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Motivation

Partitions

Partitions

Definition

For any n € Z>g, a partition of n is a representation of n as a sum
of other natural numbers, called parts. The number of partitions of
a given n is denoted p(n).

For example, p(4) = 5:
04

3+1

242

2+1+1

1+1+1+1
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Motivation

Partitions

Partitions
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Motivation

Partitions

Ramanujan’s Congruences

Notice that

p(5n+4)=0 (mod 5).
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Motivation

Partitions

Ramanujan’s Congruences
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Notice that p(25n+ 24) =0 (mod 25).



Motivation

Partitions

Ramanujan’s Congruences

Let n,a € Z>p, and \, € Z such that 24\, =1 (mod 5). Then

p(5“n+Xy) =0 (mod 5%).

e p(5n+4)=0 (mod 5).
e p(25n+24) =0 (mod 25).
e p(125n+99) =0 (mod 125).
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2-Elongated Plane Partitions

Setup

Let g = e>™™ with 7 € H. Define Dx(q) by

= i d2(n ﬁ 1 — q
n=0 m=1
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2-Elongated Plane Partitions Setup

From G.E. Andrews, P. Paule,
“MacMahon’s Partition Analysis XIII."
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2-Elongated Plane Partitions Setup

From G.E. Andrews, P. Paule,
“MacMahon’s Partition Analysis XIII."

“Owing to lack of numerical evidence the following conjecture
concerning an infinite Ramanujan type family of divisibilities is
more daring.”
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2-Elongated Plane Partitions

Setup

From G.E. Andrews, P. Paule,
“MacMahon’s Partition Analysis XIII."

“Owing to lack of numerical evidence the following conjecture
concerning an infinite Ramanujan type family of divisibilities is
more daring.”

Conjecture (G.E. Andrews, P. Paule)

Let n,a € Z>p, and Ay € Z such that 8\, =1 (mod 3%). Then

d2 (3%n+ Xy) =0 (mod 3%).
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2-Elongated Plane Partitions

Setup

From G.E. Andrews, P. Paule,
“MacMahon’s Partition Analysis XIII."

“Owing to lack of numerical evidence the following conjecture
concerning an infinite Ramanujan type family of divisibilities is
more daring.”

Conjecture (G.E. Andrews, P. Paule)

Let n,a € Z>p, and Ay € Z such that 8\, =1 (mod 3%). Then

d2 (3%n+ Xy) =0 (mod 3%).

“

. the Conjectures... seem to be particulary challenging,
especially the infinite family of Ramanujan type congruences.”
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2-Elongated Plane Partitions Setup

Congruences on dy(n)

Theorem (Me)
Let n,a € Z>p, and Ay € Z such that 8\, =1 (mod 3%). Then

dh (3% In+ Xoa—1) =0 (mod 3%*71),
d> (32an + )\2a) =0 (mod 32a+1).
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2-Elongated Plane Partitions

Setup

Define
L1 = 1,
3. ,3)7 o
L2a71(7—) = Eq6' qﬁigo ' Zd2(32a_1n+ )‘2a*1)qn+1a

9" 9" ) n=0

oy e (FD% N~ g2,y Y

20(7) _WZ h(3%n 4+ X2a)q" .
9% 9% )5 n=0

For all o € Z>1, Lo, € M (To(6)).
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2-Elongated Plane Partitions

Setup

Define
D
A(q) ==¢q D;((:g)),
Uy (Z a(n)q”) = Z a(fn)q"
n>N n>N

UO(f) := Us(A - f),
UB(f) == Us(f).
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2-Elongated Plane Partitions

Setup

L1:17
3. 437 o0
Loo—1(7) qu’i qﬁi;o DY (3 i+ doa1)g"
99" )5 n=0
PR 1) LR G e
2a(T)—W'Z h(3%n 4+ A2a)q" "
979" )5 n=0

Loo = UD (Lpe_1),
L2a+1 = U(O) (L2a) .

