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Preliminaries



Pochhammer symbols

(a; q) j = (1− a)(1− aq) . . . (1− aq j−1)

(q; q) j = (1− q)(1− q2) . . . (1− q j)

(a; q)∞ = (1− a)(1− aq) . . .

(a1, a2, a3, . . . ; q)t = (a1; q)t(a2; q)t(a3; q)t · · · .

1/(q; q)n = 0 (n< 0)

(a; q)n = (a)n
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Rogers–Ramanujan identities



RR 1

The number of partitions of n where adjacent parts differ by at
least 2

=

The number of partitions of n where each part is ≡ ±1 (mod 5).

Example
9 = 9 9 = 9
= 1+ 8 = 1+ 1+ 1+ 6
= 2+ 7 = 1+ 4+ 4
= 3+ 6 = 1+ 1+ 1+ 1+ 1+ 4
= 1+ 3+ 5 = 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1
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RR 2

The number of partitions of n where adjacent parts differ by at
least 2 and where the smallest part is at least 2

=

The number of partitions of n where each part is ≡ ±2 (mod 5).

Example
9 = 9 9 = 9
= 2+ 7 = 3+ 3+ 3
= 3+ 6 = 2+ 2+ 2+ 3
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Generating functions

RR 1
∑
n≥0

qn2

(q)n
= (q, q4; q5)−1∞.

RR 2
∑
n≥0

qn2+n

(q)n
= (q2, q3; q5)−1∞.
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Recurrence

R(x , q) =
∑
i,n≥0

ri,n x iqn

ri,n = the number of partitions of n with i parts such that
difference between adjacent parts is at least 2 (RR1)

R(xq j , q) = g.f. for partitions with difference at least 2 in adjacent
parts and smallest part at least j + 1.

R(x , q) = R(xq, q) + xqR(xq2, q)
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Uniqueness

In Z[[x , q]], there exists a unique solution to:

R(x , q) = R(xq, q) + xqR(xq2, q)

R(0, q) = R(x , 0) = 1.

To prove F(q) = (q, q4; q5)−1∞,

see if there exists

F(x , q)

that satisfies the recurrence above.
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Affine Lie algebras



There are many ways to get RR-type identities from affine Lie
algebras.
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Affine Lie algebras

In 80’s, Lepowsky and Wilson proved RR identities using the
affine Lie algebra A(1)1 .

Lepowsky and Wilson, Meurman and Primc:

A(1)1 Ê∼∼∼É Andrews–Gordon and Andrews–Bressoud identities.

What about other Lie algebras?

A(2)2 , A(1)
ℓ

, B(1)
ℓ

, C (1)
ℓ

, D(1)
ℓ

, E(1)6,7,8, F (1)4 , G(1)2 , A(2)2ℓ , A(2)2ℓ−1, D(2)
ℓ+1, E(2)6 , D(3)4 .

Next in line: A(2)2
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RR-type identities



1. Capparelli identities (1988)

Level 3 modules for A(2)2

Two identities
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Capparelli identities (1988)

C1

Number of partitions of n where

2 does not appear as a part,

the difference of two consecutive parts is at least 2, and

is exactly 2 or 3 only if their sum is a multiple of 3.

=

Coefficient of qn in (−q,−q3,−q5,−q6; q6)∞.

Proofs

By Andrews, Alladi–Andrews–Gordon, Tamba–Xie, Capparelli, etc.

11



Generating functions

∑
i, j≥0

q2i2+6i j+6 j2

(q)i(q3; q3) j
= (−q,−q3,−q5,−q6; q6)∞

Surprisingly recent!

Independently due to K.–Russell (2019) and Kurşungöz (2019)
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2. Nandi identities (2014), Proof by Takigiku–Tsuchioka (2019)

Level 4 modules for A(2)2

Three identities

M. Takigiku and S. Tsuchioka, A proof of conjectured partition identities of Nandi,
Amer. J. Math, to appear, arXiv:1910.12461.
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A partition λ1 ≥ λ2 ≥ · · ·λs > 0 satisfies

difference condition [d1, d2, . . . , ds] if

λi −λi+1 = di for all 1≤ i ≤ s− 1.

For example:

8+ 7+ 6+ 5 satisfies the difference condition [1].
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Nandi identities (2014), Proof by Takigiku–Tsuchioka (2019)

N1

Number of partitions of n into parts different from 1 such that
there is no contiguous sub-partition satisfying the difference
conditions [1], [0,0], [0,2], [2,0] or [0,3], and such that there is
no sub-partition with an odd sum of parts satisfying the
difference conditions [3, 0], [0,4], [4, 0] or [3,2∗, 3, 0] (where 2∗
indicates zero or more occurrences of 2)

=

Coefficient of qn in (q2, q3, q4, q10, q11, q12; q14)−1∞.
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GULP!
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Sum-sides?

