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Partitions

Partitions

Definition

For any n ∈ Z≥0, a partition of n is a representation of n as a sum
of other natural numbers, called parts. The number of partitions of
a given n is denoted p(n).

For example, p(4) = 5:

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1
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Partitions

Partitions

∞∑
n=0

p(n)qn =
∞∏

m=1

1

1− qm
.
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Ramanujan’s Congruences

Theorem

∞∑
n=0

p(5n + 4)qn = 5 ·
∞∏

m=1

(1− q5m)5

(1− qm)6
.

Notice that

p(5n + 4) ≡ 0 (mod 5).
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Ramanujan’s Congruences

Theorem

∞∑
n=0

p(25n + 24)qn

=512 · q4
∞∏

m=1

(1− q5m)30

(1− qm)31
+ 510 · 6 · q3

∞∏
m=1

(1− q5m)24

(1− qm)25

+ 57 · 63 · q2
∞∏

m=1

(1− q5m)18

(1− qm)19
+ 55 · 52 · q

∞∏
m=1

(1− q5m)12

(1− qm)13

+ 52 · 63 ·
∞∏

m=1

(1− q5m)6

(1− qm)7
.

Notice that p(25n + 24) ≡ 0 (mod 25).

Nicolas Allen Smoot Plane Partitions and Localization



Motivation
2-Elongated Plane Partitions
Some Highlights to the Proof

References

Partitions

Ramanujan’s Congruences

Theorem

Let n, α ∈ Z≥0, and λα ∈ Z such that 24λα ≡ 1 (mod 5α). Then

p (5αn + λα) ≡ 0 (mod 5α).

p(5n + 4) ≡ 0 (mod 5).

p(25n + 24) ≡ 0 (mod 25).

p(125n + 99) ≡ 0 (mod 125).

Nicolas Allen Smoot Plane Partitions and Localization



Motivation
2-Elongated Plane Partitions
Some Highlights to the Proof

References

Setup

d2(n)

Let q = e2πiτ , with τ ∈ H. Define D2(q) by

D2(q) :=
∞∑
n=0

d2(n)q
n =

∞∏
m=1

(1− q2m)2

(1− qm)7
.
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From G.E. Andrews, P. Paule,
“MacMahon’s Partition Analysis XIII.”

“Owing to lack of numerical evidence the following conjecture
concerning an infinite Ramanujan type family of divisibilities is
more daring.”

Conjecture (G.E. Andrews, P. Paule)

Let n, α ∈ Z≥0, and λα ∈ Z such that 8λα ≡ 1 (mod 3α). Then

d2 (3
αn + λα) ≡ 0 (mod 3α).

“... the Conjectures... seem to be particulary challenging,
especially the infinite family of Ramanujan type congruences.”
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Congruences on d2(n)

Theorem (Me)

Let n, α ∈ Z≥0, and λα ∈ Z such that 8λα ≡ 1 (mod 3α). Then

d2
(
32α−1n + λ2α−1

)
≡ 0 (mod 32α−1),

d2
(
32αn + λ2α

)
≡ 0 (mod 32α+1).
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Setup

Define

L1 := 1,

L2α−1(τ) :=
(q3; q3)7∞
(q6; q6)2∞

·
∞∑
n=0

d2(3
2α−1n + λ2α−1)q

n+1,

L2α(τ) :=
(q; q)7∞
(q2; q2)2∞

·
∞∑
n=0

d2(3
2αn + λ2α)q

n+1.

Theorem

For all α ∈ Z≥1, Lα ∈ M (Γ0(6)).
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Setup

Define

A(q) := q
D2(q)

D2(q9)
,

Uℓ

∑
n≥N

a(n)qn

 :=
∑
ℓn≥N

a(ℓn)qn.

U(0)(f ) := U3(A · f ),
U(1)(f ) := U3(f ).
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L1 = 1,

L2α−1(τ) =
(q3; q3)7∞
(q6; q6)2∞

·
∞∑
n=0

d2(3
2α−1n + λ2α−1)q

n+1,

L2α(τ) =
(q; q)7∞
(q2; q2)2∞

·
∞∑
n=0

d2(3
2αn + λ2α)q

n+1.

