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Partitions



Definition

Given n ∈ Z≥0,

Number of ways to write n as:

n= π1 + · · ·+πt

with t ≥ 0, π1 ≥ π2 ≥ · · · ≥ πt ∈ Z>0,

Example

4= 4, 3+ 1, 2+ 2, 2+ 1+ 1, 1+ 1+ 1+ 1
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Ferrer’s diagram: Russian notation
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28= 10+ 8+ 4+ 3+ 3

3



Maya diagram

28= 10+ 8+ 4+ 3+ 3

· · · • • ◦ • • ◦ • • • • ◦ • ◦ ◦ • • • ◦ ◦ · · ·

Infinite sea of • to the left

Infinite sea of ◦ to the right

Number of beads to the right of i th vacancy = i th part.
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Cylindric Partitions



Definition: Cylindric Partitions

Fix a number of rows r also called rank

Fix a profile which is a composition c = (c1, c2, · · · , cr) of r many
non-negative integers.

ℓ= c1 + c2 + · · ·+ cr is called the level.

Attached to this data are cylindric partitions of profile c:

a tuple of partitions π= (π(1), · · · ,π(r)) satisfying some properties
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Definition by Example

c = (2,2, 0).

This has rank r = 3, level ℓ= 2+ 2+ 0= 4.

π= (π(1),π(2),π(3)) = ((3,2, 1,1), (4, 3,3, 1), (4,1,1))

4 1 1

3 2 1 1

4 3 3 1

4 1 1

2

2

0
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The profile c = (c1, · · · , cr) gives indentations

Rank r is the number of rows, or the number of individual
partitions.

Level is the total indentation

Parts weakly decrease across rows and columns

Cylindric because numbers weakly decrease across columns
even when the bottom row is pasted on top appropriately
indented.
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Abacus diagram

4 1 1π(3)→

π(1)→

π(2)→

π(3)→

3 2 1 1

4 3 3 1

4 1 1

2

2

0

π(3)→
π(1)→
π(2)→
π(3)→

• • • • • • ◦ • • • ◦ ◦ • ◦ ◦
• • • • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦
• • ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦
• • ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦0

2

2
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Abaci: Summary

Putting together the maya diagrams of individual partitions with
correct indentations and then yoking the beads together.

Infinite repeating pattern of yokes far to left matches the profile c
indentations
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Generating functions

Cc(z, q) =
∑
π

zmax(π)qwt(π)

So, for c = (2, 2,0) and π= ((3,2, 1, 1), (4,3, 3,1), (4,1,1))

max= 4

wt= 3+ 2+ 1+ 1+ 4+ 3+ 3+ 1+ 4+ 1+ 1
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Some important facts

(a) If c′ is obtained from c by rotation, then Cc(z, q) = Cc′(z, q)

(b) If c′ is obtained by reversing c, then Cc(1, q) = Cc′(1, q)

11



Some important facts

(a) If c′ is obtained from c by rotation, then Cc(z, q) = Cc′(z, q)

(b) If c′ is obtained by reversing c, then Cc(1, q) = Cc′(1, q)

11



Some important facts

(a) If c′ is obtained from c by rotation, then Cc(z, q) = Cc′(z, q)

(b) If c′ is obtained by reversing c, then Cc(1, q) = Cc′(1, q)

11



(c) Cc(1, q) has a periodic product form

Borodin,

Kyoto school? / Tingley,

Gessel–Krattenthaler + Foda–Welsh
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(d) In the last decade or so, there have been many studies
devoted to finding closed form sum-side expressions for Cc(z, q)
for two-row and three-row cylindric partitions.

Bersakçi, Bridges, Corteel, Dousse, Foda, Kurşungöz, Langer, Li,
Russell, Seyrek, Tsuchioka, Uncu, Warnaar, Welsh, . . .
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Tight cylindric partitions



4 1 1π(3)→

π(1)→

π(2)→

π(3)→

3 2 1 1

4 3 3 1

4 1 1

2

2

0

π(3)→
π(1)→
π(2)→
π(3)→

• • • • • • ◦ • • • ◦ ◦ • ◦ ◦
• • • • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦
• • ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦
• • ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦

←
←

←
←0

2

2
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Tight cylindric partitions

A cylindric partition whose abacus diagram is as tight as
possible, i.e., none of the yokes could be moved further to the
left.
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Equivalent definition

A cylindric partition π= (π(1), · · · ,π(r)) of profile c = (c1, · · · , cr) is
called tight if for every j ∈ Z>0, there exists a π(i) that does not
contain j as a part.
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Example

4 1π(3)→

π(1)→

π(2)→

π(3)→

3 2 1

4 3 3

4 1

2

2
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π(3)→
π(1)→
π(2)→
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• • ◦ • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

←
←

←
←0

2

2
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Generating functions

For a given profile c, we let Tc be the set of tight cylindric
partitions of profile c.

