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Introduction



Introduction
A partition λ of a positive integer n is a finite sequence of positive integers which
sum to n.

We write λu1
1 + λu2

2 + · · ·+ λuk
k = n, where each part λi in the partition λ

occurs ui times (the number of occurrences is also referred to as the multiplicity of
λi ) with λi ,ui ≥ 1 for 1 ≤ i ≤ k .
Let | λ | denote the sum of parts and ℓ(λ) denote the total number of parts in the
partition λ. For example,

λ = (9,52,43,2,17)

is a partition of 40 into 14 parts.Here and throughout we will use the standard
q-series notations

(a;q)n :=


n−1∏
i=0

(1 − aqi) if n > 0,

1 if n = 0.

(a1,a2, . . . ,aj ;q)∞ := (a1;q)∞(a2;q)∞ · · · (aj ;q)∞.
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Introduction
The k -modular Ferrers diagram (a modification of Ferrers diagram) represents a
partition λ of n in such a way that each part is depicted by a left-justified row of k ’s
with an r at the right end, where 1 ≤ r ≤ k .

For example, the following figure illustrates the 3-modular Ferrers diagram of the
partition λ = (142,122,7,6,5,4,3) of n = 77 with the diagram of (52,42,3,23,1).

3 3 3 3 2
3 3 3 3 2
3 3 3 3
3 3 3 3
3 3 1
3 3
3 2
3 1
3

Figure: The 3-modular Ferrers diagram of λ = (142,122,7,6,5,4,3).
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History
Throughout the history of integer partitions, most studies have investigated
partitions with various constraints on their parts. Examples include:

Partitions into odd (or even) parts,
ℓ-regular partitions (parts indivisible by ℓ > 1),
Partitions into parts that belong to certain residue classes modulo some
positive integer,

and more.

Nevertheless, the multiplicities (i.e. number of occurrences) of parts have not
received significant attention in the literature on integer partitions, as reflected in the
limited number of related papers. Many of these few papers are dedicated to the
partitions where parts appear fewer than m times (the number of such partitions is
equal to the number of m-regular partitions).
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Motivation
[7] A. Bazniar, M. Ahmia, J. L. Ramírez et al., New Modular Symmetric Function and
its Applications: Modular s-Stirling Numbers. Bull. Malays. Math. Sci. Soc. 45
(2022), 1093–1109.

Given the limited research on the multiplicities of parts, we were inspired to apply
congruences to the number of occurrences of each part in the partition.
This approach led to the definition of three new classes of partitions: s-modular,
s-congruent,and s-duplicate partitions.
Throughout the remainder of the presentation, s is always considered to be an even
positive integer greater than or equal to 4.
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Definitions
Definition

A partition λ is s-modular if all parts occur with multiplicity congruent to 0 or 1
modulo s. We denote by Ms(n) the number of s-modular partitions of n.

The generating function for Ms(n) is given by∑
n≥0

Ms(n)qn =
(−q;q)∞
(qs;qs)∞

.

Example

For (s,n) = (4,8), we have M4(8) = 10 and the corresponding set is

M4(8) = {(8), (7,1), (6,2), (5,3), (5,2,1), (4,3,1), (3,15), (4,14), (24), (18)}.
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Definitions
Definition

A partition λ is said to be s-congruent if the parts are not congruent to
2,4,6, . . . , (s − 2) modulo s. We denote by Cs(n) the number of s-congruent
partitions of n.

The generating function for Cs(n) is given by∑
n≥0

Cs(n)qn =
1

(q;q2)∞(qs;qs)∞
.

Example

For (s,n) = (6,8), we have C6(8) = 7 such that

C6(8) = {(7,1), (6,12), (5,3), (5,13), (32,12), (3,15), (18)}.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 6 / 38



Definitions
Definition

A partition λ is said to be s-congruent if the parts are not congruent to
2,4,6, . . . , (s − 2) modulo s. We denote by Cs(n) the number of s-congruent
partitions of n.

The generating function for Cs(n) is given by∑
n≥0

Cs(n)qn =
1

(q;q2)∞(qs;qs)∞
.

