Semi-modular forms

Robert Schneider Joint work w/ A. P. Akande and Matthew Just

University of Georgia

December 2, 2021

Special 2 \times 2 matrices encode "nice" transformations in \mathbb{C} :

Let $GL_2(\mathbb{Z})$ denote the set of 2×2 invertible matrices with integer entries ("general linear group").

Let $SL_2(\mathbb{Z})$ denote the subset of $GL_2(\mathbb{Z})$ with determinant 1.

Let $PSL_2(\mathbb{Z}) \subset GL_2(\mathbb{Z})$ with determinant ± 1 ("modular group").

Functions of $z \in \mathbb{H}$ invariant under (weighted) actions of $SL_2(\mathbb{Z})$ are "modular forms".

The general linear group has canonical generators:

$$GL_2(\mathbb{Z}) = \langle T, U, V \rangle$$

where $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

The special linear group has canonical generators:

$$SL_2(\mathbb{Z}) = \langle S, T
angle$$

where $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

A modular form of weight k is an analytic function $f : \mathbb{H} \to \mathbb{C}$ such that

• $f(S \cdot z) = z^k f(z)$ (weighted invariance under *S*)

2
$$f(T \cdot z) = f(z)$$
 (invariance under T)

- Modular forms central to contemporary number theory
- Connect algebra, compl. analysis, combin., physics, ...
- Hardy-Ramanujan circle method, proof of FLT
- Interesting variants: quasi-mod. forms, mock mf's, qmf's, ...

An (entire) modular form of weight k is an analytic function $f : \mathbb{H} \to \mathbb{C}$ such that

- $f(S \cdot z) = z^k f(z)$ (weighted invariance under S)
- 2 $f(T \cdot z) = f(z)$ (invariance under T)
- **3** *f* remains bounded as $z \rightarrow i\infty$.

Example: The Eisenstein series of weight $2k, k > 1, z \in \mathbb{H}$:

$$G_{2k}(z) = \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \frac{1}{(mz+n)^{2k}}$$

Question: Given $SL_2(\mathbb{Z}) \subset GL_2(\mathbb{Z})$, it is also possible to write

 $GL_2(\mathbb{Z}) = \langle S, T, M \rangle$

where *M* is some other matrix.

What's the deal with *M*? What about $\langle M, S \rangle, \langle M, T \rangle$?

A **semi-modular form** is a "half modular" analytic function $f : \mathbb{H} \to \mathbb{C}$ where **two** of the following three relations hold:

$$f(M \cdot z) = f(z)$$
$$f(T \cdot z) = f(z)$$
$$f(S \cdot z) = z^{k} f(z)$$

for some *k*, where *M* is such that $GL_2(\mathbb{Z}) = \langle S, T, M \rangle$.

Example: Take
$$M_0 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (even function matrix):
 $f(M_0 \cdot z) = f(z)$ takes the form $f(-z) = f(z)$.

Periodic even fctns with period 1 are invariant on $\langle M_0, T \rangle$, so

$$f(z)=\cos(2\pi z)$$

is a semi-modular form. Are there fctns invariant on $\langle M_0, S \rangle$?

Question: Where does weighted invar. under S come from in

$$\mathcal{G}_k(au) = \sum_{\substack{a,b\in\mathbb{Z}\ (a,b)
eq (0,0)}} (a au+b)^{-k}?$$

Of course:

$$egin{aligned} G_k(-1/ au) &= \sum_{\substack{a,b\in\mathbb{Z}\ (a,b)
eq (0,0)}} (-a/ au+b)^{-k} \ &= au^k \sum_{\substack{a,b\in\mathbb{Z}\ (a,b)
eq (0,0)}} (b au-a)^{-k} = au^k G_k(au). \end{aligned}$$

We copy this for $\langle M_0, S \rangle$ w/ symmetries of set \mathcal{P} of partitions.

Let $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$ be a partition (multiset of positive integers) of size $|\lambda| = \sum \lambda_i = n$, and \mathcal{P}_n be the set of all partitions of size *n*.

Let $\pi : \mathcal{P}_n \to \mathcal{P}_n$ be a bijection (conjugation, odd/distinct, etc).