Tc(z, q) =
∑
π∈Tc

zmax(π)qwt(π)
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Product form

For profile c = (c1, · · · , cr),

Tc(1, q) =
(qr ; qr)∞(qm; qm)r−1∞

(q)r∞
∏

1≤i< j≤r
θ (q j−i+ci+···+c j−1 ; qm)

where,

m= r + ℓ= r + c1 + · · ·+ cr

θ (a; q) = (a; q)∞(q/a; q)∞.
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Example

If c = (b,ℓ− b) or (ℓ− b, b) for 0≤ b ≤ ℓ, we have:

Tc(1, q) =
(q2; q2)∞(qℓ+2; qℓ+2)∞

(q)2∞
θ (qb+1; qℓ+2)

=
(qb+1, qℓ−b+1, qℓ+2; qℓ+2)∞

(q; q2)∞(q)∞

So, upto a factor of (q; q2)∞, these are the products in
Andrews–Gordon and Andrews–Bressoud identities.
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For a rank r profile c,

Tc(1, q) = (qr ; qr)∞Cc(1, q).
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The main question



AnalyticRR-type identity

Comb
inator

ial

RR-ty
pe ide

ntity

G
en
er
at
in
g

Fu
nc
tio
ns

q-hypergeometric sums

Infinite products, or
Theta functions, or

False theta functions, etc.

Generating functions of:
restricted, coloured integer partitions, or

cylindric partitions, etc.

What about the sums???

22



Functional Equations



We are looking for bivariate generating functions, i.e., Tc(z; q).

Two broad strategies:

1 Either do clever counting and produce closed-form
generating functions

2 Guess the formulas and prove that they satisfy required
functional equations.

At least the two-row case ought to be manageable . . . .
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For cylindric partitions, Corteel–Welsh showed that the
generating functions are unique solutions to certain z, q
functional equations.

These functional equations tie together all generating functions
for c of a fixed rank and level.
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Example

c = (1,0, 0,2, 0)

0

2

0

0

1

The maximum part must
appear on a subset of red
rectangles.

These red rectangles ap-
pear in rows where ci > 0.

Peeling off all maximum
parts leads to another
cylindric partition with
same level and same
rank, but different profile.
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Corteel–Welsh functional equations

Cc(z; q) =
∑
;6=J⊆Ic

(−1)|J |−1
Cc(J)(zq|J |; q)

1− zq|J | .

Ic = Set of red rectangles in a profile c

c(J) = profile of same rank and level obtained after removing a
subset of these rectangles.
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Along with trivial initial conditions

Cc(0; q) = Cc(z; 0) = 1,

Corteel–Welsh functional equations uniquely determine Cc(z; q)
where c runs through profiles of a fixed rank and level.

27



Equations for tight cylindrics

Functional equation for tight cylindric partitions are as follows.

Theorem K.–Russell)
For c a profile of rank r,

Tc(z; q) +
zqr

1− zqr
Tc(zqr ; q) =
∑
;6=J⊆Ic

(−1)|J |−1
Tc(J)(zq|J |; q)

1− zq|J | .

28



Sums for the two row case



Sums for the two row case

Theorem K.–Russell)
For 0≤ b ≤ b ℓ2 c, we have:

T(ℓ−b,b)(z, q) = T(b,ℓ−b)(z, q)

=
∑

N1,··· ,Nℓ≥0

zN1q
∑ℓ

i=1 (Ni+1
2 )−
∑b

i=1 N2i

(zq; q)N1

�
N1

N2

�
q

�
N2

N3

�
q

· · ·
�

Nℓ−1

Nℓ

�
q
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Proof sketch

These types of sums satisfy their own (very easily derived)
functional equations.

Show that the required functional equations for tight cylindrics
are consequences of, i.e., lie in a vector space (over C(z; q))
spanned by the functional equations satisfied by the sums.

This is a linear algebra problem, can be solved easily on
computer for low ℓ.

Identify patterns in the linear combinations for low ℓ, and hope
that they generalize for all ℓ.
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This technique has been used extensively in the last few years.
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Open Question

Find/guess bivariate generating functions for 3-rowed tight
cylindric partitions.
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DHK partitions



DHK partitions

Dousse–Hardiman–Konan)

Let ℓ≥ 1 and 0≤ b ≤ ℓ.
Let DHKb,ℓ be the set of ℓ+ 1 colored partitions
λ1 ≥ λ2 ≥ · · · ≥ λs = 0, with allowed colors being 0,1, · · · ,ℓ,
satisfying:

• λi −λi+1 = |ui − ui+1| for all i where ui is the color of the part λi,

• the color of λs = 0 is b,

• there is exactly one part of size 0.
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Example

Let π= 82 + 73 + 73 + 51 + 40 + 31 + 31 + 31 + 20 + 11 + 00 (here,
subscripts are colors).

Then, π ∈ DHK0,3, #(π) = 10, wt(π) = 43.
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We ignore the last 0 part while counting the number of parts,

The number of parts of λ1 ≥ λ2 ≥ · · · ≥ λs = 0 is s− 1.

The symbol # denotes the number of parts.