= = = = =
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2-Elongated Plane Partitions

Setup

@ The congruence family is associated with the congruence
subgroup Iy(6), and the compact Riemann surface Xp(6).

e Each L, is a modular function for o(6).

g (Xo(6)) =0.

The space of modular functions for 'g(6) with a pole only at the
cusp [0] has the form C[x] for a function x.
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2-Elongated Plane Partitions St

What We Want

For some modular function z € MO (Iy(6)),
2" - L, € MO (To(6)) = C[x],

with n(«) some integer-valued function of .
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2-Elongated Plane Partitions St

What We Want

For some modular function z € MO (Iy(6)),
2" - Lo € MO (To(6)) = C[x],
with n(«) some integer-valued function of .

(9% ¢°)3(a% a°)5 _(@%6%)o(0% %)
(9:9)2.(¢% a%)3, (4:9)3(9% %)
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2-Elongated Plane Partitions St

What We Want

For some modular function z € MO (Iy(6)),
2" - Lo € MO (To(6)) = C[x],
with n(«) some integer-valued function of .

(9% ¢°)3(a% a°)5 _(@%6%)o(0% %)
(9:9)2.(¢% a%)3, (4:9)3(9% %)

z e M°(I(6)) = C[x].
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2-Elongated Plane Partitions

Setup

ze MO (Io(6)) = C[x].
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2-Elongated Plane Partitions

Setup

ze MO (Io(6)) = C[x].

z=1+49x.

This suggests that

Nicolas Allen Smoot Plane Partitions and Localization



2-Elongated Plane Partitions

Setup

ze MO (Io(6)) = C[x].

z=1+49x.

This suggests that

L, € Z[X]S,

S:={1+9)":n>0}.
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2-Elongated Plane Partitions

Setup

To begin with, examine L;.

3. ,3\7 s
(q vq )oo . d2(3n_’_2)qn+1.

Ly =
6. ~6)2
(0% 9°)% 4
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2-Elongated Plane Partitions

Setup

To begin with, examine L;.

(%), < "
L1 = 1%, d2(3n + 2)(]" .
(6% 9%)% =

L= - (33x + 1392x% + 21120x> + 138240x* + 331776x°) .

14 9x
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2-Elongated Plane Partitions

Setup

To begin with, examine L;.

(%), < "
L1 = 1%, d2(3n + 2)(]" .
(6% 9%)% =

L= - (33x + 1392x% + 21120x> + 138240x* + 331776x°) .

14 9x

Similar identities hold for Ly, L3.
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2-Elongated Plane Partitions

Setup

Main Theorem

Theorem (Me)

Let o« > 1 and
3oz+1
Y= { 3 J and f:=2|a/2| + 1.
Then
(
(1+3§X)La € Z[x], for all a > 1.

Nicolas Allen Smoot Plane Partitions and Localization



Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

Ly - (33x + 1392x? 4 21120x° + 138240x* + 331776x°) .

“1+09x

We will prove that

m

i.Lazzs(m).gﬁ(m). X

m>1 (1 - gx)n’

with n € Z>1 fixed, s, 6 integer-valued functions, and s discrete.
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Some Highlights to the Proof

U Operator

We study
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Setup
General Relation

Some Highlights to the Proof Serite emrbriics

General Relation

There exist discrete arrays h1, hg : 73 — 7 and functions
i : 72, — Z>o such that

(o)

1
= hi(m,n r)-3”1(’"’r)-x’
BT Z 1 s My 9
(1+9x) ol
yo (_y"
((1 +9x)"
1

= ho(m, n,r) - 3mo(mr) . xr.
3n+1 Z OR5 1y
(L+ 9P ey

i = = =
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Setup
General Relation

Some Highlights to the Proof B erilte (e

General Relation

mo(m, r) maXO 3r— J—l),

1<m<3andr=1,
J, 1<m<3andr>2,
07 3r m+1J), m24
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Setup
General Relation

Some Highlights to the Proof B erilte (e

Proof Strategy

1 o(m) L
h =R S X d t
V (1+9X)"mz>:15(m) 3 x™ s is discree
0, 1< m<3
f(m) =< 2, 4<m<6,
-1 m=7,
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Setup
General Relation

