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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =2 p>n a(n)q", we find a common pattern:

For An = 1 mod £, we have a(n) = 0 mod ¢°.
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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =2 p>n a(n)q", we find a common pattern:

For An = 1 mod £, we have a(n) = 0 mod ¢°.

1 - n
T z_;p(n)q
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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =2 p>n a(n)q", we find a common pattern:

For An = 1 mod £, we have a(n) = 0 mod ¢°.

1 - "
s = ;p(n)q

(@
e For 24n =1 mod 5%, p(n) = 0 mod 5%

o For 24n =1 mod 7%, p(n) = 0 mod 7L®/2+1
e For 24n =1 mod 11%, p(n) = 0 mod 11¢
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Congruence Families for Modular Forms

Given a modular form f with a Fourer expansion
f =72 p>n 3(n)q", we find a common pattern:

For An = 1 mod £, we have a(n) = 0 mod ¢°.

@ This is a commonplace phenomenon.
@ Sometimes these families are easy and routine to prove.

@ In some cases these families are standing conjectures.
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Congruence Families for Modular Forms

a(n)=0 (mod ¢?) when An=1 (mod (%).
Construct a sequence of functions

La=do- > a(m)q"),

n>0,
An=1 mod ¢

meromorphic on Xo(/N) with possible poles only at the cusps.
Construct an operator sequence U(® such that

U (L) = Lag1.
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Example: Ramanujan’s Congruences for p(n)

(4 9) —0
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Example: Ramanujan’s Congruences for p(n)

Theorem (Ramanujan, 1918)

If 24n =1 (mod 5%), then p(n) =0 (mod 5%).

The associated modular curve is Xg(5).
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Example: Andrews—Sellers Congruences

(9% 9%)5%
(a0 9)%. (g% a*)%

C,(q) =Y cho(n)q" =
n=0
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Example: Andrews—Sellers Congruences

(9% 9%)5%
(a0 9)%. (g% a*)%

C,(q) =Y cho(n)q" =
n=0

Theorem (Paule and Radu, 2012)

If 12n =1 (mod 5%), then c¢2(n) =0 (mod 5%).

The associated modular curve is X(20).
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Classification

Cusp Count
~
Hard 6 1 [} [ ) [ No systematic methods
4+ [} [ [ Localization
2+ [} [ [ ] Classical families
Easy
+ + + > Genus
0 1 2
Simple Tedious

Classifying congruence families by the topology of the associated modular curve Xq(N)
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Classification

Cusp Count
~
Hard 6 1 [} [ ) [ No systematic methods
4+ [} [ [ Localization
+ ® ® [ ] Classical families
Easy

+ + + > Genus
0 1 2

Simple

Tedious

Ramanujan's congruences for p(n) by powers of 5 lie here.
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Classification

Cusp Count
~
Hard 6 1 [} [ [ No systematic methods
4+ [} [ [ Localization
+ ® ® [ ] Classical families
Easy

+ + + > Genus
0 1 2

Simple

Tedious

The Andrews—Sellers congruences lie here.
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Andrews—Sellers Congruences

St 2. 42)\5
Co2(6) = D etne” = o e

Theorem (Paule and Radu, 2012)
If 12n =1 (mod 5%), then c¢2(n) =0 (mod 5%).

The associated modular curve is Xo(20).
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Proof ldea

1 o
L(l) = = C¢2(n)ql_n/5 J+1
o 1+4 E )
Cd2 (g'*42) 12n=1 mod 5%

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Proof ldea

1 o
L(l) = = C¢2(n)ql_n/5 J+1
o 1+4 E )
Cd2 (g'*42) 12n=1 mod 5%

e ac {0,1}, @ =a (mod 2).
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Proof ldea

1 o
L(l) = = C¢2(n)ql_n/5 J+1
o 1+4 E )
Cd2 (g'*42) 12n=1 mod 5%

e ac {0,1}, @ =a (mod 2).
o We want to show that L) =0 (mod 5%).
20, 420)

() _ (6%9°)e (% q
1

2 oo
00 n+1
10. 4105 ZC¢2(5"+3)‘7 d
(%) =
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Andrews—Sellers Congruences

MP (X((20)) = C[x] + yC|[x].

2
. q(q 19%)(9'% '%)%
(7 9)%(° )
_ 2(d q2)§o(q 7*)o0(9% 4°) 0 (6°% 6%°)3
(a: 9)2.(a"% ¢"0)2
L = (1:’5)()2 <4x +137x% + 1704x> 4 10080x* + 28800x°

+32000x° — y (20 + 400x + 3040x° + 10240x> + 12800x4)> :
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Proof ldea

M® (Xo(5)) = C[t].

