# Fixed hooks in arbitrary columns of partitions

Philip Cuthbertson

November 7, 2024

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>, ..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>, ..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>, ..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>,..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>,..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

- A partition, λ = (λ<sub>1</sub>, λ<sub>2</sub>, ..., λ<sub>r</sub>), is a weakly decreasing sequence of non-negative integers,
- $\lambda$  is a partition of *n* if  $\lambda_1 + \lambda_2 + \ldots + \lambda_r = n$ ,
- Hook length:  $h_{i,j}(\lambda) = \lambda_i + \lambda'_j i j + 1$ ,
- A sequence,  $\{s_i\}$ , has a *fixed point* if  $s_j = j$ ,
- A sequence,  $\{s_i\}$ , has an *h*-fixed point if  $s_j = j + h$ ,
- If  $\{h_{i,m}\}$  has a h-fixed point, we call it a *h*-fixed hook.

$$\lambda = (7,7,4,2,1)$$



$$\lambda = (7,7,4,2,1)$$



$$\lambda = (7,7,4,2,1)$$



$$\lambda = (7,7,4,2,1)$$

| 11 | 9 | 7 | 6 | 4 | 3 | 2 |
|----|---|---|---|---|---|---|
| 10 | 8 | 6 | 5 | 3 | 2 | 1 |
| 6  | 4 | 2 | 1 |   |   |   |
| 3  | 1 |   |   |   |   |   |
| 1  |   |   |   |   |   |   |

- {11, 10, 6, 3, 1} has a -1-fixed hook,
- {7, 6, 2} has a 4-fixed hook,
- {3, 2} has a 0-fixed hook.

| 11 | 9 | 7 | 6 | 4 | 3 | 2 |
|----|---|---|---|---|---|---|
| 10 | 8 | 6 | 5 | 3 | 2 | 1 |
| 6  | 4 | 2 | 1 |   |   |   |
| 3  | 1 |   |   |   |   |   |
| 1  |   |   |   |   |   |   |

- {11, 10, 6, 3, 1} has a -1-fixed hook,
- {7, 6, 2} has a 4-fixed hook,
- {3, 2} has a 0-fixed hook.

| 11 | 9 | 7 | 6 | 4 | 3 | 2 |
|----|---|---|---|---|---|---|
| 10 | 8 | 6 | 5 | 3 | 2 | 1 |
| 6  | 4 | 2 | 1 |   |   |   |
| 3  | 1 |   |   |   |   |   |
| 1  |   |   |   |   |   |   |

- {11, 10, 6, 3, 1} has a -1-fixed hook,
- {7, 6, 2} has a 4-fixed hook,
- {3, 2} has a 0-fixed hook.

| 11 | 9 | 7 | 6 | 4 | 3 | 2 |
|----|---|---|---|---|---|---|
| 10 | 8 | 6 | 5 | 3 | 2 | 1 |
| 6  | 4 | 2 | 1 |   |   |   |
| 3  | 1 |   |   |   |   |   |
| 1  |   |   |   |   |   |   |

- {11, 10, 6, 3, 1} has a -1-fixed hook,
- {7, 6, 2} has a 4-fixed hook,
- $\{3, 2\}$  has a 0-fixed hook.

| 11 | 9 | 7 | 6 | 4 | 3 | 2 |
|----|---|---|---|---|---|---|
| 10 | 8 | 6 | 5 | 3 | 2 | 1 |
| 6  | 4 | 2 | 1 |   |   |   |
| 3  | 1 |   |   |   |   |   |
| 1  |   |   |   |   |   |   |

#### Additional Notation

#### We will also need the *q*-Pochhammer and

$$(a; b)_n := \prod_{k=0}^{n-1} (1 - ab^k),$$

and the Gaussian binomial

$$\begin{bmatrix} A+B\\B \end{bmatrix}_q := \frac{(q;q)_{A+B}}{(q;q)_A(q;q)_B}$$

#### Additional Notation

We will also need the *q*-Pochhammer and

$$(a; b)_n := \prod_{k=0}^{n-1} (1 - ab^k),$$

and the Gaussian binomial

$$egin{bmatrix} A+B\ B \end{bmatrix}_q \coloneqq rac{(q;q)_{A+B}}{(q;q)_A(q;q)_B}.$$