Example

For (s,n) = (6,8), we have C6(8) = 7 such that

C6(8) = {(7,1), (6,12), (5,3), (5,13), (32,12), (3,15), (18)}.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 6 / 38



Definitions
Definition

A partition λ is said to be s-congruent if the parts are not congruent to
2,4,6, . . . , (s − 2) modulo s. We denote by Cs(n) the number of s-congruent
partitions of n.

The generating function for Cs(n) is given by∑
n≥0

Cs(n)qn =
1

(q;q2)∞(qs;qs)∞
.

Example

For (s,n) = (6,8), we have C6(8) = 7 such that

C6(8) = {(7,1), (6,12), (5,3), (5,13), (32,12), (3,15), (18)}.
Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 6 / 38



Definitions
We note that the s-congruent partitions were introduced by Ballantine and Welch [4]
as partitions in which all even parts are congruent to 0 modulo s.
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Definitions
Definition

A partition λ is s-duplicate if every part in the partition with multiplicity greater than
one is congruent to 0 modulo s/2. We denote by Ds(n) the number of s-duplicate
partitions of n.

The generating function for Ds(n) satisfies the identity∑
n≥0

Ds(n)qn =
(−q;q)∞

(−qs/2;qs/2)∞(qs/2;qs/2)∞
.

Example

For (s,n) = (6,6), we have D6(6) = 5 and the set of partitions is given by

D6(6) = {(6), (5,1), (4,2), (3,2,1), (32)}.
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s-Duplicate partitions and the pod(n) function
In the case where s = 4, the s-duplicate partitions become what is known in the
literature as POD partitions, partitions wherein odd parts are distinct and even parts
are unrestricted.

The number of POD partitions of n, denoted by pod(n), satisfies the
generating function∑

n≥0

pod(n)qn =
1

ψ(−q)
=

(q2,q2)∞
(q,q)∞(q4,q4)∞

.

Example

For n = 6, pod(6) = 5 and corresponding set of partitions is given by

{(6), (5,1), (4,2), (3,2,1), (23)}.

This class of partitions appears frequently in the literature, such as in the works of
Andrews [2, 3] and Berkovich and Garvan [5],

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 9 / 38



s-Duplicate partitions and the pod(n) function
In the case where s = 4, the s-duplicate partitions become what is known in the
literature as POD partitions, partitions wherein odd parts are distinct and even parts
are unrestricted.The number of POD partitions of n, denoted by pod(n), satisfies the
generating function∑

n≥0

pod(n)qn =
1

ψ(−q)
=

(q2,q2)∞
(q,q)∞(q4,q4)∞

.

Example

For n = 6, pod(6) = 5 and corresponding set of partitions is given by

{(6), (5,1), (4,2), (3,2,1), (23)}.

This class of partitions appears frequently in the literature, such as in the works of
Andrews [2, 3] and Berkovich and Garvan [5],

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 9 / 38



s-Duplicate partitions and the pod(n) function
In the case where s = 4, the s-duplicate partitions become what is known in the
literature as POD partitions, partitions wherein odd parts are distinct and even parts
are unrestricted.The number of POD partitions of n, denoted by pod(n), satisfies the
generating function∑

n≥0

pod(n)qn =
1

ψ(−q)
=

(q2,q2)∞
(q,q)∞(q4,q4)∞

.

Example

For n = 6, pod(6) = 5 and corresponding set of partitions is given by

{(6), (5,1), (4,2), (3,2,1), (23)}.

This class of partitions appears frequently in the literature, such as in the works of
Andrews [2, 3] and Berkovich and Garvan [5],

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 9 / 38



s-Duplicate partitions and the pod(n) function
In the case where s = 4, the s-duplicate partitions become what is known in the
literature as POD partitions, partitions wherein odd parts are distinct and even parts
are unrestricted.The number of POD partitions of n, denoted by pod(n), satisfies the
generating function∑

n≥0

pod(n)qn =
1

ψ(−q)
=

(q2,q2)∞
(q,q)∞(q4,q4)∞

.

Example

For n = 6, pod(6) = 5 and corresponding set of partitions is given by

{(6), (5,1), (4,2), (3,2,1), (23)}.

