
Classical problems and zeros of polynomials

Bernhard Heim Markus Neuhauser
bheim@uni-koeln.de markus.neuhauser@kiu.edu.ge

and

Seminar in
Partition Theory, q-Series and Related Topics

January 29, 2026



Outline

Basic properties of sequences

Applications

Polynomization

Pochhammer and Laguerre polynomials



Basic properties of sequences



Basic properties of sequences
Let α : N0 → R be a sequence of positive numbers.

Definition

Rα (n) = n
√

α (n), Qα (n) =
α (n)

α (n − 1)
.

Complex analysis:
∞∑

n=0

α (n) zn

has radius of convergence

ρ =
1

lim supn→∞
n
√
α (n)

=
1

lim supn→∞ Rα (n)

and in case it exists also

ρ = lim
n→∞

α (n − 1)
α (n)

= lim
n→∞

1
Qα (n)

.



Basic properties of sequences
Note the following equivalences for n ≥ 1

Rα (n − 1) > Rα (n) ⇔ (α (n − 1))n > (α (n))n−1 (1)

⇔ α (n − 1) >
(

α (n)
α (n − 1)

)n−1

⇔ Rα (n − 1) > Qα (n) (2)

⇔ α (n) >
(

α (n)
α (n − 1)

)n

⇔ Rα (n) > Qα (n) . (3)

Now additional assumptions:

Qα (n) > Qα (n + 1) , n ≥ n0, (4)
Rα (n0 − 1) > Rα (n0) . (5)

Note that (4) is equivalent to log-concavity for n ≥ n0 and (5)
is only a single condition.

Proposition

The conditions (4) and (5) ensure that the sequence{
n
√
α (n)

}
n≥n0−1

is strictly decreasing.



Proof
Mathematical induction: n = n0 is assumption (5).
Now assume n ≥ n0. By induction hypothesis

Rα (n − 1) > Rα (n) .

The equivalence (3) shows that in this case

Rα (n) > Qα (n) .

Applying log-concavity (4):

Rα (n) > Qα (n + 1) .

By (2) this is equivalent to:

Rα (n) > Rα (n + 1)

By mathematical induction this shows strict decreasing of
{Rα (n)}n≥n0−1.



Applications



k -colored partitions
Nicolas’ 1978 result that the number of partitions function
p (n) is log-concave for n ≥ 26 implies:

Theorem (Wang–Zhu 2014)

The sequence
{

n
√

p (n)
}

is stricly decreasing for n ≥ 6.

n 1 2 3 4 5 6 7
n
√

p (n) ≈ 1.00 1.41 1.44 1.50 1.48 1.49 1.47

Bringmann, Kane, Rolen, and Tripp’s 2021 result that the
number of k -colored partitions pk (n) are log-concave for
almost all n implies:

Theorem (H. & N. 2026)

Let k ≥ 2. Then n
√

pk (n) > n+1
√

pk (n + 1) for all
k , n except p2 (1) <

√
p2 (2) and p3 (1) =

√
p3 (2).



Plane partitions and over-partitions
Ono, Pujahari, and Rolen’s 2022 result that the number of plain
partitions pp (n) are log-concave for n ≥ n0 implies:

Theorem (H. & N. 2026)

The sequence
{

n
√

pp (n)
}

n≥1
is strictly decreasing for

n ≥ 6.

n 1 2 3 4 5 6 7
n
√

pp (n) ≈ 1 1.732 1.817 1.899 1.888 1.906 1.890

Engel’s 2017 result that the number of overpartitions function
p̄ (n) is log-concave for n ≥ 1 implies:

Theorem (H. & N. 2026)

We have that p̄ (1) =
√

p̄ (2) = 3
√

p̄ (3) and for n ≥ 3

n
√

p̄ (n) > n+1
√

p̄ (n + 1).



Polynomization



Polynomization
We consider arithmetic functions g (n) with positive values
and g (1) = 1 and sequences α (n) = Pg

n (1) as values of
polynomials at x = 1 in the following way: P0 (x) = 1,

Pg
n (x) =

x
n

n∑
k=1

g (k)Pg
n−k (x) .

Example

g (n) = σ (n) =
∑

d |n n sum-of-divisors function for partitions.
Then the k -colored partition function pk (n) = Pσ

n (k).

