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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =

∑
n≥n0

a(n)qn, we find a common pattern:

For Λn ≡ 1 mod ℓα, we have a(n) ≡ 0 mod ℓβ.

1

(q; q)∞
=

∞∑
n=0

p(n)qn

For 24n ≡ 1 mod 5α, p(n) ≡ 0 mod 5α

For 24n ≡ 1 mod 7α, p(n) ≡ 0 mod 7⌊α/2⌋+1

For 24n ≡ 1 mod 11α, p(n) ≡ 0 mod 11α
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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =

∑
n≥n0

a(n)qn, we find a common pattern:

For Λn ≡ 1 mod ℓα, we have a(n) ≡ 0 mod ℓβ.

This is a commonplace phenomenon.

Sometimes these families are easy and routine to prove.

In some cases these families are standing conjectures.
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Congruence Families for Modular Forms

a(n) ≡ 0 (mod ℓβ) when Λn ≡ 1 (mod ℓα).

Construct a sequence of functions

Lα = ϕα ·
∑
n≥0,

Λn≡1 mod ℓα

a(n)q⌊n/ℓ
α⌋,

meromorphic on X0(N) with possible poles only at the cusps.
Construct an operator sequence U(α) such that

U(α) (Lα) = Lα+1.
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Example: Ramanujan’s Congruences for p(n)

1

(q; q)∞
=

∞∑
n=0

p(n)qn

Theorem (Ramanujan, 1918)

If 24n ≡ 1 (mod 5α), then p(n) ≡ 0 (mod 5α).

The associated modular curve is X0(5).
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Example: Andrews–Sellers Congruences

CΦ2 (q) :=
∞∑
n=0

cϕ2(n)q
n =

(q2; q2)5∞
(q; q)4∞(q4; q4)2∞

.

Theorem (Paule and Radu, 2012)

If 12n ≡ 1 (mod 5α), then cϕ2(n) ≡ 0 (mod 5α).

The associated modular curve is X0(20).
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Classification

Genus

Cusp Count

2

4

6

0 1 2

Classical families

Localization

No systematic methods

TediousSimple

Easy

Hard

Classifying congruence families by the topology of the associated modular curve X0(N)
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Classification

Genus

Cusp Count

2

4

6

0 1 2

Classical families

Localization

No systematic methods

TediousSimple

Easy

Hard

Ramanujan’s congruences for p(n) by powers of 5 lie here.
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Classification

Genus

Cusp Count

2

4

6

0 1 2

Classical families

Localization

No systematic methods

TediousSimple

Easy

Hard

The Andrews–Sellers congruences lie here.
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Andrews–Sellers Congruences

CΦ2 (q) :=
∞∑
n=0

cϕ2(n)q
n =

(q2; q2)5∞
(q; q)4∞(q4; q4)2∞

.

Theorem (Paule and Radu, 2012)

If 12n ≡ 1 (mod 5α), then cϕ2(n) ≡ 0 (mod 5α).

The associated modular curve is X0(20).

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Proof Idea

L(1)α :=
1

CΦ2 (q1+4a)
·

∑
12n≡1 mod 5α

cϕ2(n)q
⌊n/5α⌋+1,

a ∈ {0, 1}, α ≡ a (mod 2).

We want to show that L
(1)
α ≡ 0 (mod 5α).

L
(1)
1 :=

(q5; q5)4∞(q20; q20)2∞
(q10; q10)5∞

∞∑
n=0

cϕ2(5n + 3)qn+1,

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Proof Idea

L(1)α :=
1

CΦ2 (q1+4a)
·

∑
12n≡1 mod 5α

cϕ2(n)q
⌊n/5α⌋+1,

a ∈ {0, 1}, α ≡ a (mod 2).

We want to show that L
(1)
α ≡ 0 (mod 5α).

L
(1)
1 :=

(q5; q5)4∞(q20; q20)2∞
(q10; q10)5∞

∞∑
n=0

cϕ2(5n + 3)qn+1,

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Proof Idea

L(1)α :=
1

CΦ2 (q1+4a)
·

∑
12n≡1 mod 5α

cϕ2(n)q
⌊n/5α⌋+1,

a ∈ {0, 1}, α ≡ a (mod 2).

