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Primordial mystery

Sieve of Eratosthenes is still a state of the art method: the
primes are like Easter eggs waiting to be found.

Prime positions are predetermined, yet probabilistic
models surprisingly successful at predicting distribution.

Terence Tao: “[Random] models are so effective... that
analytic number theory is in the curious position of being
able to confidently predict the answer to a large proportion
of the open problems in the subject, whilst not possessing
a clear way forward to rigorously confirm these answers!”
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n m(n) n/logn li(n) Model 1 | Model 2 | Model 2*
10 4 4.34... 6.16... 4 4 4
100 25 21.71... 30.12... 27 26 27
1000 168 144.76... 177.60... 184 168 171
10,000 1229 1085.73... 1246.13... 1352 1212 1233
100,000 9592 8685.88... 9629.80... 10,602 9435 9618
1,000,000 | 78,498 | 72,382.41... | 78,627.54... | 86,739 | 77,322 78,740
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We derive a deterministic model of primes from facts
about partitions. Let w(n) denote the # of primes < n.

n m(n) n/logn li(n) Model 1 | Model 2 | Model 2*
10 4 4.34... 6.16... 4 4 4
100 25 21.71... 30.12... 27 26 27
1000 168 144.76... 177.60... 184 168 171
10,000 1229 1085.73... 1246.13... 1352 1212 1233
100,000 9592 8685.88... 9629.80... 10,602 9435 9618
1,000,000 | 78,498 | 72,382.41... | 78,627.54... | 86,739 | 77,322 78,740

TABLE 1. Comparing estimates for 7(n)

Note: Model 2* is almost exact at small numbers.
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Multiplicative theory of additive partitions

Theory of addition

e theory of partitions

@ beautiful generating functions
@ surprising bijections
@ Ramanujan congruences

@ connections across mathematics, phys sciences, CS
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Multiplicative theory of additive partitions

Theory of multiplication

@ primes

@ divisors

@ Euler phi function ¢(n), Mébius function y(n)
@ arithmetic functions, Dirichlet convolution

e zeta functions, Dirichlet series, L-functions
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Multiplicative theory of additive partitions

Philosophy of this project

@ Objects in multiplic. number theory
— special cases of partition structures

o Expect multiplicative theorems — partition analogues

o Expect partition properties — influence on integers
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Partition notations

o Let P denote the set of all integer partitions.
e Let () denote the empty partition.

o Let)\:()\1,/\2,...,)\,), M>Xo> o> >1,
denote a nonempty partition, e.g. A = (3,2,2,1).
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Partition notations

@ /()\) := ris length (number of parts).

e m; = m;(X\) := multiplicity (or “frequency”) of i.
@ |A:= X+ A2+ + A is size (sum of parts).
e Define ((0) = |0] = m;(0) = 0.
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Multiplicative theory of additive partitions

New partition statistic

Define N()), the norm of ), to be the product of the parts:
N()\) = )\1)\2)\3 cee )\r

o Define N()) := 1 (it is an empty product)
@ Shows up in MacMahon, Fine, partition zeta functions
@ See “The product of parts or ‘norm™ (Schneider-Sills)
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New, new partition statistic

Define N()\), the supernorm of \, by:

N()\) ‘= P PrPrs P

where p, € P is the kth prime number.

e Define N(Q)) =1 (it is an empty product).
@ Integer factorizations encode partition theory.
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Multiplicative theory of additive partitions

New, new partition statistic

Define N()\), the supernorm of \, by:

N()\) ‘= P PrPrs P

where p, € P is the kth prime number.

e Define N(Q)) =1 (it is an empty product).
@ Integer factorizations encode partition theory.

Theorem (Dawsey-Just-S., 2022)

Map N : P — Nis an isom. of monoids under multiplic.



Isomorphism of monoids P = N (Dawsey-Just-S., 2022)

) gty 1D g0y ¢ ><112}31><1 ><2{32> =

X/

(7 Q) @) <1‘3‘> <213‘> (3%)

e \2@//

Lattice of partitions ordered by multiset inclusion




Isomorphism of monoids P = N (Dawsey-Just-S., 2022)

AT KL
4 \ Z ><9<310/<155/25.“
~ =

Lattice of integers ordered by divisibility
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Partition model of prime gaps

@ Supernorm is a bijection between P and Z™.
@ So measuring prime gaps is equivalent to counting
partitions that map to respective prime gaps under N:

Pnt1 —Pn = #{)\EP : Pngl/\\l()‘)<Pn+1}-

Heuristic: Make an educated guess as to which

partitions map into the nth prime gap under supernorm N,
in order to estimate the value of p,.1 — pp.

