Self-conjugate 6-cores and quadratic forms

Marie Jameson joint with Michael Hanson

Department of Mathematics
University of Tennessee

January 19, 2023

Definitions

Self-conjugate partitions

Each partition of a positive integer n can be represented by its Ferrers diagram.

Definitions

Self-conjugate partitions

Each partition of a positive integer n can be represented by its
Ferrers diagram. For example, the diagrams

represent the partitions $4+2+2$ and $4+2+1+1$.

Definitions

Self-conjugate partitions

Each partition of a positive integer n can be represented by its Ferrers diagram. For example, the diagrams

represent the partitions $4+2+2$ and $4+2+1+1$. A partition is called self-conjugate if the Ferrers diagram does not change when its rows and columns are switched.

Definitions (continued)

t-core partitions

Each cell in the Ferrers diagram has a hook length, which is the number of cells to the right or below that cell (including itself).

Definitions (continued)

t-core partitions

Each cell in the Ferrers diagram has a hook length, which is the number of cells to the right or below that cell (including itself). We can label each cell in the Ferrers diagram with its hook length as follows

6	5	2	1	
3	2			
2	1			

Definitions (continued)

t-core partitions

Each cell in the Ferrers diagram has a hook length, which is the number of cells to the right or below that cell (including itself). We can label each cell in the Ferrers diagram with its hook length as follows

A partition is t-core if none of its hook lengths are multiples of t.

Motivation and Background
Statement of Results
Step 1
Step 2
Conclusions

Self-conjugate t-cores

Today we want to study self-conjugate t-core partitions.

Self-conjugate t-cores

Today we want to study self-conjugate t-core partitions.

7	4	2	1
4	1		
2			
1			

Self-conjugate t-cores

Today we want to study self-conjugate t-core partitions.

7	4	2	1
4	1		
2			
1			

Let $s C_{t}(n)$ be the number of self-conjugate t-core partitions of n.

Motivating result

Theorem (Ono-Raji 2019)

$s_{7}(n)$ is essentially a Hurwitz class number. E.g., if $n \equiv 1(\bmod 4)$ and $n \not \equiv 5(\bmod 7)$ then

$$
s c_{7}(n)=\frac{1}{4} H(-28 n-56) .
$$

Motivating result

Theorem (Ono-Raji 2019)

$s_{7}(n)$ is essentially a Hurwitz class number. E.g., if $n \equiv 1(\bmod 4)$ and $n \not \equiv 5(\bmod 7)$ then

$$
s c_{7}(n)=\frac{1}{4} H(-28 n-56) .
$$

Sketch of proof: Write the generating function in terms of q-Pochhammer symbols, view it as a modular form,

Motivating result

Theorem (Ono-Raji 2019)

$s c_{7}(n)$ is essentially a Hurwitz class number. E.g., if $n \equiv 1(\bmod 4)$ and $n \not \equiv 5(\bmod 7)$ then

$$
s C_{7}(n)=\frac{1}{4} H(-28 n-56) .
$$

Sketch of proof: Write the generating function in terms of q-Pochhammer symbols, view it as a modular form, and then decompose it as the sum of well-understood Eisenstein series.

Background

- Hanusa-Nath (2013): The generating function for $s c_{t}(n)$ is an eta-quotient. For example,

$$
\sum_{n \geq 0} s c_{6}(n) q^{n}=\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)^{2}\left(1-q^{12 n}\right)^{3}}{\left(1-q^{n}\right)\left(1-q^{4 n}\right)}
$$

Background

- Hanusa-Nath (2013): The generating function for $s c_{t}(n)$ is an eta-quotient. For example,

$$
\sum_{n \geq 0} s c_{6}(n) q^{n}=\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)^{2}\left(1-q^{12 n}\right)^{3}}{\left(1-q^{n}\right)\left(1-q^{4 n}\right)}
$$

- Bringmann-Kane-Males (2021): $s c_{7}(n)$ is a linear combination of Hurwitz class numbers for all n, and is also related to $c_{4}(n)$.

Background

- Hanusa-Nath (2013): The generating function for $s c_{t}(n)$ is an eta-quotient. For example,

$$
\sum_{n \geq 0} s c_{6}(n) q^{n}=\prod_{n \geq 1} \frac{\left(1-q^{2 n}\right)^{2}\left(1-q^{12 n}\right)^{3}}{\left(1-q^{n}\right)\left(1-q^{4 n}\right)}
$$

- Bringmann-Kane-Males (2021): $s c_{7}(n)$ is a linear combination of Hurwitz class numbers for all n, and is also related to $c_{4}(n)$.
- Males-Tripp (2020) and Dawsey-Sharp (2022): combinatorial considerations give insights related to hook lengths/parts of the partition, sums of squares, ...