#### Theorem (C.-Hemmer-Hopkins-Keith)

The generating function for the number of partitions of n with an h-fixed hook (in the first column) arising from a part of size k is

$$\sum_{s=0}^{\infty} \frac{q^{s(k+1)+k(k-h)}}{(q;q)_{s+k-h-1}} \left[ \frac{s+k-1}{k-1} \right]_{q}$$

#### Theorem

The generating function for the number of partitions of n with an h-fixed hook in the mth column arising from a part of size  $k \ge m$  is given by,

$$\sum_{s=0}^{\infty} \frac{q^{s(k+m)+k(k-h-m+1)}}{(q;q)_{s+k-h-m}(q;q)_{m-1}} \left[ {s+k-m \atop k-m} \right]_{q}$$

.

#### Theorem (C.-Hemmer-Hopkins-Keith)

The generating function for the number of partitions of n with an h-fixed hook in the first column that arises from a hook of size k is

$$\sum_{\ell=1}^k rac{q^{k+\ell(k-h-1)}}{(q;q)_{k-h-1}} \left[ egin{matrix} k-1 \ \ell-1 \end{bmatrix}_q 
ight.$$

#### Theorem

The generating function for the number of partitions of n with an h-fixed hook in the mth column that arises from a hook of size k is

$$\sum_{\ell=1}^k rac{q^{(m-1)(2k-h-\ell)+k+\ell(k-h-1)}}{(q;q)_{k-h-1}(q;q)_{m-1}} \left[ egin{matrix} k-1 \ \ell-1 \end{bmatrix}_q 
ight.$$

.



 $\sum_{\ell=1}$ 



 $\sum_{\ell=1}^k rac{q^{k+\ell(k-h-1)}}{(q;q)_{k-h-1}}$ 



$$\sum_{\ell=1}^{k} \frac{q^{(m-1)(2k-h-\ell)+k+\ell(k-h-1)}}{(q;q)_{k-h-1}(q;q)_{m-1}}$$



$$\sum_{\ell=1}^{k} \frac{q^{(m-1)(2k-h-\ell)+k+\ell(k-h-1)}}{(q;q)_{k-h-1}(q;q)_{m-1}} {k-1 \brack \ell-1}_{q}$$

# Interesting Corollaries

Setting h = 0, fixing m, and summing over all k yields,

$$\sum_{k=1}^{\infty}\sum_{\ell=1}^{k}rac{q^{(m-1)(2k-\ell)+k+\ell(k-1)}}{(q;q)_{m-1}(q;q)_{k-1}} iggl[ k-1 \ \ell-1 iggr]_{q} \ = rac{1}{(q;q)_{m-1}(q;q)_{\infty}}\sum_{\ell=1}^{\infty}q^{\ell(\ell+m-1)}(q^{\ell};q)_{2m-1}.$$

#### Theorem

The number of partitions of n having a 0-fixed hook in the mth column is equal to the sum over L of the number of times across all partitions of n, with two colors of parts 1, 2, ..., m - 1, that a part of size L appears exactly L + m - 1 times in the first color, but L + 1, L + 2, ..., L + 2m - 2 are not parts in the first color.

Using m = 3 and looking at partitions of 10 we find the two sets,

| Description 1            | Description 2        |
|--------------------------|----------------------|
| (6,4)                    | $(7, 1^3)$           |
| (5, 4, 1)                | $(6, 1, 1^3)$        |
| (4, 4, 2)                | (2, 2 <sup>4</sup> ) |
| (4, 4, 1, 1)             | $(2^4, 1^2)$         |
| (4, 3, 3)                | $(2^4, 1, 1)$        |
| (3, 3, 3, 1)             | $(2^4, 1^2)$         |
| (3, 2, 2, 2, 1)          | $(2^3, 1^1, 1^3)$    |
| (3, 2, 2, 1, 1, 1)       | $(2^2, 1^3, 1^3)$    |
| (3, 2, 1, 1, 1, 1, 1)    | $(2, 1^5, 1^3)$      |
| (3, 1, 1, 1, 1, 1, 1, 1) | $(1^7, 1^3)$         |

