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Partitions

Definition

For any n ∈ Z≥0, a partition of n is a representation of n as a sum
of other positive intergers, called parts. The number of partitions
of a given n is denoted p(n).

For example, p(4) = 5:

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1
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Partitions

∞∑
n=0

p(n)qn =
∞∏

m=1

1

1− qm
.

The sequence for p(n) begins

(p(n))n≥0 =
(
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135,

176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...
)
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Ramanujan’s Congruences

(p(n))n≥0 =
(
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135,

176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...
)

p(5n + 4) ≡ 0 (mod 5).

p(25n + 24) ≡ 0 (mod 25).

p(125n + 99) ≡ 0 (mod 125).

Theorem (Ramanujan, 1918)

Let n, α ∈ Z≥0 such that 24n ≡ 1 (mod 5α). Then

p (n) ≡ 0 (mod 5α).
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Ramanujan’s Congruences

Theorem (Ramanujan, Watson, Atkin)

Let ℓ ∈ {5, 7, 11} and n, α ∈ Z≥0 such that 24n ≡ 1 (mod ℓα).
Then

p (n) ≡ 0 (mod ℓβ),

β =

{
α, ℓ ∈ {5, 11},
⌊α/2⌋+ 1, ℓ = 7.
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Similar Congruences

Suppose

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞.

A congruence family for a(n) modulo powers of a prime ℓ is a set
of divisibilities

a(n) ≡ 0 (mod ℓβ) when Λn ≡ 1 (mod ℓα),

with Λ ∈ Z fixed and

β → ∞ as α→ ∞.
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k-Elongated Plane Partitions

dk(n): k-Elongated Plane Partitions of n

Define Dk(q) by

Dk(q) :=
∞∑
n=0

dk(n)q
n =

∞∏
m=1

(1− q2m)k

(1− qm)3k+1
,

in which dk(n) counts the number of k-elongated plane partitions
of n.
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k-Elongated Plane Partitions

dk(n): k-Elongated Plane Partitions of n

a3 a5 a2k−1 a2k+1

a2k−2 a2k

a2k+2

a7

a6a4a2

a1

Figure: A length 1 k-elongated partition diamond.

aj ∈ Z≥0

ab → ac indicates that ab ≥ ac

a1 + a2k+2 = n
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k-Elongated Plane Partitions

dk(n): k-Elongated Plane Partitions of n

a3

a2k+2

a2ka2

a1 a4k+3 a(2k+1)m+1

a2k+1 a2k+4

a2k+3 a4k+1

a4k+2 a(2k+1)m

a(2k+1)m−1

Figure: A length m k-elongated partition diamond.

aj ∈ Z≥0

ab → ac indicates that ab ≥ ac

a1 + a2k+2 + ...+ a(2k+1)m+1 = n
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Congruences on d5(n)

Theorem (da Silva, Hirschhorn, Sellers)

For all j , n ≥ 0,

d5j+5(5n + 4) ≡ 0 (mod 5).

Note that d5(5n + 4) ≡ 0 (mod 5).
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Congruences on d5(n)

This was conjectured by Koustav Banerjee:

Theorem (Banerjee, Me)

Let n, α ∈ Z≥1 such that 4n ≡ 1 (mod 5α). Then

d5(n) ≡ 0 (mod 5⌊α/2⌋+1).
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Theory of Partition Congruences

If Λn ≡ 1 (mod ℓα), then a(n) ≡ 0 (mod ℓβ).

Lα := ϕα ·
∞∑
n=0

a (ℓαn + λα) q
n+c ∈ M (Γ0(N)) , for q := e2πiτ , τ ∈ H.

Lα is equivalently a meromorphic function on the classical modular
curve X0(N).
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Theory of Partition Congruences

X0(N) is a compact Riemann surface, diffeomorphic to a 2
dimensional C∞ real manifold. The two key topological properties
important to us are:

The genus g;

The cusp count ϵ∞.
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Poles

Because X0(N) is compact, any holomorphic function
f : X0(N) → C must be constant.

Lα has to have a pole somewhere.
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The Genus

Let M0 (X0(N)) be the set of modular functions with a pole only
at the cusp [0]. If g (X0(N)) = 0, then

M0 (X0(N)) = C[x ],

for a function x . This is a consequence of the Weierstrass gap
theorem.
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The Cusp Count

Let N = ℓ be a prime. Then ϵ∞ (X0(ℓ)) = 2. Denote the cusps as
[0] and [∞].

Lα := ϕα ·
∞∑
n=0

a (ℓαn + λα) q
n+c .

Notice: because c > 0, Lα has positive order at [∞], and is
holomorphic everywhere besides the cusps.