Background (continued)

Motivating Question

Given a fixed value of t, when is $s c_{t}(n)>0$?

Background (continued)

Motivating Question

Given a fixed value of t, when is $s c_{t}(n)>0$?
This is a natural question to ask, given the t-core positivity conjecture (Granville-Ono 1996):

$$
c_{t}(n)>0 \text { for every integer } t \geq 4
$$

Background (continued)

Motivating Question

Given a fixed value of t, when is $s c_{t}(n)>0$?
This is a natural question to ask, given the t-core positivity conjecture (Granville-Ono 1996):

$$
c_{t}(n)>0 \text { for every integer } t \geq 4 .
$$

Theorem (Baldwin et al 2006)

$$
s c_{t}(n)>0 \text { when } n \neq 2 \text { and } t=8 \text { or } t \geq 10 .
$$

Background (continued)

Motivating Question

Given a fixed value of t, when is $s c_{t}(n)>0$?
This is a natural question to ask, given the t-core positivity conjecture (Granville-Ono 1996):

$$
c_{t}(n)>0 \text { for every integer } t \geq 4 .
$$

Theorem (Baldwin et al 2006)

$$
s c_{t}(n)>0 \text { when } n \neq 2 \text { and } t=8 \text { or } t \geq 10 .
$$

Conjecture (Hanusa-Nath 2013)
$s c_{6}(n)>0$ for all positive integers except when $n \in\{2,12,13,73\}$.

Main Theorem

Theorem (Alpoge 2014)
$s c_{6}(n)>0$ for all sufficiently large integers n.

Main Theorem

Theorem (Alpoge 2014)

$s c_{6}(n)>0$ for all sufficiently large integers n.

Theorem (Hanson-J)

Assuming the Generalized Riemann Hypothesis, the Hanusa-Nath conjecture is true, i.e., $s c_{6}(n)>0$ for all positive integers except when $n \in\{2,12,13,73\}$.

Alpoge's work

The first step is to connect $s c_{6}(n)$ to a quadratic form.
Theorem (Alpoge 2014*)
For all $n \geq 0$,
$s c_{6}(n)=\frac{1}{12} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: 24 n+35=3 x^{2}+32 y^{2}+32 y z+32 z^{2}\right\}$.

Alpoge's work

The first step is to connect $s c_{6}(n)$ to a quadratic form.
Theorem (Alpoge 2014*)
For all $n \geq 0$,
$s C_{6}(n)=\frac{1}{12} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: 24 n+35=3 x^{2}+32 y^{2}+32 y z+32 z^{2}\right\}$.
In other words, if Q is the quadratic form

$$
3 x^{2}+32 y^{2}+32 y z+32 z^{2}
$$

Alpoge's work

The first step is to connect $s c_{6}(n)$ to a quadratic form.
Theorem (Alpoge 2014*)
For all $n \geq 0$,
$s C_{6}(n)=\frac{1}{12} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: 24 n+35=3 x^{2}+32 y^{2}+32 y z+32 z^{2}\right\}$.
In other words, if Q is the quadratic form

$$
3 x^{2}+32 y^{2}+32 y z+32 z^{2}
$$

then it suffices to show that the representation numbers

$$
r_{Q}(24 n+35)
$$

Alpoge's work

The first step is to connect $s c_{6}(n)$ to a quadratic form.

Theorem (Alpoge 2014*)

For all $n \geq 0$,
$s c_{6}(n)=\frac{1}{12} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: 24 n+35=3 x^{2}+32 y^{2}+32 y z+32 z^{2}\right\}$.
In other words, if Q is the quadratic form

$$
3 x^{2}+32 y^{2}+32 y z+32 z^{2}
$$

then it suffices to show that the representation numbers

$$
r_{Q}(24 n+35)
$$

are positive (except when $n \in\{2,12,13,73\}$),

Proof that $\operatorname{sc}_{6}(n)=\frac{1}{12} r_{Q}(n)$

- Rewrite the generating function of Hanusa and Nath as

$$
\sum_{n \geq 0} s c_{6}(n) q^{24 n+35}=\left(\frac{\eta(48 z)^{2}}{\eta(24 z)}\right)\left(\frac{\eta(288 z)^{3}}{\eta(96 z)}\right)
$$

where $q=e^{2 \pi i z}$ and $\eta(z):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)$.

