Localization Applied to a Genus 1 Congruence Family

Nicolas Allen Smoot

RISC, Johannes Kepler University Linz Specialty Seminar in Partition Theory, q-Series and Related Topics

16 March, 2023

Partitions

Definition

For any $n \in \mathbb{Z}_{\geq 0}$, a partition of n is a representation of n as a sum of other positive intergers, called parts. The number of partitions of a given n is denoted p(n).

For example, p(4) = 5:

- 4
- 3 + 1
- 2 + 2
- 2+1+1
- \bullet 1+1+1+1

Partitions

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{m=1}^{\infty} \frac{1}{1-q^m}.$$

The sequence for p(n) begins

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

•
$$p(5n+4) \equiv 0 \pmod{5}$$
.

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

- $p(5n+4) \equiv 0 \pmod{5}$.
- $p(25n + 24) \equiv 0 \pmod{25}$.

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

- $p(5n+4) \equiv 0 \pmod{5}$.
- $p(25n + 24) \equiv 0 \pmod{25}$.
- $p(125n + 99) \equiv 0 \pmod{125}$.

$$(p(n))_{n\geq 0} = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...)$$

- $p(5n+4) \equiv 0 \pmod{5}$.
- $p(25n + 24) \equiv 0 \pmod{25}$.
- $p(125n + 99) \equiv 0 \pmod{125}$.

Theorem (Ramanujan, 1918)

Let $n, \alpha \in \mathbb{Z}_{\geq 0}$ such that $24n \equiv 1 \pmod{5^{\alpha}}$. Then

$$p(n) \equiv 0 \pmod{5^{\alpha}}$$
.

Theorem (Ramanujan, Watson, Atkin)

Let $\ell \in \{5,7,11\}$ and $n,\alpha \in \mathbb{Z}_{\geq 0}$ such that $24n \equiv 1 \pmod{\ell^{\alpha}}$. Then

$$\begin{split} \rho\left(n\right) &\equiv 0 \pmod{\ell^{\beta}}, \\ \beta &= \begin{cases} \alpha, & \ell \in \{5, 11\}, \\ \lfloor \alpha/2 \rfloor + 1, & \ell = 7. \end{cases} \end{split}$$

Similar Congruences

Suppose
$$\sum_{n=0}^{\infty} a(n)q^n = \mathcal{G}$$
,

with \mathcal{G} usually a modular form or similar. A *congruence family* for a(n) modulo powers of a prime ℓ is a set of divisibilities

$$a(n) \equiv 0 \pmod{\ell^{\beta}}$$
 when $\Lambda n \equiv 1 \pmod{\ell^{\alpha}}$,

with $\Lambda \in \mathbb{Z}$ fixed and

$$\beta \to \infty$$
 as $\alpha \to \infty$.

j Invariant

$$G_k(au) := \sum_{\substack{(m,n) \in \mathbb{Z}^2, \ (m,n)
eq (0,0)}} rac{1}{(m au+n)^k}, \ \Delta(au) := (2\pi)^{12} q \prod^{\infty} (1-q^m)^{24}.$$

With these functions, we may define the modular j invariant:

$$j := j(\tau) = 1728 \frac{60^3 G_4(\tau)^3}{\Delta(\tau)} = \frac{1}{q} + 744 + \sum_{n=1}^{\infty} c(n)q^n.$$

For $\alpha > 1$ and n > 0, the following apply:

j Invariant

Theorem (Lehner, Atkin)

```
If n \equiv 0 \pmod{2^{\alpha}}, then c(n) \equiv 0 \pmod{2^{3\alpha+8}};

If n \equiv 0 \pmod{3^{\alpha}}, then c(n) \equiv 0 \pmod{3^{2\alpha+3}};

If n \equiv 0 \pmod{5^{\alpha}}, then c(n) \equiv 0 \pmod{5^{\alpha+1}};
```

If $n \equiv 0 \pmod{7^{\alpha}}$, then $c(n) \equiv 0$

If $n \equiv 0 \pmod{11^{\alpha}}$, then $c(n) \equiv 0$

 $(\text{mod }7^{\alpha});$

(mod 11^{α}).

k-Colored Partitions

$$P_k(\tau) := \sum_{n=0}^{\infty} p_k(n) q^n = \prod_{m=1}^{\infty} (1 - q^m)^{-k}.$$

Theorem (D. Tang)

For $\alpha \geq 1$ and $n \geq 0$, the following applies:

If
$$12n \equiv 1 \pmod{5^{\alpha}}$$
, then $p_2(n) \equiv 0 \pmod{5^{\lfloor \alpha/2 \rfloor + 1}}$.

