

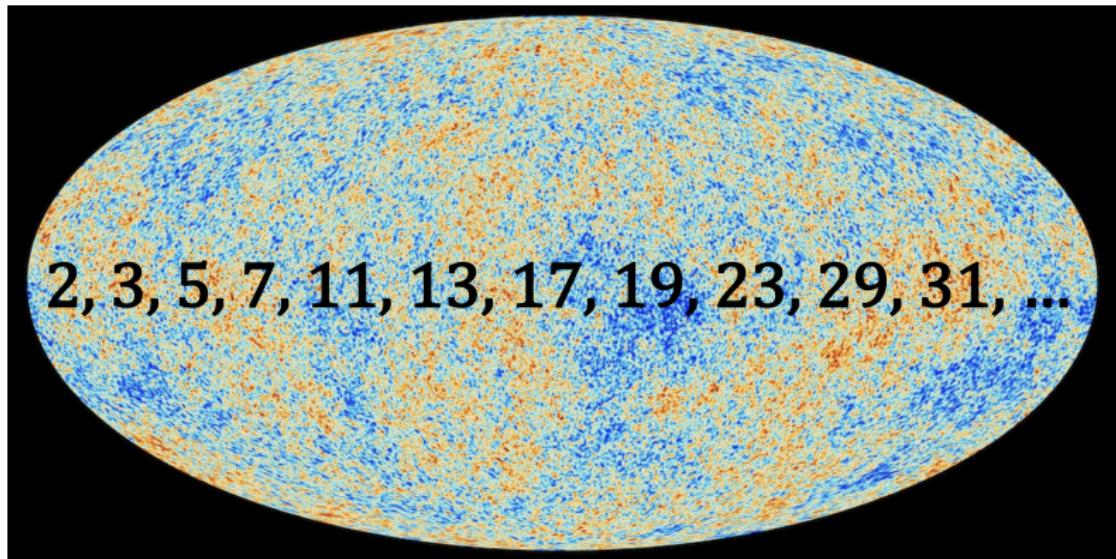
Partition-theoretic model of prime distribution

Robert Schneider
Michigan Technological University

Joint work with Aidan Botkin, Madeline L. Dawsey,
David J. Hemmer and Matthew R. Just,
featuring computations by Eli DeWitt

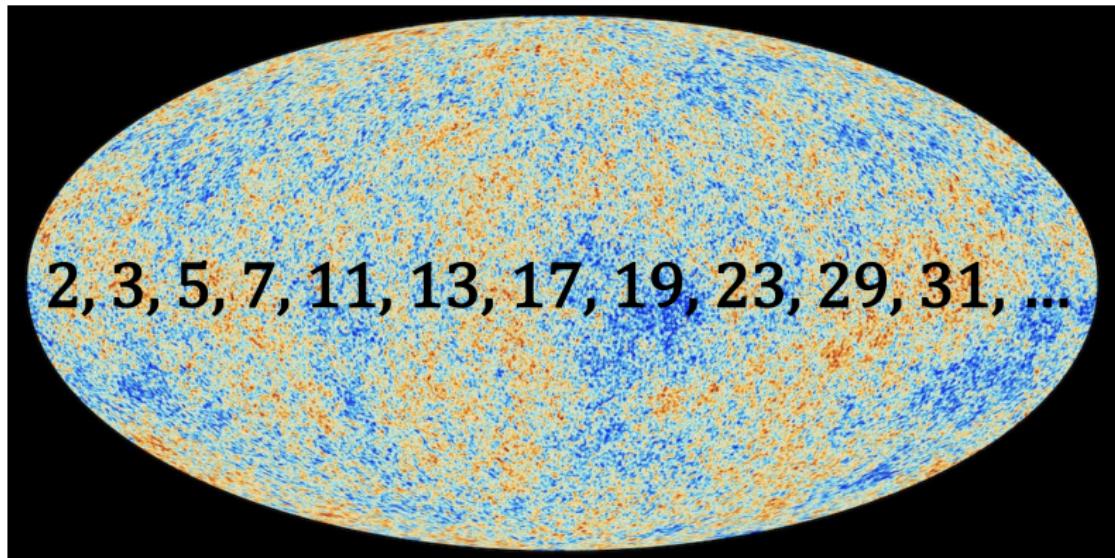
Partitions and q -Series Seminar, January 22, 2026

Primordial mystery



Prime numbers have been around forever...

Primordial mystery



Prime numbers have been around forever... yet aspects of their behavior are beyond human understanding.