Then for any function $f : \mathcal{P}_n \to \mathbb{C}$:

$$\sum_{\lambda\in\mathcal{P}_n}f(\lambda)=\sum_{\lambda\in\mathcal{P}_n}f(\pi(\lambda)).$$

For a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ and $z \in \mathbb{C} \setminus \mathbb{R}$, define

 $\mathscr{F}(\lambda, z) = \{a + bz : 1 \le |a| \le r \text{ and } 1 \le |b| \le \lambda_{|a|}\}.$

For $\lambda = (3, 2, 2, 1)$ and z = 1 + i:

For a partition λ , $z \in \mathbb{C} \setminus \mathbb{R}$, and $k \ge 0$, define

$$f_k(\lambda, z) := \frac{1}{4} \sum_{\omega \in \mathscr{F}(\lambda, z)} \omega^{-k}.$$

• If k = 0 then $f_k(\lambda, z) = |\lambda|$ (thus f_k represents a generalization of partition size).

2 If k is odd then
$$f_k(\lambda, z) = 0$$
.

- If *k* is even then $f_k(\lambda, z)$ is an even function of *z*.
- Moreover, if $\overline{\lambda}$ is the conjugate of λ , we have

$$z^{2k}f_{2k}(\lambda,z)=f_{2k}\left(\overline{\lambda},-rac{1}{z}
ight).$$

$z \mapsto -1/z$ induces partition conjugation!

Again let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, and k > 0. Then

$$f_{2k}(\lambda, z) = \frac{1}{2} \sum_{1 \le a \le r} \sum_{1 \le b \le \lambda_a} [(a + bz)^{-2k} + (a - bz)^{-2k}]$$

$$\begin{split} f_{2k}(\lambda, -1/z) &= \frac{1}{2} \sum_{1 \le a \le r} \sum_{1 \le b \le \lambda_a} [(a - b/z)^{-2k} + (a + b/z)^{-2k}] \\ &= \frac{z^{2k}}{2} \sum_{1 \le a \le r} \sum_{1 \le b \le \lambda_a} [(az - b)^{-2k} + (az + b)^{-2k}] \\ &= \frac{z^{2k}}{2} \sum_{1 \le b \le \lambda_1} \sum_{1 \le a \le \overline{\lambda_b}} [(b + az)^{-2k} + (b - az)^{-2k}] \\ &= z^{2k} f_{2k}(\overline{\lambda}, z) \end{split}$$

Lattice for $\lambda = (3, 2, 2, 1)$ (left) and $\overline{\lambda} = (4, 3, 1)$ (right) with z = 1 + i.

Summing over partitions of *n*

The notation $\lambda \vdash n$ means $|\lambda| = n$. Define

$$g_k(n,z) := \sum_{\lambda \vdash n} f_k(\lambda,z).$$

Theorem (Just-S.)

 $g_k(n, z)$ is a semi-modular form with respect to $\langle M_0, S \rangle$.

Proof. Clearly g_{2k} is an even function of z. Moreover,

$$g_{2k}(n,-1/z) = \sum_{\lambda \vdash n} f_{2k}(\lambda,-1/z)$$

= $z^{2k} \sum_{\lambda \vdash n} f_{2k}(\overline{\lambda},z)$
= $z^{2k} \sum_{\lambda \vdash n} f_{2k}(\lambda,z) = z^{2k} g_{2k}(n,z).$

q-series generating function of partition Eisenstein series

For |q| < 1 define

$$\mathscr{G}_k(z) = \mathscr{G}_k(z,q) := \sum_{n\geq 1} g_k(n,z)q^n = \sum_{\lambda\in\mathcal{P}} f_k(\lambda,z)q^{|\lambda|}.$$

Theorem (Just-S.)

 $\mathscr{G}_k(z)$ is semi-modular with respect to $\langle M_0, S \rangle$.

Proof. $\mathscr{G}_k(z)$ inherits semi-modularity from $g_k(n, z)$. Since $|1 + z| \le w$ for every $w \in \mathscr{F}(\lambda, z)$, we have

$$|g_k(n,z)| \le np(n)|1+z|^{-k}.$$

Convergence for |q| < 1 follows from conver. of $\sum_{n \ge 1} np(n)q^n$.

Not a total shocker that partitions connect to semi-modularity:

- partition gen. function is essentially modular
- modularity used to prove p(n) asymptotic
- q-bracket of Bloch-Okounkov produces quasi-mfs

Question: Semi-modularity from other areas in mathematics?

Let F_n be the *n*th Fibonacci number, $F_0 := 0$, $F_{-n} = (-1)^{n-1}F_n$. We define

$$\mathscr{F}_k(z) = \sum_{n \in \mathbb{Z}} (F_n z + F_{n-1})^{-k},$$

a Fibonacci variant of the Eisenstein series.