Lα ∈ M0 (Γ0(ℓ)) = C[x ].
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The Cusp Count

Suppose N is not prime. Then ϵ∞ (X0(N)) > 2.

Lα := ϕα ·
∞∑
n=0

a (ℓαn + λα) q
n+c .

Notice: Lα has positive order at [∞], but it may have poles at
cusps besides [0] and [∞].
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The Cusp Count

Suppose N is not prime, and ϵ∞ (X0(N)) > 2.
There exists a function z ∈ M0 (Γ0(N)) with positive order at
every cusp except at [0].

zm · Lα ∈ M0 (Γ0(N)) = C[x ],
Lα ∈ C[x ]S ,

with

S := {zn : n ≥ 0} .
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Theory When g (X0(N)) = 0

If ϵ∞ (X0(N)) = 2, then the classical techniques of
Ramanujan and Watson will apply.

If ϵ∞ (X0(N)) > 2, then we use localization.

Nicolas Allen Smoot Partitions, Kernels, and the Localization Method



Motivation
Background

Congruence Families for dk (n)
Congruence Families

References

Setup
General Relation
5-adic Irregularities

Theory When g (X0(N)) > 0

We’re working on it.
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Theorem

Let n, α ∈ Z≥1 such that 4n ≡ 1 (mod 5α). Then

d5(n) ≡ 0 (mod 5⌊α/2⌋+1).

Associated Riemann survace is the modular curve X0(10)

g (X0(10)) = 0, indicating the existence of Hauptmoduln

ϵ∞ (X0(10)) = 4 > 2, indicating complex behavior at the
cusps for the function sequence associated with the
congruence family.

All of this necessitates the localization method.
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First Example

L1 =
(q5; q5)16

(q10; q10)5

∞∑
n=0

d5(5n + 4)qn+2.

L1 =
1

(1 + 5x)6
·
(
5705x2 + 6840120x3 + 2034152125x4 + 280484938650x5 + 22921365211325x6 + 1260917405154520x7

+ 50400843190048480x8 + 1539115922208139200x9 + 37183654303328448000x10 + 728924483359472640000x11

+ 11816089262411136000000x12 + 160681440628058880000000x13 + 1853291134193264640000000x14

+ 18284160727362809856000000x15 + 155286793010086625280000000x16 + 1140657222505472000000000000x17

+ 7269894420215070720000000000x18 + 40277647277404979200000000000x19

+ 194099187864646451200000000000x20 + 813054581193729638400000000000x21

+ 2954545150241538048000000000000x22 + 9282005730758492160000000000000x23

+ 25080951875200614400000000000000x24 + 57872525958316032000000000000000x25

+ 112916020309524480000000000000000x26 + 183812885074411520000000000000000x27

+ 245082228994867200000000000000000x28 + 260725452832768000000000000000000x29

+ 212837104353280000000000000000000x30 + 125198296678400000000000000000000x31

+ 47244640256000000000000000000000x32 + 8589934592000000000000000000000x33
)
.
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L0 := 1,

L2α−1(τ) =
(q5; q5)16∞
(q10; q10)5∞

·
∞∑
n=0

d5(5
2α−1n + λ2α−1)q

n+2,

L2α(τ) =
(q; q)16∞
(q2; q2)5∞

·
∞∑
n=0

d5(5
2αn + λ2α)q

n+1,
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Main Theorem

Theorem

Let

ψ := ψ(α) :=

⌊
5α+1

4

⌋
+ 1− gcd(α, 2),

β := β(α) = ⌊α/2⌋+ 1.

Then for all α ≥ 1, we have

(1 + 5x)ψ

5β
· Lα ∈ Z[x ].
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Lα

L1 =
1

(1 + 5x)6
·
(
5705x2 + 6840120x3 + ...

+ 8589934592000000000000000000000x33
)
.

We will express

Lα =
∑
m≥1

s(m) · 5θi (m) · xm

(1 + 5x)n
,

with n ∈ Z≥1 fixed, s, θi integer-valued functions, s discrete, and
i = 0, 1 depending on the parity of α.
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U Operator

Lα =
∑
m≥1

s(m) · 5θi (m) · xm

(1 + 5x)n
,

We study

U(i)

(
xm

(1 + 5x)n

)
.
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General Relation

Theorem

There exist discrete arrays h1, h0 : Z3 → Z and functions
πi : Z2

≥1 → Z≥0 such that

U(1)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n

∑
r≥⌈m/5⌉

h1(m, n, r) · 5π1(m,r) · x r ,

U(0)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n+6

∑
r≥⌈(m+1)/5⌉

h0(m, n, r) · 5π0(m,r) · x r .
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General Relation