Primordial mystery

Sieve of Eratosthenes is still a state of the art method:

Primordial mystery

Sieve of Eratosthenes is still a state of the art method: the primes are like Easter eggs waiting to be found.

Primordial mystery

Sieve of Eratosthenes is still a state of the art method: the primes are like Easter eggs waiting to be found.

Prime positions are predetermined, yet probabilistic models surprisingly successful at predicting distribution.

Primordial mystery

Sieve of Eratosthenes is still a state of the art method: the primes are like Easter eggs waiting to be found.

Prime positions are predetermined, yet probabilistic models surprisingly successful at predicting distribution.

Terence Tao: “[Random] models are so effective... that analytic number theory is in the curious position of being able to *confidently predict the answer to a large proportion of the open problems in the subject, whilst not possessing a clear way forward to rigorously confirm these answers!*”

Partition-theoretic model of prime numbers

We derive a *deterministic* model of primes

Partition-theoretic model of prime numbers

We derive a *deterministic* model of primes from facts about *partitions*.

Partition-theoretic model of prime numbers

We derive a *deterministic* model of primes from facts about *partitions*. Let $\pi(n)$ denote the # of primes $\leq n$.

Partition-theoretic model of prime numbers

We derive a *deterministic* model of primes from facts about *partitions*. Let $\pi(n)$ denote the # of primes $\leq n$.

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

Partition-theoretic model of prime numbers

We derive a *deterministic* model of primes from facts about *partitions*. Let $\pi(n)$ denote the # of primes $\leq n$.

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

Note: Model 2* is *almost exact* at small numbers.

Multiplicative theory of additive partitions

Theory of addition

Theory of addition

- theory of *partitions*

Theory of addition

- theory of *partitions*
- beautiful generating functions
- surprising bijections
- Ramanujan congruences
- connections across mathematics, phys sciences, CS

Theory of multiplication

Theory of multiplication

- primes
- divisors
- Euler phi function $\varphi(n)$, Möbius function $\mu(n)$
- arithmetic functions, Dirichlet convolution
- zeta functions, Dirichlet series, L-functions

Multiplicative theory of additive partitions

Philosophy of this project

Philosophy of this project

- Objects in multiplic. number theory

Philosophy of this project

- Objects in multiplic. number theory
→ special cases of partition structures

Philosophy of this project

- Objects in multiplic. number theory
→ special cases of partition structures
- Expect multiplicative theorems

Multiplicative theory of additive partitions

Philosophy of this project

- Objects in multiplic. number theory
→ special cases of partition structures
- Expect multiplicative theorems → partition analogues

Philosophy of this project

- Objects in multiplic. number theory
→ special cases of partition structures
- Expect multiplicative theorems → partition analogues
- Expect partition properties

Multiplicative theory of additive partitions

Philosophy of this project

- Objects in multiplic. number theory
→ special cases of partition structures
- Expect multiplicative theorems → partition analogues
- Expect partition properties → influence on integers

Partition notations

- Let \mathcal{P} denote the set of all integer partitions.

Partition notations

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.

Partition notations

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \geq 1$, denote a nonempty partition

Partition notations

- Let \mathcal{P} denote the set of all integer partitions.
- Let \emptyset denote the empty partition.
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \geq 1$, denote a nonempty partition, e.g. $\lambda = (3, 2, 2, 1)$.

Partition notations

- $\ell(\lambda) := r$ is *length* (number of parts).

Partition notations

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) :=$ *multiplicity* (or “frequency”) of i .

Partition notations

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) :=$ *multiplicity* (or “frequency”) of i .
- $|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r$ is *size* (sum of parts).

Partition notations

- $\ell(\lambda) := r$ is *length* (number of parts).
- $m_i = m_i(\lambda) :=$ *multiplicity* (or “frequency”) of i .
- $|\lambda| := \lambda_1 + \lambda_2 + \cdots + \lambda_r$ is *size* (sum of parts).
- Define $\ell(\emptyset) = |\emptyset| = m_i(\emptyset) = 0$.