Approach: Exploit discrepancy between N(\) and N(A).
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Discrepancy between the norm and supernorm

Partition )\ with no part equal to 1 respects
() < Al < NV <NV
Moreover, when N()) > 5, if A has parts # 1 then
N(A) < pry < N(A) < N(A)e88/ e

so the supernorm lies in a “small” interval > py(,), and

N(\) > N -] (log i)™

i>2
SO N(A) can be closer to N()\) if there are fewer parts.
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Discrepancy between the norm and supernorm

These inequalities suggest the following:

@ Partitions A\ with a smaller number ¢()\) of parts # 1
should have supernorms closer to their norms.

@ Partitions A with same norm N()\) = n and parts # 1
should have supernorms of comparable magnitudes.

Q Partitions A with same norm N()) = n > 5 and parts
# 1 respect the inequality p, < N(\) (bound on p,).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Combining these bullet points, we make kind of an
extreme simplification.

Assume all odd integers in the interval [py, ppi1), N > 2,
are images of partitions with norm n, with parts # 1, and
with only one or two parts under N.

Since there are d(n) partitions of norm ninto 1 or 2 parts,

Pnst —Pn = 2 [@-‘ ,

where [ x| is ceiling function (factor of 2 includes even #’s)
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p,.

The prime numbers are modeled by the sequence
p1, P2, Ps, . . ., Of positive integers defined by p; = 2, and
for n > 2 by the relation

pn:1+2§[@]

@ d(k) counts partitions of length 1 or 2, norm = k

This gives 2,3,5,7,11,13,17,19,23,27, . . ., then wrong.
But it almost gives the correct sequence of prime gaps.




Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n | Pn | Pnt1 — pn (Actual) | ppys — pn (Model 1)
1]2 1
23 2 2
35 2 2
17 4 1
5 |11 2 2
6 13 1 1
717 2 2
8 |19 1 1
9 |23 6 4
10 | 29 2 4
1131 6 2
1237 4 6
1341 2 2
1443 1 4
15 | 47 6 4
16 | 53 6 6
1759 2 2
1861 6 6
19 ] 67 4 2
20| 71 2 6
21[73 6 4
22|79 4 4
2383 6 2
[24]89 8 8
25|97 1 1

TABLE 2. Comparing actual prime gaps to predictions from Model 1; we highlight
entries where the prediction for the nth prime gap is off
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n | Pn | Pnt1 — pn (Actual) | ppys — pn (Model 1)
1]2 1
23 2 2
35 2 2
17 4 1
5 |11 2 2
6 13 1 1
717 2 2
8 |19 1 1
9 |23 6 4
10 | 29 2 4
1131 6 2
1237 4 6
1341 2 2
1443 1 4
15 | 47 6 4
16 | 53 6 6
1759 2 2
1861 6 6
19 ] 67 4 2
20| 71 2 6
21[73 6 4
22|79 4 4
2383 6 2
[24]89 8 8
25|97 1 1

TABLE 2. Comparing actual prime gaps to predictions from Model 1; we highlight
entries where the prediction for the nth prime gap is off

16 out of 25 gaps are correct, including most twin primes.
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Quality of estimate: Model 1 underestimates prime gaps
in principle since it leaves out partitions with > 3 parts.

Thus Model 1 underestimates p, and overestimates = (n).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Model 1 gives main term of the prime number theorem:

Pn~ nlogn as n — oo.

Proof: From Model 1,

P = 1+22[@—‘ ~ > d(i)~ nlogn

1<i<n—1

by estimate of Dirichlet.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says pp.1 — pp =2 [@W = 2if nis prime.

But we cannot take this too seriously since the model
represents an underestimate of prime gaps.
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Taken as a probabilistic statement, twin prime prediction
becomes an unusual prediction about prime gaps.

Prediction

Prime-indexed primes p,, g € P, are more likely to begin
a twin prime pair than are arbitrary prime numbers.

@ This prediction is really weird.
o We made computations to check.
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n # Twin prime pairs < n | # Prime-indexed twin prime pairs < n
10 2 2
100 8 6
1000 35 12
10,000 205 30
100,000 1224 154
1,000,000 8169 816

TABLE 3. Total number of twin prime pairs vs. those beginning with prime-indexed primes

@ Prediction seems to hold at small numbers but less so
as n — oo.