This class of partitions appears frequently in the literature, such as in the works of
Andrews [2, 3] and Berkovich and Garvan [5],
Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 9 / 38



s-Duplicate partitions and the pod(n) function
The pod(n) function has various combinatorial interpretations (seq. A006950 in
OEIS), such as in Schröder partitions and lattice paths.

Also, it is interesting to note that this enumeration function is relevant from an
algebraic point of view: pod(n) equals the number of nilpotent conjugacy classes in
the Lie algebras of skew-symmetric n × n matrices.
This intriguing connection suggests that this function and its combinatorial
interpretations play a substantial role in representation theory and raise bigger
questions for the general case of s-sduplicate partitions and their impact on these
topics.
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Combinatorial properties of
s-modular, s-congruent and

s-duplicate partitions



Combinatorial properties
Waht is the connection between these classes of partitions ?.

Theorem

For every positive integer n ≥ 0,

Ms(n) = Cs(n) = Ds(n).

∑
n≥0

Ms(n)qn =
∏
n≥1

(1 + qn)

(1 − qsn)

=
∏
n≥1

1
(1 − q2n−1)(1 − qsn)

=
∑
n≥0

Cs(n)qn

=
∏
n≥1

(1 + qn)

(1 + qsn/2)(1 − qsn/2)
=

∑
n≥0

Ds(n)qn.
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Combinatorial properties: Bijections
We establish a bijective function f : A(n) → B(n) between two sets of partitions A(n)
and B(n), creating a one-to-one correspondence where A(n) and B(n) are finite
sets of partitions of fixed size.

For λ = (λu1
1 , λu2

2 , . . . , λuk
k ) ∈ A(n) and β = (βw1

1 ,βw2
2 , . . . ,βwk

k ) ∈ B(n) , we have

β = f (λ) = f
(
(λu1

1 , . . . , λuk
k )

)
:=

(
f (λu1

1 ), . . . , f (λuk
k )

)
λ = f−1(β) = f−1((βw1

1 , . . . ,βwk
k )

)
:=

(
f−1(βw1

1 ), . . . , f−1(βwk
k )

)
.
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Combinatorial properties: Bijections
The bijection Ms(n) ⇔ Cs(n) when s = 2p for p ≥ 2.
The bijection Ms(n) ⇔ Ds(n) when s = 2p for p ≥ 2.
The bijection Ms(n) ⇔ Cs(n) when s ̸= 2p for p ≥ 2.
The bijection Ms(n) ⇔ Ds(n) when s ̸= 2p for p ≥ 2.
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The bijection Ms(n) ⇔ Cs(n) when s = 2p for
p ≥ 2.
Let λ = (λu1

1 , λu2
2 , . . . , λuk

k ) ∈ Ms(n)

and define the map f : Ms(n) → Cs(n) by
λ→ f (λ) = ⋃k

i=1 f (λui
i ) as follows.If λi ≡ 2,4,6, . . . , (s − 2) (mod s),then for

1 ≤ i ≤ k , we have

f (λui
i ) =

{
uλi

i if ui ≡ 0 (mod s),
(ui − 1)λi , ℓ2ri

i if ui ≡ 1 (mod s),

where each part λi can be expressed uniquely as λi = 2ri ℓi with ℓi odd. Note that if
λ ∈ Ms(n), then λi ≡ ±2ri (mod 2ri+2).
Else, if λi ̸≡ 2,4,6, . . . , (s − 2) (mod s), then

f (λui
i ) = λ

ui
i .
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The bijection Ms(n) ⇔ Cs(n) when s = 2p for
p ≥ 2.
Let λ = (λu1

1 , λu2
2 , . . . , λuk

k ) ∈ Cs(n)

and define the inverse map f−1 : Cs(n) → Ms(n)
by λ→ f−1(λ) = ⋃k

i=1 f−1(λui
i ).

If λi ≡ 0 (mod s), then for 1 ≤ i ≤ k , we have

f−1(λui
i ) =


λui

i if ui ≡ 0,1 (mod s),
uλi

i if ui ≡ 2,4,6, . . . , (s − 2) (mod s),
(ui − 1)λi , λi if ui ≡ 3,5,7, . . . , (s − 1) (mod s).