Some Highlights to the Proof 3-adic Irresularities

Proof Strategy

Vp = 1 n 9x Z 39(’") . s is discreet

1
Show that 5L1 eV,

1
Show that for any f € V,, §U(1)(f) € Van,
Show that for any f € V,, U(O)(f) € V3nq1.
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Even-to-Odd Index

Let f € V,. Then

UO £y =y© ((ngx) S s(m) - 3% .Xm>

m>1

=3 s(m) 3% . y© (ﬁ)

m>1

]. 9 3n+1 Z Z S(m) ' ho(m, n, I’) ) 39(m)+7r0(m,r) - X
+9x) m>1r>[(m+1)/3]

1 + 9x (1+9x)3n+1 Z Z - ho(m, n, r) - 30(m)tmo(mr) .y

r>1 m>1

We want to show that

O(m) + mo(m, r) > 6(r) for all r > 1,
so that U(O)(f) € Vapr1-
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Odd-to-Even Index

Let f € V,. Then

1
UD(F) =UD [ ————— " s(m)-3%m . xm
(1+9x) [;1
=3 s(m) -3 .y v
(1+9x)"

m>1
O(m)+mi(m,r)
TR T Z Z ~hi(m,n,r)-3 - X
(1 + 9x) n e
O(m)+mi(m,r) . r
TR T Z Z )-hi(m,nr)-3 - X
(1 + 9X) " r>1m>1

We want to show that
O(m)+ mi(m,r) > 0(r)+2forall r > 1,

1
so that §U(1)(f) € V3.

Nicolas Allen Smoot Plane Partitions and Localization



Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

We are going to prove that

O(r) forall r > 1,
O(r)+ 2 forall r > 1.
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

We are going to prove that
O(r) forall r > 1,
O(r)+ 2 forall r > 1.

No we aren't.
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

We are going to prove that

O(r) forall r > 1,
O(r)+ 2 forall r > 1.

0(r) for all r > 1 is true.
0(r) + 2, on the other hand...
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity
Let f € V,. Then

U () =u® ((ngy) mzz:ls(m) -30(m).. x'”)
_ Z s(m) - 30(m) . y(®) (7(1 - gx)")

m>1

(1+9X)3nz > s(m)-ha(m,n,r) - 30mEmm)

m>1r>[m/3]

Z Z s(m) - hy(m, n, r) - 30(mEmimn)

(1 &+ 0x)3n
(1 + 9X) ! r>1 m>1

The coefficient of ﬁ is

3

Z s(m) - hy(m, n, 1) - 30(m+m(m1),

m=1
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

The coefficient of has the form

_xt
(149x)3n
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

For all m,n,r € Z>; with 1 < m <3rand 1 <r <5 we have:

ho(m,3n,r) = ho(m,3,r) (mod 9),
hi(m,3n+1,r) = hy(m,1,r) (mod 9).

In particular, for m=1,2,3,

hi(m,3n+1,1)=1 (mod 9).
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

Our coefficient of ( for UD(f) is

1+9X)3"

M)«

s(m) - hi(m,n,1) (mod 9)

@ |
._.

s(m) (mod 9).

3
Il
N
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

3-adic Irregularity

Our coefficient of ( for UD(f) is

1+9X)3"

M)«

s(m) - hi(m,n,1) (mod 9)

m=1
3
= s(m) (mod 9).
m=1
Examine Li:
1 1 2 3 4 5
e - (11x + 464x° + 7040x> + 46080x* + 110592x°) .
3 14 9x

Notice that 11 + 464 + 7040 = 9 - 835.