Lemma

L2α = U(1) (L2α−1) ,

L2α+1 = U(0) (L2α) .
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Genus

The congruence family is associated with the congruence
subgroup Γ0(6), and the compact Riemann surface X0(6).

Each Lα is a modular function for Γ0(6).

g (X0(6)) = 0.

Lemma

The space of modular functions for Γ0(6) with a pole only at the
cusp [0]6 has the form C[x ] for a function x .
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What We Want

For some modular function z ∈ M0 (Γ0(6)),

zn(α) · Lα ∈ M0 (Γ0(6)) = C[x ],

with n(α) some integer-valued function of α.

z =
(q2; q2)9∞(q3; q3)3∞
(q; q)9∞(q6; q6)3∞

, x = q
(q2; q2)∞(q6; q6)5∞
(q; q)5∞(q3; q3)∞

.

z ∈ M0 (Γ0(6)) = C[x ].
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x , z

z ∈ M0 (Γ0(6)) = C[x ].

z = 1 + 9x .

This suggests that

Lα ∈ Z[x ]S ,

S := {(1 + 9x)n : n ≥ 0} .
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Example

To begin with, examine L1.

L1 =
(q3; q3)7∞
(q6; q6)2∞

·
∞∑
n=0

d2(3n + 2)qn+1.

L1 =
1

1 + 9x
·
(
33x + 1392x2 + 21120x3 + 138240x4 + 331776x5

)
.

Similar identities hold for L2, L3.
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Main Theorem

Theorem (Me)

Let α ≥ 1 and

ψ :=

⌊
3α+1

8

⌋
and β := 2 ⌊α/2⌋+ 1.

Then

(1 + 9x)ψ

3β
Lα ∈ Z[x ], for all α ≥ 1.
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Lα

L1 =
1

1 + 9x
·
(
33x + 1392x2 + 21120x3 + 138240x4 + 331776x5

)
.

We will prove that

1

3α
· Lα =

∑
m≥1

s(m) · 3θ(m) · xm

(1 + 9x)n
,

with n ∈ Z≥1 fixed, s, θ integer-valued functions, and s discrete.
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U Operator

1

3α
· Lα =

∑
m≥1

s(m) · 3θ(m) · xm

(1 + 9x)n
,

We study

U(i)

(
xm

(1 + 9x)n

)
.
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General Relation

Theorem

There exist discrete arrays h1, h0 : Z3 → Z and functions
πi : Z2

≥1 → Z≥0 such that

U(1)

(
xm

(1 + 9x)n

)
=

1

(1 + 9x)3n

∑
r≥⌈m/3⌉

h1(m, n, r) · 3π1(m,r) · x r ,

U(0)

(
ym

(1 + 9x)n

)
=

1

(1 + 9x)3n+1

∑
r≥⌈(m+1)/3⌉

h0(m, n, r) · 3π0(m,r) · x r .
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General Relation

π0(m, r) := max

(
0,

⌊
3r −m

4

⌋
− 1

)
,

π1(m, r) :=


0, 1 ≤ m ≤ 3 and r = 1,⌊
3r+1
4

⌋
, 1 ≤ m ≤ 3 and r ≥ 2,

max
(
0,
⌊
3r−m+1

4

⌋)
, m ≥ 4
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Proof Strategy

Vn :=

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm : s is discreet

 .

θ(m) :=


0, 1 ≤ m ≤ 3,

2, 4 ≤ m ≤ 6,⌊
3m−3

4

⌋
− 1, m ≥ 7,
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Proof Strategy

Vn :=

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm : s is discreet

 .