Else, if λi ̸≡ 0 (mod s), define the vector Wp−1 as

Wp−1 = (2a1,22a2, . . . ,2p−1ap−1),

where ai ∈ {0,1} and i ∈ {1,2, . . . (p − 1)}.
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The bijection Ms(n) ⇔ Cs(n) when s = 2p for
p ≥ 2.
The values of ai are chosen in such a way that Wp−1 attains a unique magnitude
| Wp−1 | for which

m = ui− | Wp−1 |≡ 0,1 (mod s),

where m is the maximum possible value less than ui . Consequently, we obtain the
expansion

λui
i = λm

i + λ2a1
i + · · ·+ λ2p−1ap−1

i ,

where if ai = 0 or m = 0, we exclude the corresponding part λi from the expansion.
Then, the inverse map f−1(λui

i ) is given by

f−1(λui
i ) =

{
λui

i if ui ≡ 0,1 (mod s),
λm

i ,2a1λi ,22a2λi , . . . ,2p−1ap−1λi if ui ̸≡ 0,1 (mod s).
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Recurrence Relations
Let Ms(n, k) denote the number of s-modular partitions of n into k parts.

Theorem

For every positive integers n, k ≥ 1,

Ms(n, k) =
k∑

ℓ=0
ℓ≡0,1 (mod s)

Ms(n − k , k − ℓ).
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Recurrence Relations
Let Cs(n, k) denote the number of s-congruent partitions of n into k parts. Let N(s)
be the set consisting of s and all the odd positive integers less than s, and let N ′(ℓ)
be the set consisting of all the odd positive integers less than ℓ ∈ N(s).

Theorem

For every positive integers n, k ≥ 1, we have

Cs(n, k) =
∑

ℓ∈N(s)

Cℓ
s(n, k) + Cs+1

s (n, k).

Moreover, for ℓ ∈ N(s), we have

Cℓ
s(n, k) = Cs(n−ℓ, k −1)−

∑
i∈N′(ℓ)

C i
s(n−ℓ, k −1) and Cs+1

s (n, k) = Cs(n−sk , k).
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Recurrence Relations
• Let Cs(n, k) denote the set of s-congruent partitions of n into k parts.

• Let N(s) = {1,3,5, . . . , s − 1, s}.
• Let N ′(ℓ) be the set consisting of all the odd positive integers less than ℓ ∈ N(s).
• Denote by Cℓ

s(n, k) the set of all the partitions λ ∈ Cs(n, k) with at least one part
of size ℓ ∈ N(s) as the smallest part in the partition.
• Denote by Cs+1

s (n, k) the set of all the partitions λ ∈ Cs(n, k) into parts of sizes
greater than s.
We have the following dissection of Cs(n, k) into | N(s) | +1 disjoint subsets

Cs(n, k) = C1
s(n, k) ∪ C3

s(n, k) ∪ · · · ∪ Cs
s(n, k) ∪ Cs+1

s (n, k).
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Recurrence Relations
• Consider the subset

Cs(n − ℓ, k − 1) \ ∪i∈N′(ℓ)Ci
s(n − ℓ, k − 1)

which contains all the partitions of n− ℓ into k − 1 parts of sizes ≥ ℓ, where ℓ ∈ N(s).

• To obtain partitions of n − ℓ into k − 1 parts of sizes ≥ ℓ, we exclude those with at
least one part of size i ∈ N ′(ℓ) as the smallest part from Cs(n − ℓ, k − 1).
• Conversely, by adding one part of size ℓ ∈ N(s) to each partition
λ ∈ Cs(n − ℓ, k − 1) \ ∪i∈N′(ℓ)Ci

s(n − ℓ, k − 1), we arrive at Cℓ
s(n, k).

• Therefore, for all ℓ ∈ N(s) we deduce that

| Cℓ
s(n, k) |=| Cs(n − ℓ, k − 1) \ ∪i∈N′(ℓ)Ci

s(n − ℓ, k − 1) | .

• Similarly, by adding s to each part of λ ∈ Cs(n − sk , k), we get Cs+1
s (n, k).