Db,ℓ(z, q) =
∑

λ∈DHKb,ℓ

z#(λ)qwt(λ).
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DHK identity

For ℓ≥ 1, 0≤ b ≤ ℓ, we have:
Db,ℓ(1, q) =

(qb+1, qℓ−b+1, qℓ+2; qℓ+2)
(q; q2)∞(q; q)∞

.

Recall: This is exactly the product T(b,ℓ−b) = T(ℓ−b,b).
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Question

How are DHK partitions and two-row tight cylindrics related?

Answer

There is a very straight-forward bijection.
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Bijection by example: Profile (3,0)

9 5 1π(2)→

π(1)→

π(2)→
10 8 4 3 3

9 5 1
0

3

· · · • • • ◦ • • ◦ • • • • ◦ • ◦ ◦ • • •• • • • ◦ • • • • ◦ • • • • ◦ •
0

π(1) →
π(2) → ◦ ◦ ◦

◦
◦
◦ · · ·

Write down the total number of vacancies to the left of each yoke.

0,1, 2,3, 3, 3, 4,5, 7,7, 8

Color with the “slant” of each yoke

00 + 11 + 20 + 31 + 31 + 31 + 40 + 51 + 73 + 73 + 82.

This is in DHK0,3 when written in weakly decreasing order.
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(z; q) sums for DHK partitions

Theorem K.–Russell)
For 0≤ b ≤ b ℓ2 c, we have:

D(b,ℓ)(z, q) = D(ℓ−b,ℓ)(z, q)

=
∑

N1,··· ,Nℓ≥0

zN1q
∑ℓ

i=1 (Ni+1
2 )−
∑b

i=1 N2i

(zq; q)N1

�
N1

N2

�
q

�
N2

N3

�
q

· · ·
�

Nℓ−1

Nℓ

�
q
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Questions



Direct proof?

Our proof of bivariate sum-sides is indirect. It relies on
uniqueness of solutions for a system of equations.

Is there a direct enumerative proof?
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Kleshchev multipartitions

For a fixed profile c of rank 2, both DHK partitions and tight
cylindric partitions have the structure of a crystal graph for a
highest-weight integrable bsl2 module.

But, there are other combinatorial models for these crystal
graphs.
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Definition

Let 0≤ b ≤ ℓ.
A tuple of partitions π= (π(1), · · · ,π(ℓ)) is called a Kleshchev
multipartition if:

• Each π(i) is a strict partition.
• π(i)1 ≤ #(π(i+1)) for all i 6= b and π(b)1 ≤ #(π(b+1)) + 1.

K(b,ℓ)(q): univariate generating function
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Product form

For 0≤ b ≤ ℓ,
K(b,ℓ)(q) =

(qb+1, qℓ−b+1, qℓ+2; qℓ+2)∞
(q; q2)∞(q)∞

This is the same as the univariate generating function
T(b,ℓ−b)(q) = T(ℓ−b,b)(q).

Question

Is there a nice bijection between two-row tight cylindric
partitions and Kleshchev multipartitions?
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Parity considerations in Andrews–Gordon identities

Recall our sums, but set z 7→ 1:

For 0≤ b ≤ b ℓ2 c, we have:
T(ℓ−b,b)(1, q) = T(b,ℓ−b)(1, q)

=
∑

N1,··· ,Nℓ≥0

q
∑ℓ

i=1 (Ni+1
2 )−
∑b

i=1 N2i

(q)N1

�
N1

N2

�
q

�
N2

N3

�
q

· · ·
�

Nℓ−1

Nℓ

�
q

44



These sums have appeared previously in papers of Andrews,
Kim–Yee, Kurşungöz with regards to parity considerations in
Andrews–Gordon identities.

These are in turn related to Kleshchev multipartitions in the paper
of Chern–Li–Stanton–Xue–Yee.

Question

Is there a relationship with tight cylindric partitions?
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Unimodality

Fix a profile c, the coefficient of any fixed power of q is a
polynomial in z.

Experimentally, it appears that for both cylindric and tight
cylindric partitions, the coefficients of these polynomials are
unimodal, i.e., they increase first, reach the maximum at either
one or two nearby coefficients and then decrease.

Question

It would be nice to have a proof of this unimodality.
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Example

T(2,0,0)(z; q)

= 1+ zq+ (z2 + 2z)q2 + (z3 + 2z2 + z)q3 + (z4 + 2z3 + 4z2 + z)q4

+ (z5 + 2z4 + 4z3 + 4z2)q5 + (z6 + 2z5 + 4z4 + 6z3 + 5z2)q6

+ (z7 + 2z6 + 4z5 + 6z4 + 9z3 + 4z2)q7

+ (z8 + 2z7 + 4z6 + 6z5 + 11z4 + 12z3 + 4z2)q8

+ (z9 + 2z8 + 4z7 + 6z6 + 11z5 + 15z4 + 14z3 + 2z2)q9

+ (z10 + 2z9 + 4z8 + 6z7 + 11z6 + 17z5 + 22z4 + 16z3 + 2z2)q10

+ · · ·
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Thank you!
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