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A partition, A = (A1, A2, ..., A\,), is a weakly decreasing
sequence of non-negative integers,

Ais a partition of nif Ay + X+ ...+ A\, = n,

Hook length: h;j(A) = X\i + A\; — i —j +1,

A sequence, {s;}, has a fixed point if s; = j,

A sequence, {s;}, has an h-fixed point if s; = j + h,

If {hi m} has a h-fixed point, we call it a h-fixed hook.
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We consider the sequences of
hook lengths in a given column:

e {11, 10,6, 3, 1} has a
-1-fixed hook,

e {7, 0, 2} has a 4-fixed hook,
e {3, 2} has a 0-fixed hook.
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Additional Notation

We will also need the g-Pochhammer and

n—1

(a:b)s = [ J(1 = ab¥),

k=0

and the Gaussian binomial

[A 5 B} . <qu3§’22?2>3-



Theorem (C.-Hemmer-Hopkins-Keith)

The generating function for the number of partitions of n with an
h-fixed hook (in the first column) arising from a part of size k is
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h-fixed hook in the mth column arising from a part of size k > m is
given by,
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Theorem
The generating function for the number of partitions of n with an
h-fixed hook in the mth column that arises from a hook of size k is
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Interesting Corollaries

Setting h = 0, fixing m, and summing over all k yields,
ook
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Theorem

The number of partitions of n having a 0-fixed hook in the mth
column is equal to the sum over L of the number of times across all
partitions of n, with two colors of parts 1,2,..., m — 1, that a part
of size L appears exactly L + m — 1 times in the first color, but
L+1,L+2,...,L+2m — 2 are not parts in the first color.



Using m = 3 and looking at partitions of 10 we find the two sets,

Description 1

Description 2

(6,4) (7,13)
(5,4,1) (6,1,13)
(4,4,2) (2,29

(4,4,1,1) (2%,17)
(4,3,3) (24,1,1)
(3,3,3,1) (24,12)
(3,2,2,2,1) (23,11,13)
(3,2,2,1,1,1) (22,13,13)
(3,2,1,1,1,1,1) (2,15,13)
(3,1,1,1,1,1,1,1) (17,13)




Summing, instead, over all h yields
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Summing, instead, over all h yields

Theorem
The generating function for the number of mth column hooks of

size k in all partitions of n is

gt gl E0(gm ),
(0% 0)x = (0 9)-1(q: @)i—

For a fixed m, this stabilizes to g* times the generating function for
the number parts of size m — 1 appearing in all partitions of n.



Formally for m > 2 we have,
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Restricted Partitions

Theorem

The generating function for the number of distinct partitions of n
with an h-fixed hook in the mth column that arises from a hook of
size k is
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Theorem
The generating function for the number of odd partitions of n with
an h-fixed hook in the mth column that arises from a hook of size k
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Future Work

e Similar functions for other equinumerous families of partitions,
® Asmyptotics/congruences,
e Connections to the Truncated Pentagonal Number Theorem.