Setup
General Relation

Some Highlights to the Proof SLedhie (emilbriies

3-adic Irregularity

3
w._J 1 30(m)  om . _
Vi 159" 25(”’) 3 X .Zs(m)_0m0d9 ,
m2 m=1
1
V,(,O) — .30(m) |\ m
(1+9x)" ;S(m) X
Here s again represents a discrete integer-valued function.
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Resolving 3-adic lrregularity

Suppose f € V,(,l). Then
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Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

Let f € V,(,l). Then

O =

1 w w
w>1

3w—1 3r

tw)=>_ > s(m)-hi(m,n,r)-ho(r,3nw)

r=1 m=1
% 30(m)+7r1(m,r)+7r0(r,w)—0(w)—2‘
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Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

Z Z ~hi(m,n,r) - h()(r,3,771).3>\(m,r,1)7

r=1 m=1
5 3r

=33 s(m) - b(m,n,r) - ho(r,3n,2) - 3Nmr2),

r=1 m=1

Z Z - hi(m, n,r) - ho(r,3n,3) - 32mr3)

r=1 m=1

A(m, r,w) :=0(m) + m1(m, r) + mo(r, w) — 2.

We want to show that t(1), t(2), t(3) € Z, and that
t(1) 4+ t(2) + t(3) =0 (mod 9).
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Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

t(1)+t(2)+t(3)=6-s(1)+6-5(2) +6-5(3) (mod 9).

Nicolas Allen Smoot Plane Partitions and Localization



Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

t(1)+t(2)+t(3)=6-s(1)+6-5(2) +6-5(3) (mod 9).

O
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Setup
General Relation
3-adic Irregularities

Some Highlights to the Proof

Proof of our Strong Result

WENS V(l)

Suppose that for some o € Z>1, there exists some n € Z>1 such that

1
32a 1

Loo1 =31 fon_1, for fra1 € V. Now,

Loo = Us (Laa—1) = Us (3%7Y - fra—1) = 32271 UM (fa_1).

Log—1 € VY. Then

There exists some fp,, € V3(n) such that UN(fy_1) =9 fy. Therefore,

Loo = 3%t . f,, and Log € VY.

320+1

™ = = =
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Setup
General Relation

Some Highlights to the Proof SLedhie (emilbriies

Proof of our Strong Result

Loat1 = Us (A Lag) = Us (3311 A £,) = 32011 UO(,,).

There exists some f,11 € Vg(,},)ﬂ such that U(O)(fza) = fot1-
Therefore,

Logt1 = 3%F!

1
* fat1, and 32041 Loot1 € Véi)-&-l'
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Setup
General Relation

Some Highlights to the Proof SLedhie (emilbriies

Proof of our Strong Result

b(a) = f?lj .

Establishing that 1)(«) give the appropriate indices for 1Y S

an elementary exercise in number theory. Prove that

P(1) =1,
3¢(2a — 1) = ¢(2a),
3¢(2a) + 1 = ¢(2a + 1).

Ol

il =T = = =
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:

@ The genus
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:

@ The genus (Number of necessary “basis” functions)
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)

@ The number of cusps
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)

@ The number of cusps (Resolved with Localization)
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)
@ The number of cusps (Resolved with Localization)
Other Difficulties:
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)
@ The number of cusps (Resolved with Localization)
Other Difficulties:

@ Failure of eta quotient representation
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)
@ The number of cusps (Resolved with Localization)
Other Difficulties:

e Failure of eta quotient representation (Resolved by a number
of different methods)
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢*

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)
@ The number of cusps (Resolved with Localization)
Other Difficulties:

e Failure of eta quotient representation (Resolved by a number
of different methods)

@ Existence of nontrivial eigenfunctions mod ¢
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Complications for Proving Congruence Families by ¢*

Topological Difficulties:
@ The genus (Number of necessary “basis” functions)
@ The number of cusps (Resolved with Localization)
Other Difficulties:

e Failure of eta quotient representation (Resolved by a number
of different methods)

e Existence of nontrivial eigenfunctions mod ¢ (Hard)
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Setup
General Relation

Some Highlights to the Proof Serifte (memlEriies

Future Work

@ Extending methods to arbitrary congruence problems on a
genus 0 modular curve.

@ (Long-term) Extending methods to congruence problems on a
genus 1 modular curve.
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