Therefore, we find that

| Cs+1
s (n, k) |=| Cs(n − sk , k) | .
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Recurrence Relations
Let Ds(n, k) denote the set of s-duplicate partitions of n into k parts.

Theorem

For every positive integers n, k ≥ 1,

Ds(n, k) = Ds

(
n − s

2
, k − 1

)
+

∑
αj∈A(s)

Ds

(
n − s(k − ℓ(αj))

2
− | αj |, k − ℓ(αj)

)
.

Where O(s) denote the set of all partitions into distinct parts less than or equal to
s/2 − 1, A(s) = O(s) ∪ {∅}, and αj is a partition of A(s).
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Recurrence Relations
Example

For s = 4, we have the set O(4) = {(1)}. Therefore, A(4) = {∅, (1)} and the
recurrence relation is given by

D4(n, k) = D4(n − 2, k − 1) + D4(n − 2k , k) + D4(n − 2(k − 1)− 1, k − 1).
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Series Expansion



Series Expansion
Alladi [1] presented a series expansion with different parameters for the product
generating function of pod(n) using 2-modular Ferrers diagrams and their Durfee
squares.

Several fundamental identities in the theory of partitions and q-series,
including those of Sylvester, Lebesgue, Gauss, and Rogers-Fine, emerge as
special cases of this series expansion. The expansion is given by

(−bq;q2)∞
(cq2;q2)∞

= 1+
∑
k≥1

ckq2k2−1(−bq;q2)k−1(−bc−1q;q2)k−1(bc−1 + q)(1 + bq4k−1)

(cq2;q2)k (q2;q2)k
,

where the powers of b and c keep track of the number of odd and even parts
respectively.
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Series Expansion
Lebesgue’s Identity:∑

n≥0

qn(n+1)/2(1 + bq)(1 + bq2) · · · (1 + bqn)

(1 − q)(1 − q2) · · · (1 − qn)
=

∏
m≥1

(1 + bq2m)

(1 − q2m−1)
.

Sylvester’s Identity:

∏
n≥1

(1 + bqn) = 1 +
∑
k≥1

bkq(3k2−k)/2(−bq;q)k−1(1 + bq2k )

(q;q)k
.

Rogers-Fine identity:

F (α,β,τ;q) =
∑
n≥0

(αq;q)n(ατq/β;q)n(1 − ατq2n+1)

(βq;q)n(τ;q)n+1
βnτnqn2

.
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Series Expansion
Given that pod(n) is a special case of s-duplicate partitions, we present a
generalized series expansion for s-duplicate partitions, of which Alladi’s series
expansion emerges as a special case.
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Series Expansion
Theorem

∑
n,r ,l≥0

Ds(n, r , l)zr blqn = 1 +
∑
k≥1

Ak (q)×{
zkqsk2/2(−zbqs(k−1)/2+1;q)s/2−1(−bqs(k−1)/2+1;q)s/2−1

+ (1 − zqsk/2)(1 − qsk/2)

s/2−1∑
i=1

bzkqsk2/2−i
}
,

where

Ak (q) =
(−zbq, . . . ,−zbqs/2−1;qs/2)k−1(−bq, . . . ,−bqs/2−1;qs/2)k−1

(zqs/2;qs/2)k (qs/2;qs/2)k
.
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Partitions into parts
simultaneously s-congruent and

t-distinct



Parts simultaneously s-congruent and t-distinct
A t-distinct partition λ of a positive integer n

is a finite sequence of positive integers
such that λu1

1 + λu2
2 + · · ·+ λuk

k = n, where 1 ≤ ui < t and t ≥ 2. We shall impose an
additional restriction on the set of the s-congruent partitions to obtain a new set of
partitions into parts simultaneously s-congruent and t-distinct.
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Parts simultaneously s-congruent and t-distinct
Partitions into parts simultaneously s-congruent and t-distinct

A partition into parts simultaneously s-congruent and t-distinct is a partition into
parts not congruent to 2,4,6, . . . , (s − 2) modulo s and appearing fewer than t
times. We denote by Ct

s(n) the number of partitions into parts simultaneously
s-congruent and t-distinct of n.

