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Partitions



Given n € Z-,
Number of ways to write n as:
n=m;+--+7,

W|th tZO, 7'[127'522"'Z7T[€Z>0,

Example

4=43+1,2+2,24+1+1,1+1+1+1



Ferrer’s diagram: Russian notation

0000000000000 000000000O0:" -

28=10+8+4+3+3



Maya diagram

28=10+8+4+3+3

Infinite sea of e to the left
Infinite sea of o to the right

Number of beads to the right of i th vacancy = i th part.
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Cylindric Partitions



Definition: Cylindric Partitions

Fix a number of rows r also called rank

Fix a profile which is a composition ¢ = (¢;, ¢y, ,¢,) of r many
non-negative integers.

{=c;+cy+---+c, is called the level.



Definition: Cylindric Partitions

Fix a number of rows r also called rank

Fix a profile which is a composition ¢ = (¢;, ¢y, ,¢,) of r many
non-negative integers.

{=c;+cy+---+c, is called the level.

Attached to this data are cylindric partitions of profile c:

a tuple of partitions n = (7, --- , n(") satisfying some properties



Definition by Example

c=(2,2,0).
Thishasrankr=3,level{ =2+2+0=4.
= (nW, 7P, 7®)=((3,2,1,1),(4,3,3,1),(4,1,1))
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The profile c =(¢q,- -+ ,¢,.) gives indentations

Rank r is the number of rows, or the number of individual
partitions.

Level is the total indentation
Parts weakly decrease across rows and columns

Cylindric because numbers weakly decrease across columns
even when the bottom row is pasted on top appropriately
indented.



Abacus diagram

NG

ONR

2@,

EONR

EONR
ONR
2@

23




Abaci: Summary

Putting together the maya diagrams of individual partitions with
correct indentations and then yoking the beads together.

Infinite repeating pattern of yokes far to left matches the profile ¢
indentations



Generating functions

Ce(z,q) = 2 zmMg™ ™
T

So, forc =(2,2,0) and 7 =((3,2,1,1),(4,3,3,1),(4,1,1))
max =4

WE=3+2+1+1+4+3+3+1+4+1+1



Some important facts
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Some important facts

(a) If ¢’ is obtained from ¢ by rotation, then C.(z,q) = C..(z,q)

(b) If ¢’ is obtained by reversing c, then C.(1,q) = C..(1,q)

n



(c) €.(1,q) has a periodic product form
Borodin,
Kyoto school? / Tingley,

Gessel-Krattenthaler + Foda-Welsh

12



(d) In the last decade or so, there have been many studies
devoted to finding closed form sum-side expressions for C.(z,q)
for two-row and three-row cylindric partitions.



(d) In the last decade or so, there have been many studies
devoted to finding closed form sum-side expressions for C.(z,q)
for two-row and three-row cylindric partitions.

Bersakgi, Bridges, Corteel, Dousse, Foda, Kursungdz, Langer, Li,
Russell, Seyrek, Tsuchioka, Uncu, Warnaar, Welsh, ...



Tight cylindric partitions
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Tight cylindric partitions

A cylindric partition whose abacus diagram is as tight as

possible, i.e., none of the yokes could be moved further to the
left.
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Equivalent definition

A cylindric partition © = (), --- , #(") of profile c = (¢y,--- ,c,) is
called tight if for every j € Z. ,, there exists a 7 that does not
contain j as a part.



Example
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Generating functions

For a given profile ¢, we let T, be the set of tight cylindric
partitions of profile c.

TC(Z, q) — Z Zmax(n)qwt(n)

neT,



Product form

For profile ¢ = (¢4, ,¢,),

e T m. myr—1
Tc(l’q):(q 33 )00 (@™; 4™ )

(@),

where,
m=r+{=r+c+---+c¢,

0(a;q) =(a;9)00(q/a;q) o

1_[ a) (qj—i+ci+~~~+cj,1 ; qm)

1<i<j<r



Example

If c=(b,—b)or({—b,b)for0<b<{, we have:

(0% 900 %54'2)
&}q)z o0 e(qb+l;q€+2)
o0

{—b+1 (+2., (+2
N ™S

T.(1,9) =

b+1
>

q
(CH B )S

_(q

So, upto a factor of (q;¢%).., these are the products in
Andrews-Gordon and Andrews—Bressoud identities.
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For a rank r profile c,

T.(1,9) =(q";9" )0 Cc(1,9).

21



The main question




g-hypergeometric sums

Infinite products, or
Theta functions, or
False theta functions, etc.

Generating
Functions

Generating functions of:
restricted, coloured integer partitions, or
cylindric partitions, etc.

What about the sums???

22



Functional Equations




We are looking for bivariate generating functions, i.e., T.(z;q).
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We are looking for bivariate generating functions, i.e., T.(z;q).