A Smallest Parts Function Related to Mock Theta Functions

$$\omega(q) := \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(q;q^2)_{n+1}^2}, \qquad \sum_{n=1}^{\infty} p_{\omega}(n)q^n = q\omega(q),$$

where $p_{\omega}(n)$ as the counting function of partitions of n in which all odd parts are less than twice the smallest part.

Theorem (Wang, Yang)

Let $\lambda_{\alpha} \in \mathbb{Z}$ be the minimal positive solution to $12x \equiv 1 \pmod{5^{\alpha}}$. Then

$$\operatorname{spt}_{\omega}(2\cdot 5^{\alpha}n+\lambda_{\alpha})\equiv 0\pmod{5^{\alpha}}.$$

Generalized 2-Color Frobenius Partitions

$$C\Phi_2(\tau) := \sum_{n=0}^{\infty} c\phi_2(n)q^n = \prod_{m=1}^{\infty} \frac{(1-q^{2m})^5}{(1-q^m)^4(1-q^{4m})^2}.$$

Theorem (Paule, Radu)

For all integers $n \ge 0$, $\alpha \ge 1$, such that $12n \equiv 1 \pmod{5^{\alpha}}$, we have

$$c\phi_2(n) \equiv 0 \pmod{5^{\alpha}}$$
.

2-Elongated Plane Partition Diamonds

$$D_k(\tau) := \sum_{n=0}^{\infty} d_k(n) q^n = \prod_{m=1}^{\infty} \frac{(1-q^{2m})^k}{(1-q^m)^{3k+1}}.$$

Theorem (Smoot)

For all integers $n \ge 0$, $\alpha \ge 1$, such that $8n \equiv 1 \pmod{3^{\alpha}}$, we have

$$d_2(n) \equiv 0 \pmod{3^{2\lfloor \alpha/2\rfloor+1}}.$$

Theorem (Sellers, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $3n \equiv 1 \pmod{4^{\alpha}}$. Then

$$d_7(n) \equiv 0 \pmod{8^{\alpha}}.$$

Why?

Theory of Partition Congruences

If
$$\Lambda n \equiv 1 \pmod{\ell^{\alpha}}$$
, then $a(n) \equiv 0 \pmod{\ell^{\beta}}$.

$$\begin{split} L_{\alpha} := \phi_{\alpha} \cdot \sum_{\substack{n \geq 0 \\ \Lambda n \equiv 1 \bmod \ell^{\alpha}}} a(n) \, q^{\lfloor n/\ell^{\alpha} \rfloor + \delta} \in \mathcal{M}\left(\mathrm{X}_{0}(N)\right), \end{split}$$

$$q := e^{2\pi i \tau}, \, \tau \in \mathbb{H}.$$

 $(L_{\alpha})_{\alpha \geq 1}$ is a sequence of meromorphic functions on the classical modular curve $X_0(N)$.

Theory of Partition Congruences

 $X_0(\textit{N})$ is a compact Riemann surface, diffeomorphic to a 2 dimensional \mathcal{C}^{∞} real manifold. The two key topological properties important to us are:

- The genus g;
- The cusp count ϵ_{∞} .

Theory of Partition Congruences

 $X_0(\textit{N})$ is a compact Riemann surface, diffeomorphic to a 2 dimensional \mathcal{C}^∞ real manifold. The two key topological properties important to us are:

- The genus g;
- The cusp count ϵ_{∞} .
- $\mathfrak{g} \geq 0$.
- $\epsilon_{\infty} = 1,3$ for N = 1,4 (respectively).
- $\epsilon_{\infty} \geq 2$ and even for all other N.

$$\mathfrak{g}=0$$

$$\mathfrak{g}=0$$

e.g., classical congruences for $p(n) \pmod{5^{\alpha}, 7^{\alpha}}$

$$\mathfrak{g}=0$$

e.g., classical congruences for
$$p(n) \pmod{5^{\alpha}, 7^{\alpha}}$$

• Localization method works for $\mathfrak{g}=0$, $\epsilon_{\infty}=4$.

$$\mathfrak{g}=0$$

e.g., classical congruences for
$$p(n) \pmod{5^{\alpha}, 7^{\alpha}}$$

• Localization method works for $\mathfrak{g}=0$, $\epsilon_{\infty}=4$.

e.g., congruences for
$$\operatorname{spt}_{\omega}(n) \pmod{5^{\alpha}}$$
, or $d_2(n) \pmod{3^{\alpha}}$

$$\mathfrak{g}=0$$

e.g., classical congruences for
$$p(n) \pmod{5^{\alpha}, 7^{\alpha}}$$

• Localization method works for $\mathfrak{g}=0$, $\epsilon_{\infty}=4$.