Since the leading coefficient (and its parity) determine the
behavior of a polynomial for x → ±∞ we consider

∆
g
n (x) =

(
Pg

n (x)
)n+1 −

(
Pg

n+1 (x)
)n

and its zeros determine whether
n
√

Pg
n (x) > n+1

√
Pg

n+1 (x).



Polynomization

Lemma (H. & N. 2026)

Let the sequence
{

Pg
n (x)

}
n≥0 be given.

Let xg
n be the largest real zero of ∆

g
n (x).

Then ∆
g
n (x) > 0 for all x > xg

n .

Proof.
Leading coefficient of ∆

g
n (x):(

1
n!

)n+1

−
(

1
(n + 1)!

)n

=

(
1
n!

)n ( 1
n!

− 1
(n + 1)n

)
> 0.



The polynomials ∆g
n (x)

∆
g
1 (x) =

x
2
(x − g (2)) ,

∆
g
2 (x) =

x2

72

(
7x4 + 15g (2) x3 +

(
9 (g (2))2 − 8g (3)

)
x2

+
(

9 (g (2))3 − 24g (3)g (2)
)

x − 8 (g (2))2
)
.

Lemma (H. & N. 2026)

We have that ∆
g
2 (n) ≥ 0 for all x ≥ g (2) if and only if

g (3) ≤ (g (2))2.



Proof
Let x2

72E (x) = ∆
g
2 (x). Then

E (x + g (2)) = 7x4 + 43g (2) x3 +
(

96 (g (2))2 − 8g (3)
)

x2

+
(

100 (g (2))3 − 40g (3)g (2)
)

x

+ 8
(
(g (2))2 − g (3)

)(
5 (g (2))2 + g (3)

)
.

(6)
Suppose g (3) ≤ (g (2))2. Then

96 (g (2))2 − 8g (3) ≥ 88 (g (2))2

100 (g (2))3 − 40g (3)g (2) ≥ 60 (g (2))3 .

We have

E (x) ≥ 7x4 + 43g (2) x3 + 88 (g (2))2 x2 + 60 (g (2))3 x ≥ 0

for x ≥ 0. If g (3) > (g (2))2 then E (0) < 0 by (6).



Approximate largest real zeros of ∆σ
n (x)

n xσ
n

1 3.000000000
2 1.257838489
3 1.566540996
4 0.491819667
5 1.240332594
6 0.025070743
7 0.983481535
8 0.369878066
9 0.791972724

10 0.004377003
11 0.781443228
12 0.000040172
13 0.656499115
14 0.346567890
15 0.579481233



Pochhammer and Laguerre polynomials



Pochhammer polynomials

Let g (n) = 1. Then Pg
n (x) =

∏n−1
k=0

x+k
1+k .

Proposition

Let g (n) = 1 for all n. Then the largest zero of

∆
g
n (x) =

(
Pg

n (x)
)n+1 −

(
Pg

n+1 (x)
)n

is xg
n = 1 for all n ≥ 1.



Laguerre polynomials

κ-associated Laguerre polynomials for κ = 1:

L(κ)
n (x) =

n∑
k=0

(
n + κ

n − k

)
(−x)k

k !
.

P id
n (x) = x

n L(1)
n−1 (−x) for g (n) = id (n) = n.

Theorem (H., N., & Tröger 2022)

Turán inequality for x ≥ 0:(
P id

n (x)
)2

≥ P id
n−1 (x)P id

n+1 (x) .



Laguerre polynomials

Theorem (H. & N. 2026)

Let g = id. The largest real zero of ∆id
n (x) satisfies

x id
n ≤ 2 for all n ∈ N. Further for all n ≥ 6 we have

x id
n ≤ 1.

Remark
For all x ≥ 1 and n ≥ 6

xn+1

nn+1

(
L(1)

n−1 (−x)
)n+1

>
xn

(n + 1)n

(
L(1)

n (−x)
)n

.



Approximate largest real zeros of ∆id
n (x)

n x id
n

1 2.000000000
2 1.559199674
3 1.324963955
4 1.171508455
5 1.060347181
6 0.974804089
7 0.906236956
8 0.849633502
9 0.801850104

10 0.760797566
11 0.725023902
12 0.693483324
13 0.665400308
14 0.640185599
15 0.617382164
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