We want to show that L
(1)
α ≡ 0 (mod 5α).

L
(1)
1 :=

(q5; q5)4∞(q20; q20)2∞
(q10; q10)5∞

∞∑
n=0

cϕ2(5n + 3)qn+1,

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Andrews–Sellers Congruences

M0 (X0(20)) = C[x ] + yC[x ].

x = q
(q2; q2)∞(q10; q10)3∞
(q; q)3∞(q5; q5)∞

,

y = q2
(q2; q2)2∞(q4; q4)∞(q5; q5)∞(q20; q20)3∞

(q; q)5∞(q10; q10)2∞
.

L
(1)
1 =

5

(1 + 5x)2

(
4x + 137x2 + 1704x3 + 10080x4 + 28800x5

+ 32000x6 − y
(
20 + 400x + 3040x2 + 10240x3 + 12800x4

))
.
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Proof Idea

M0 (X0(5)) = C[t].

1

52α−1
L
(1)
2α−1 ∈ Z[t] + p

(1)
1 Z[t]

1

52α
L
(1)
2α ∈ Z[t] + p

(1)
0 Z[t]

a ∈ {0, 1}, α ≡ a (mod 2)

t = η(5τ)6/η(τ)6 is a modular function over X0(5)

p
(1)
a are modular functions over X0(20)

t, p
(1)
a have Z coefficients.
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Proof Idea

1

52α−1
L
(1)
2α−1 ∈ Z[t] + p

(1)
1 Z[t]

1

52α
L
(1)
2α ∈ Z[t] + p

(1)
0 Z[t]

L
(1)
1 : =

(q5; q5)4∞(q20; q20)2∞
(q10; q10)5∞

∞∑
n=0

cϕ2(5n + 3)qn+1

= −5t + 25p
(1)
1 .
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New Congruences

This function was studied by Drake.

∞∑
n=0

cψ2(n)q
n =

(q4; q4)2∞
(q; q)2∞(q2; q2)∞

.

Theorem (Us!)

If 6n ≡ −1 (mod 5α), then cψ2(n) ≡ 0 (mod 5α).

This was proposed by James Sellers in 2023 and proved by Sellers
and Smoot in the same year.
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∞∑
n=0

cϕ2(n)q
n =

(q2; q2)5∞
(q; q)4∞(q4; q4)2∞

.

∞∑
n=0

cψ2(n)q
n =

(q4; q4)2∞
(q; q)2∞(q2; q2)∞

.
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Frobenius Coordinates for Partitions

(
5 1 0
4 2 1

) (
4 2 1
4 2 0

)
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Frobenius Coordinates for Partitions

Definition

A Frobenius array has the form(
a1 a2 ... ar
b1 b2 ... br

)
with the following:

r ≥ 1,

Each ai , bj belongs to Z≥0,

Each row is strictly decreasing,

n = r +
∑

1≤i≤r (ai + bi ).

The number of Frobenius arrays with fixed n is p(n).
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Generalized Frobenius Partitions

Definition

A (2, 1)-colored generalized Frobenius partition of n is an array(
a1 a2 ... ar
b1 b2 ... br

)
with the following:

r ≥ 1,

Each ai , bj belongs to one of 2 copies of Z≥0,

Each row is strictly decreasing (w.r.t. lexicographic ordering),

n = r +
∑

1≤i≤r (ai + bi ).

The number of such arrays with fixed n is cϕ2(n) = cψ2,1(n).
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Generalized Frobenius Partitions

Definition

A (2, 0)-colored generalized Frobenius partition of n is an array(
a1 a2 ... ar
b1 b2 ... br br+1

)
with the following:

r ≥ 0,

Each ai , bj belongs to one of 2 copies of Z≥0,

Each row is strictly decreasing (w.r.t. lexicographic ordering),

n = r +
∑

0≤i≤r (ai + bi ) + br+1.