e.g., congruences for
$$\operatorname{spt}_{\omega}(n) \pmod{5^{\alpha}}$$
, or $d_2(n) \pmod{3^{\alpha}}$

• Localization currently fails for $\mathfrak{g}=0$, $\epsilon_{\infty}=6$, but a modification is likely possible.

$$\mathfrak{g}=0$$

e.g., classical congruences for
$$p(n) \pmod{5^{\alpha}, 7^{\alpha}}$$

• Localization method works for $\mathfrak{g}=0$, $\epsilon_{\infty}=4$.

e.g., congruences for
$$\operatorname{spt}_{\omega}(n) \pmod{5^{\alpha}}$$
, or $d_2(n) \pmod{3^{\alpha}}$

• Localization currently fails for $\mathfrak{g}=0$, $\epsilon_{\infty}=6$, but a modification is likely possible.

e.g., Beazer's conjectures

$$\mathfrak{g}=1$$

$$\mathfrak{g}=1$$

e.g., congruences for $p(n) \pmod{11^{\alpha}}$

$$\mathfrak{g}=1$$

e.g., congruences for $p(n) \pmod{11^{\alpha}}$

• For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$

$$\mathfrak{g}=1$$

e.g., congruences for
$$p(n) \pmod{11^{\alpha}}$$

- For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$
- Localization currently fails for $\mathfrak{g}=1$, $\epsilon_{\infty}=6$, but a modification is likely possible

$$\mathfrak{g}=1$$

e.g., congruences for
$$p(n) \pmod{11^{\alpha}}$$

- For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$
- Localization currently fails for $\mathfrak{g}=1,\ \epsilon_{\infty}=6,$ but a modification is likely possible

e.g., Andrews-Sellers congruences

$$\mathfrak{g}=1$$

e.g., congruences for
$$p(n) \pmod{11^{\alpha}}$$

- For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$
- Localization currently fails for $\mathfrak{g}=1,\ \epsilon_{\infty}=6,$ but a modification is likely possible

e.g., Andrews-Sellers congruences

What about $\mathfrak{g}=1$, $\epsilon_{\infty}=4$?

$$\mathfrak{g}=1$$

• For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$ localization succeeds!

$$\mathfrak{g}=1$$

• For $\mathfrak{g}=1$, $\epsilon_{\infty}=4...$ localization succeeds!

The critical number is ϵ_{∞} .

Classification

$\epsilon_{\infty}\left(\mathrm{X}_{0}(\mathit{N})\right)$	$\mathfrak{g}\left(\mathrm{X}_{0}(\mathit{N})\right)=0$	$g(X_0(N)) = 1$	$\mathfrak{g}\left(X_0(N)\right)=2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega} \operatorname{mod} 5^{lpha},$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Classification

$\epsilon_{\infty}\left(\mathrm{X}_{0}(N)\right)$	$\mid \mathfrak{g}(X_0(N)) = 0$	$g(X_0(N)) = 1$	$g(X_0(N)) = 2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega} \bmod 5^{\alpha}, d_2 \bmod 3^{\alpha})$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Counterexamples:

$\epsilon_{\infty}\left(\mathrm{X}_{0}(N)\right)$	$\mid \mathfrak{g}(X_0(N)) = 0$	$g(X_0(N)) = 1$	$g(X_0(N)) = 2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega} \bmod 5^{\alpha}, d_2 \bmod 3^{\alpha})$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Counterexamples:

ullet Sellers–Smoot: $d_7(n) \mod 8^{lpha}$ over $\mathrm{X}_0(8)$ $(\epsilon_\infty=4,\ \mathfrak{g}=0)$, localization unnecessary

$\epsilon_{\infty}\left(\mathrm{X}_{0}(N)\right)$	$\mid \mathfrak{g}(X_0(N)) = 0$	$g(X_0(N)) = 1$	$g(X_0(N)) = 2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega} \bmod 5^{\alpha}, d_2 \bmod 3^{\alpha})$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Counterexamples:

- Sellers–Smoot: $d_7(n) \mod 8^{\alpha}$ over $X_0(8)$ ($\epsilon_{\infty}=4$, $\mathfrak{g}=0$), localization unnecessary
- $\bullet \ \mathit{N}=1 \ (\epsilon_{\infty}=1, \ \mathfrak{g}=0)$

$\epsilon_{\infty}\left(\mathrm{X}_{0}(N)\right)$	$\mathfrak{g}\left(\mathbf{X}_{0}(N)\right)=0$	$g(X_0(N)) = 1$	$g(X_0(N)) = 2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega}\;mod\;5^{lpha},$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Counterexamples:

- Sellers–Smoot: $d_7(n) \mod 8^{\alpha}$ over $X_0(8)$ ($\epsilon_{\infty}=4$, $\mathfrak{g}=0$), localization unnecessary
- $N = 1 \ (\epsilon_{\infty} = 1, \ \mathfrak{g} = 0)$
- N=4 ($\epsilon_{\infty}=3$, $\mathfrak{g}=0$)

Theory of Partition Congruences

$$L_{\alpha} := \phi_{\alpha} \cdot \sum_{\substack{n \geq 0 \\ \Lambda n \equiv 1 \bmod \ell^{\alpha}}} a(n) q^{\lfloor n/\ell^{\alpha} \rfloor + \delta} \in \mathcal{M}(X_{0}(N)).$$

We build a sequence of modified U_ℓ operators, $\left(U^{(lpha)}
ight)_{lpha>1}$ such that

$$U^{(\alpha)}(L_{\alpha})=L_{\alpha+1}.$$

Theory of Partition Congruences

$$rac{1}{\ell^{eta}} L_{lpha} := \sum_{m \geq 1} s_{lpha}(m) \cdot \ell^{ heta_{lpha}(m)} \cdot arphi_{lpha}(m).$$

- $s_{\alpha}(m) \in \mathbb{Z}$.
- $\varphi_{\alpha}(m)$ are some convenient reference functions.

Theory of Partition Congruences

$$\frac{1}{\ell^{\beta}}L_{\alpha+1} = U^{(\alpha)}\left(\frac{1}{\ell^{\beta}}L_{\alpha}\right)
= \sum_{m>1} s_{\alpha}(m) \cdot \ell^{\theta_{\alpha}(m)} \cdot U^{(\alpha)}\left(\varphi_{\alpha}(m)\right).$$

- Most $U^{(\alpha)}(\varphi_{\alpha}(m))$ will gain a power of ℓ .
- For some exceptional m, this will not happen.
- The $\varphi_{\alpha}(m)$ must interact so that exceptional terms cancel out.

Stability Under the Congruence Kernel

$$\frac{1}{\ell^{\beta}}L_{\alpha}:=\sum_{m>1}s_{\alpha}(m)\cdot\ell^{\theta_{\alpha}(m)}\cdot\varphi_{\alpha}(m).$$

We construct a linear transformation

$$\Omega:\bigoplus_{m=1}^{\infty}\mathbb{Z}\longrightarrow\bigoplus_{k=1}^{R}\mathbb{Z}/\ell^{M}\mathbb{Z}.$$

We need to prove:
$$\mathbf{s}_1 := (\mathbf{s}_1(m))_{m \geq 1} \in \ker(\Omega)$$
, and $\mathbf{s}_{\alpha} \in \ker(\Omega) \implies \mathbf{s}_{\alpha+1} \in \ker(\Omega)$

• For $\epsilon_{\infty} = 2$ (classical case):

$$\Omega: \bigoplus_{m=1}^{\infty} \mathbb{Z} \longrightarrow \{0\}$$

Interaction of basis functions is important.

- For $\epsilon_{\infty}=$ 4, Ω is nontrivial; interaction of basis functions must be accounted for.
- For $\epsilon_{\infty}=6$, Ω is difficult to construct; complex interaction between basis functions.
- g appears to have no affect on Ω .

$d_k(n)$: k-Elongated Plane Partitions of n

Define $D_k(q)$ by

$$D_k(q) := \sum_{n=0}^{\infty} d_k(n) q^n = \prod_{m=1}^{\infty} \frac{(1-q^{2m})^k}{(1-q^m)^{3k+1}},$$

in which $d_k(n)$ counts the number of k-elongated plane partitions of n.

$d_k(n)$: k-Elongated Plane Partitions of n

Figure: A length 1 k-elongated partition diamond.

- $a_j \in \mathbb{Z}_{\geq 0}$
- $a_b \rightarrow a_c$ indicates that $a_b \geq a_c$
- $a_1 + a_{2k+2} = n$

$d_k(n)$: k-Elongated Plane Partitions of n

Figure: A length *m k*-elongated partition diamond.

- $a_i \in \mathbb{Z}_{>0}$
- $a_b \rightarrow a_c$ indicates that $a_b \geq a_c$
- $a_1 + a_{2k+2} + ... + a_{(2k+1)m+1} = n$

Congruences on $d_2(n)$

This was conjectured by Koustav Banerjee:

Theorem (Banerjee, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $8n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_2(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

Theorem (Banerjee, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $8n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_2(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

- Associated Riemann survace is the modular curve $X_0(14)$
- $\mathfrak{g}(X_0(14)) = 1 > 0$, indicating really tedious work ahead.
- $\epsilon_{\infty}(X_0(14)) = 4$.