@ We do not have conclusive evidence this is due to
prime indices (not some other reason).
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Prediction
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@ This prediction is also really weird.
e We made computations to check.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Define merit of the nth prime gap by M(n) = Zei28n,
noting log p, is average prime gap size.

Define Model 1 merit of the nth modeled prime gap by
M (n) = 22 'noting log n is average size of d(n).

log n?

Measure deviation of real/modeled gaps from average.

Question: Do the statistics increase/decrease together?
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Results of computations on MTU HPC Shared Facility

@ We compute M(n) and M;(n) for n < 1,000,000.
@ M(n) > 1in 36.01% of instances and M(n) < 1 in
63.99% of instances.

@ Mi(n) > 1in 37.94% of instances and M;(n) < 1in
62.06% of instances.
@ M(n) and M;(n) are simultaneously greater or less
than one in 53.34% of instances.
Up to one million, a slight majority of prime gaps *do*
increase or decrease with the divisor function.
We do not know another reason that prime gaps and d(n)
should increase/decrease with the same frequency.
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Recall Model 1 underestimates prime gaps becayse it
ignores partitions with > 3 parts under the map N.

Making a rough estimate of the missing contribution of
partitions w/ 3 parts yields a better computational model.

Elementary arguments relate the correction to the number
m2(pn—1) of semiprimes < p,_1. Assume every semiprime
times prime gives 1 integer w/ 3 factors in interval [1, py).

Also subtract a factor of 2yn for computational reasons
(simplifies integral expressions of the estimate for p,).
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Model 2. The prime numbers are the sequence

p1, P2, Ps, - . ., Of positive integers defined by p; = 2, and
for n > 2 by the relation

po =1+ 23| 20|+ Ll a) - 20m),
k=1

where v = 0.5772. .. is the Euler-Mascheroni constant.

Model 2* (computational version). The primes are

modeled by the sequence py, p2, p3, - . ., defined by
pi=2,andforn> 2,

n—1
Pn =1+ 22 {@W + |nloglogn—2yn]|.
k=1
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Compare and contrast Model 2 and 2* estimates for =(n):

n m(n) n/logn li(n) Model 1 | Model 2 | Model 2*
10 4 4.34... 6.16... 4 4 4
100 25 21.71... 30.12... 27 26 27
1000 168 144.76... 177.60... 184 168 171
10,000 1229 1085.73... 1246.13... 1352 1212 1233
100,000 | 9592 | 8685.88... | 9629.80... | 10,602 9435 9618
1,000,000 | 78,498 | 72,382.41... | 78,627.54... | 86,739 | 77,322 78,740
TABLE 1. Comparing estimates for 7(n)
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100 25 21.71... 30.12... 27 26 27
1000 168 144.76... 177.60... 184 168 171
10,000 1229 1085.73... 1246.13... 1352 1212 1233
100,000 | 9592 | 8685.88... | 9629.80... | 10,602 9435 9618
1,000,000 | 78,498 | 72,382.41... | 78,627.54... | 86,739 | 77,322 78,740

TABLE 1. Comparing estimates for 7(n)

At small values: almost exact.
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Compare and contrast Model 2 and 2* estimates for =(n):

n m(n) n/logn li(n) Model 1 | Model 2 | Model 2*
10 4 4.34... 6.16... 4 4 4
100 25 21.71... 30.12... 27 26 27
1000 168 144.76... 177.60... 184 168 171
10,000 1229 1085.73... 1246.13... 1352 1212 1233
100,000 | 9592 | 8685.88... | 9629.80... | 10,602 9435 9618
1,000,000 | 78,498 | 72,382.41... | 78,627.54... | 86,739 | 77,322 78,740

TABLE 1. Comparing estimates for 7(n)

At small values: almost exact. At large values: gives PNT.
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Partition model of primes (continued)

To explore these error terms, | sponsored a summer REU
with MTU undergrad, Eli DeWitt (applying to grad school).
Eli and | made many useful experiments (also about
quantum modular forms), suggested further corrections.

Model 3
n m(n) n/logn | Model 1 | Model 2 | Model 2* r=6 t=011
10 4 4.34... 4 4 4 4
100 25 21.71... 27 26 27 25
1000 168 144.76... 184 168 171 168
10,000 1229 | 1085.73... 1352 1212 1233 1228
100,000 | 9592 | 8685.88... | 10,602 9435 9618 9592
1,000,000 | 78,498 | 72,382.41... | 86,739 | 77,322 | 78,740 78,575

TABLE 1. Comparing estimates for m(n); Model 3 depends on parameters r, ¢
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Thank you for listening!