Two broad strategies:

(1) Either do clever counting and produce closed-form
generating functions

(2) Guess the formulas and prove that they satisfy required
functional equations.
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We are looking for bivariate generating functions, i.e., T.(z;q).

Two broad strategies:

(1) Either do clever counting and produce closed-form
generating functions

(2) Guess the formulas and prove that they satisfy required
functional equations.

At least the two-row case ought to be manageable ....
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For cylindric partitions, Corteel-Welsh showed that the
generating functions are unique solutions to certain z,q
functional equations.

These functional equations tie together all generating functions
for ¢ of a fixed rank and level.

24



Example

¢=(1,0,0,2,0)

o O

N

The maximum part must
appear on a subset of red
rectangles.

These red rectangles ap-
pear in rows where ¢; > 0.

Peeling off all maximum
parts leads to another
cylindric  partition  with
same level and same
rank, but different profile.

25



Corteel-Welsh functional equations

C.n(z4";q)
Ci(z;9) = —qvi e 22
C(Z q) 07&%[6( ) 1 —qu-]l
I. = Set of red rectangles in a profile ¢

c(J) = profile of same rank and level obtained after removing a
subset of these rectangles.

26



Along with trivial initial conditions
Cc(OQQ) = CC(Z; 0)=1,

Corteel-Welsh functional equations uniquely determine C.(z;q)
where ¢ runs through profiles of a fixed rank and level.

27



Equations for tight cylindrics

Functional equation for tight cylindric partitions are as follows.

Theorem (K.-Russell)

Forca profile of rank r,

T(zq ;)= > (=¥ 1M

T.(z;9) i 7
PAJICI, 2q

28



Sums for the two row case




Sums for the two row case
Theorem (K.—Russell)

For0<b<|%], we have:
T—b,5)(2,9) = T 1—1)(2,9)

|3 2T )]
(2¢; )y, N, : N3 ; Ny g

Ny, ,N; >0

29



Proof sketch
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Proof sketch

These types of sums satisfy their own (very easily derived)
functional equations.

Show that the required functional equations for tight cylindrics
are consequences of, i.e., lie in a vector space (over C(z;q))
spanned by the functional equations satisfied by the sums.

This is a linear algebra problem, can be solved easily on
computer for low £.

Identify patterns in the linear combinations for low £, and hope
that they generalize for all ¢.

30



This technique has been used extensively in the last few years.
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Open Question

Find/guess bivariate generating functions for 3-rowed tight
cylindric partitions.

32



DHK partitions




DHK partitions
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DHK partitions

(Dousse-Hardiman—Konan)

33



DHK partitions

(Dousse—-Hardiman-Konan)
Let/>1and0<b<{.

Let DHK,, be the set of £ + 1 colored partitions

A=Ay == A, =0, with allowed colors being 0,1, - -

satisfying:
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DHK partitions

(Dousse—-Hardiman-Konan)
Let/>1and0<b<{.

Let DHK,, be the set of £ + 1 colored partitions

A=Ay >--- > A, =0, with allowed colors being 0,1,---,¢,
satisfying:

o A, — Ay = |lu; —uy,4| for all i where u; is the color of the part A,
e the color of A, =0 s b,

e there is exactly one part of size 0.

33



Example
Let 7T:82+73+73+51 +40+31+31 +31+20+11 +00 (here,
subscripts are colors).

Then, m € DHK, 3, #(m) = 10, wt(m) = 43.

34



We ignore the last 0 part while counting the number of parts,
The number of partsof 4, > A, >---> A, =0iss—1.

The symbol # denotes the number of parts.

Dyy(z,q)= Y 2*Pgmd),
A€EDHK,

35



DHK identity
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DHK identity

For{>1,0<b </, we have:

(qb+1 qu—b+1 ql+2.qlz+2)

Db,l(lfq) = (259%)00(¢ Qoo

36



DHK identity

For{>1,0<b </, we have:
(qb+1’ ql—b+l, q2+2; q13+2)

(2059%) 00 (45 D oo

Dy,(1,q9) =

Recall: This is exactly the product T, ;_y) = T(y—p p)-

36



Question

How are DHK partitions and two-row tight cylindrics related?
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Question

How are DHK partitions and two-row tight cylindrics related?

Answer

There is a very straight-forward bijection.

37



Bijection by example: Profile (3,0)

38



Bijection by example: Profile (3,0)

- 9 5 1
3
0 ...