$$L_{2\alpha-1}(\tau) = rac{(q^7; q^7)_{\infty}^7}{(q^{14}; q^{14})_{\infty}^2} \cdot \sum_{n=0}^{\infty} d_2(7^{2\alpha-1}n + \lambda_{2\alpha-1})q^{n+1}, \ L_{2\alpha}(\tau) = rac{(q; q)_{\infty}^7}{(q^2; q^2)_{\infty}^2} \cdot \sum_{n=0}^{\infty} d_2(7^{2\alpha}n + \lambda_{2\alpha})q^{n+1},$$

$$L_{2\alpha-1}(\tau) = \frac{(q^7; q^7)_{\infty}^7}{(q^{14}; q^{14})_{\infty}^2} \cdot \sum_{n=0}^{\infty} d_2(7^{2\alpha-1}n + \lambda_{2\alpha-1})q^{n+1},$$

$$L_{2\alpha}(\tau) = \frac{(q; q)_{\infty}^7}{(q^2; q^2)_{\infty}^2} \cdot \sum_{n=0}^{\infty} d_2(7^{2\alpha}n + \lambda_{2\alpha})q^{n+1},$$

$$U^{(1)}(L_{2\alpha-1}) = L_{2\alpha},$$

 $U^{(0)}(L_{2\alpha}) = L_{2\alpha+1}.$

First Example

$$L_1 = \frac{(q^7; q^7)^7}{(q^{14}; q^{14})^2} \sum_{n=0}^{\infty} d_2(7n+1)q^{n+1}.$$

There should exist modular functions x, y with integer coefficients, such that

$$L_1 \in \mathbb{Z}[x] \oplus y\mathbb{Z}[x].$$

First Problem

$$L_1 = \frac{(q^7; q^7)^7}{(q^{14}; q^{14})^2} \sum_{n=0}^{\infty} d_2(7n+1)q^{n+1}.$$

$$\begin{split} L_1 = & \frac{1}{(1+7x)^3} \left(\frac{1}{7} \cdot 320013737x + \frac{1}{7} \cdot 29164229489x^2 + \frac{1}{7} \cdot 1226655768017x^3 + 4505536916704x^4 + 79044206825472x^5 \right. \\ & + 999877459130368x^6 + 9391378522824704x^7 + 66411983644131328x^8 + 354409645379944448x^9 \\ & + 1415208166316048384x^{10} + 4140177110624894976x^{11} + 8532124891883765760x^{12} + 11539756946659737600x^{13} \\ & + 8913467434661314560x^{14} + 2773078757450186752x^{15} - \frac{1}{7} \cdot 320013688y - \frac{1}{7} \cdot 28844055074xy - 171156188528x^2y \\ & - 4337927987008x^3y - 74846829673728x^4y - 928384597776384x^5y - 8516830910414848x^6y - 58508210959679488x^7y \\ & - 300982634640572416x^8y - 1145123381897592832x^9y - 3131903931035156480x^{10}y - 5830893280174276608x^{11}y \\ & - 6623201496588615680x^{12}y - 3466348446812733440x^{13}y \end{pmatrix} \end{split}$$

First Problem

$$L_1 = \frac{(q^7; q^7)^7}{(q^{14}; q^{14})^2} \sum_{n=0}^{\infty} d_2(7n+1)q^{n+1}.$$

$$\begin{split} L_1 = & \frac{1}{(1+7x)^3} \left(\frac{1}{7} \cdot 320013737x + \frac{1}{7} \cdot 29164229489x^2 + \frac{1}{7} \cdot 1226655768017x^3 + 4505536916704x^4 + 79044206825472x^5 \right. \\ & + 999877459130368x^6 + 9391378522824704x^7 + 66411983644131328x^8 + 354409645379944448x^9 \\ & + 1415208166316048384x^{10} + 4140177110624894976x^{11} + 8532124891883765760x^{12} + 11539756946659737600x^{13} \\ & + 8913467434661314560x^{14} + 2773078757450186752x^{15} - \frac{1}{7} \cdot 320013688y - \frac{1}{7} \cdot 28844055074xy - 171156188528x^2y \\ & - 4337927987008x^3y - 74846829673728x^4y - 928384597776384x^5y - 8516830910414848x^6y - 58508210959679488x^7y \\ & - 300982634640572416x^8y - 1145123381897592832x^9y - 3131903931035156480x^{10}y - 5830893280174276608x^{11}y \\ & - 6623201496588615680x^{12}y - 3466348446812733440x^{13}y \end{pmatrix} \end{split}$$

