB ([3, 1, 1, 0, 2]A,B) = (5, 5, 3, 2, 1, 1, 1).

The values of ni dictate the number of times each bi × ai rectangle
appears in the Young diagram.

The input partition [3, 1, 1, 0, 2]A,B has

3 b1 × a1 = 2× 1 rectangles,

1 b2 × a2 = 4× 3 rectangle,

1 b3 × a3 = 6× 5 rectangle, and

2 b5 × a5 = 10× 9 rectangles.

Therefore we found that

σAB((29, 29, 26, 26, 23, 23, 18, 18, 18, 18)) = (5, 5, 3, 2, 1, 1, 1).

33 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ).

The last example calculated σAB ([3, 1, 1, 0, 2]A,B) = (5, 5, 3, 2, 1, 1, 1).

The values of ni dictate the number of times each bi × ai rectangle
appears in the Young diagram.

The input partition [3, 1, 1, 0, 2]A,B has

3 b1 × a1 = 2× 1 rectangles,

1 b2 × a2 = 4× 3 rectangle,

1 b3 × a3 = 6× 5 rectangle, and

2 b5 × a5 = 10× 9 rectangles.

Therefore we found that

σAB((29, 29, 26, 26, 23, 23, 18, 18, 18, 18)) = (5, 5, 3, 2, 1, 1, 1).

33 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ).

The last example calculated σAB ([3, 1, 1, 0, 2]A,B) = (5, 5, 3, 2, 1, 1, 1).

The values of ni dictate the number of times each bi × ai rectangle
appears in the Young diagram.

The input partition [3, 1, 1, 0, 2]A,B has

3 b1 × a1 = 2× 1 rectangles,

1 b2 × a2 = 4× 3 rectangle,

1 b3 × a3 = 6× 5 rectangle, and

2 b5 × a5 = 10× 9 rectangles.

Therefore we found that

σAB((29, 29, 26, 26, 23, 23, 18, 18, 18, 18)) = (5, 5, 3, 2, 1, 1, 1).

33 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Examples of Generalized Bijections

Example

Let B = {2, 4, 6, 8, 10, . . . } ⊆ N and A = (1, 3, 5, 7, 9, . . . ).

The last example calculated σAB ([3, 1, 1, 0, 2]A,B) = (5, 5, 3, 2, 1, 1, 1).

The values of ni dictate the number of times each bi × ai rectangle
appears in the Young diagram.

The input partition [3, 1, 1, 0, 2]A,B has

3 b1 × a1 = 2× 1 rectangles,

1 b2 × a2 = 4× 3 rectangle,

1 b3 × a3 = 6× 5 rectangle, and

2 b5 × a5 = 10× 9 rectangles.

Therefore we found that

σAB((29, 29, 26, 26, 23, 23, 18, 18, 18, 18)) = (5, 5, 3, 2, 1, 1, 1).

33 / 35



1. Sequentially Congruent Partitions
2. Young Diagrams
3. Generalizations

Other Generalized Bijections

Versions of π and σ which map size to largest part

We showed that the size-to-largest-part versions cannot be the
same as the squish-flip-stretch versions, except in the special case
that the sequence A is of the form A = (a, 2a, 3a, . . . ).

A size-to-largest-part bijection from the set of generalized
sequentially congruent partitions with any B ⊆ N and
A =

(
1k, 2k, 3k, . . .

)
to the set of partitions into kth powers

A size-preserving bijection from the set of generalized
sequentially congruent partitions with B = N and
A =

(
1k, 2k, 3k, . . .

)
to the set of partitions into (k + 1)th powers

A composite bijection between the two previous sets of
generalized sequentially congruent partitions

Generalized bijections mapping between rectangles of different
sizes or between different rectangles with the same area
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