Multiplicative theory of additive partitions

New partition statistic

Multiplicative theory of additive partitions

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

- Define $N(\emptyset) := 1$ (it is an empty product)

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

- Define $N(\emptyset) := 1$ (it is an empty product)
- Shows up in MacMahon, Fine, partition zeta functions

Multiplicative theory of additive partitions

New partition statistic

Define $N(\lambda)$, the *norm* of λ , to be the product of the parts:

$$N(\lambda) := \lambda_1 \lambda_2 \lambda_3 \cdots \lambda_r$$

- Define $N(\emptyset) := 1$ (it is an empty product)
- Shows up in MacMahon, Fine, partition zeta functions
- See “The product of parts or ‘norm’” (Schneider-Sills)

Multiplicative theory of additive partitions

New, new partition statistic

Multiplicative theory of additive partitions

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

$$\widehat{N}(\lambda) := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots p_{\lambda_r},$$

where $p_k \in \mathbb{P}$ is the k th prime number.

Multiplicative theory of additive partitions

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

$$\widehat{N}(\lambda) := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots p_{\lambda_r},$$

where $p_k \in \mathbb{P}$ is the k th prime number.

- Define $\widehat{N}(\emptyset) := 1$ (it is an empty product).

Multiplicative theory of additive partitions

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

$$\widehat{N}(\lambda) := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots p_{\lambda_r},$$

where $p_k \in \mathbb{P}$ is the k th prime number.

- Define $\widehat{N}(\emptyset) := 1$ (it is an empty product).

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

$$\widehat{N}(\lambda) := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots p_{\lambda_r},$$

where $p_k \in \mathbb{P}$ is the k th prime number.

- Define $\widehat{N}(\emptyset) := 1$ (it is an empty product).
- *Integer factorizations encode partition theory.*

Multiplicative theory of additive partitions

New, new partition statistic

Define $\widehat{N}(\lambda)$, the *supernorm* of λ , by:

$$\widehat{N}(\lambda) := p_{\lambda_1} p_{\lambda_2} p_{\lambda_3} \cdots p_{\lambda_r},$$

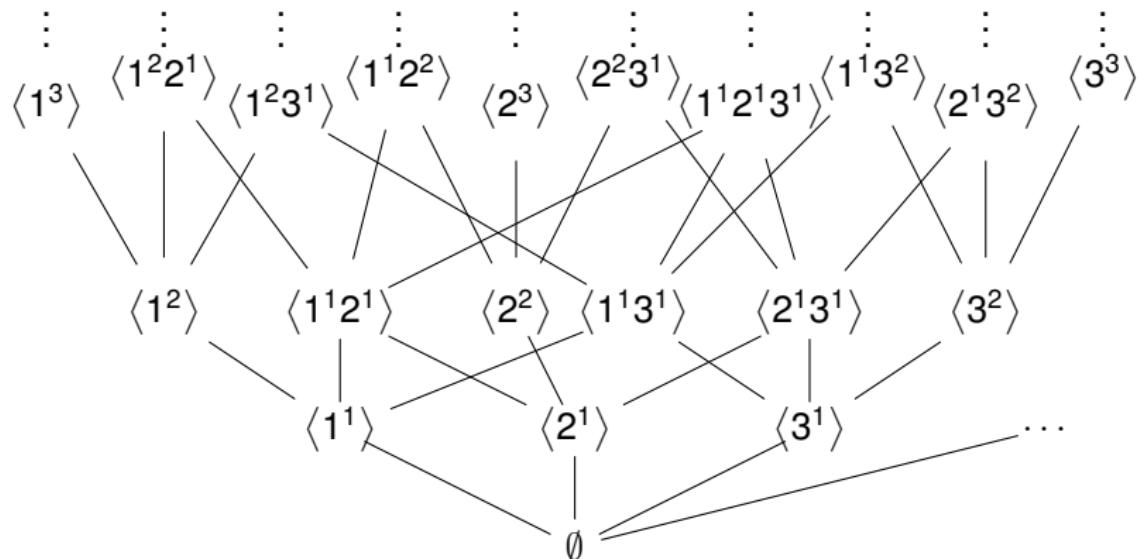
where $p_k \in \mathbb{P}$ is the k th prime number.