The generating function for Ct
s(n) is given by

∑
n≥0

Ct
s(n)q

n =
∏
n≥1

(1 − qt(2n−1))(1 − qtsn)

(1 − q2n−1)(1 − qsn)
.
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Parts simultaneously s-congruent and t-distinct
Setting t = 2 and s = 4,6, the sequences match A261734, A261736, respectively,
which seem to be related to the Generating functions for fixed points of the
Mullineux map [8].
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Parts simultaneously s-congruent and t-distinct
Among the most celebrated identities in the theory of partitions and q-series are
those of Göllnitz and Gordon. These identities were initially discovered by Göllnitz in
1961, but remained unknown until Gordon independently rediscovered them in
1965.

Theorem (Göllnitz-Gordon identities)

Fix a to be either 1 or 3. Given an integer n, the number of partitions of n in which
parts are congruent to 4 or ±a modulo 8, is equal to the number of partitions of n
in which parts are non-repeating and non-consecutive, with any two even parts
differing by at least 4, and with all parts ≥ a.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 31 / 38



Parts simultaneously s-congruent and t-distinct
Among the most celebrated identities in the theory of partitions and q-series are
those of Göllnitz and Gordon. These identities were initially discovered by Göllnitz in
1961, but remained unknown until Gordon independently rediscovered them in
1965.

Theorem (Göllnitz-Gordon identities)

Fix a to be either 1 or 3. Given an integer n, the number of partitions of n in which
parts are congruent to 4 or ±a modulo 8, is equal to the number of partitions of n
in which parts are non-repeating and non-consecutive, with any two even parts
differing by at least 4, and with all parts ≥ a.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 31 / 38



Parts simultaneously s-congruent and t-distinct
In 1967, Andrews generalized the Göllnitz-Gordon identities in the following
theorem.

Theorem (Andrews-Göllnitz-Gordon)

Let i and k be integers with 0 < i ≤ k. Let Vk ,i(n) denote the number of partitions
of n into parts not congruent to 2 modulo 4 and not congruent to 0,±(2i − 1)
modulo 4k. Let Wk ,i(n) denote the number of partitions (λ1, λ2, . . . , λm) of n in
which no odd part is repeated, λj ≥ λj+1, λj − λj+k−1 ≥ 2 if λj odd, λj − λj+k−1 > 2
if λj even, and at most i − 1 parts are ≤ 2. Then

Vk ,i(n) = Wk ,i(n).
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Parts simultaneously s-congruent and t-distinct
In further exploration of Andrews’ general theorem, we enlarge its scope by
expanding the class of partitions enumerated by Vk ,i(n) for certain values of k and i .

Definition

Let t ≥ 3 be a positive integer with t ̸≡ 2, 4, 6, . . . , (s−2) (mod s). Let E t
s(n) denote

the number of partitions of n into parts not congruent to 2, 4, 6, . . . , (s − 2) modulo
s and not congruent to 0, t(2r + 1) modulo ts, where r = 0,1,2,3, . . . , s/2 − 1.

The generating function for E t
s(n) is given by

∑
n≥0

E t
s(n)q

n =
(q2;q2)∞(qt ;qt)∞(qts;qts)∞
(q;q)∞(qs;qs)∞(q2t ;q2t)∞

.
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Parts simultaneously s-congruent and t-distinct
Theorem

Let t ≥ 3 be a positive integer with t ̸≡ 2, 4, 6, . . . , (s − 2) modulo s. Then for every
positive integer n ≥ 0,

Ct
s(n) = E t

s(n).
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Parts simultaneously s-congruent and t-distinct
The relation between the number E t

s(n) and Andrews’ theorem becomes apparent
by setting s = 4 in the definition of E t

s(n).

We have E t
4(n) = Vt ,(t+1)/2(n) for every

odd t ≥ 3, where t = k = 2i − 1.