Show that
1

3
L1 ∈ V1,

Show that for any f ∈ Vn,
1

9
U(1)(f ) ∈ V3n,

Show that for any f ∈ Vn, U
(0)(f ) ∈ V3n+1.
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Even-to-Odd Index
Let f ∈ Vn. Then

U(0)(f ) =U(0)

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm


=
∑
m≥1

s(m) · 3θ(m) · U(0)

(
xm

(1 + 9x)n

)
=

1

(1 + 9x)3n+1

∑
m≥1

∑
r≥⌈(m+1)/3⌉

s(m) · h0(m, n, r) · 3θ(m)+π0(m,r) · x r

=
1

(1 + 9x)3n+1

∑
r≥1

∑
m≥1

s(m) · h0(m, n, r) · 3θ(m)+π0(m,r) · x r

We want to show that

θ(m) + π0(m, r) ≥ θ(r) for all r ≥ 1,

so that U(0)(f ) ∈ V3n+1.
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Odd-to-Even Index
Let f ∈ Vn. Then

U(1)(f ) =U(1)

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm


=
∑
m≥1

s(m) · 3θ(m) · U(1)

(
ym

(1 + 9x)n

)
=

1

(1 + 9x)3n

∑
m≥1

∑
r≥⌈m/3⌉

s(m) · h1(m, n, r) · 3θ(m)+π1(m,r) · x r

=
1

(1 + 9x)3n

∑
r≥1

∑
m≥1

s(m) · h1(m, n, r) · 3θ(m)+π1(m,r) · x r

We want to show that

θ(m) + π1(m, r) ≥ θ(r) + 2 for all r ≥ 1,

so that
1

9
U(1)(f ) ∈ V3n.
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3-adic Irregularity

We are going to prove that

θ(m) + π0(m, r) ≥ θ(r) for all r ≥ 1,

θ(m) + π1(m, r) ≥ θ(r) + 2 for all r ≥ 1.

No we aren’t.

θ(m) + π0(m, r) ≥ θ(r) for all r ≥ 1 is true.

θ(m) + π1(m, r) ≥ θ(r) + 2, on the other hand...
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3-adic Irregularity
Let f ∈ Vn. Then

U(1)(f ) =U(1)

 1

(1 + 9y)n

∑
m≥1

s(m) · 3θ(m) · xm


=
∑
m≥1

s(m) · 3θ(m) · U(1)

(
xm

(1 + 9x)n

)
=

1

(1 + 9x)3n

∑
m≥1

∑
r≥⌈m/3⌉

s(m) · h1(m, n, r) · 3θ(m)+π1(m,r) · x r

=
1

(1 + 9x)3n

∑
r≥1

∑
m≥1

s(m) · h1(m, n, r) · 3θ(m)+π1(m,r) · x r

The coefficient of x1

(1+9x)3n
is

3∑
m=1

s(m) · h1(m, n, 1) · 3θ(m)+π1(m,1).
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3-adic Irregularity

The coefficient of x1

(1+9x)3n
has the form

=
3∑

m=1

s(m) · h1(m, n, 1) · 3θ(m)+π1(m,1)

=s(1) · h1(1, n, 1) + s(2) · h1(2, n, 1) + s(3) · h1(3, n, 1).
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3-adic Irregularity

Theorem

For all m, n, r ∈ Z≥1 with 1 ≤ m ≤ 3r and 1 ≤ r ≤ 5 we have:

h0(m, 3n, r) ≡ h0(m, 3, r) (mod 9),

h1(m, 3n + 1, r) ≡ h1(m, 1, r) (mod 9).

In particular, for m = 1, 2, 3,

h1(m, 3n + 1, 1) ≡ 1 (mod 9).
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3-adic Irregularity

Our coefficient of x1

(1+9x)3n
for U(1)(f ) is

3∑
m=1

s(m) · h1(m, n, 1) (mod 9)

≡
3∑

m=1

s(m) (mod 9).

Examine L1:

1

3
L1 =

1

1 + 9x
·
(
11x + 464x2 + 7040x3 + 46080x4 + 110592x5

)
.

Notice that 11 + 464 + 7040 = 9 · 835.
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3-adic Irregularity

Our coefficient of x1

(1+9x)3n
for U(1)(f ) is

3∑
m=1

s(m) · h1(m, n, 1) (mod 9)

≡
3∑

m=1

s(m) (mod 9).

Examine L1:

1

3
L1 =

1

1 + 9x
·
(
11x + 464x2 + 7040x3 + 46080x4 + 110592x5

)
.