π0(m, r) := max

(
0,

⌊
5r −m + 2

7

⌋
− 5

)
,

π1(m, r) :=

⌊
5r −m

7

⌋
.
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Proof Strategy

V(i)
n :=

 1

(1 + 5x)n

∑
m≥1

s(m) · 5θi (m) · xm : s is discrete

 ,

i ∈ {0, 1}

θ1(m) :=

{
0, 1 ≤ m ≤ 7,⌊
5m−2

7

⌋
− 5, m ≥ 8,

θ0(m) :=

{
0, 1 ≤ m ≤ 4,⌊
5m−1

7

⌋
− 2, m ≥ 5,
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Proof Strategy

V(i)
n :=

 1

(1 + 5x)n

∑
m≥1

s(m) · 5θi (m) · xm : s is discrete

 .

Show that
1

5
L1 ∈ V1,

Show that for any f ∈ Vn,
1

5
U(1)(f ) ∈ V5n,

Show that for any f ∈ Vn, U
(0)(f ) ∈ V5n+6.
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Even-to-Odd Index
Let f ∈ V(0)

n . Then

U(0)(f ) =U(0)

 1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm


=
∑
m≥1

s(m) · 5θ0(m) · U(0)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n+6

∑
m≥1

∑
r≥⌈(m+1)/5⌉

s(m) · h0(m, n, r) · 5θ0(m)+π0(m,r) · x r

=
1

(1 + 5x)5n+6

∑
r≥1

∑
m≥1

s(m) · h0(m, n, r) · 5θ0(m)+π0(m,r) · x r

We want to show that

θ0(m) + π0(m, r) ≥ θ1(r) for all r ≥ 1,

so that U(0)(f ) ∈ V(1)
5n+6.
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Odd-to-Even Index
Let f ∈ V(1)

n . Then

U(1)(f ) =U(1)

 1

(1 + 5x)n

∑
m≥2

s(m) · 5θ1(m) · xm


=
∑
m≥2

s(m) · 5θ1(m) · U(1)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n

∑
m≥2

∑
r≥⌈5/3⌉

s(m) · h1(m, n, r) · 5θ1(m)+π1(m,r) · x r

=
1

(1 + 5x)5n

∑
r≥1

∑
m≥2

s(m) · h1(m, n, r) · 5θ1(m)+π1(m,r) · x r

We want to show that

θ1(m) + π1(m, r) ≥ θ0(r) + 1 for all r ≥ 1,

so that
1

5
U(1)(f ) ∈ V(0)

5n .
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5-adic Irregularity

We are going to prove that

θ0(m) + π0(m, r) ≥ θ1(r) for all r ≥ 1,

θ1(m) + π1(m, r) ≥ θ0(r) + 1 for all r ≥ 1.

No we aren’t.

θ0(m) + π0(m, r) ≥ θ1(r) for all r ≥ 1 is true.

θ1(m) + π1(m, r) ≥ θ0(r) + 1, on the other hand...
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5-adic Irregularity
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5-adic Irregularity
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5-adic Irregularity
Let f ∈ Vn. Then

U(1)(f ) =U(1)

 1

(1 + 5x)n

∑
m≥2

s(m) · 5θ1(m) · xm


=
∑
m≥2

s(m) · 5θ1(m) · U(1)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n

∑
m≥2

∑
r≥⌈m/5⌉

s(m) · h1(m, n, r) · 5θ1(m)+π1(m,r) · x r

=
1

(1 + 5x)5n

∑
r≥1

∑
m≥2

s(m) · h1(m, n, r) · 5θ1(m)+π1(m,r) · x r

The coefficient of x1

(1+5x)5n
is

5∑
m=2

s(m) · h1(m, n, 1) · 5θ1(m)+π1(m,1).
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5-adic Irregularity

The coefficient of x1

(1+5x)5n
has the form

5∑
m=2

s(m) · h1(m, n, 1) · 5θ1(m)+π1(m,1)

=s(2) · h1(2, n, 1) + s(3) · h1(3, n, 1) + s(4) · h1(4, n, 1)
+ s(5) · h1(5, n, 1).
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5-adic Irregularity

The coefficient of x2

(1+5x)5n
has the form

8∑
m=2

s(m) · h1(m, n, 2) · 5θ1(m)+π1(m,2)

=5s(2) · h1(2, n, 2) + 5s(3) · h1(3, n, 2) + s(4) · h1(4, n, 2)
+ s(5) · h1(5, n, 2) + s(6) · h1(6, n, 2) + s(7) · h1(7, n, 2)
+ s(8) · h1(8, n, 2).
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5-adic Irregularity

Theorem

For all m, n, r ∈ Z≥1, and i = 0, 1, we have:

hi (m, n, r) ≡ hi (m, n − 5, r) (mod 5).
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5-adic Irregularity

In particular, for m = 2, 3, 5,

h1(m, n, 1) ≡ 1 (mod 5).