Corollary

Let t ≥ 3 be an odd integer. Then for every natural number n ≥ 0,

Ct
4(n) = Vt ,(t+1)/2(n) = Wt ,(t+1)/2(n).
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Parts simultaneously s-congruent and t-distinct
Example

For s = 4 and t = 3, we have:

C3
4(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and

appearing fewer than 3 times.
V3,2(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
not congruent to 0,3 or 9 modulo 12.
W3,2(n) : The number of partitions of n in which

No odd part is repeated,
λj + λj+2 ≥ 2 if λj is odd.
λj + λj+2 > 2 if λj is even.
At most 1 part ≤ 2.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 36 / 38



Parts simultaneously s-congruent and t-distinct
Example

For s = 4 and t = 3, we have:
C3

4(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
appearing fewer than 3 times.

V3,2(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
not congruent to 0,3 or 9 modulo 12.
W3,2(n) : The number of partitions of n in which

No odd part is repeated,
λj + λj+2 ≥ 2 if λj is odd.
λj + λj+2 > 2 if λj is even.
At most 1 part ≤ 2.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 36 / 38



Parts simultaneously s-congruent and t-distinct
Example

For s = 4 and t = 3, we have:
C3

4(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
appearing fewer than 3 times.
V3,2(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
not congruent to 0,3 or 9 modulo 12.

W3,2(n) : The number of partitions of n in which
No odd part is repeated,
λj + λj+2 ≥ 2 if λj is odd.
λj + λj+2 > 2 if λj is even.
At most 1 part ≤ 2.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 36 / 38



Parts simultaneously s-congruent and t-distinct
Example

For s = 4 and t = 3, we have:
C3

4(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
appearing fewer than 3 times.
V3,2(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
not congruent to 0,3 or 9 modulo 12.
W3,2(n) : The number of partitions of n in which

No odd part is repeated,
λj + λj+2 ≥ 2 if λj is odd.
λj + λj+2 > 2 if λj is even.
At most 1 part ≤ 2.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 36 / 38



Parts simultaneously s-congruent and t-distinct
Example

For s = 4 and t = 3, we have:
C3

4(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
appearing fewer than 3 times.
V3,2(n) : The number of partitions of n into parts not congruent to 2 modulo 4 and
not congruent to 0,3 or 9 modulo 12.
W3,2(n) : The number of partitions of n in which

No odd part is repeated,
λj + λj+2 ≥ 2 if λj is odd.
λj + λj+2 > 2 if λj is even.
At most 1 part ≤ 2.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 36 / 38



References I
K. Alladi, Partitions with non-repeating odd parts and q-hypergeometric
identities. The legacy of Alladi Ramakrishnan in the mathematical
sciences, Springer, New York, NY. (2010), 169–182.

G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems.
Proc. Am. Math. Soc. 18 (1967), 945–952.

G. E. Andrews, Two theorems of Gauss and allied identities proved
arithmetically. Pac. J. Math. 41 (1972), 563–578.

Cristina Ballantine, Amanda Welch, Generalizations of POD and PED
partitions. Discrete Math. 347 (2024), 114150.

A. Berkovich, F. G. Garvan, Some observations on Dyson’s new
symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61–93.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 37 / 38



References II
Mohammed L. Nadji and Moussa Ahmia, s-Modular, s-congruent and
s-duplicate partitions. Bol. Soc. Mat. Mex. 30 (2024), Article 98.

A. Bazniar, M. Ahmia, J. L. Ramírez et al., New Modular Symmetric
Function and its Applications: Modular s-Stirling Numbers. Bull. Malays.
Math. Sci. Soc. 45 (2022), 1093–1109.

David J. Hemmer, Generating functions for fixed points of the Mullineux
map, arXiv:2402.03643 [math.CO], 2024.

Mohammed Lamine Nadji s-Modular, s-congruent and s-duplicate partitions 13th February 2025 38 / 38



Thank You!


	Introduction
	History
	Motivation

	Definitions
	s-Modular partitions
	s-Congruent partitions
	s-Duplicate partitions

	s-Duplicate partitions and the `3́9`42`"̇613A``45`47`"603Apod(n) function
	Combinatorial properties of s-modular, s-congruent and s-duplicate partitions
	Series Expansion
	Partitions into parts simultaneously s-congruent and t-distinct
	References
	Thank You!