CN
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Bijection by example: Profile (3,0)

A5

ONR

CIER

CIRIN

2?2

9 5 1
3

10/8 |4 3 3
0

OB SN

i O 8 AR A WA S
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Bijection by example: Profile (3,0)

o 9 5 1
3

0 10 8 4 3 3
0

@ 9 5 1

G0 B O et e SO
Write down the total number of vacancies to the left of each yoke.
0,1,2,3,3,3,4,5,7,7,8
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- 9 5 1
3

0 10 8 4 3 3
0

2 9 5 1

G0 B O et e SO
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Color with the “slant” of each yoke
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Bijection by example: Profile (3,0)

- 9 5 1
3

0 10 8 4 3 3
0

2 9 5 1

ﬂ-(l) — o] o o] OO -0
PG WA DA B = SOOLE
Write down the total number of vacancies to the left of each yoke.
0,1,2,3,3,3,4,5,7,7,8
Color with the “slant” of each yoke

This is in DHK, ; when written in weakly decreasing order.

38



(z;q) sums for DHK partitions

Theorem (K.—Russell)

Foro<b<|%], we have:
Dy 0y(2,9) = Dg—p,y(2,9)

|y O e i ]
(2¢; O, NpJ N3], LN |

Ny, ,N;=0

39



Questions




Direct proof?

Our proof of bivariate sum-sides is indirect. It relies on
uniqueness of solutions for a system of equations.

Is there a direct enumerative proof?

40



Kleshchev multipartitions

For a fixed profile ¢ of rank 2, both DHK partitions and tight
cylindric partitions have the structure of a crystal graph for a
highest-weight integrable si, module.

But, there are other combinatorial models for these crystal
graphs.

41



Definition

Leto<b <.

A tuple of partitions © = (n(V,--- , (V) is called a Kleshchev
multipartition if:
e Each 7 is a strict partition.

o i) < #(n) forall i # b and 7 < #(n®*+D) + 1.

K(,09(q): univariate generating function

42



Product form

Foro<b </,
(qb+1

»q

{—b+1 (+2. 0+2
075507 ) oo

Kpp(q) =

(25 9%) o0 (Do
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Product form

Foro<b<l{,

b+1 {—b+1 L+2. (+2
(q 075507 ) oo

,q
(25 9%) o0 (Do

Kpp(q) =

This is the same as the univariate generating function
Tb,0—5) (@) = Tg—p,p)(@)-
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Product form

Foro<b<l{,

b+1 {—b+1 L+2. (+2
(q 075507 ) oo

,q
(25 9%) o0 (Do

Kpp(q) =

This is the same as the univariate generating function
Tb,0—5) (@) = Tg—p,p)(@)-

Question

Is there a nice bijection between two-row tight cylindric
partitions and Kleshchev multipartitions?

43



Parity considerations in Andrews-Gordon identities

Recall our sums, but set z +— 1:

For0< b <|%], we have:

Tio—b,)(1,9) = Tp —p)(1,9)

{ Ni+1) _ §b .
O ]
(@, No 1, LNs], N |,

Ny, N =0

44



These sums have appeared previously in papers of Andrews,
Kim-Yee, Kursungdz with regards to parity considerations in
Andrews-Gordon identities.

These are in turn related to Kleshchev multipartitions in the paper
of Chern-Li-Stanton-Xue-Yee.
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These sums have appeared previously in papers of Andrews,
Kim-Yee, Kursungdz with regards to parity considerations in
Andrews-Gordon identities.

These are in turn related to Kleshchev multipartitions in the paper
of Chern-Li-Stanton-Xue-Yee.

Question

Is there a relationship with tight cylindric partitions?
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Unimodality
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Unimodality

Fix a profile c, the coefficient of any fixed power of g is a
polynomial in z.
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Experimentally, it appears that for both cylindric and tight
cylindric partitions, the coefficients of these polynomials are
unimodal, i.e., they increase first, reach the maximum at either
one or two nearby coefficients and then decrease.
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Unimodality

Fix a profile c, the coefficient of any fixed power of g is a
polynomial in z.

Experimentally, it appears that for both cylindric and tight
cylindric partitions, the coefficients of these polynomials are
unimodal, i.e., they increase first, reach the maximum at either
one or two nearby coefficients and then decrease.

Question

It would be nice to have a proof of this unimodality.
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Example

T(2,0,0(259)
=1+4+2q+ (22 +22)q% + (2% + 222 + 2)q° + (z* +22° + 42 + 2)¢*
+ (2% 4+ 22* + 42° + 42%)q° + (2% + 22° + 42* + 62° + 52%)¢°
+ (27 +22°% + 42° + 62* + 92° + 42%)q’
+ (2% + 227 +42° + 62° + 112* + 1225 + 42%)¢8
+ (2% + 228 + 427 + 62° + 1125 4+ 152* + 142 + 22%)q°
+ (20 +22° + 428 + 627 + 112° 4+ 172° + 222* + 162° + 222)q*°
T

47



Thank you!
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