1
e LD ez + pMz)

w20 Lga € Z[t] + pg 1)Z[t]
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Proof ldea

M® (Xo(5)) = C[t].

1
e LD ez + pMz)

w20 Lga € Z[t] + pg 1)Z[t]

@ ac{0,1}, «=a (mod 2)

o t =n(57)%/n(7)® is a modular function over Xo(5)

° pgl) are modular functions over X(20)

(1)

o t,ps’ have Z coefficients.
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Proof ldea

e Lo € 21t + pi V2]

1
cx Lo € 21t + pVZ1]
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Proof ldea

= 1L§}jfl e z[t] + pMz[t]

w20 Lga € Z[t] + p(l)Z[t]

L:(ll)::( Cz)l ( OO OOZC¢25n_’_3) n+1

= —5t+25p{1).

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



New Congruences

This function was studied by Drake.

S P G S
;)C%(n)q T (39)%(6%5 %)
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New Congruences

This function was studied by Drake.

S P G S
;)C%(n)q T (39)%(6%5 %)

Theorem (Us!)

If 6n = —1 (mod 5%), then cyn(n) =0 (mod 5%).

This was proposed by James Sellers in 2023 and proved by Sellers
and Smoot in the same year.
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.- (9% 9%)%

> cea(n)q" =

poare (@ 9)& (g% a*)3
S n_ o (g%9M%
;C%(n)q - (49)3(0% 6%
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Frobenius Coordinates for Partitions
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Frobenius Coordinates for Partitions

Definition

A Frobenius array has the form

<al a .. ar>
by by ... b,
with the following:

o r>1,

e Each a;, b; belongs to Z>q,

@ Each row is strictly decreasing,

e n=r+ Zlgigr(ai + b;).

The number of Frobenius arrays with fixed n is p(n).

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



Generalized Frobenius Partitions

A (2,1)-colored generalized Frobenius partition of n is an array

dy a2 ... ar
by by ... b,
with the following:
er>1,

Each a;, b; belongs to one of 2 copies of Zxo,

°
@ Each row is strictly decreasing (w.r.t. lexicographic ordering),
e n=r-+ Zlgigr(ai -+ b,)

The number of such arrays with fixed n is c¢(n) = cip2 1(n).
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Generalized Frobenius Partitions

A (2,0)-colored generalized Frobenius partition of n is an array

a a ... a
(b1 by .. b b,+1>
with the following:
e r>0,
@ Each a;, b; belongs to one of 2 copies of Z>o,
@ Each row is strictly decreasing (w.r.t. lexicographic ordering),
°© n=r+3 ocic (3 + bj) + bri1.

The number of such arrays with fixed n is cipo(n) = cipoo(n).
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Generalized Frobenius Partitions

Definition (Jiang—Rolen-Woodbury)

Let n,k € Z>1 and B € Z + g nonnegative. A (k, 3)-colored
generalized Frobenius partition of n is an array of the form

<31 a ... ar>
by by ... bs

° r—i—syéOandr—s:ﬁ—%,

Each aj, b; belongs to one of k copies of Z>,

with the following:

o
@ Each row is decreasing with respect to lexicographic ordering,
@ n=r+3 0cic, 3t D o<j<s b

Denote the number of such partitions of n as ¢t g(n).
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N e (6% a°)%
CV¥21(q) -—;) V21(n)q" = (q:9)% (d% aD)%
O (ghaM
C\Ugo chzo ”)q (q Cl)2 (q q )

Theorem (Paule and Radu)

If 12n =1 (mod 5%), then ctp1(n) =0 (mod 5%).

Theorem (Us!)