#### Summing, instead, over all *h* yields

#### Theorem

The generating function for the number of mth column hooks of size k in all partitions of n is

$$rac{q^{m+k-1}}{(q^k;q)_\infty}\sum_{\ell=1}^k rac{q^{(m-1)(k-\ell)}(q^m;q)_{\ell-1}}{(q;q)_{\ell-1}(q;q)_{k-\ell}}$$

For a fixed *m*, this stabilizes to  $q^k$  times the generating function for the number parts of size m - 1 appearing in all partitions of *n*.

#### Summing, instead, over all *h* yields

#### Theorem

The generating function for the number of mth column hooks of size k in all partitions of n is

$$rac{q^{m+k-1}}{(q^k;q)_\infty}\sum_{\ell=1}^k rac{q^{(m-1)(k-\ell)}(q^m;q)_{\ell-1}}{(q;q)_{\ell-1}(q;q)_{k-\ell}}$$

For a fixed m, this stabilizes to  $q^k$  times the generating function for the number parts of size m - 1 appearing in all partitions of n.

Formally for  $m \ge 2$  we have,

$$\lim_{k o\infty} rac{q^{m-1}}{(q^k;q)_\infty} \sum_{\ell=1}^k rac{q^{(m-1)(k-\ell)}(q^m;q)_{\ell-1}}{(q;q)_{\ell-1}(q;q)_{k-\ell}} = rac{q^{m-1}}{(1-q^{m-1})(q;q)_\infty}.$$

#### **Restricted Partitions**

#### Theorem

The generating function for the number of distinct partitions of n with an h-fixed hook in the mth column that arises from a hook of size k is

$$\sum_{\ell = \lceil (k+1)/2 
ceil}^k rac{q^{k+\ell(k-h-1)+(m-1)(2k-h-\ell)+{k-h\choose 2}+{k-\ell\choose 2}}(-q;q)_{m-1}}{(q;q)_{k-h-1}} \left[ egin{array}{c} \ell -1 \ k-\ell \end{bmatrix}_q$$



$$\sum_{\ell=\lceil (k+1)/2\rceil}^{k} \frac{q^{k+\ell(k-h-1)+(m-1)(2k-h-\ell)+\binom{k-h}{2}+\binom{k-\ell}{2}}{(q;q)_{k-h-1}} \binom{\ell-1}{k-\ell}_{q}$$

#### Theorem

The generating function for the number of odd partitions of n with an h-fixed hook in the mth column that arises from a hook of size k is

$$\sum_{\substack{\ell=1 \ \ell \ odd}}^k rac{q^{k+\ell(k-h-1)+(m-1)(2k-h-\ell)}}{(q^2;q^2)_{k-h-1}(q;q^2)_{(m-1)/2}} {k-\ell+(\ell-1)/2 \choose k-\ell}_{q^2}$$

if m is odd and

$$\sum_{\substack{\ell=1\\ even}}^{k} \frac{q^{k+\ell(k-h-1)+(m-1)(2k-h-\ell)+(k-\ell)}}{(q^2;q^2)_{k-h-1}(q;q^2)_{m/2}} \binom{k-\ell+(\ell-2)/2}{k-\ell}_{q^2}$$

if m is even.

### Future Work

#### • Similar functions for other equinumerous families of partitions,

- Asmyptotics/congruences,
- Connections to the Truncated Pentagonal Number Theorem.

### Future Work

- Similar functions for other equinumerous families of partitions,
- Asmyptotics/congruences,
- Connections to the Truncated Pentagonal Number Theorem.

### Future Work

- Similar functions for other equinumerous families of partitions,
- Asmyptotics/congruences,
- Connections to the Truncated Pentagonal Number Theorem.