The number of such arrays with fixed n is cψ2(n) = cψ2,0(n).
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Generalized Frobenius Partitions

Definition (Jiang–Rolen–Woodbury)

Let n, k ∈ Z≥1 and β ∈ Z+ k
2 nonnegative. A (k, β)-colored

generalized Frobenius partition of n is an array of the form(
a1 a2 ... ar
b1 b2 ... bs

)
with the following:

r + s ̸= 0 and r − s = β − k
2 ,

Each ai , bj belongs to one of k copies of Z≥0,

Each row is decreasing with respect to lexicographic ordering,

n = r +
∑

0≤i≤r ai +
∑

0≤j≤s bj .

Denote the number of such partitions of n as cψk,β(n).
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CΨ2,1 (q) :=
∞∑
n=0

cψ2,1(n)q
n =

(q2; q2)5∞
(q; q)4∞(q4; q4)2∞

.

CΨ2,0 (q) :=
∞∑
n=0

cψ2,0(n)q
n =

(q4; q4)2∞
(q; q)2∞(q2; q2)∞

.

Theorem (Paule and Radu)

If 12n ≡ 1 (mod 5α), then cψ2,1(n) ≡ 0 (mod 5α).

Theorem (Us!)

If 6n ≡ −1 (mod 5α), then cψ2,0(n) ≡ 0 (mod 5α).
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CΨ2,1 (q) =
∞∑
n=0

cψ2,1(n)q
n =

(q2; q2)5∞
(q; q)4∞(q4; q4)2∞

.

CΨ2,0 (q) =
∞∑
n=0

cψ2,0(n)q
n =

(q4; q4)2∞
(q; q)2∞(q2; q2)∞

.

Theorem

If 3 · 2β+1n ≡ (−1)β+1 (mod 5α), then cψ2,β(n) ≡ 0 (mod 5α).
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Proof Idea

L(β)α :=
1

CΨ2,β (q1+4a)
·

∑
3·2β+1n≡(−1)β+1 mod 5α

cψ2,β(n)q
⌊n/5α⌋+β,

a ∈ {0, 1}, α ≡ a (mod 2).

We want to show that L
(β)
α ≡ 0 (mod 5α).
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Proof Idea for cψ2,1(n) (Andrews–Sellers Congruences)

One proves that

1

5α
L(1)α ∈ Z[t] + p

(1)
a Z[t],

with

a ∈ {0, 1}, α ≡ a (mod 2)

t = η(5τ)6/η(τ)6 is a modular function over X0(5)

p
(1)
a are modular functions over X0(20)

t, p
(1)
a have Z coefficients.
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Proof Sketch for cψ2,0(n) (Sellers–Smoot Congruences)

One proves that

1

5α
L(0)α ∈ Z[t] + p

(0)
a Z[t],

with

a ∈ {0, 1}, α ≡ a (mod 2)

t = η(5τ)6/η(τ)6 is a modular function over X0(5)

p
(1)
a are modular functions over X0(20)

t, p
(1)
a have Z coefficients.
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The First Coincidence

1

5α
L(1)α ∈ Z[t] + p

(1)
a Z[t],

1

5α
L(0)α ∈ Z[t] + p

(0)
a Z[t].

p
(1)
a ̸= p

(0)
a .

The proofs are (formally) exactly identical.
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The First Coincidence

L
(1)
1 = −5t + 25p

(1)
1 .

L
(0)
1 = −5t + 25p

(0)
1 .
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The First Coincidence

L
(1)
1 = −5t + 25p

(1)
1 .

L
(0)
1 = −5t + 25p

(0)
1 .

L
(1)
2 = 205175t + 197056250t2 + 34226718750t3 + 2288613281250t4

+76312011718750t5 + 1405181884765625t6

+14560699462890625t7 + 79631805419921875t8

+178813934326171875t9 + p
(1)
0

(
25 + 550000t + 263593750t2

+32226562500t3 + 1656738281250t4 + 42968750000000t5

+594329833984375t6 + 4196166992187500t7

+11920928955078125t8
)
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The First Coincidence

L
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(1)
1 .
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1 .
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Main Theorem

Theorem

For β ∈ {0, 1}, define

R(β) := C(t) + p
(β)
0 C(t) + p

(β)
1 C(t),

and the mappings

σ(β) : R(β) −→ R(1−β)

:

{
t 7−→ t,

p
(β)
a 7−→ p

(1−β)
a .

Then

σ(β)
(
L(β)α

)
= L(1−β)

α .