If 6n = —1 (mod 5%), then cip(n) =0 (mod 5%).
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S (4% 4°)%
CV21(q) = ) coa(n)q" = — ; :
ot ; ot (0: 9)&(a% a*)%

- (g% g*)?
CW20(q) = Y cthao(n)q” = o .
20 Z:% 29 (492 (0% 0o

If 3-28+1p = (1)1 (mod 5%), then cip2 5(n) =0 (mod 5%).
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Proof ldea

1 «
(B .- - g co B(”)qLH/S I+0
o 1+4 ’ ’
CW2,B (q + a) 3.28+1n=(—1)8+1 mod 5%
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Proof ldea

1 «
(B .- - g co B(”)qLH/S I+0
o 1+4 ’ ’
CW2,B (q + a) 3.28+1n=(—1)8+1 mod 5%

e ac{0,1}, = a (mod 2).
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Proof ldea

1 «
(B .- - g co B(”)qLH/S I+0
o 1+4 ’ ’
CW2,B (q + a) 3.28+1n=(—1)8+1 mod 5%

e ac{0,1}, = a (mod 2).
o We want to show that L{¥) = 0 (mod 5%).
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Proof Idea for ct,1(n) (Andrews—Sellers Congruences)

One proves that
1
o LW ezl + piz,

with
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Proof Idea for ct,1(n) (Andrews—Sellers Congruences)

One proves that

S%Lgp e z[t] + pSMz[t],

with
@ ac{0,1}, «=a (mod 2)

o t =n(57)%/n(7)® is a modular function over Xo(5)

o pfV
(1)

e t,ps’ have Z coefficients.
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Proof Sketch for ¢t o(n) (Sellers=Smoot Congruences)

One proves that
1
o L ezl + Pz,

with
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Proof Sketch for ¢t o(n) (Sellers=Smoot Congruences)

One proves that

S%Lg)) e z[t] + pVz[1],

with
@ ac{0,1}, «=a (mod 2)

o t =n(57)%/n(7)® is a modular function over Xo(5)

o pfV
(1)

e t,ps’ have Z coefficients.
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are modular functions over X(20)

Splitting of Ramanujan Congruences



The First Coincidence

%LE)}) e z[t] + pSMz[t],

@

LO e 7[¢] + pO7z[1].

50
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The First Coincidence

%LE)}) e z[t] + pSMz[t],

@

L0 ezl + pOz[4).

p # p?.
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The First Coincidence

%LE)}) e z[t] + pSMz[t],

@

L0 ezl + pOz[4).

p # p?.

The proofs are (formally) exactly identical.
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The First Coincidence

1 1
1) = —5¢ 4+ 25p{1).
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The First Coincidence

1 1
1) = —5¢ 4+ 25p{1).

0 0
1 = —5¢ 4 25500,
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The First Coincidence

1V = —5¢ 4 25p{1).
19 = —5¢ 4+ 25p(0).

1) = 205175t + 197056250t + 342267187503 + 2288613281250t
+76312011718750t° + 1405181884765625t°
+14560699462890625t" + 79631805419921875t8
+178813934326171875¢° + p{") (25 + 550000¢ + 26359375012
432226562500t + 1656738281250t* + 42968750000000¢°
+594329833984375° + 4196166992187500t"
+11920928955078125t%)
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The First Coincidence

1V = —5¢ 4 25p{1).
19 = —5¢ 4+ 25p(0).

1) = 205175t + 197056250t + 342267187503 + 2288613281250t*
+76312011718750t° + 1405181884765625t°
+14560699462890625t" + 79631805419921875t8
+178813934326171875¢° + p* (25 + 550000¢ + 26359375012
432226562500t + 1656738281250t* + 42968750000000¢°
+594329833984375° + 4196166992187500t"
+11920928955078125t%)
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Main Theorem

For 8 € {0,1}, define

R®) = C(t) + p{C(t) + (),
and the mappings

B . B _ pA-8)

) t—t,
AP,

Then

5 (B) (Lgm) = 10-8),
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(Theoem .

For 8 € {0,1}, define
R®) = C(t) + p{C(t) + (),
and the mappings

B . B _ pA-8)

) t—t,
AP,

Then

5 (B) (L(m) = 10-8),

(%

Foralla>1, L) =0 (mod 5%).

-~

7= =
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What is o(%)?

We have:

RO : = c(t) + p{C(t) + (1),
o). RV RO-F)

where (#) fixes C(t) and sends P p),
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What is o(%)?