Proof that $S C_{6}(n)=\frac{1}{12} r_{Q}(n)$

- Rewrite the generating function of Hanusa and Nath as

$$
\sum_{n \geq 0} s c_{6}(n) q^{24 n+35}=\left(\frac{\eta(48 z)^{2}}{\eta(24 z)}\right)\left(\frac{\eta(288 z)^{3}}{\eta(96 z)}\right)
$$

where $q=e^{2 \pi i z}$ and $\eta(z):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)$.

- The first factor is

$$
\frac{\eta(48 z)^{2}}{\eta(24 z)}=\sum_{n \geq 0} q^{3(2 n+1)^{2}}=\frac{1}{2} \sum_{n \in \mathbb{Z}} q^{3(2 n+1)^{2}}
$$

Proof that $S C_{6}(n)=\frac{1}{12} r_{Q}(n)$

- Rewrite the generating function of Hanusa and Nath as

$$
\sum_{n \geq 0} s c_{6}(n) q^{24 n+35}=\left(\frac{\eta(48 z)^{2}}{\eta(24 z)}\right)\left(\frac{\eta(288 z)^{3}}{\eta(96 z)}\right)
$$

where $q=e^{2 \pi i z}$ and $\eta(z):=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)$.

- The first factor is

$$
\frac{\eta(48 z)^{2}}{\eta(24 z)}=\sum_{n \geq 0} q^{3(2 n+1)^{2}}=\frac{1}{2} \sum_{n \in \mathbb{Z}} q^{3(2 n+1)^{2}}
$$

and the second is

$$
\frac{\eta(288 z)^{3}}{\eta(96 z)}=\sum_{n \geq 0} c_{3}(n) q^{32(3 n+1)}
$$

where $c_{3}(n)$ is the number of 3 -core partitions of n.

Proof that $s c_{6}(n)=\frac{1}{12} r_{Q}(n)($ continued $)$

- Work of Han and Ono give

$$
c_{3}(n)=\frac{1}{6} \#\left\{(x, y) \in \mathbb{Z}^{2}: 3 n+1=x^{2}+x y+y^{2}\right\}
$$

Proof that $s c_{6}(n)=\frac{1}{12} r_{Q}(n)($ continued $)$

- Work of Han and Ono give

$$
c_{3}(n)=\frac{1}{6} \#\left\{(x, y) \in \mathbb{Z}^{2}: 3 n+1=x^{2}+x y+y^{2}\right\}
$$

and thus it follows that
$s c_{6}(n)=\frac{1}{12} \#\left\{(x, y, z) \in \mathbb{Z}^{3}: 24 n+35=3 x^{2}+32 y^{2}+32 y z+32 z^{2}\right\}$
as desired.

So, our new goal is to prove the following:

Theorem (Hanson-J)

Assume the GRH and let n be a positive integer. Then $r_{Q}(24 n+35)>0$ except when $n \in\{2,12,13,73\}$.

So, our new goal is to prove the following:

Theorem (Hanson-J)

Assume the GRH and let n be a positive integer. Then $r_{Q}(24 n+35)>0$ except when $n \in\{2,12,13,73\}$.

For this, we follow the approach of Ono and Soundararajan (1997).

Understanding the theta function

- The theta function associated to Q

$$
\theta_{Q}(z):=\sum_{\mathrm{x} \in \mathbb{Z}^{3}} q^{Q(\mathrm{x})}=\sum_{n \geq 0} r_{Q}(n) q^{n}=1+2 q^{3}+2 q^{12}+\cdots
$$

Understanding the theta function

- The theta function associated to Q

$$
\theta_{Q}(z):=\sum_{x \in \mathbb{Z}^{3}} q^{Q(x)}=\sum_{n \geq 0} r_{Q}(n) q^{n}=1+2 q^{3}+2 q^{12}+\cdots
$$

is a modular form in $M_{3 / 2}\left(\Gamma_{0}(96)\right)$.

Understanding the theta function

- The theta function associated to Q

$$
\theta_{Q}(z):=\sum_{x \in \mathbb{Z}^{3}} q^{Q(x)}=\sum_{n \geq 0} r_{Q}(n) q^{n}=1+2 q^{3}+2 q^{12}+\cdots
$$

is a modular form in $M_{3 / 2}\left(\Gamma_{0}(96)\right)$.

