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Primordial mystery

Prime numbers have been around forever...

yet aspects of
their behavior are beyond human understanding.
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Primordial mystery

Sieve of Eratosthenes is still a state of the art method:

the
primes are like Easter eggs waiting to be found.

Prime positions are predetermined, yet probabilistic
models surprisingly successful at predicting distribution.

Terence Tao: “[Random] models are so effective... that
analytic number theory is in the curious position of being
able to confidently predict the answer to a large proportion
of the open problems in the subject, whilst not possessing
a clear way forward to rigorously confirm these answers!”
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Partition-theoretic model of prime numbers

We derive a deterministic model of primes

from facts
about partitions. Let π(n) denote the # of primes ≤ n.

Note: Model 2* is almost exact at small numbers.
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Multiplicative theory of additive partitions

Theory of addition

theory of partitions

beautiful generating functions

surprising bijections

Ramanujan congruences

connections across mathematics, phys sciences, CS
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Multiplicative theory of additive partitions

Theory of multiplication

primes
divisors
Euler phi function φ(n), Möbius function µ(n)
arithmetic functions, Dirichlet convolution
zeta functions, Dirichlet series, L-functions
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Philosophy of this project

Objects in multiplic. number theory
→ special cases of partition structures

Expect multiplicative theorems → partition analogues

Expect partition properties → influence on integers
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Partition notations

Let P denote the set of all integer partitions.

Let ∅ denote the empty partition.

Let λ = (λ1, λ2, . . . , λr ), λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1,
denote a nonempty partition, e.g. λ = (3, 2, 2,1).
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Partition notations

ℓ(λ) := r is length (number of parts).

mi = mi(λ) := multiplicity (or “frequency”) of i .

|λ| := λ1 + λ2 + · · ·+ λr is size (sum of parts).

Define ℓ(∅) = |∅| = mi(∅) = 0.
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Multiplicative theory of additive partitions

New partition statistic

Define N(λ), the norm of λ, to be the product of the parts:

N(λ) := λ1λ2λ3 · · ·λr

Define N(∅) := 1 (it is an empty product)
Shows up in MacMahon, Fine, partition zeta functions
See “The product of parts or ‘norm”’ (Schneider-Sills)
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Multiplicative theory of additive partitions

New, new partition statistic

Define N̂(λ), the supernorm of λ, by:

N̂(λ) := pλ1pλ2pλ3 · · · pλr ,

where pk ∈ P is the k th prime number.

Define N̂(∅) := 1 (it is an empty product).
Integer factorizations encode partition theory.

Theorem (Dawsey-Just-S., 2022)

Map N̂ : P → N is an isom. of monoids under multiplic.
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Isomorphism of monoids P ∼= N (Dawsey-Just-S., 2022)

∅

〈
11
〉 〈

21
〉 〈

31
〉

〈
12
〉 〈

1121
〉 〈

22
〉 〈

1131
〉 〈

2131
〉 〈

32
〉

〈
13
〉 〈

1221
〉 〈

1231
〉 〈1122

〉 〈
23
〉 〈

2231
〉〈

112131
〉〈1132

〉〈
2132

〉 〈
33
〉

. . .

...
...

...
...

...
...

...
...

...
...

Lattice of partitions ordered by multiset inclusion
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Isomorphism of monoids P ∼= N (Dawsey-Just-S., 2022)

1

2 3 5

4 6 9 10 15 25

8
12

20
18

27
45

30
50

75
125

. . .

...
...

...
...

...
...

...
...

...
...

Lattice of integers ordered by divisibility
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Partition model of prime gaps

Supernorm is a bijection between P and Z+.

So measuring prime gaps is equivalent to counting
partitions that map to respective prime gaps under N̂:

pn+1 − pn = #
{
λ ∈ P : pn ≤ N̂(λ) < pn+1

}
.

Heuristic: Make an educated guess as to which
partitions map into the nth prime gap under supernorm N̂,
in order to estimate the value of pn+1 − pn.

Approach: Exploit discrepancy between N(λ) and N̂(λ).
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Discrepancy between the norm and supernorm

Partition λ with no part equal to 1 respects

ℓ(λ) ≤ |λ| ≤ N(λ) ≤ N̂(λ).

Moreover, when N(λ) ≥ 5, if λ has parts ̸= 1 then

N(λ) < pN(λ) ≤ N̂(λ) ≤ N(λ)log 3/ log 2

so the supernorm lies in a “small” interval ≥ pN(λ), and

N̂(λ) > N(λ) ·
∏
i≥2

(log i)mi (λ)

so N̂(λ) can be closer to N(λ) if there are fewer parts.
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Discrepancy between the norm and supernorm

These inequalities suggest the following:

1 Partitions λ with a smaller number ℓ(λ) of parts ̸= 1
should have supernorms closer to their norms.

2 Partitions λ with same norm N(λ) = n and parts ̸= 1
should have supernorms of comparable magnitudes.

3 Partitions λ with same norm N(λ) = n ≥ 5 and parts
̸= 1 respect the inequality pn ≤ N̂(λ) (bound on pn).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Combining these bullet points, we make kind of an
extreme simplification.

Assumption
Assume all odd integers in the interval [pn, pn+1), n ≥ 2,
are images of partitions with norm n, with parts ̸= 1, and
with only one or two parts under N̂.

Since there are d(n) partitions of norm n into 1 or 2 parts,

pn+1 − pn = 2
⌈

d(n)
2

⌉
,

where ⌈x⌉ is ceiling function (factor of 2 includes even #’s)
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Then telescoping series gives an estimate for pn.