In particular, for m = 6, 7, 8,

h1(m, n, 2) ≡ 1 (mod 5).

Finally,

h1(4, n, 1) ≡ 2 (mod 5),

h1(4, n, 2) ≡ 4 (mod 5),

h1(5, n, 2) ≡ 0 (mod 5).
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5-adic Irregularity

Our coefficient of x1

(1+5x)5n
for U(1)(f ) is

5∑
m=2

s(m) · h1(m, n, 1) · 5θ1(m)+π1(m,1)

≡s(2) + s(3) + 2s(4) + s(5) (mod 5).

Examine L1:

L1 =
5

(1 + 5x)6

(
1141x2 + 1368024x3 + 406830425x4 + 56096987730x5 + ...

)
.

Notice that 1141 + 1368024 + 2 · 406830425 + 56096987730 ≡ 0
(mod 5).
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5-adic Irregularity

Our coefficient of x1

(1+5x)5n
for U(1)(f ) is

5∑
m=2

s(m) · h1(m, n, 1) · 5θ1(m)+π1(m,1)

≡s(2) + s(3) + 2s(4) + s(5) (mod 5).

Examine L1:

L1 =
5

(1 + 5x)6

(
1141x2 + 1368024x3 + 406830425x4 + 56096987730x5 + ...

)
.

Notice that 1141 + 1368024 + 2 · 406830425 + 56096987730 ≡ 0
(mod 5).
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5-adic Irregularity

Our coefficient of x2

(1+5x)5n
for U(1)(f ) is

8∑
m=2

s(m) · h1(m, n, 2) · 5θ1(m)+π1(m,2)

≡4s(4) + s(6) + s(7) + s(8) (mod 5).
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5-adic Irregularity

Definition

V(1)
n :=

 1

(1 + 5x)n

∑
m≥2

s(m) · 5θ1(m) · xm : (s(m))2≤m≤8 ∈ ker (Ω)

 ,

V(0)
n :=

 1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm
 .

Ω : Z7 → Z/5Z2

Ω(s) :=

(
1 1 2 1 0 0 0
0 0 1 0 4 4 4

)
· s.
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Resolving 5-adic Irregularity

Theorem

Suppose f ∈ V(1)
n . Then

1

5
· U(1) (f ) ∈ V(1)

5n ,

1

5
· U(0) ◦ U(1) (f ) ∈ V(1)

25n+6.
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Sketch

Let f ∈ V(1)
n . Then

1

5
·
(
U(0) ◦ U(1) (f )

)
=

1

(1 + 5x)5n+6

∑
w≥1

t(w) · 5θ1(w)xw ,

t(w) =
5w−6∑
r=1

5r∑
m=2

s(m) · h1(m, n, r) · h0(r , 5n,w)

× 5θ1(m)+π1(m,r)+π0(r ,w)−θ1(w)−1.

It can be shown that (t(w))2≤w≤8 ∈ ker (Ω).
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Proof of our Strong Result

Proof (I)

1

5
· L1 ∈ V(1)

1 .

Suppose that for some α ∈ Z≥1, there exists some n ∈ Z≥1 such that

1

5α
· L2α−1 ∈ V(1)

n . Then

L2α−1 = 5α · f2α−1, for f2α−1 ∈ V(1)
n . Now,

L2α = U5 (L2α−1) = U5 (5
α · f2α−1) = 5α · U(1)(f2α−1).

There exists some f2α ∈ V(0)
5n such that U(1)(f2α−1) = 5 · f2α. Therefore,

L2α = 5α+1 · f2α, and
1

5α+1
· L2α ∈ V(0)

5n .
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Proof of our Strong Result

Proof (II)

L2α+1 = U5 (A · L2α) = U5

(
5α+1 · A · f2α

)
= 5α+1 · U(0)(f2α).

There exists some f2α+1 ∈ V(1)
5n+1 such that U(0)(f2α) = f2α+1.

Therefore,

L2α+1 = 5α+1 · f2α+1, and
1

5α+1
· L2α+1 ∈ V(1)

5n+1.

Therefore, etc.
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Classification

If Λn ≡ 1 (mod ℓα), then a(n) ≡ 0 (mod ℓβ).

Suppose we are working over X0(2ℓ) with genus 0.

Lα = ϕα ·
∞∑
n=0

a (ℓαn + λα) q
n+c

=
1

zn(α)

∑
m≥0

s(m)ℓθ(m)xm.

(s(m))m≥0 ∈ ker(Ω)

for some linear operator Ω.
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