N1∑
i, j

(−1) j
q(

i
2)+2( j

2)+2i j+i+ j

(q)i(q2; q2) j
= (q2, q3, q4, q10, q11, q12; q14)−1∞

See: Takigiku–Tsuchioka
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3. Some conjectures from 2014/5 (K.–Russell)

Related to level 3 modules of D(3)4

Three identities

(Obtained purely experimentally, without any algebra.)
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Partition λ1 ≥ λ2 ≥ · · · ≥ λs > 0

has difference at least d at distance k

if λi −λi+k ≥ d for all 1≤ i ≤ s− k.

For example, RR partitions have distance at least 2 at distance 1.
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Some conjectures from 2014/5 (K.–Russell)

I 1

Number of partitions of n with difference at least 3 at distance 2
such that if two consecutive parts differ by at most 1, then their
sum is divisible by 3.
?
=

Coefficient of qn in (q, q3, q6, q8; q9)−1∞.
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Sum-sides

∑
i, j

qi2+3i j+3 j2

(q)i(q3; q3) j

?
= (q, q3, q6, q8; q9)−1∞.

Due to Kurşungöz (2019)
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Recent developments

Tsuchioka’s work (2022) implies:∑
i, j

qi2+3i j+3 j2

(q)i(q3; q3) j
≥ (q, q3, q6, q8; q9)−1∞.

S. Tsuchioka, A vertex operator reformulation of the Kanade-Russell conjecture
modulo 9, arXiv:2211.12351.
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Relationship

These conjectures level 3 of D(3)4

∑
i, j

qi2+3i j+3 j2

(q)i(q3; q3) j

Capparelli level 3 of A(2)2

∑
i, j

q2i2+6i j+6 j2

(q)i(q3; q3) j
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This Talk



New “sum=product” identities

1. New identities for level 4 for D(3)4 .

2. New quadruple sum-sides for Nandi’s identities. Manifestly
positive for N1.

Relationship

New identities level 4 of D(3)4

Nandi level 4 of A(2)2 double the quadratic form

Everything with proof!
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Sums for Nandi’s identities
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Immediate steps

SA,B,C ,D(x , q)

=
∑ x2i+3 j+2k+ℓq4i2+12i j+8ik+4iℓ+12 j2+16 jk+8 jℓ+6k2+6kℓ+2ℓ2+Ai+B j+Ck+Dℓ

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
.
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Conjecture

N1(x , q) = S0,0,0,0(x , q),

N2(x , q) = S0,−2,−2,−1(x , q)− S0,0,0,0(x , q) + S2,2,1,0(x , q),

N3(x , q) =
q2

x2
S−8,−12,−8,−4(x , q)− 1

x
S−2,−4,−3,−2(x , q)− 1

q2
S0,0,0,0(x , q)

− q2

x2
S−4,−8,−6,−3(x , q).
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Proof: Broad steps

1. Takigiku–Tsuchioka provide a system of difference equations
satisfied by the (x , q) generating functions in Nandi’s identities.

2. Show that our conjectural formulas satisfy this system of
difference equations.

Requires a non-trivial amount of computer assistance.
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Takigiku–Tsuchioka system



F0

F1

F2

F3 = N2

F4 = N3

F5

F7 = N1


=



1 xq2 x2q4 xq x2q2 0 0
0 xq2 0 0 0 1 0
0 0 0 0 0 0 1
0 xq2 0 xq 0 1 0
0 0 0 0 xq2 0 1
1 xq2 x2q4 xq 0 0 0
1 xq2 x2q4 0 0 0 0





F0(xq2, q)
F1(xq2, q)
F2(xq2, q)
F3(xq2, q)
F4(xq2, q)
F5(xq2, q)
F7(xq2, q)
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Conjecture

F7(x , q) = S0,0,0,0(x , q),

F1(x , q) = S2,2,1,0(x , q),

F5(x , q) = S0,−2,−2,−1(x , q).

We have:

F2(x , q) = F7(xq2, q),

F3(x , q) = F1(x , q) + F5(x , q)− F7(x , q),

F0(x , q) = F7(xq−2, q)− x F1(x , q)− x2F2(x , q),

F4(x , q) = x−2q2F0(xq−2, q)− x−2q2F5(xq−2, q).
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Modified Murray–Miller algorithm

System of difference equations

∼∼∼∼É

higher order difference equations satisfied by Fi .

Takigiku–Tsuchioka’s paper / Andrews’ Chapter 8
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Higher order difference equations

The power series F7 = N1 is the unique solution in Z[[x , q]] of:

0= F7(x , q)

+ (−xq4 − xq3 − xq2 − 1)F7(xq2, q)

+ (xq5 + xq4 + xq3 − x + 1)q4 x F7(xq4, q)

− x2q6(xq9 − xq6 − xq5 − xq4 + 1)F7(xq6, q)

− x3q13(xq8 + xq7 + xq6 − q2 − q− 1)F7(xq8, q)

+ x3q17(x2q14 − xq8 − xq6 + 1)F7(xq10, q),

1= F7(x , 0) = F7(0, q).