Model 1
The prime numbers are modeled by the sequence
p1, p2, p3, . . . , of positive integers defined by p1 = 2, and
for n ≥ 2 by the relation

pn = 1 + 2
n−1∑
k=1

⌈
d(k)

2

⌉
.

d(k) counts partitions of length 1 or 2, norm = k

This gives 2, 3,5, 7, 11,13, 17,19, 23, 27, . . . , then wrong.
But it almost gives the correct sequence of prime gaps.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

16 out of 25 gaps are correct, including most twin primes.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Quality of estimate: Model 1 underestimates prime gaps
in principle since it leaves out partitions with ≥ 3 parts.

Thus Model 1 underestimates pn and overestimates π(n).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 gives main term of the prime number theorem:

pn ∼ n log n as n → ∞.

Proof: From Model 1,

pn = 1 + 2
n−1∑
k=1

⌈
d(k)

2

⌉
∼

∑
1≤i≤n−1

d(i) ∼ n log n

by estimate of Dirichlet.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says pn+1 − pn = 2
⌈

d(n)
2

⌉
= 2 if n is prime.

But we cannot take this too seriously since the model
represents an underestimate of prime gaps.

73



Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says pn+1 − pn = 2
⌈

d(n)
2

⌉
= 2 if n is prime.

But we cannot take this too seriously since the model
represents an underestimate of prime gaps.

74



Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says pn+1 − pn = 2
⌈

d(n)
2

⌉
= 2 if n is prime.

But we cannot take this too seriously since the model
represents an underestimate of prime gaps.

75



Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes other predictions about prime distribution.

Prediction
Model 1 predicts the set of twin primes is infinite.

Proof: Model 1 says pn+1 − pn = 2
⌈

d(n)
2

⌉
= 2 if n is prime.

But we cannot take this too seriously since the model
represents an underestimate of prime gaps.

76



Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Taken as a probabilistic statement, twin prime prediction
becomes an unusual prediction about prime gaps.

Prediction
Prime-indexed primes pq, q ∈ P, are more likely to begin
a twin prime pair than are arbitrary prime numbers.

This prediction is really weird.
We made computations to check.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Prediction seems to hold at small numbers but less so
as n → ∞.
We do not have conclusive evidence this is due to
prime indices (not some other reason).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 1 makes another probabilistic prediction.

Prediction
The nth prime gap pn+1 − pn is larger or smaller,
depending on if n has larger or smaller number of divisors.

This prediction is also really weird.
We made computations to check.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Define merit of the nth prime gap by M(n) = pn+1−pn
log pn

,
noting log pn is average prime gap size.

Define Model 1 merit of the nth modeled prime gap by
M1(n) =

d(n)
log n , noting log n is average size of d(n).

Measure deviation of real/modeled gaps from average.

Question: Do the statistics increase/decrease together?
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Results of computations on MTU HPC Shared Facility
We compute M(n) and M1(n) for n ≤ 1,000,000.

M(n) > 1 in 36.01% of instances and M(n) < 1 in
63.99% of instances.
M1(n) > 1 in 37.94% of instances and M1(n) < 1 in
62.06% of instances.
M(n) and M1(n) are simultaneously greater or less
than one in 53.34% of instances.

Up to one million, a slight majority of prime gaps *do*
increase or decrease with the divisor function.
We do not know another reason that prime gaps and d(n)
should increase/decrease with the same frequency.
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Recall Model 1 underestimates prime gaps because it
ignores partitions with ≥ 3 parts under the map N̂.

Making a rough estimate of the missing contribution of
partitions w/ 3 parts yields a better computational model.

Elementary arguments relate the correction to the number
π2(pn−1) of semiprimes ≤ pn−1. Assume every semiprime
times prime gives 1 integer w/ 3 factors in interval [1,pn).

Also subtract a factor of 2γn for computational reasons
(simplifies integral expressions of the estimate for pn).
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Model 2. The prime numbers are the sequence
p1, p2, p3, . . . , of positive integers defined by p1 = 2, and
for n ≥ 2 by the relation

pn = 1 + 2
n−1∑
k=1

⌈
d(k)

2

⌉
+ ⌊π2(pn−1)− 2γn⌋ ,

where γ = 0.5772 . . . is the Euler-Mascheroni constant.

Model 2* (computational version). The primes are
modeled by the sequence p1, p2, p3, . . . , defined by
p1 = 2, and for n ≥ 2,

pn = 1 + 2
n−1∑
k=1

⌈
d(k)

2

⌉
+ ⌊n log log n − 2γn⌋ .
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Partition model of primes (Botkin-Dawsey-Hemmer-Just-S.)

Compare and contrast Model 2 and 2* estimates for π(n):

At small values: almost exact. At large values: gives PNT.
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Partition model of primes (continued)

To explore these error terms, I sponsored a summer REU
with MTU undergrad, Eli DeWitt (applying to grad school).

Eli and I made many useful experiments (also about
quantum modular forms), suggested further corrections.
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Takeaway

Based on reasons from partition theory, our model says
prime gaps are controlled by the indices of the prime
numbers p1, p2, p3, . . . ,pn, etc.:

The more divisors n ≥ 1 has, the larger the nth prime
gap pn+1 − pn will be (and vice versa).

Ongoing work:
Improve the model’s accuracy (see Partition-theoretic
model of prime distribution II, arXiv)
Make and check further predictions about prime
number distribution
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Gratitude

Thank you for listening!
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