Corollary

For all α ≥ 1, L
(0)
α ≡ 0 (mod 5α).
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What is σ(β)?

We have:

R(β) : = C(t) + p
(β)
0 C(t) + p

(β)
1 C(t),

σ(β) : R(β) −→ R(1−β),

where σ(β) fixes C(t) and sends p
(β)
a 7−→ p

(1−β)
a .

We can prove that for any f ∈ R(1),

σ(1) (f (τ)) = f (γ0τ),

with

γ0 =

(
27 7
50 13

)
∈ Γ0(10).
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Equivalence of Congruence Families

L(1)α :=
1

CΦ2 (q5−4a)
·

∑
12n≡1 mod 5α

cϕ2(n)q
⌊n/5α⌋+1,

L(0)α :=
1

CΨ2 (q5−4a)
·

∑
6n≡−1 mod 5α

cψ2(n)q
⌊n/5α⌋,

Theorem

For all α ≥ 1, L
(0)
α = L

(1)
α (γ0τ).
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Summary

We have two congruence families associated with a sequence

of functions
(
L
(1)
α

)
α≥1

,
(
L
(0)
α

)
α≥1

over X0(20).

We can map L
(1)
α to L

(0)
α using an involution σ(1).

σ(1) fixes the functions in the subfield M (X0(5)).

This can only happen when the families in question are
associated with X0(N) for composite N.

This is all trivial for prime N.

X0(N) has a large number of cusps when N has a lot of
divisors.
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Classification

Genus

Cusp Count

2

4

6

0 1 2

Classical families

Localization

No systematic methods

TediousSimple

Easy

Hard

Classifying congruence families by the topology of the associated modular curve X0(N)

(N.A. Smoot, “On the Classification of Modular Congruence Families,” (2024),
https://arxiv.org/abs/2403.10681)
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Summary

We have two congruence families associated with a sequence

of functions
(
L
(1)
α

)
α≥1

,
(
L
(0)
α

)
α≥1

over X0(20).

We can map L
(1)
α to L

(0)
α using an involution σ(1).

σ(1) fixes the functions in the subfield M (X0(5)).

This can only happen when the families in question are
associated with X0(N) for composite N.

This is all trivial for prime N.

X0(N) has a large number of cusps when N has a lot of
divisors.

What does this mean?
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The Second Coincidence

1

5α
L(β)α ∈ Z[t] + p

(β)
a Z[t],

with

a ∈ {0, 1}, α ≡ a (mod 2)

t = η(5τ)6/η(τ)6 is a modular function over X0(5)

p
(1)
a are modular functions over X0(20)

t, p
(1)
a have Z coefficients.
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The Second Coincidence

M0 (X0(20)) = C[x ] + yC[x ].

x = q
(q2; q2)∞(q10; q10)3∞
(q; q)3∞(q5; q5)∞

,

y = q2
(q2; q2)2∞(q4; q4)∞(q5; q5)∞(q20; q20)3∞

(q; q)5∞(q10; q10)2∞
.
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The Second Coincidence

1

5α
L(1)α ∈ Z[t] + p

(1)
a Z[t],

p
(1)
1 =

1

(1 + 5x)2

(
x + 30x2 + 352x3 + 2032x4 + 5760x5 + 6400x6

− 4y − 80xy − 608x2y − 2048x3y − 2560x4y

)
,

p
(1)
0 =

1

(1 + 5x)2

(
61x + 1426x2 + 13520x3 + 65200x4 + 160000x5

+ 160000x6 − 4y − 48xy − 160x2y

)
.
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The Second Coincidence

1

5α
L(0)α ∈ Z[t] + p

(0)
a Z[t],

p
(0)
1 =

1

(1 + 5x)2

(
1 + 27x + 302x2 + 1776x3 + 5744x4 + 9600x5

+ 6400x6 + 4y + 80xy + 608x2y + 2048x3y + 2560x4y

)
,

p
(0)
0 =

1

(1 + 5x)2

(
1 + 79x + 1538x2 + 13760x3 + 65200x4 + 160000x5

+ 160000x6 + 4y + 48xy + 160x2y

)
.

