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Definitions

Self-conjugate partitions

Each partition of a positive integer n can be represented by its
Ferrers diagram.

For example, the diagrams

represent the partitions 4 + 2 + 2 and 4 + 2 + 1 + 1.
A partition is called self-conjugate if the Ferrers diagram does not
change when its rows and columns are switched.
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Definitions (continued)

t-core partitions

Each cell in the Ferrers diagram has a hook length, which is the
number of cells to the right or below that cell (including itself).

We can label each cell in the Ferrers diagram with its hook length
as follows

6 5 2 1

3 2

2 1

A partition is t-core if none of its hook lengths are multiples of t.
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Self-conjugate t-cores

Today we want to study self-conjugate t-core partitions.

7 4 2 1

4 1

2

1

Let sct(n) be the number of self-conjugate t-core partitions of n.
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Motivating result

Theorem (Ono–Raji 2019)

sc7(n) is essentially a Hurwitz class number. E.g., if n ≡ 1 (mod 4)
and n 6≡ 5 (mod 7) then

sc7(n) =
1

4
H(−28n − 56).

Sketch of proof: Write the generating function in terms of
q-Pochhammer symbols, view it as a modular form, and then
decompose it as the sum of well-understood Eisenstein series.
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Background

Hanusa–Nath (2013): The generating function for sct(n) is an
eta-quotient. For example,∑

n≥0
sc6(n)qn =

∏
n≥1

(1− q2n)2(1− q12n)3

(1− qn)(1− q4n)
.

Bringmann–Kane–Males (2021): sc7(n) is a linear
combination of Hurwitz class numbers for all n, and is also
related to c4(n).

Males–Tripp (2020) and Dawsey–Sharp (2022): combinatorial
considerations give insights related to hook lengths/parts of
the partition, sums of squares, . . .
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Background (continued)

Motivating Question

Given a fixed value of t, when is sct(n) > 0?

This is a natural question to ask, given the t-core positivity
conjecture (Granville–Ono 1996):

ct(n) > 0 for every integer t ≥ 4.

Theorem (Baldwin et al 2006)

sct(n) > 0 when n 6= 2 and t = 8 or t ≥ 10.

Conjecture (Hanusa–Nath 2013)

sc6(n) > 0 for all positive integers except when n ∈ {2, 12, 13, 73}.
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Main Theorem

Theorem (Alpoge 2014)

sc6(n) > 0 for all sufficiently large integers n.

Theorem (Hanson-J)

Assuming the Generalized Riemann Hypothesis, the Hanusa–Nath
conjecture is true, i.e., sc6(n) > 0 for all positive integers except
when n ∈ {2, 12, 13, 73}.
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Alpoge’s work

The first step is to connect sc6(n) to a quadratic form.

Theorem (Alpoge 2014∗)

For all n ≥ 0,

sc6(n) =
1

12
#{(x , y , z) ∈ Z3 : 24n+35 = 3x2+32y2+32yz+32z2}.

In other words, if Q is the quadratic form

3x2 + 32y2 + 32yz + 32z2

then it suffices to show that the representation numbers

rQ(24n + 35)

are positive (except when n ∈ {2, 12, 13, 73}).
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Proof that sc6(n) = 1
12rQ(n)

Rewrite the generating function of Hanusa and Nath as∑
n≥0

sc6(n)q24n+35 =

(
η(48z)2

η(24z)

)(
η(288z)3

η(96z)

)
,

where q = e2πiz and η(z) := q1/24
∏

n≥1(1− qn).

The first factor is

η(48z)2

η(24z)
=
∑
n≥0

q3(2n+1)2 =
1

2

∑
n∈Z

q3(2n+1)2

and the second is

η(288z)3

η(96z)
=
∑
n≥0

c3(n)q32(3n+1)

where c3(n) is the number of 3-core partitions of n.
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Proof that sc6(n) = 1
12rQ(n) (continued)

Work of Han and Ono give

c3(n) =
1

6
#{(x , y) ∈ Z2 : 3n + 1 = x2 + xy + y2}

and thus it follows that

sc6(n) =
1

12
#{(x , y , z) ∈ Z3 : 24n+35 = 3x2+32y2+32yz+32z2}

as desired.
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So, our new goal is to prove the following:

Theorem (Hanson-J)

Assume the GRH and let n be a positive integer. Then
rQ(24n + 35) > 0 except when n ∈ {2, 12, 13, 73}.

For this, we follow the approach of Ono and Soundararajan (1997).
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Understanding the theta function

The theta function associated to Q

θQ(z) :=
∑
x∈Z3

qQ(x) =
∑
n≥0

rQ(n)qn = 1 + 2q3 + 2q12 + · · ·

is a modular form in M3/2(Γ0(96)).

Write
θQ(z) = E (z) + C (z)

where E is an Eisenstein series and C is a cusp form.
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Understanding the Eisenstein series

First we turn to

E (z) =
∑
n≥0

b(n)qn = 1+
1

2
q3+3q11+2q12+

7

2
q27+6q32+6q35+· · · .

For squarefree N in a fixed square class
∏

p|6Q×p /
(
Q×p
)2

,
there exist constants a and b such that that

b(N) = a · h(−bN).

In fact, for N = 24n + 35, we have that a = 3 and b = 1.

Dirichlet’s class number formula:

h(−N) =
1

π

√
NL(χ−N , 1).
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Understanding the cusp form

Now we turn to

C (z) =
∑
n≥0

a(n)qn =
3

2
q3−3q11−3

2
q27+6q35+· · · ∈ S3/2(Γ0(96)).

From Shimura correspondence, we get a multiple of the
newform

F (z) =
∑
n≥0

A(n)qn = q−q3−2q5+q9+4q11−2q13+· · · ∈ S2(Γ0(24)),

which is the cusp form associated to the elliptic curve
E : y2 = x3 − x2 + x .
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Understanding the cusp form

Now a theorem of Waldspurger says that for square-free
N1,N2 ∈ N with N1/N2 ∈

(
Q×p
)2

for all p | 6, then

a(N1)2L(F ⊗ χ−N2 , 1)N
1/2
2 = a(N2)2L(F ⊗ χ−N1 , 1)N

1/2
1 .

That is, there exists a constant d such that

a(N)2 = d · L(E ⊗ χ−N , 1)N1/2.

In fact, for squarefree N = 24n + 35, we have d = 1.63384 . . ..
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Putting it all together

Altogether for squarefree N = 24n + 35 we have

rQ(N) =
3

π

√
NL(χ−N , 1)± dN1/4L(E ⊗ χ−N , 1)1/2.

So: if N is not represented by Q, then

L(E ⊗ χ−N , 1)1/2

L(χ−N , 1)
=

a
√
b

dπ
N1/4 ≥ 0.5844N1/4.

On the other hand, work of Chandee gives the upper bound

L(E ⊗ χ−N , 1)1/2

L(χ−N , 1)
≤ 2.5889N0.14157.

Combining gives n ≤ 916347.7794, and check “by hand.”
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Recap

Theorem (Hanson-J)

Assuming GRH, the Hanusa–Nath conjecture is true, i.e.,
sc6(n) > 0 for all positive integers except when n ∈ {2, 12, 13, 73}.
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Thank you!
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