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

Second Problem

$$L_{\alpha} \in \mathbb{Q}[x] \oplus y\mathbb{Q}[x].$$

$$1 + 7x = \frac{(q^2; q^2)_{\infty}^7 (q^7; q^7)_{\infty}}{(q; q)_{\infty}^7 (q^{14}; q^{14})_{\infty}}, \quad 1 + 8y = \frac{(q^2; q^2)_{\infty}^4 (q^7; q^7)_{\infty}^8}{(q; q)_{\infty}^8 (q^{14}; q^{14})_{\infty}^4}$$

Second Problem

$$L_{\alpha} \in \mathbb{Q}[x] \oplus y\mathbb{Q}[x].$$

$$1 + 7x = \frac{(q^2; q^2)_{\infty}^7 (q^7; q^7)_{\infty}}{(q; q)_{\infty}^7 (q^{14}; q^{14})_{\infty}}, \quad 1 + 8y = \frac{(q^2; q^2)_{\infty}^4 (q^7; q^7)_{\infty}^8}{(q; q)_{\infty}^8 (q^{14}; q^{14})_{\infty}^4}$$

$$x = ?$$
 $y = ?$

Setup

$$V_n^{(\alpha)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_\beta(m) 7^{\theta_\beta^{(\alpha)}(m)} y^\beta x^m \right\}$$

$$\begin{aligned} \theta_0^{(1)}(m) &= \begin{cases} -1, & 1 \leq m \leq 3, \\ \left\lfloor \frac{7m-1}{9} \right\rfloor - 3 & m \geq 4 \end{cases}, & \theta_1^{(1)}(m) &= \begin{cases} -1, & 0 \leq m \leq 1, \\ \left\lfloor \frac{7m-4}{9} \right\rfloor - 1 & m \geq 2 \end{cases} \\ \theta_0^{(0)}(m) &= \begin{cases} 0, & 1 \leq m \leq 2, \\ \left\lfloor \frac{7m-5}{9} \right\rfloor - 1 & m \geq 3 \end{cases}, & \theta_1^{(0)}(m) &= \begin{cases} 0 & 0 \leq m \leq 1, \\ \left\lfloor \frac{7m-5}{9} \right\rfloor & m \geq 2 \end{cases} \end{aligned}$$

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

$$\frac{1}{(1+7x)^n}\sum_{\substack{0\leq\beta\leq 1,\\ m\geq 1-\beta}}s_{\beta}(m)7^{\theta_{\beta}^{(\alpha)}(m)}y^{\beta}x^m$$

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

$$\frac{1}{(1+7x)^n} \sum_{\substack{0 \leq \beta \leq 1, \\ m \geq 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(\alpha)}(m)} y^{\beta} x^m$$

$$s_0(1)x + s_0(2)x^2 + s_0(3)x^3 + s_1(0)y + s_1(1)xy \equiv 0 \pmod{7}$$

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

$$\frac{1}{(1+7x)^n} \sum_{\substack{0 \leq \beta \leq 1, \\ m \geq 1-\beta}} s_\beta(m) 7^{\theta_\beta^{(\alpha)}(m)} y^\beta x^m$$

$$s_0(1)x + s_0(2)x^2 + s_0(3)x^3 + s_1(0)y + s_1(1)xy \equiv 0 \pmod{7}$$

$$\begin{split} s_0(1) \big(x + s_0(1)^{-1} s_0(2) x^2 + s_0(1)^{-1} s_0(3) x^3 \\ &+ s_0(1)^{-1} s_1(0) y + s_0(1)^{-1} s_1(1) x y \big) \equiv 0 \pmod{7}. \end{split}$$

$$x + 3x^2 + x^3 + 6y + 5xy \equiv 0 \pmod{7}$$
.

$$\frac{1}{(1+7x)^n} \sum_{\substack{0 \leq \beta \leq 1, \\ m \geq 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(\alpha)}(m)} y^{\beta} x^m$$

$$s_0(1)x + s_0(2)x^2 + s_0(3)x^3 + s_1(0)y + s_1(1)xy \equiv 0 \pmod{7}$$

$$\begin{split} s_0(1) \big(x + s_0(1)^{-1} s_0(2) x^2 + s_0(1)^{-1} s_0(3) x^3 \\ &+ s_0(1)^{-1} s_1(0) y + s_0(1)^{-1} s_1(1) x y \big) \equiv 0 \pmod{7}. \end{split}$$

$$s_0(2) \equiv 3s_0(1) \pmod{7}, \qquad s_0(3) \equiv s_0(1) \pmod{7},$$

$$s_1(0) \equiv 6s_0(1) \pmod{7}, \qquad s_1(1) \equiv 5s_0(1) \pmod{7}.$$

$$V_{n}^{(0)} := \left\{ \frac{1}{(1+7x)^{n}} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(0)}(m)} y^{\beta} x^{m} \right\}$$