Analytic properties of Fibonacci-Eisenstein series

- 𝔅_k(z) is absolutely convergent and holomorphic for all z ∈ 𝔄 and k ≥ 4,
- 𝔅_k(z) has simple poles on z = F_n/F_{n-1} for all n ∈ ℤ of order k and essential singularities at φ and −1/φ where φ is the golden ratio, φ = lim_{n→∞} F_{n-1}/F_{n-1}.

Let
$$M_1 = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$
 (mirror symmetry around $z = 1/2$).
Since $U = M_1 TS$, $V = SM_1 TS^3$ we have $GL_2(\mathbb{Z}) = \langle M_1, S, T \rangle$.

Theorem (Akande-S.)

For all $z \in \mathbb{C}$ where $z \neq \phi, -1/\phi, F_n/F_{n-1}$ for all $n \in \mathbb{Z}$ and all $k \in \mathbb{Z}$:

•
$$\mathscr{F}_{2k}(S \cdot z) = z^{2k} \mathscr{F}_{2k}(z)$$

•
$$\mathscr{F}_{2k}(M_1 \cdot z) = \mathscr{F}_{2k}(z).$$

Thus $\mathscr{F}_{2k}(z)$ is semi-modular with respect to $\langle M_1, S \rangle$.

Proof. F_n recursion gives $\mathscr{F}_{2k}(1+z) = \mathscr{F}_{2k}(-z)$. Also,

$$\begin{split} \mathscr{F}_{2k}\left(-z\right) &= \sum_{n \in \mathbb{Z}} \left(F_n(-z) + F_{n-1}\right)^{-2k} \\ &= z^{-2k} \sum_{n \in \mathbb{Z}} \left(-F_n + F_{n-1}\left(1/z\right)\right)^{-2k} \\ &= z^{-2k} \sum_{n \in \mathbb{Z}} \left((-1)^n F_{-n} + (-1)^{n-2} F_{-(n-1)}\left(1/z\right)\right)^{-2k} \\ &= z^{-2k} \sum_{-n \in \mathbb{Z}} \left((-1)^n F_{-n} + (-1)^{n-2} F_{-(n-1)}\left(1/z\right)\right)^{-2k} \\ &= z^{-2k} \sum_{n \in \mathbb{Z}} \left(F_n + F_{n+1}\left(1/z\right)\right)^{-2k} = z^{-2k} \mathscr{F}_{2k}\left(1/z\right). \end{split}$$

Taking $z \mapsto -z$ proves the theorem.

A Lucas sequence is defined by the recursion

$$L_n(a,b) = aL_{n-1}(a,b) - bL_{n-2}(a,b).$$

When $L_0(a, b) = 0$, $L_1(a, b) = 1 \rightarrow$ Lucas seq. of the first kind. When $L_0(a, b) = 2$, $L_1(a, b) = a \rightarrow$ Lucas seq. of the 2nd kind.

 $L_n(1,-1)$ of the first and second kind are the Fibonacci and Lucas numbers respectively.

Lucas sequence Eisenstein series

$$\mathscr{L}_{a,b,m}(z) = \sum_{j=-\infty}^{\infty} (L_j(a,b)z + L_{j-1}(a,b))^{-m}$$

For
$$a \neq 0$$
, let $M_a = \begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix}$ (symmetry around $z = a/2$).
Since $M_a T^a = M_1 T$ if $a > 0$ and $T^{-a} M_a = M_1 T$ if $a < 0$, then $GL_2(\mathbb{Z}) = \langle M_a, S, T \rangle$.

Theorem (Akande-S.)

We have

$$\mathcal{L}_{a,-1,2k}(S \cdot z) = z^{2k} \mathcal{L}_{a,-1,2k}(z),$$
$$\mathcal{L}_{a,-1,2k}(M_a \cdot z) = \mathcal{L}_{a,-1,2k}(z).$$

Then $\mathscr{L}_{a,-1,2k}(z)$ is semi-modular w/ respect to $\langle M_a, S \rangle$.

- What is the structure of the space of semi-modular forms?
- Onnection to modular forms/quasimodular forms?
- Other applications of Ferrers-Young lattices as combinatorial objects?
- Ob there exist other complementary matrices **not** of form $M_a, a \in \mathbb{Z}$, that admit nice semi-modular forms?

Thank you for listening!