We have:

RO : = c(t) + p{C(t) + (1),
o). RV RO-F)

where (#) fixes C(t) and sends P p),

We can prove that for any f € R(,

oW (f(r)) = f(h07),

with

27 7
Yo = <50 13> € To(10).
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Equivalence of Congruence Families

1 o
(.- = E cha(n)gln/>+1
o' 5_4 )
C‘Dz (q a) 12n=1 mod 5%«
1 o
W=y 2. cva(ma
fe' 5—4 )
sz (q a) 6n=—1 mod 5~

Forall a > 1, L9 = 10 (yo7).
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@ We have two congruence families associated with a sequence
of functions (Lg”) , (L&O)) over Xo(20).
a>1 a>1
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@ We have two congruence families associated with a sequence
of functions (Lg”) , (L&O)) over Xo(20).
a>1 a>1

o We can map Lg) to L(ao) using an involution (1),
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@ We have two congruence families associated with a sequence

: (1) (0)
of functions (La >a21' (La )aZI over Xo(20).
o We can map Lg) to L(ao) using an involution (1),

o o) fixes the functions in the subfield M (Xo(5)).
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We have two congruence families associated with a sequence
of functions (Lg”) , (L&O)) over Xo(20).
a>1 a>1

We can map Lg) to L(ao) using an involution o),
o fixes the functions in the subfield M (Xo(5)).

This can only happen when the families in question are
associated with Xo(N) for composite N.

This is all trivial for prime N.
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@ We have two congruence families associated with a sequence
of functions (Lg”) , (L&O)) over Xo(20).
a>1 a>1

o We can map Lg) to L(ao) using an involution (1),
o o) fixes the functions in the subfield M (Xo(5)).

@ This can only happen when the families in question are
associated with Xo(N) for composite N.

@ This is all trivial for prime N.

@ Xo(N) has a large number of cusps when N has a lot of
divisors.
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Classification

Cusp Count
~
Hard 6 1 [} [ ) [ No systematic methods
4+ [} [ [ Localization
+ ® ® [ ] Classical families
Easy

+ + + > Genus
0 1 2

Simple Tedious

Classifying congruence families by the topology of the associated modular curve Xo(N)
(N.A. Smoot, “On the Classification of Modular Congruence Families,” (2024),
https://arxiv.org/abs/2403.10681)
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https://arxiv.org/abs/2403.10681

@ We have two congruence families associated with a sequence
of functions (Lfﬁ) , (L((XO)) over Xg(20).
a>1 a>1

@ We can map L&l) to L&O) using an involution o).

o o(1) fixes the functions in the subfield M (Xo(5)).

@ This can only happen when the families in question are
associated with Xo(N) for composite N.

@ This is all trivial for prime N.

@ Xo(N) has a large number of cusps when N has a lot of
divisors.

What does this mean?
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The Second Coincidence

sl e 2l + o2,

with
e ac{0,1}, «=a (mod 2)

o t =n(57)%/n(7)® is a modular function over Xo(5)

° pgl) are modular functions over X(20)

(1)

o t,ps’ have Z coefficients.

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



The Second Coincidence

MO (X((20)) = C[x] + yC[x].

o (T8 (a% 0
(9:9)3.(6% ¢°)o0
2(9% %)3(9" 4o (9% 4°) oo (6% 4°)36

(9: 9)3.(q%%; q19)3,
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The Second Coincidence

%L&” e Z[t] + pMz[1],

1 1 6
pt! ~ G5 <x +30x2 + 352x3 + 2032x* + 5760x° + 6400x
— 4y — 80xy — 608x°y — 2048x3y — 2560x* y> ,
(1) _ 1 2 3 4 5

+ 160000x°® — 4y — 48xy — 160x2y>.
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The Second Coincidence

%L&O) e Z[t] + pz[1],

2 3 4 5

+ 6400x° + 4y + 80xy + 608x2y + 2048x3y + 2560x* y) ,
1
p$ == (14 79x + 1538x% + 13760x> + 65200x* -+ 160000x>
(14 5x)?
+ 160000x° + 4y + 48xy + 160x> y) .
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The Second Coincidence

(1)

Py <x +30x% + 352x° + 2032x* + 5760x° + 6400x°

1
(1 +5x)?
— 4y — 80xy — 608x%y — 2048x3y — 2560x4y) ,

pt) —
0 T (1+5x)2

+ 160000x% — 4y — 48xy — 160x> y) ,

61x + 1426x° + 13520x> + 65200x* + 160000x°>

(0) _ L 2 3 4 5
P =T e (1 + 27x + 302x% + 1776x> + 5744x* + 9600x
+ 6400x° + 4y + 80xy + 608x2y + 2048x3y + 2560x* y) ,
1
p{? == (14 79x + 1538x + 13760x3 + 65200x* -+ 160000x°
(1+5x)?

+ 160000x° + 4y + 48xy + 160x> y) .
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The Second Coincidence

piM + pl? € Z[x]s.

10)3
o)

(9% 9%)se(d" q
(3:9)3.(4% %)

xX=q

LD +10) e Z[x]s € M (Xo(10)).