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



The Second Coincidence

p
(1)
1 =

1

(1 + 5x)2

(
x + 30x2 + 352x3 + 2032x4 + 5760x5 + 6400x6

− 4y − 80xy − 608x2y − 2048x3y − 2560x4y

)
,

p
(1)
0 =

1

(1 + 5x)2

(
61x + 1426x2 + 13520x3 + 65200x4 + 160000x5

+ 160000x6 − 4y − 48xy − 160x2y

)
,

p
(0)
1 =

1

(1 + 5x)2

(
1 + 27x + 302x2 + 1776x3 + 5744x4 + 9600x5

+ 6400x6 + 4y + 80xy + 608x2y + 2048x3y + 2560x4y

)
,

p
(0)
0 =

1

(1 + 5x)2

(
1 + 79x + 1538x2 + 13760x3 + 65200x4 + 160000x5

+ 160000x6 + 4y + 48xy + 160x2y

)
.

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



The Second Coincidence

p
(1)
a + p

(0)
a ∈ Z[x ]S .

x = q
(q2; q2)∞(q10; q10)3∞
(q; q)3∞(q5; q5)∞

.

L(1)α + L(0)α ∈ Z[x ]S ⊆ M (X0(10)) .

Conjecture

A proof of

L(1)α + L(0)α ≡ 0 (mod 5α)

is accessible by the localization method.
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The Third Coincidence

To prove the Andrews–Sellers congruences, Paule and Radu show
that

1

5α
L(1)α ∈ Z[t] + p

(1)
a Z[t],

with

a ∈ {0, 1}, α ≡ a (mod 2)

t = η(5τ)6/η(τ)6 is a modular function over X0(5)

p
(1)
a are modular functions over X0(20)

t, p
(1)
a have Z coefficients.

How are p
(1)
0 , p

(1)
1 found?
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The Third Coincidence

W :=

(
4 −1

100 −24

)
.

Paule and Radu discovered that

(q10; q10)5∞
(q5; q5)2∞

L
(1)
2α−1 (W (τ)) ∈ Z[[q4]] + qZ[[q4]].

(q2; q2)5∞
(q; q)2∞

L
(1)
2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]].

They then construct p
(1)
0 , p

(1)
1 with a similar behavior with respect

to W .
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The Third Coincidence

W :=

(
4 −1

100 −24

)
.

We discovered that

(q5; q5)2∞
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L
(0)
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The Third Coincidence

(q10; q10)5∞
(q5; q5)2∞

· L(1)2α−1 (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

(q2; q2)5∞
(q; q)2∞

· L(1)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

(q5; q5)2∞
(q10; q10)∞

· L(0)2α−1 (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

(q; q)2∞
(q2; q2)∞

· L(0)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]].
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The Third Coincidence

(q2; q2)5∞
(q; q)2∞

· L(1)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

(q; q)2∞
(q2; q2)∞

· L(0)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]].
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The Third Coincidence

James discovered that

φ(q) · L(1)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

φ(−q) · L(0)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]].

φ(q) =
(q2; q2)5∞

(q4; q4)2∞(q; q)2∞
, φ(−q) =

(q; q)2∞
(q2; q2)∞

.
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The Third Coincidence

James discovered that

φ(q) · L(1)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

φ(−q) · L(0)2α (W (τ)) ∈ Z[[q4]] + qZ[[q4]].

φ(q) =
∞∑

n=−∞
qn

2
.
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The Third Coincidence

φ(q5) · L(1)2α−1 (W (τ)) ,

φ(q) · L(1)2α (W (τ)) ,

φ(−q5) · L(0)2α−1 (W (τ)) ,

φ(−q) · L(0)2α (W (τ))

∈ Z[[q4]] + qZ[[q4]].

φ(q) =
∞∑

n=−∞
qn

2
.
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The Third Coincidence

Theorem

For α ∈ Z≥1, a, β ∈ {0, 1}, a ≡ α (mod 2), we have

φ
(
(−1)β+1q1+4a

)
· L(β)α (W (τ)) ∈ Z[[q4]] + qZ[[q4]],

in which φ(q) is Ramanujan’s phi function.

Conjecture

∑
β=0,1

φ
(
(−1)β+1q1+4a

)
L(β)α (W τ) ∈ Z[[q4]].

What does this mean?

Thank you!
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