We need to show that S0,0,0,0(x , q) satisfies this.
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To show

SA,B,C ,D(x , q)

=
∑ x2i+3 j+2k+ℓq4i2+12i j+8ik+4iℓ+12 j2+16 jk+8 jℓ+6k2+6kℓ+2ℓ2+Ai+B j+Ck+Dℓ

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
.

Then:

0=S0,0,0,0

+ (−xq4 − xq3 − xq2 − 1)S4,6,4,2

+ q4 x(xq5 + xq4 + xq3 − x + 1)S8,12,8,4

− x2q6(xq9 − xq6 − xq5 − xq4 + 1)S12,18,12,6

− x3q13(xq8 + xq7 + xq6 − q2 − q− 1)S16,24,16,8

+ x3q17(x2q14 − xq8 − xq6 + 1)S20,30,20,10
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The Key
S series satisfy a few easily deduced “atomic” relations.
We show: required relation is a consequence of the atomic
relations.
Requires highly non-trivial computer assistance.
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Atomic relations

Recall:

SA,B,C ,D(x , q)

=
∑ x2i+3 j+2k+ℓq4i2+12i j+8ik+4iℓ+12 j2+16 jk+8 jℓ+6k2+6kℓ+2ℓ2+Ai+B j+Ck+Dℓ

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
.

Then:

SA,B,C ,D − SA+2,B,C ,D = x2q4+ASA+8,B+12,C+8,D+4,

SA,B,C ,D − SA,B+2,C ,D = x3q12+BSA+12,B+24,C+16,D+8,

SA,B,C ,D − SA,B,C+1,D = x2q6+CSA+8,B+16,C+12,D+6,

SA,B,C ,D − SA,B,C ,D+1 = xq2+DSA+4,B+8,C+6,D+4.
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A slight modification

n1(A, B, C , D) : SA,B,C ,D − SA+4,B,C ,D − x2q4+A(1+ q2)SA+8,B+12,C+8,D+4

+ x4q18+2ASA+16,B+24,C+16,D+8 = 0,

n2(A, B, C , D) : SA,B,C ,D − SA,B+2,C ,D − x3q12+BSA+12,B+24,C+16,D+8 = 0,

n3(A, B, C , D) : SA,B,C ,D − SA,B,C+2,D − x2q6+CSA+8,B+16,C+12,D+6

− x2q7+CSA+8,B+16,C+12,D+6 + x4q25+2CSA+16,B+32,C+24,D+12

= 0,

n4(A, B, C , D) : SA,B,C ,D − SA,B,C ,D+2 − xq2+DSA+4,B+8,C+6,D+4

− xq3+DSA+4,B+8,C+6,D+4 + x2q9+2DSA+8,B+16,C+12,D+8 = 0.
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Computer Assistance
Show that for a large enough K,
the required relation is a linear combination over Q(z, q) of
{ni(A, B, C , D) | 1≤ i ≤ 4, −K ≤ A, B, C , D ≤ K}.
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How?

Setup a large system of unknowns and solve it.

The proof itself is long and computationally intensive to find, but,

It takes only seconds to check it.
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Proof certificate
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Theorem (Baker–K.–Russell–Sadowski, 2022)

F7(x , q) = S0,0,0,0(x , q),

F1(x , q) = S2,2,1,0(x , q),

F5(x , q) = S0,−2,−2,−1(x , q).
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Theorem (Baker–K.–Russell–Sadowski, 2022)

N1(x , q) = S0,0,0,0(x , q),

N2(x , q) = S0,−2,−2,−1(x , q)− S0,0,0,0(x , q) + S2,2,1,0(x , q),

N3(x , q) =
q2

x2
S−8,−12,−8,−4(x , q)− 1

x
S−2,−4,−3,−2(x , q)− 1

q2
S0,0,0,0(x , q)

− q2

x2
S−4,−8,−6,−3(x , q).
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Mod-10 identities



Mod-10 identities

∑ q2i2+6i j+4ik+2iℓ+6 j2+8 jk+4 jℓ+3k2+3kℓ+ℓ2

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
=

1
(q, q4; q5)∞(q2, q8; q10)∞

+ 3 more.
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RA,B,C ,D(x , y, q)

=
∑ x2 j+k+ℓ y i+ j+kq2i2+6i j+4ik+2iℓ+6 j2+8 jk+4 jℓ+3k2+3kℓ+ℓ2+Ai+B j+Ck+Dℓ

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
.