A proof of

LD+ 10 =0 (mod 5%)

is accessible by the localization method.
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The Third Coincidence

To prove the Andrews—Sellers congruences, Paule and Radu show
that

S%Lgp e z[t] + pSPz[t],

with
@ ac{0,1}, «=a (mod 2)
o t =n(57)°%/n(7)® is a modular function over Xo(5)

° pgl) are modular functions over X(20)

ot pgl) have Z coefficients.
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The Third Coincidence

To prove the Andrews—Sellers congruences, Paule and Radu show
that

S%Lgp e z[t] + pSPz[t],

with
@ ac{0,1}, «=a (mod 2)

o t =n(57)°%/n(7)® is a modular function over Xo(5)

° pgl) are modular functions over X(20)

ot pgl) have Z coefficients.

How are p(()l),pgl) found?
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The Third Coincidence

4 -1
W= <1oo —24>'
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The Third Coincidence

4 -1
W= <100 —24> '
Paule and Radu discovered that
10. 1015
0= L, (W(r) e 2l + ezl
ML&B (W(7)) € Z[[¢"]] + Z[[a"])-

(g:9)%
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The Third Coincidence

4 -1
W= <1oo —24>'

Paule and Radu discovered that

WLS? L (W(D) € Z[16*]) + aZ["]).

2. ,2\5
102100 (W(r) € 200" + a2(a")

They then construct p(() ),p(l) with a similar behavior with respect

to W.
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The Third Coincidence

4 -1
W= <100 —24>'

We discovered that

ETR 10, (Wi € 2]+ a2ile)

éq?$L“(wv»ezmm+ummm.
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The Third Coincidence

4 -1
W= <100 —24>'

We discovered that

5. ,5)2
Al 19, W) e 2l + el

A 10 W) € 20l6'] + a2l

This is one way to find p(()o), pgo).
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The Third Coincidence

10. 410\5
= L, (W) € 2lig"] + a2l

(4% ¢*)3%
(9:9)%

5. ,5)2
L) 10, (W) € 2l + zlid )

D10 (W) € 2l + a2 (o)

LD (W(r)) € Zllq*)] + aZIla*]],
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The Third Coincidence

2. 42\5
(0 1) (W) € 2106"] + a2l

. 4)2
LD 10 (W) € 2l + a2l
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The Third Coincidence

James discovered that

o(q) - LS (W(r)) € Zl[q*]] + aZ[4*].
o(—q) - L (W(7)) € Zllg*]]) + aZI[a*]]-

(%D RN C i)
A= (g YT (@
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The Third Coincidence

James discovered that

w(q) - L5 (W(r)) € Z[[*)] + aZ[g*]l,
o(—q) - LD (W(7)) € Zl[g*]] + aZ[[q*]]-

o0

pl@)= > q".

n=—oo
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The Third Coincidence

o(q°) -

©(q) -

w(—=q°) -
L5 (W)

¢(—q)

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers)

LS (W(r)),

LS (W(7)),
LY (W(r)),

€ Z[[q"]] + qZ[[q*]]-

o0

-y ¢

n=—oo

Splitting of Ramanujan Congruences



The Third Coincidence

For a € Z>1, a,8 € {0,1}, a= o (mod 2), we have

e (1)) - L) (W(r)) € Zll4*]] + qZll4"]l

in which ©(q) is Ramanujan’s phi function.
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The Third Coincidence

For a € Z>1, a,8 € {0,1}, a= o (mod 2), we have

e (1)) - L) (W(r)) € Zll4*]] + qZll4"]l

in which ©(q) is Ramanujan’s phi function.

> o ((-1Pq+) L W) € Zlig")
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The Third Coincidence

For a € Z>1, a,8 € {0,1}, a= o (mod 2), we have

e (1)) - L) (W(r)) € Zll4*]] + qZll4"]l

in which ©(q) is Ramanujan’s phi function.

> o ((-1Pq+) L W) € Zlig")

What does this mean?

Nicolas Allen Smoot (with Frank Garvan and James A. Sellers) Splitting of Ramanujan Congruences



The Third Coincidence

For a € Z>1, a,8 € {0,1}, a= o (mod 2), we have

e (1)) - L) (W(r)) € Zll4*]] + qZll4"]l

in which ©(q) is Ramanujan’s phi function.

> o ((-1Pq+) L W) € Zlig")

What does this mean?

Thank you!
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