- Write

$$
\theta_{Q}(z)=E(z)+C(z)
$$

where E is an Eisenstein series and C is a cusp form.

Understanding the Eisenstein series

- First we turn to

$$
E(z)=\sum_{n \geq 0} b(n) q^{n}=1+\frac{1}{2} q^{3}+3 q^{11}+2 q^{12}+\frac{7}{2} q^{27}+6 q^{32}+6 q^{35}+\cdots
$$

Understanding the Eisenstein series

- First we turn to

$$
E(z)=\sum_{n \geq 0} b(n) q^{n}=1+\frac{1}{2} q^{3}+3 q^{11}+2 q^{12}+\frac{7}{2} q^{27}+6 q^{32}+6 q^{35}+\cdots
$$

- For squarefree N in a fixed square class $\prod_{p \mid 6} \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, there exist constants a and b such that that

$$
b(N)=a \cdot h(-b N)
$$

Understanding the Eisenstein series

- First we turn to

$$
E(z)=\sum_{n \geq 0} b(n) q^{n}=1+\frac{1}{2} q^{3}+3 q^{11}+2 q^{12}+\frac{7}{2} q^{27}+6 q^{32}+6 q^{35}+\cdots
$$

- For squarefree N in a fixed square class $\prod_{p \mid 6} \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, there exist constants a and b such that that

$$
b(N)=a \cdot h(-b N)
$$

In fact, for $N=24 n+35$, we have that $a=3$ and $b=1$.

Understanding the Eisenstein series

- First we turn to

$$
E(z)=\sum_{n \geq 0} b(n) q^{n}=1+\frac{1}{2} q^{3}+3 q^{11}+2 q^{12}+\frac{7}{2} q^{27}+6 q^{32}+6 q^{35}+\cdots
$$

- For squarefree N in a fixed square class $\prod_{p \mid 6} \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, there exist constants a and b such that that

$$
b(N)=a \cdot h(-b N)
$$

In fact, for $N=24 n+35$, we have that $a=3$ and $b=1$.

- Dirichlet's class number formula:

$$
h(-N)=\frac{1}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right)
$$

Understanding the cusp form

- Now we turn to

$$
C(z)=\sum_{n \geq 0} a(n) q^{n}=\frac{3}{2} q^{3}-3 q^{11}-\frac{3}{2} q^{27}+6 q^{35}+\cdots \in S_{3 / 2}\left(\Gamma_{0}(96)\right) .
$$

Understanding the cusp form

- Now we turn to

$$
C(z)=\sum_{n \geq 0} a(n) q^{n}=\frac{3}{2} q^{3}-3 q^{11}-\frac{3}{2} q^{27}+6 q^{35}+\cdots \in S_{3 / 2}\left(\Gamma_{0}(96)\right)
$$

- From Shimura correspondence, we get a multiple of the newform

$$
F(z)=\sum_{n \geq 0} A(n) q^{n}=q-q^{3}-2 q^{5}+q^{9}+4 q^{11}-2 q^{13}+\cdots \in S_{2}\left(\Gamma_{0}(24)\right)
$$

Understanding the cusp form

- Now we turn to

$$
C(z)=\sum_{n \geq 0} a(n) q^{n}=\frac{3}{2} q^{3}-3 q^{11}-\frac{3}{2} q^{27}+6 q^{35}+\cdots \in S_{3 / 2}\left(\Gamma_{0}(96)\right)
$$

- From Shimura correspondence, we get a multiple of the newform

$$
F(z)=\sum_{n \geq 0} A(n) q^{n}=q-q^{3}-2 q^{5}+q^{9}+4 q^{11}-2 q^{13}+\cdots \in S_{2}\left(\Gamma_{0}(24)\right)
$$

which is the cusp form associated to the elliptic curve $E: y^{2}=x^{3}-x^{2}+x$.