- Define $\widehat{N}(\emptyset) := 1$ (it is an empty product).
- *Integer factorizations encode partition theory.*

Theorem (Dawsey-Just-S., 2022)

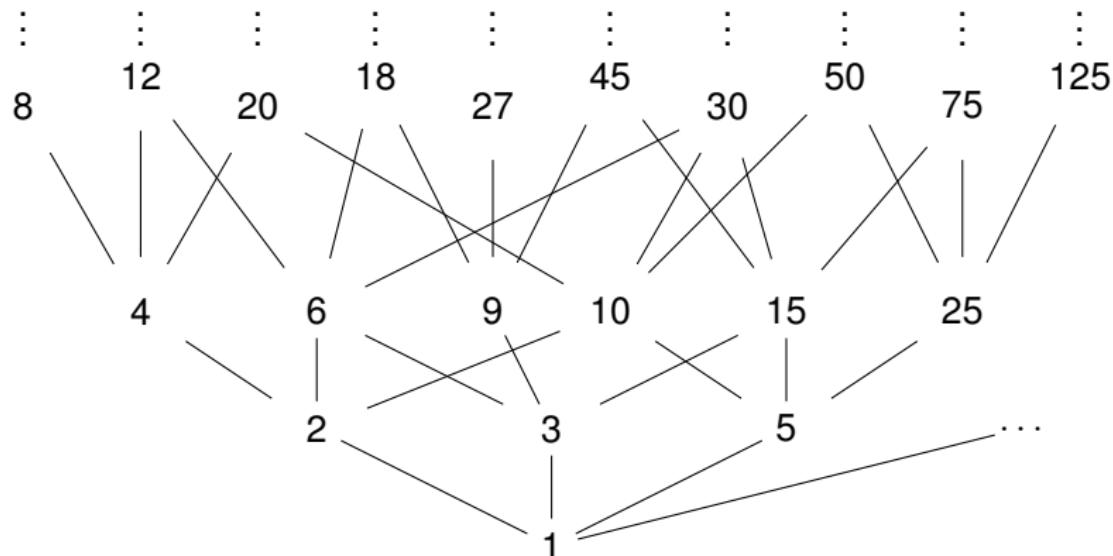
Map $\widehat{N} : \mathcal{P} \rightarrow \mathbb{N}$ is an isom. of monoids under multiplic.

Isomorphism of monoids $\mathcal{P} \cong \mathbb{N}$ (Dawsey-Just-S., 2022)



Lattice of partitions ordered by multiset inclusion

Isomorphism of monoids $\mathcal{P} \cong \mathbb{N}$ (Dawsey-Just-S., 2022)



Lattice of integers ordered by divisibility

Partition model of prime gaps

- Supernorm is a bijection between \mathcal{P} and \mathbb{Z}^+ .

Partition model of prime gaps

- Supernorm is a bijection between \mathcal{P} and \mathbb{Z}^+ .
- So measuring prime gaps is equivalent to counting partitions that map to respective prime gaps under \widehat{N} :

Partition model of prime gaps

- Supernorm is a bijection between \mathcal{P} and \mathbb{Z}^+ .
- So measuring prime gaps is equivalent to counting partitions that map to respective prime gaps under \widehat{N} :

$$p_{n+1} - p_n = \# \left\{ \lambda \in \mathcal{P} : p_n \leq \widehat{N}(\lambda) < p_{n+1} \right\}.$$

Partition model of prime gaps

- Supernorm is a bijection between \mathcal{P} and \mathbb{Z}^+ .
- So measuring prime gaps is equivalent to counting partitions that map to respective prime gaps under \widehat{N} :

$$p_{n+1} - p_n = \# \left\{ \lambda \in \mathcal{P} : p_n \leq \widehat{N}(\lambda) < p_{n+1} \right\}.$$

Heuristic: Make an educated guess as to which partitions map into the n th prime gap under supernorm \widehat{N} , in order to estimate the value of $p_{n+1} - p_n$.

Partition model of prime gaps

- Supernorm is a bijection between \mathcal{P} and \mathbb{Z}^+ .
- So measuring prime gaps is equivalent to counting partitions that map to respective prime gaps under \widehat{N} :

$$p_{n+1} - p_n = \# \left\{ \lambda \in \mathcal{P} : p_n \leq \widehat{N}(\lambda) < p_{n+1} \right\}.$$

Heuristic: Make an educated guess as to which partitions map into the n th prime gap under supernorm \widehat{N} , in order to estimate the value of $p_{n+1} - p_n$.

Approach: Exploit discrepancy between $N(\lambda)$ and $\widehat{N}(\lambda)$.