$$V_n^{(0)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(0)}(m)} y^{\beta} x^m \right\}$$

$$V_n^{(1)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_\beta(m) T^{\theta_\beta^{(1)}(m)} y^\beta x^m : \mathbf{s} \in \ker(\Omega) \right\}$$

$$V_n^{(0)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(0)}(m)} y^{\beta} x^m \right\}$$

$$V_n^{(1)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_\beta(m) T^{\theta_\beta^{(1)}(m)} y^\beta x^m : \mathbf{s} \in \ker(\Omega) \right\}$$

$$\mathbf{s} := (s_0(1), s_0(2), s_0(3), s_0(4), s_0(5), s_1(0), s_1(1), s_1(2), s_1(3))$$

$$V_n^{(0)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(0)}(m)} y^{\beta} x^m \right\}$$

$$V_n^{(1)} := \left\{ \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta}} s_\beta(m) 7^{\theta_\beta^{(1)}(m)} y^\beta x^m : \mathbf{s} \in \ker(\Omega) \right\}$$

$$\mathbf{s}:=(s_0(1),s_0(2),s_0(3),s_0(4),s_0(5),s_1(0),s_1(1),s_1(2),s_1(3))$$

$$\Omega. \textbf{v} := \begin{pmatrix} 43 & 48 & 15 & 42 & 7 & 8 & 27 & 7 & 42 \\ 0 & 7 & 0 & 0 & 0 & 0 & 35 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 & 0 & 28 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 & 21 & 0 & 0 \end{pmatrix}. \textbf{v} \in \bigoplus_{k=1}^4 \mathbb{Z}/49\mathbb{Z}$$

General Relation

Theorem

For $m, n \in \mathbb{Z}_{\geq 1}$ and $\alpha, \beta, \gamma \in \{0, 1\}$, there exists discrete arrays $h_{\beta\gamma}^{(\alpha)} : \mathbb{Z}^3 \to \mathbb{Z}$ and functions $\pi_{\beta\gamma}^{(\alpha)} : \mathbb{Z}^2 \to \mathbb{Z}_{\geq -1}$ such that

$$U^{(\alpha)}\left(\frac{y^{\beta}x^{m}}{(1+7x)^{n}}\right) = \frac{1}{(1+7x)^{7n+3(1-\alpha)}} \sum_{\substack{0 \leq \gamma \leq 1, \\ r \geq 1-\gamma}} h_{\beta\gamma}^{(\alpha)}(m,n,r) 7^{\pi_{\beta\gamma}^{(\alpha)}(m,r)} y^{\gamma} x^{r}.$$

Moreover, we have

$$h_{\beta\gamma}^{(\alpha)}(m,n,r) \equiv h_{\beta\gamma}^{(\alpha)}(m,n-7,r) \pmod{49}.$$

Outline

$$L_1 \in V_3^{(1)}$$
.

We have to prove the following:

•

If
$$f \in V_n^{(1)}$$
 with $n \equiv 3 \pmod{7}$, then $\frac{1}{7}U^{(1)}(f) \in V_{7n}^{(0)}$.

•

If
$$f \in V_n^{(1)}$$
 with $n \equiv 3 \pmod{7}$, then $\frac{1}{7}U^{(0)} \circ U^{(1)}(f) \in V_{49n+3}^{(1)}$.

Outline

We let $f \in V_n^{(1)}$.

$$f = \frac{1}{(1+7x)^n} \sum_{\substack{0 \le \beta \le 1, \\ m > 1-\beta}} s_{\beta}(m) 7^{\theta_{\beta}^{(1)}(m)} y^{\beta} x^m.$$

$$U^{(1)}(f) = \frac{1}{(1+7x)^{7n}} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta, \\ 0 \le \gamma \le 1, \\ r \ge 1-\gamma}} s_{\beta}(m) h_{\beta\gamma}^{(1)}(m,n,r) 7^{\theta_{\beta}^{(1)}(m) + \pi_{\beta\gamma}^{(\alpha)}(m,r)} y^{\gamma} x^{r}.$$

We need to determine when

$$heta_{eta}^{(1)}(m) + \pi_{eta\gamma}^{(1)}(m,r) \geq heta_{eta}^{(0)}(r) + 1$$

Outline

$$U^{(1)}(f) = \frac{1}{(1+7x)^{7n}} \sum_{\substack{0 \le \beta \le 1, \\ m \ge 1-\beta, \\ 0 \le \gamma \le 1, \\ r \ge 1-\gamma}} s_{\beta}(m) h_{\beta\gamma}^{(1)}(m,n,r) 7^{\theta_{\beta}^{(1)}(m) + \pi_{\beta\gamma}^{(\alpha)}(m,r)} y^{\gamma} x^{r}.$$