Understanding the cusp form

- Now a theorem of Waldspurger says that for square-free $N_{1}, N_{2} \in \mathbb{N}$ with $N_{1} / N_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 6$, then

$$
a\left(N_{1}\right)^{2} L\left(F \otimes \chi_{-N_{2}}, 1\right) N_{2}^{1 / 2}=a\left(N_{2}\right)^{2} L\left(F \otimes \chi_{-N_{1}}, 1\right) N_{1}^{1 / 2}
$$

Understanding the cusp form

- Now a theorem of Waldspurger says that for square-free $N_{1}, N_{2} \in \mathbb{N}$ with $N_{1} / N_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 6$, then

$$
a\left(N_{1}\right)^{2} L\left(F \otimes \chi_{-N_{2}}, 1\right) N_{2}^{1 / 2}=a\left(N_{2}\right)^{2} L\left(F \otimes \chi_{-N_{1}}, 1\right) N_{1}^{1 / 2}
$$

- That is, there exists a constant d such that

$$
a(N)^{2}=d \cdot L\left(E \otimes \chi_{-N}, 1\right) N^{1 / 2}
$$

Understanding the cusp form

- Now a theorem of Waldspurger says that for square-free $N_{1}, N_{2} \in \mathbb{N}$ with $N_{1} / N_{2} \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ for all $p \mid 6$, then

$$
a\left(N_{1}\right)^{2} L\left(F \otimes \chi_{-N_{2}}, 1\right) N_{2}^{1 / 2}=a\left(N_{2}\right)^{2} L\left(F \otimes \chi_{-N_{1}}, 1\right) N_{1}^{1 / 2}
$$

- That is, there exists a constant d such that

$$
a(N)^{2}=d \cdot L\left(E \otimes \chi_{-N}, 1\right) N^{1 / 2}
$$

In fact, for squarefree $N=24 n+35$, we have $d=1.63384 \ldots$.

Putting it all together

- Altogether for squarefree $N=24 n+35$ we have

$$
r_{Q}(N)=\frac{3}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right) \pm d N^{1 / 4} L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}
$$

Putting it all together

- Altogether for squarefree $N=24 n+35$ we have

$$
r_{Q}(N)=\frac{3}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right) \pm d N^{1 / 4} L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}
$$

- So: if N is not represented by Q, then

$$
\frac{L(E \otimes \chi-N, 1)^{1 / 2}}{L(\chi-N, 1)}=\frac{a \sqrt{b}}{d \pi} N^{1 / 4} \geq 0.5844 N^{1 / 4}
$$

Putting it all together

- Altogether for squarefree $N=24 n+35$ we have

$$
r_{Q}(N)=\frac{3}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right) \pm d N^{1 / 4} L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}
$$

- So: if N is not represented by Q, then

$$
\frac{L(E \otimes \chi-N, 1)^{1 / 2}}{L(\chi-N, 1)}=\frac{a \sqrt{b}}{d \pi} N^{1 / 4} \geq 0.5844 N^{1 / 4}
$$

- On the other hand, work of Chandee gives the upper bound

$$
\frac{L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}}{L\left(\chi_{-N}, 1\right)} \leq 2.5889 N^{0.14157}
$$

Putting it all together

- Altogether for squarefree $N=24 n+35$ we have

$$
r_{Q}(N)=\frac{3}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right) \pm d N^{1 / 4} L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}
$$

- So: if N is not represented by Q, then

$$
\frac{L(E \otimes \chi-N, 1)^{1 / 2}}{L(\chi-N, 1)}=\frac{a \sqrt{b}}{d \pi} N^{1 / 4} \geq 0.5844 N^{1 / 4}
$$

- On the other hand, work of Chandee gives the upper bound

$$
\frac{L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}}{L\left(\chi_{-N}, 1\right)} \leq 2.5889 N^{0.14157}
$$

- Combining gives $n \leq 916347.7794$, and check "by hand."

Putting it all together

- Altogether for squarefree $N=24 n+35$ we have

$$
r_{Q}(N)=\frac{3}{\pi} \sqrt{N} L\left(\chi_{-N}, 1\right) \pm d N^{1 / 4} L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}
$$

- So: if N is not represented by Q, then

$$
\frac{L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}}{L(\chi-N, 1)}=\frac{a \sqrt{b}}{d \pi} N^{1 / 4} \geq 0.5844 N^{1 / 4}
$$

- On the other hand, work of Chandee gives the upper bound

$$
\frac{L\left(E \otimes \chi_{-N}, 1\right)^{1 / 2}}{L\left(\chi_{-N}, 1\right)} \leq 2.5889 N^{0.14157}
$$

- Combining gives $n \leq 916347.7794$, and check "by hand."

Recap

Theorem (Hanson-J)

Assuming GRH, the Hanusa-Nath conjecture is true, i.e., $s c_{6}(n)>0$ for all positive integers except when $n \in\{2,12,13,73\}$.

Thank you!