Discrepancy between the norm and supernorm

Partition λ with no part equal to 1 respects

$$\ell(\lambda) \leq |\lambda| \leq N(\lambda) \leq \widehat{N}(\lambda).$$

Discrepancy between the norm and supernorm

Partition λ with no part equal to 1 respects

$$\ell(\lambda) \leq |\lambda| \leq N(\lambda) \leq \widehat{N}(\lambda).$$

Moreover, when $N(\lambda) \geq 5$, if λ has parts $\neq 1$ then

$$N(\lambda) < p_{N(\lambda)} \leq \widehat{N}(\lambda) \leq N(\lambda)^{\log 3 / \log 2}$$

so the supernorm lies in a “small” interval $\geq p_{N(\lambda)}$,

Discrepancy between the norm and supernorm

Partition λ with no part equal to 1 respects

$$\ell(\lambda) \leq |\lambda| \leq N(\lambda) \leq \widehat{N}(\lambda).$$

Moreover, when $N(\lambda) \geq 5$, if λ has parts $\neq 1$ then

$$N(\lambda) < p_{N(\lambda)} \leq \widehat{N}(\lambda) \leq N(\lambda)^{\log 3 / \log 2}$$

so the supernorm lies in a “small” interval $\geq p_{N(\lambda)}$, and

$$\widehat{N}(\lambda) > N(\lambda) \cdot \prod_{i \geq 2} (\log i)^{m_i(\lambda)}$$

so $\widehat{N}(\lambda)$ can be closer to $N(\lambda)$ if there are fewer parts.

Discrepancy between the norm and supernorm

These inequalities suggest the following:

- ① Partitions λ with a smaller number $\ell(\lambda)$ of parts $\neq 1$ should have supernorms closer to their norms.
- ② Partitions λ with same norm $N(\lambda) = n$ and parts $\neq 1$ should have supernorms of comparable magnitudes.
- ③ Partitions λ with same norm $N(\lambda) = n \geq 5$ and parts $\neq 1$ respect the inequality $p_n \leq \widehat{N}(\lambda)$ (bound on p_n).

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Combining these bullet points, we make kind of an extreme simplification.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Combining these bullet points, we make kind of an extreme simplification.

Assumption

Assume all odd integers in the interval $[p_n, p_{n+1})$, $n \geq 2$, are images of partitions with norm n , with parts $\neq 1$, and with only one or two parts under \hat{N} .

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Combining these bullet points, we make kind of an extreme simplification.

Assumption

Assume all odd integers in the interval $[p_n, p_{n+1})$, $n \geq 2$, are images of partitions with norm n , with parts $\neq 1$, and with only one or two parts under \hat{N} .

Since there are $d(n)$ partitions of norm n into 1 or 2 parts,

$$p_{n+1} - p_n = 2 \left\lceil \frac{d(n)}{2} \right\rceil,$$

where $\lceil x \rceil$ is ceiling function (factor of 2 includes even #'s)

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p_n .

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p_n .

Model 1

The prime numbers are modeled by the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil.$$

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p_n .

Model 1

The prime numbers are modeled by the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil.$$

- $d(k)$ counts partitions of length 1 or 2, norm = k

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p_n .

Model 1

The prime numbers are modeled by the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil.$$

- $d(k)$ counts partitions of length 1 or 2, norm = k

This gives 2, 3, 5, 7, 11, 13, 17, 19, 23, **27**, ..., then wrong.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for p_n .

Model 1

The prime numbers are modeled by the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil.$$

- $d(k)$ counts partitions of length 1 or 2, norm = k

This gives 2, 3, 5, 7, 11, 13, 17, 19, 23, **27**, ..., then wrong. But it **almost** gives the correct sequence of **prime gaps**.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n	p_n	$p_{n+1} - p_n$ (Actual)	$p_{n+1} - p_n$ (Model 1)
1	2	1	1
2	3	2	2
3	5	2	2
4	7	4	4
5	11	2	2
6	13	4	4
7	17	2	2
8	19	4	4
9	23	6	4
10	29	2	4
11	31	6	2
12	37	4	6
13	41	2	2
14	43	4	4
15	47	6	4
16	53	6	6
17	59	2	2
18	61	6	6
19	67	4	2
20	71	2	6
21	73	6	4
22	79	4	4
23	83	6	2
24	89	8	8
25	97	4	4

TABLE 2. Comparing actual prime gaps to predictions from Model 1; we highlight entries where the prediction for the n th prime gap is off

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n	p_n	$p_{n+1} - p_n$ (Actual)	$p_{n+1} - p_n$ (Model 1)
1	2	1	1
2	3	2	2
3	5	2	2
4	7	4	4
5	11	2	2
6	13	4	4
7	17	2	2
8	19	4	4
9	23	6	4
10	29	2	4
11	31	6	2
12	37	4	6
13	41	2	2
14	43	4	4
15	47	6	4
16	53	6	6
17	59	2	2
18	61	6	6
19	67	4	2
20	71	2	6
21	73	6	4
22	79	4	4
23	83	6	2
24	89	8	8
25	97	4	4

TABLE 2. Comparing actual prime gaps to predictions from Model 1; we highlight entries where the prediction for the n th prime gap is off

16 out of 25 gaps are correct, including most twin primes.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Quality of estimate: Model 1 underestimates prime gaps in principle since it leaves out partitions with ≥ 3 parts.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Quality of estimate: Model 1 underestimates prime gaps in principle since it leaves out partitions with ≥ 3 parts.