Conjecture

R0,0,0,0(1, 1, q) =
1

(q, q4; q5)∞(q2, q8; q10)∞
,

R0,0,0,0(q, 1, q) =
1

(q2, q3; q5)∞(q2, q8; q10)∞
,

R0,0,0,0(1, q2, q) =
1

(q, q4; q5)∞(q4, q6; q10)∞
,

R0,0,0,0(q, q2, q) =
1

(q2, q3; q5)∞(q4, q6; q10)∞
.
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To show

R0,0,0,0(x , y, q) satisfies:

F(x , y, q)= F(xq, y, q) + xqF(xq2, y, q),

F(x , y, 0) = 1,

F(x , 0, q) =
∑
ℓ

qℓ
2
xℓ

(q)ℓ
,

F(0, y, q) =
∑

i

q2i2
y i

(q2; q2)i
.

This system has a unique solution in Z[[x , y, q]]:

F(x , y, q) =

�∑
ℓ

qℓ
2
xℓ

(q)ℓ

��∑
i

q2i2
y i

(q2; q2)i

�
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Atomic relations

m1(A, B, C , D) : RA,B,C ,D − RA+2,B,C ,D − yq2+ARA+4,B+6,C+4,D+2 = 0,

m2(A, B, C , D) : RA,B,C ,D − RA,B+2,C ,D − x2 yq6+BRA+6,B+12,C+8,D+4 = 0,

m3(A, B, C , D) : RA,B,C ,D − RA,B,C+1,D − x yq3+CRA+4,B+8,C+6,D+3 = 0,

m4(A, B, C , D) : RA,B,C ,D − RA,B,C ,D+1 − xq1+DRA+2,B+4,C+3,D+2 = 0.
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Proof

Proving F(x , y, q) = F(xq, y, q) + xqF(xq2, y, q) for R0,0,0,0(x , y, q)

Translates to proving R0,0,0,0 − R0,2,1,1 − xqR0,4,2,2 = 0.

This can be obtained as:

−m1(−2,0,0, 0) +m1(−2,0, 0,1)− xq ·m1(0,4,2, 2)

+ xq ·m1(0,4,3, 2) +m2(0, 0,0, 1) +m3(0,2,0, 1)

− xq ·m3(2,4,2, 2) +m4(−2, 0, 0,0)− y ·m4(2,6,4, 2).
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Final Remarks



1. Manifest positivity

There are seven interlocking series in Takigiku–Tsuchioka’s proof.

F0, F1, F2, F3 = N2, F4 = N3, F5, F7 = N1.

Our identities give manifestly positive quadruple sums for:

F1, F5, F7 = N1.

You can find their combinatorial interpretations in our paper.

What makes these three special?

How to show explicitly that these sums count the partitions?
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2. Combinatorial interpretations

For the sums in Mod-10 identities?

RA,B,C ,D(x , y, q)

=
∑ x2 j+k+ℓ y i+ j+kq2i2+6i j+4ik+2iℓ+6 j2+8 jk+4 jℓ+3k2+3kℓ+ℓ2+Ai+B j+Ck+Dℓ

(q2; q2)i (q2; q2) j (q; q)k (q; q)ℓ
.
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3. Computer assistance

Packages by Research Institute for Symbolic Computation (RISC)
may be useful.

Chern and Li: Use RISC packages

S. Chern, Z. Li, Linked partition ideals and Kanade-Russell conjectures, Discrete
Math. 343 (2020), no. 7, 111876, 24 pp.

Chern: Non-computer assisted

S. Chern, Linked partition ideals, directed graphs and q-multi-summations,
Electron. J. Combin. 27 (2020), no. 3, Paper No. 3.33, 29 pp.
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4. More about the proof technique

Using this technique, jointly with Russell, we proved (new)
Mod-6 and Mod-10 A2 Andrews–Schilling–Warnaar identities.

See:

Matthew Russell’s talk in this seminar from 2022.

S. Kanade, M. C. Russell, Completing the A2 Andrews–Schilling–Warnaar
identities, IMRN, to appear, arXiv:2203.05690.
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Recently, Ali Uncu has found a much faster framework to perform
the computational part.

A. K. Uncu, Proofs of Modulo 11 and 13 Cylindric Kanade-Russell Conjectures for
A2 Rogers-Ramanujan Type Identities, arXiv:2301.01359.
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5. The blossoms in Ramanujan’s garden …

Many ways to get deep and interesting combinatorics from affine
Lie algebras / vertex operator algebras.

S. Capparelli, A. Meurman, A. Primc, M. Primc,

J. Dousse, I. Konan + friends

O. Foda, T. Welsh

C. Sadowski (+ friends)

M. Takigiku, S. Tsuchioka, K. Ito

O. Warnaar (+ friends)

. . .
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Thank you!
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