Recall:

$$s_{\beta}(m)h_{\beta\gamma}^{(1)}(m,n,r) \equiv s_{\beta}(m)h_{\beta\gamma}^{(1)}(m,3,r) \pmod{49}.$$

Motivation
Background
Genus 1 Congruence Family
References

Mathematica!

$$\frac{1}{7}U^{(0)}\circ U^{(1)}(f)=\frac{1}{(1+7x)^{49n+3}}\sum_{\substack{0\leq\delta\leq 1,\\ w\geq 1-\delta,}}q_{\delta}(w)7^{\theta_{\delta}^{(1)}(w)}y^{\delta}x^{w}.$$

We need to check that

$$\begin{split} \mathbf{q} &:= (q_0(1), q_0(2), q_0(3), q_0(4), q_0(5), q_1(0), q_1(1), q_1(2), q_1(3))\,, \\ \mathbf{q} &\in \ker\left(\Omega\right). \end{split}$$

Main Theorem

Theorem

Let
$$\psi := \psi(\alpha) = \left\lfloor \frac{7^{\alpha+1}}{16} \right\rfloor, \beta := \beta(\alpha) = \left\lfloor \frac{\alpha}{2} \right\rfloor,$$

and $r_L := \frac{1}{7} \left(x + 3x^2 + x^3 + 6y + 5xy \right).$

There exists an integer sequence $(k_{\alpha})_{\alpha \geq 1}$ such that, for all $\alpha \geq 1$,

$$\frac{(1+7x)^{\psi}}{7^{\beta}} \cdot L_{\alpha} + k_{\alpha} \cdot r_{L} \in \mathbb{Z}[x] \oplus y\mathbb{Z}[x].$$

Conjecture

We just proved

Theorem (Banerjee, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $8n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_2(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

Conjecture

We just proved

Theorem (Banerjee, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $8n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_2(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

Conjecture (Banerjee)

Let $n, \alpha \in \mathbb{Z}_{>1}$ such that $6n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_3(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

Conjecture

We just proved

Theorem (Banerjee, Smoot)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $8n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_2(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

Conjecture (Banerjee)

Let $n, \alpha \in \mathbb{Z}_{\geq 1}$ such that $6n \equiv 1 \pmod{7^{\alpha}}$. Then

$$d_3(n) \equiv 0 \pmod{7^{\lfloor \alpha/2 \rfloor}}.$$

We leave this as an exercise for the interested reader.

Future Work

• What about when $\epsilon_{\infty} = 6$?

Future Work

- What about when $\epsilon_{\infty} = 6$?
- What about when $g \ge 2$?

$\epsilon_{\infty}\left(\mathrm{X}_{0}(N)\right)$	$\mathfrak{g}\left(X_0(N)\right)=0$	$g(X_0(N)) = 1$	$g(X_0(N)) = 2$
2	Classical	$p(n) \mod 11^{\alpha}$?
	$(p(n) \bmod 5^{\alpha})$		
4	Localization	Localization	Localization
	$(\operatorname{spt}_{\omega} \bmod 5^{\alpha}, d_2 \bmod 3^{\alpha})$	$(d_2 \bmod 7^{\alpha})$	(conjectured)
	$d_2 \mod 3^{\alpha}$)		
6	Localization	Localization	?
	(conjectured)	(conjectured)	
	(Beazer)	(Andrews–Sellers)	
≥ 8	?	?	?

Counterexamples:

- Sellers–Smoot: $d_7(n) \mod 8^{\alpha}$ over $X_0(8)$ ($\epsilon_{\infty}=4$, $\mathfrak{g}=0$), localization unnecessary
- N=1 ($\epsilon_{\infty}=1$, $\mathfrak{g}=0$)
- N=4 ($\epsilon_{\infty}=3$, $\mathfrak{g}=0$)

References

- G.E. Andrews, P. Paule, "MacMahon's Partition Analysis XIII: Schmidt Type Partitions and Modular Forms," *Journal of Number Theory* 234, pp. 95-119 (2022).
- R. da Silva, M. Hirschhorn, J.A. Sellers, "Elementary Proofs for Infinitely Many Congruences for k-Elongated Partition Diamonds," Discrete Mathematics 345 (11) (2022).
- N.A. Smoot, "A Congruence Family For 2-Elongated Plane Partitions: An Application of the Localization Method," *Journal of Number Theory* 242, pp. 112-153 (2023).
- K. Banerjee, N.A. Smoot, "The Localization Method Applied to *k*-Elongated Plane Partitions and Divisibility by 5" (Submitted).
- N.A. Smoot, "A Single-Variable Proof of the Omega SPT Congruence Family Over Powers of 5" (Submitted).