Thus Model 1 underestimates p_n and overestimates $\pi(n)$.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Quality of estimate: Model 1 underestimates prime gaps in principle since it leaves out partitions with ≥ 3 parts.

Thus Model 1 underestimates p_n and overestimates $\pi(n)$.

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction

Model 1 gives main term of the prime number theorem:

$$p_n \sim n \log n \text{ as } n \rightarrow \infty.$$

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction

Model 1 gives main term of the prime number theorem:

$$p_n \sim n \log n \text{ as } n \rightarrow \infty.$$

Proof: From Model 1,

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil \sim \sum_{1 \leq i \leq n-1} d(i) \sim n \log n$$

by estimate of Dirichlet.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction

Model 1 predicts the set of twin primes is infinite.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction

Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says $p_{n+1} - p_n = 2 \left\lceil \frac{d(n)}{2} \right\rceil = 2$ if n is prime.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction

Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says $p_{n+1} - p_n = 2 \left\lceil \frac{d(n)}{2} \right\rceil = 2$ if n is prime.

But we cannot take this too seriously since the model represents an underestimate of prime gaps.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Taken as a probabilistic statement, twin prime prediction becomes an *unusual* prediction about prime gaps.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Taken as a probabilistic statement, twin prime prediction becomes an *unusual* prediction about prime gaps.

Prediction

Prime-indexed primes p_q , $q \in \mathbb{P}$, are more likely to begin a twin prime pair than are arbitrary prime numbers.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Taken as a probabilistic statement, twin prime prediction becomes an *unusual* prediction about prime gaps.

Prediction

Prime-indexed primes p_q , $q \in \mathbb{P}$, are more likely to begin a twin prime pair than are arbitrary prime numbers.

- This prediction is really weird.

Taken as a probabilistic statement, twin prime prediction becomes an *unusual* prediction about prime gaps.

Prediction

Prime-indexed primes p_q , $q \in \mathbb{P}$, are more likely to begin a twin prime pair than are arbitrary prime numbers.

- This prediction is really weird.
- We made computations to check.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n	# Twin prime pairs $\leq n$	# Prime-indexed twin prime pairs $\leq n$
10	2	2
100	8	6
1000	35	12
10,000	205	30
100,000	1224	154
1,000,000	8169	816

TABLE 3. Total number of twin prime pairs vs. those beginning with prime-indexed primes

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n	# Twin prime pairs $\leq n$	# Prime-indexed twin prime pairs $\leq n$
10	2	2
100	8	6
1000	35	12
10,000	205	30
100,000	1224	154
1,000,000	8169	816

TABLE 3. Total number of twin prime pairs vs. those beginning with prime-indexed primes

- Prediction seems to hold at small numbers but less so as $n \rightarrow \infty$.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

n	# Twin prime pairs $\leq n$	# Prime-indexed twin prime pairs $\leq n$
10	2	2
100	8	6
1000	35	12
10,000	205	30
100,000	1224	154
1,000,000	8169	816

TABLE 3. Total number of twin prime pairs vs. those beginning with prime-indexed primes

- Prediction seems to hold at small numbers but less so as $n \rightarrow \infty$.
- We do not have conclusive evidence this is due to prime indices (not some other reason).

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes another probabilistic prediction.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes another probabilistic prediction.

Prediction

The n th prime gap $p_{n+1} - p_n$ is larger or smaller, depending on if n has larger or smaller number of divisors.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes another probabilistic prediction.

Prediction

The n th prime gap $p_{n+1} - p_n$ is larger or smaller, depending on if n has larger or smaller number of divisors.

- This prediction is also really weird.

Model 1 makes another probabilistic prediction.

Prediction

The n th prime gap $p_{n+1} - p_n$ is larger or smaller, depending on if n has larger or smaller number of divisors.