Notice that 11 + 464 + 7040 = 9 · 835.
Nicolas Allen Smoot Plane Partitions and Localization



Motivation
2-Elongated Plane Partitions
Some Highlights to the Proof

References

Setup
General Relation
3-adic Irregularities

3-adic Irregularity

Definition

V(1)
n :=

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm :
3∑

m=1

s(m) ≡ 0 mod 9

 ,

V(0)
n :=

 1

(1 + 9x)n

∑
m≥1

s(m) · 3θ(m) · xm
 .

Here s again represents a discrete integer-valued function.
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Resolving 3-adic Irregularity

Theorem

Suppose f ∈ V(1)
n . Then

1

9
· U(1) (f ) ∈ V3n,

1

9
· U(0) ◦ U(1) (f ) ∈ V9n+1.
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Sketch

Let f ∈ V(1)
n . Then

1

9
·
(
U(0) ◦ U(1) (f )

)
=

1

(1 + 9x)9n+1

∑
w≥1

t(w) · 3θ(w)xw ,

t(w) =
3w−1∑
r=1

3r∑
m=1

s(m) · h1(m, n, r) · h0(r , 3n,w)

× 3θ(m)+π1(m,r)+π0(r ,w)−θ(w)−2.
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Sketch

t(1) =
2∑

r=1

3r∑
m=1

s(m) · h1(m, n, r) · h0(r , 3n, 1) · 3λ(m,r ,1),

t(2) =
5∑

r=1

3r∑
m=1

s(m) · h1(m, n, r) · h0(r , 3n, 2) · 3λ(m,r ,2),

t(3) =
8∑

r=1

3r∑
m=1

s(m) · h1(m, n, r) · h0(r , 3n, 3) · 3λ(m,r ,3),

λ(m, r ,w) :=θ(m) + π1(m, r) + π0(r ,w)− 2.

We want to show that t(1), t(2), t(3) ∈ Z, and that
t(1) + t(2) + t(3) ≡ 0 (mod 9).
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Sketch

t(1) + t(2) + t(3) ≡ 6 · s(1) + 6 · s(2) + 6 · s(3) (mod 9).
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Proof of our Strong Result

Proof (I)

1

3
· L1 ∈ V(1)

1 .

Suppose that for some α ∈ Z≥1, there exists some n ∈ Z≥1 such that

1

32α−1
· L2α−1 ∈ V(1)

n . Then

L2α−1 = 32α−1 · f2α−1, for f2α−1 ∈ V(1)
n . Now,

L2α = U3 (L2α−1) = U3

(
32α−1 · f2α−1

)
= 32α−1 · U(1)(f2α−1).

There exists some f2α ∈ V(0)
3n such that U(1)(f2α−1) = 9 · f2α. Therefore,

L2α = 32α+1 · f2α, and
1

32α+1
· L2α ∈ V(0)

3n .
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Proof of our Strong Result

Proof (II)

L2α+1 = U3 (A · L2α) = U3

(
32α+1 · A · f2α

)
= 32α+1 · U(0)(f2α).

There exists some f2α+1 ∈ V(1)
9n+1 such that U(0)(f2α) = f2α+1.

Therefore,

L2α+1 = 32α+1 · f2α+1, and
1

32α+1
· L2α+1 ∈ V(1)

9n+1.
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Proof of our Strong Result

Proof (III)

ψ(α) =

⌊
3α+1

8

⌋
.

Establishing that ψ(α) give the appropriate indices for V(1)
n ,V(0)

n is
an elementary exercise in number theory. Prove that

ψ(1) = 1,

3ψ(2α− 1) = ψ(2α),

3ψ(2α) + 1 = ψ(2α+ 1).
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Complications for Proving Congruence Families by ℓα

Topological Difficulties:

The genus (Number of necessary “basis” functions)

The number of cusps (Resolved with Localization)

Other Difficulties:

Failure of eta quotient representation (Resolved by a number
of different methods)

Existence of nontrivial eigenfunctions mod ℓ (Hard)
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of different methods)
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Future Work

Extending methods to arbitrary congruence problems on a
genus 0 modular curve.

(Long-term) Extending methods to congruence problems on a
genus 1 modular curve.
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