- This prediction is also really weird.
- We made computations to check.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Define *merit* of the n th prime gap by $M(n) = \frac{p_{n+1} - p_n}{\log p_n}$,
noting $\log p_n$ is average prime gap size.

Define *Model 1 merit* of the n th *modeled* prime gap by
 $M_1(n) = \frac{d(n)}{\log n}$, noting $\log n$ is average size of $d(n)$.

Measure deviation of real/modeled gaps from average.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Define *merit* of the n th prime gap by $M(n) = \frac{p_{n+1} - p_n}{\log p_n}$,
noting $\log p_n$ is average prime gap size.

Define *Model 1 merit* of the n th *modeled* prime gap by
 $M_1(n) = \frac{d(n)}{\log n}$, noting $\log n$ is average size of $d(n)$.

Measure deviation of real/modeled gaps from average.

Question: *Do the statistics increase/decrease together?*

Results of computations on MTU HPC Shared Facility

- We compute $M(n)$ and $M_1(n)$ for $n \leq 1,000,000$.

Results of computations on MTU HPC Shared Facility

- We compute $M(n)$ and $M_1(n)$ for $n \leq 1,000,000$.
- $M(n) > 1$ in 36.01% of instances and $M(n) < 1$ in 63.99% of instances.

Results of computations on MTU HPC Shared Facility

- We compute $M(n)$ and $M_1(n)$ for $n \leq 1,000,000$.
- $M(n) > 1$ in 36.01% of instances and $M(n) < 1$ in 63.99% of instances.
- $M_1(n) > 1$ in 37.94% of instances and $M_1(n) < 1$ in 62.06% of instances.

Results of computations on MTU HPC Shared Facility

- We compute $M(n)$ and $M_1(n)$ for $n \leq 1,000,000$.
- $M(n) > 1$ in 36.01% of instances and $M(n) < 1$ in 63.99% of instances.
- $M_1(n) > 1$ in 37.94% of instances and $M_1(n) < 1$ in 62.06% of instances.
- $M(n)$ and $M_1(n)$ are simultaneously greater or less than one in 53.34% of instances.

Results of computations on MTU HPC Shared Facility

- We compute $M(n)$ and $M_1(n)$ for $n \leq 1,000,000$.
- $M(n) > 1$ in 36.01% of instances and $M(n) < 1$ in 63.99% of instances.
- $M_1(n) > 1$ in 37.94% of instances and $M_1(n) < 1$ in 62.06% of instances.
- $M(n)$ and $M_1(n)$ are simultaneously greater or less than one in 53.34% of instances.

Up to one million, a slight majority of prime gaps *do* increase or decrease with the divisor function.

We do not know another reason that prime gaps and $d(n)$ should increase/decrease with the same frequency.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Recall Model 1 *underestimates* prime gaps because it ignores partitions with ≥ 3 parts under the map \widehat{N} .

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Recall Model 1 *underestimates* prime gaps because it ignores partitions with ≥ 3 parts under the map \widehat{N} .

Making a rough estimate of the missing contribution of partitions w/ 3 parts yields a better computational model.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Recall Model 1 *underestimates* prime gaps because it ignores partitions with ≥ 3 parts under the map \widehat{N} .

Making a rough estimate of the missing contribution of partitions w/ 3 parts yields a better computational model.

Elementary arguments relate the correction to the number $\pi_2(p_{n-1})$ of *semiprimes* $\leq p_{n-1}$. Assume every semiprime times prime gives 1 integer w/ 3 factors in interval $[1, p_n)$.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Recall Model 1 *underestimates* prime gaps because it ignores partitions with ≥ 3 parts under the map \widehat{N} .

Making a rough estimate of the missing contribution of partitions w/ 3 parts yields a better computational model.

Elementary arguments relate the correction to the number $\pi_2(p_{n-1})$ of *semiprimes* $\leq p_{n-1}$. Assume every semiprime times prime gives 1 integer w/ 3 factors in interval $[1, p_n]$.

Also subtract a factor of $2\gamma n$ for computational reasons (simplifies integral expressions of the estimate for p_n).

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 2. *The prime numbers are the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation*

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil + \lfloor \pi_2(p_{n-1}) - 2\gamma n \rfloor,$$

where $\gamma = 0.5772\dots$ is the Euler-Mascheroni constant.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 2. *The prime numbers are the sequence p_1, p_2, p_3, \dots , of positive integers defined by $p_1 = 2$, and for $n \geq 2$ by the relation*

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil + \lfloor \pi_2(p_{n-1}) - 2\gamma n \rfloor,$$

where $\gamma = 0.5772\dots$ is the Euler-Mascheroni constant.

Model 2* (computational version). *The primes are modeled by the sequence p_1, p_2, p_3, \dots , defined by $p_1 = 2$, and for $n \geq 2$,*

$$p_n = 1 + 2 \sum_{k=1}^{n-1} \left\lceil \frac{d(k)}{2} \right\rceil + \lfloor n \log \log n - 2\gamma n \rfloor.$$

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Compare and contrast Model 2 and 2^* estimates for $\pi(n)$:

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2^*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Compare and contrast Model 2 and 2^* estimates for $\pi(n)$:

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2^*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

At small values: almost exact.

Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Compare and contrast Model 2 and 2^* estimates for $\pi(n)$:

n	$\pi(n)$	$n/\log n$	$\text{li}(n)$	Model 1	Model 2	Model 2^*
10	4	4.34...	6.16...	4	4	4
100	25	21.71...	30.12...	27	26	27
1000	168	144.76...	177.60...	184	168	171
10,000	1229	1085.73...	1246.13...	1352	1212	1233
100,000	9592	8685.88...	9629.80...	10,602	9435	9618
1,000,000	78,498	72,382.41...	78,627.54...	86,739	77,322	78,740

TABLE 1. Comparing estimates for $\pi(n)$

At small values: almost exact. At large values: gives PNT.

Partition model of primes (continued)

To explore these error terms, I sponsored a summer REU with MTU undergrad, Eli DeWitt (applying to grad school).

Partition model of primes (continued)

To explore these error terms, I sponsored a summer REU with MTU undergrad, Eli DeWitt (applying to grad school). Eli and I made **many** useful experiments (also about quantum modular forms), suggested further corrections.

Partition model of primes (continued)

To explore these error terms, I sponsored a summer REU with MTU undergrad, Eli DeWitt (applying to grad school). Eli and I made **many** useful experiments (also about quantum modular forms), suggested further corrections.

n	$\pi(n)$	$n/\log n$	Model 1	Model 2	Model 2*	Model 3 $r = 6, t = 0.11$
10	4	4.34...	4	4	4	4
100	25	21.71...	27	26	27	25
1000	168	144.76...	184	168	171	168
10,000	1229	1085.73...	1352	1212	1233	1228
100,000	9592	8685.88...	10,602	9435	9618	9592
1,000,000	78,498	72,382.41...	86,739	77,322	78,740	78,575

TABLE 1. Comparing estimates for $\pi(n)$; Model 3 depends on parameters r, t

Takeaway

Takeaway

Based on reasons from partition theory, our model says prime gaps are **controlled by the indices** of the prime numbers $p_1, p_2, p_3, \dots, p_n$, etc.:

Takeaway

Based on reasons from partition theory, our model says prime gaps are **controlled by the indices** of the prime numbers $p_1, p_2, p_3, \dots, p_n$, etc.:

The more divisors $n \geq 1$ has, the larger the n th prime gap $p_{n+1} - p_n$ will be (and vice versa).

Takeaway

Based on reasons from partition theory, our model says prime gaps are **controlled by the indices** of the prime numbers $p_1, p_2, p_3, \dots, p_n$, etc.:

The more divisors $n \geq 1$ has, the larger the n th prime gap $p_{n+1} - p_n$ will be (and vice versa).

Ongoing work:

- Improve the model's accuracy (see *Partition-theoretic model of prime distribution II*, arXiv)

Takeaway

Based on reasons from partition theory, our model says prime gaps are **controlled by the indices** of the prime numbers $p_1, p_2, p_3, \dots, p_n$, etc.:

The more divisors $n \geq 1$ has, the larger the n th prime gap $p_{n+1} - p_n$ will be (and vice versa).

Ongoing work:

- Improve the model's accuracy (see *Partition-theoretic model of prime distribution II*, arXiv)
- Make and check further predictions about prime number distribution

Takeaway

Based on reasons from partition theory, our model says prime gaps are **controlled by the indices** of the prime numbers $p_1, p_2, p_3, \dots, p_n$, etc.:

The more divisors $n \geq 1$ has, the larger the n th prime gap $p_{n+1} - p_n$ will be (and vice versa).

Ongoing work:

- Improve the model's accuracy (see *Partition-theoretic model of prime distribution II*, arXiv)
- Make and check further predictions about prime number distribution

Thank you for listening!